
Landslide: A New Race-Finding Tool for 15-410
more clever than “agility_drill” since 2011.

Ben Blum (bblum@andrew.cmu.edu)

Carnegie Mellon University - 15-410

2018, February 16

Ben Blum (CMU 15-410) Landslide 1 / 39



Introduction Introduction

Outline

Theory: Seeing concurrency bugs in a new way
I Case study (example)
I Tabular execution traces
I The execution tree

Research Technique: “Systematic testing”
I Preemption points
I Challenges and feasibility

Tool: Landslide
I How it works
I Automatically choosing preemption points
I User study (that’s you!)

Ben Blum (CMU 15-410) Landslide 2 / 39



Introduction Race Conditions

Case Study

Consumer thread

mutex_lock(mx);

if (!work_exists())
cond_wait(cvar, mx);

work = dequeue();

mutex_unlock(mx);
access(work->data);

Producer thread

mutex_lock(mx);

enqueue(work);
signal(cvar);

mutex_unlock(mx);

I See Paradise Lost lecture!
I if vs while: Two consumers can race to make one fail.

Ben Blum (CMU 15-410) Landslide 3 / 39



Introduction Race Conditions

Case Study

Consumer thread

mutex_lock(mx);

if (!work_exists())
cond_wait(cvar, mx);

work = dequeue();

mutex_unlock(mx);
access(work->data);

Producer thread

mutex_lock(mx);

enqueue(work);
signal(cvar);

mutex_unlock(mx);

I See Paradise Lost lecture!
I if vs while: Two consumers can race to make one fail.

Ben Blum (CMU 15-410) Landslide 3 / 39



Introduction Race Conditions

Thread Interleavings (“good” case)

Thread 1 Thread 2 Thread 3
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
enqueue(work);
signal(cvar);
unlock(mx);

work = dequeue();
unlock(mx);
access(work->data);

Ben Blum (CMU 15-410) Landslide 4 / 39



Introduction Race Conditions

Thread Interleavings (different “good” case)

Thread 1 Thread 2 Thread 3
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
enqueue(work);
signal(cvar);
unlock(mx);

work = dequeue();
unlock(mx);
access(work->data);

lock(mx);
if (!work_exists())

wait(cvar, mx);

Ben Blum (CMU 15-410) Landslide 5 / 39



Introduction Race Conditions

Thread Interleavings (race condition)

Thread 1 Thread 2 Thread 3
lock(mx);
if (!work_exists())

wait(cvar, mx);
lock(mx);
enqueue(work);
signal(cvar);
unlock(mx);

lock(mx);
work = dequeue();
unlock(mx);

work = dequeue();
unlock(mx);
// SIGSEGV /

Ben Blum (CMU 15-410) Landslide 6 / 39



Introduction Race Conditions

Testing

How can programmers be confident in the correctness of their code?
I Unit tests

I good for basic functionality, bad for concurrency
I Stress tests

I state of the art in 15-410
I Theorem proving

I heavy burden on the programmers
I Releasing to paying customers and worrying about correctness later

Motivation: Can we do better than stress testing?

Ben Blum (CMU 15-410) Landslide 7 / 39



Introduction Race Conditions

Testing Mechanisms

Stress testing: largetest, mandelbrot and friends
I Attempting to exercise as many interleavings as practical
I Exposes race conditions at random

I “If a preemption occurs at just the right time. . . ”
I Cryptic panic messages when failure occurs

What if. . .
I Make educated guesses about when to preempt
I Preempt enough times to run every single interleaving
I Overlook fewer bugs!

Ben Blum (CMU 15-410) Landslide 8 / 39



Systematic Testing

A different way of looking at race conditions. . .

Ben Blum (CMU 15-410) Landslide 9 / 39



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

cond_wait()

work_exists?

work != NULL
(no bug)

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 10 / 39



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

???

cond_wait()

work_exists?

work != NULL
(no bug)

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 11 / 39



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

cond_wait()dequeue()

???

work_exists?

cond_wait()

work_exists?

work != NULL
(no bug)

work != NULL
(no bug)

cond_signal()

enqueue()

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 12 / 39



Systematic Testing

Execution Tree

work_exists?
cond_wait()

dequeue()

cond_wait()dequeue() dequeue()

work_exists?

dequeue()

work_exists?

cond_wait()

work_exists?

work != NULL
(no bug)

work != NULL
(no bug)

work == NULL
Segfault!

cond_signal()

enqueue()

cond_signal()

enqueue()

Ben Blum (CMU 15-410) Landslide 13 / 39



Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
I On 1st execution, schedule threads arbitrarily until program ends.

I This represents one branch of the tree.
I At end of each branch, rewind system and restart test.
I Artificially preempt to interleave threads differently.
I Intuitively: Generate many “tabular execution traces”.

Okay, wait a sec...
I How can you possibly execute every possible interleaving?
I How did you know to draw that tree’s branches where they matter?

Ben Blum (CMU 15-410) Landslide 14 / 39



Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
I On 1st execution, schedule threads arbitrarily until program ends.

I This represents one branch of the tree.
I At end of each branch, rewind system and restart test.
I Artificially preempt to interleave threads differently.
I Intuitively: Generate many “tabular execution traces”.

Okay, wait a sec...

I How can you possibly execute every possible interleaving?
I How did you know to draw that tree’s branches where they matter?

Ben Blum (CMU 15-410) Landslide 14 / 39



Systematic Testing

Systematic Testing - The Big Picture

Goal: Force the system to execute every possible interleaving.
I On 1st execution, schedule threads arbitrarily until program ends.

I This represents one branch of the tree.
I At end of each branch, rewind system and restart test.
I Artificially preempt to interleave threads differently.
I Intuitively: Generate many “tabular execution traces”.

Okay, wait a sec...
I How can you possibly execute every possible interleaving?
I How did you know to draw that tree’s branches where they matter?

Ben Blum (CMU 15-410) Landslide 14 / 39



Systematic Testing

Preemption Point Example (remember this?)

boolean want[2] = { false, false };

1 want[i] = true;
(preemption point A)

2 while (want[j])
(preemption point B)

3 continue;
(preemption point C)

4 // ...critical section...
(preemption point D)

5 want[i] = false;

Some preemption points will expose bugs.
Some preemption points don’t matter.

Ben Blum (CMU 15-410) Landslide 15 / 39



Systematic Testing

Preemption Point Example (remember this?)

boolean want[2] = { false, false };

1 want[i] = true;
(preemption point A)

2 while (want[j])

3 continue;

4 // ...critical section...

5 want[i] = false;

Here, only preemption point A will trigger a deadlock.
All other interleavings are benign.

Ben Blum (CMU 15-410) Landslide 16 / 39



Systematic Testing

Preemption Points

Preemption points (PPs) are code locations where being preempted may
cause different behaviour.

I IOW, somewhere that interesting interleavings can happen around.

Systematic tests are parameterized by the set of PPs.
I n PPs and k threads ⇒ state space size is O(nk).
I Need to choose PPs very carefully for test to be effective.

I “Effective” = both comprehensive and feasible.

Ben Blum (CMU 15-410) Landslide 17 / 39



Systematic Testing

Preemption Points

What does “all possible interleavings” actually mean?

One extreme: Preempt at every instruction
I Good news: Will find every possible race condition.
I Bad news: Runtime of test will be impossibly large.

Other extreme: Nothing is a preemption point
I Good news: Test will finish quickly.
I Bad news: Only one execution was checked for bugginess.

I No alternative interleavings explored.
I Makes “no race found” a weak claim.

Ben Blum (CMU 15-410) Landslide 18 / 39



Systematic Testing

Preemption Points

Sweet spot: Insert a thread switch everywhere it “might matter”.

When are preemptions dangerous?
I Threads becoming runnable (thr_create(), cond_signal(), etc.)

I Preemptions may cause it to run before we’re ready
I Synchronization primitives (mutex_lock()/unlock(), etc.)

I If buggy or used improperly. . .
I Unprotected shared memory accesses (“data races”)

I May result in data structure corruption
I More on this later...

Ben Blum (CMU 15-410) Landslide 19 / 39



Landslide

Landslide

Ben Blum (CMU 15-410) Landslide 20 / 39



Landslide

About The Project

About me: Final year graduate student, advised by Garth Gibson
I TAed 15-410 for 3 semesters during undergrad
I Landslide’s publication history

I Master’s thesis
I http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

I Conference paper (OOPSLA 2016)
I http://www.contrib.andrew.cmu.edu/~bblum/oopsla.pdf

About Landslide
I Simics module, which traces:

I Every instruction executed
I Every memory access read/written

I Landslide shows how your Pebbles programs may not be stable.

Ben Blum (CMU 15-410) Landslide 21 / 39

http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf
http://www.contrib.andrew.cmu.edu/~bblum/oopsla.pdf


Landslide

About The Project

About me: Final year graduate student, advised by Garth Gibson
I TAed 15-410 for 3 semesters during undergrad
I Landslide’s publication history

I Master’s thesis
I http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf

I Conference paper (OOPSLA 2016)
I http://www.contrib.andrew.cmu.edu/~bblum/oopsla.pdf

About Landslide
I Simics module, which traces:

I Every instruction executed
I Every memory access read/written

I Landslide shows how your Pebbles programs may not be stable.

Ben Blum (CMU 15-410) Landslide 21 / 39

http://www.contrib.andrew.cmu.edu/~bblum/thesis.pdf
http://www.contrib.andrew.cmu.edu/~bblum/oopsla.pdf


Landslide Technical Overview

Big Picture: Execution Tree Exploration

Backtracking
I Each time test completes, identify a PP to replay differently
I Reset machine state and start over
I Implemented using Simics bookmarks

I set-bookmark and skip-to

I Replay test from the beginning, with a different interleaving

Controlling scheduling decisions
I Tool must control all sources of nondeterminism
I In 15-410, just timer and keyboard interrupts
I Landslide repeatedly fires timer ticks until desired thread is run.

Ben Blum (CMU 15-410) Landslide 22 / 39



Landslide Technical Overview

Big Picture: Execution Tree Exploration

Backtracking
I Each time test completes, identify a PP to replay differently
I Reset machine state and start over
I Implemented using Simics bookmarks

I set-bookmark and skip-to

I Replay test from the beginning, with a different interleaving

Controlling scheduling decisions
I Tool must control all sources of nondeterminism
I In 15-410, just timer and keyboard interrupts
I Landslide repeatedly fires timer ticks until desired thread is run.

Ben Blum (CMU 15-410) Landslide 22 / 39



Landslide Technical Overview

Landslide & You

Simics (hardware emulation)

Pebbles (reference kernel)

P2 (thread library)

system calls

hardware drivers

Ben Blum (CMU 15-410) Landslide 23 / 39



Landslide Technical Overview

Landslide & You

Simics (hardware emulation)

Pebbles (reference kernel)

Landslide

P2 (thread library)

system calls

hardware drivers

manages multiple
executions

injects timer
interrupts

examines memory
reads/writes

Ben Blum (CMU 15-410) Landslide 24 / 39



Landslide Technical Overview

Identifying Bugs

Landslide can definitely discover:
I Assertion failures
I Segfaults
I Deadlock
I Use-after-free / double-free

Landslide can reasonably suspect:
I Infinite loop (halting problem)
I Data race bugs

Ben Blum (CMU 15-410) Landslide 25 / 39



Landslide Technical Overview

What is a Data Race?

A data race is a pair of memory accesses between two threads, where:
I At least one of the accesses is a write
I The threads are not holding the same mutex
I The threads can be reordered (e.g., no cond_signal() in between)

Data races are not necessarily bugs, just highly suspicious!
I Bakery alg: Is number[i]=max(number[0],number[1])+1 bad?
I What about unprotected next_thread_id++?
I “If threads interleaved the wrong way here, it might crash later.”

I Hmmm...

Ben Blum (CMU 15-410) Landslide 26 / 39



Landslide Technical Overview

What is a Data Race?

A data race is a pair of memory accesses between two threads, where:
I At least one of the accesses is a write
I The threads are not holding the same mutex
I The threads can be reordered (e.g., no cond_signal() in between)

Data races are not necessarily bugs, just highly suspicious!
I Bakery alg: Is number[i]=max(number[0],number[1])+1 bad?
I What about unprotected next_thread_id++?
I “If threads interleaved the wrong way here, it might crash later.”

I Hmmm...

Ben Blum (CMU 15-410) Landslide 26 / 39



Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools choose a fixed set of preemption points.
I E.g., “all thread API calls” or “all kernel mutex locks/unlocks”
I Depending on length of test, completion time is unpredictable.
I More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
I Tool: “I want to use these PPs, but can’t predict completion time.”
I User: “I have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time – can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 39



Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools choose a fixed set of preemption points.
I E.g., “all thread API calls” or “all kernel mutex locks/unlocks”
I Depending on length of test, completion time is unpredictable.
I More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
I Tool: “I want to use these PPs, but can’t predict completion time.”
I User: “I have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time – can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 39



Landslide Iterative Deepening

Choosing the Right Preemption Points

How can we address exponential state space explosion?

State of the art tools choose a fixed set of preemption points.
I E.g., “all thread API calls” or “all kernel mutex locks/unlocks”
I Depending on length of test, completion time is unpredictable.
I More often, a subset is better in terms of time/coverage.

Current systematic testing model is not user-friendly.
I Tool: “I want to use these PPs, but can’t predict completion time.”
I User: “I have 16 CPUs and 24 hours to test my program.”

Stress testing allows user to choose total run time – can we offer this too?

Ben Blum (CMU 15-410) Landslide 27 / 39



Landslide Iterative Deepening

Iterative Deepening in Landslide

Landslide automatically iterates through different configurations of PPs.
I Manages work queue of jobs with different PPs
I Each job represents a new state space for Landslide to explore
I Prioritizes jobs based on estimated completion time

Repeat state space explorations, adding preemption points, until time is
exhausted.

Only required argument is CPU budget

Ben Blum (CMU 15-410) Landslide 28 / 39



Landslide Iterative Deepening

Iterative Deepening

Minimal state space includes only “mandatory” context switches
I e.g., yield(), cond_wait().

yield()

yield()

Ben Blum (CMU 15-410) Landslide 29 / 39



Landslide Iterative Deepening

Iterative Deepening

Adding different PPs can produce state spaces of different sizes; Landslide
tries them in parallel.

yield()

yield()

mutex_lock()

yield()

yield()

mutex_unlock()

Ben Blum (CMU 15-410) Landslide 30 / 39



Landslide Iterative Deepening

Iterative Deepening

If time allows, Landslide will combine PPs into larger, more comprehensive
state spaces.

yield()

mutex_lock()

yield()

mutex_unlock()

Ben Blum (CMU 15-410) Landslide 31 / 39



Evaluation

Demo

Ben Blum (CMU 15-410) Landslide 32 / 39



Evaluation

Test Suite

Landslide ships with 6 approved test cases:

Standard P2 tests
I thr_exit_join
I paraguay
I rwlock_downgrade_read_test

New tests
I broadcast_test
I paradise_lost
I mutex_test

Ben Blum (CMU 15-410) Landslide 33 / 39



Evaluation

What makes a Landslide-friendly test

“Why not largetest, juggle, cyclone, agility_drill...?”

Sample code from cyclone:

for (i = 0; i < MAX_MISBEHAVE /* 64 */; i++) {
misbehave(i);
tid = thr_create(child_fn, i);
thr_join(tid, &status);

}

Stress tests expose various interleavings using big loops/many threads;

Landslide finds many interleavings itself; even if the test case has no loops.

How long do you think Landslide would take to test cyclone..?

Ben Blum (CMU 15-410) Landslide 34 / 39



Evaluation

What makes a Landslide-friendly test

“Why not largetest, juggle, cyclone, agility_drill...?”

Sample code from cyclone:

for (i = 0; i < MAX_MISBEHAVE /* 64 */; i++) {
misbehave(i);
tid = thr_create(child_fn, i);
thr_join(tid, &status);

}

Stress tests expose various interleavings using big loops/many threads;

Landslide finds many interleavings itself; even if the test case has no loops.

How long do you think Landslide would take to test cyclone..?
Ben Blum (CMU 15-410) Landslide 34 / 39



Evaluation

Previous Semesters

S’15, F’15, S’16, F’16, S’17, F’17: 94 groups signed up to use Landslide;
71 found bugs

109 deterministic bugs (e.g. swexn, initialization)

122 distinct non-deterministic bugs (among 49 groups)
I 36 groups (73%) fixed ≥ 1 such bug

I (as verified by running Landslide again – not a guarantee!)
I 26 groups (53%) fixed all such bugs
I Most ambitious group: 11 distinct races found + fixed!

Ben Blum (CMU 15-410) Landslide 35 / 39



Evaluation Landslide for the People

User Study

Try Landslide on your P2!
I Bare minimum effort: No more than 1 hour

I Clone a github URL, run setup script, run tests, answer survey
I Landslide will automatically report test results (as described below)

I Full study plan: 4-8 hours of active attention
I (Estimated, including time to diagnose and fix bugs)
I However, many tests should run passively overnight – start soon!

Prerequisites
I You must pass the P2 hurdle before using Landslide.

I startle, agility_drill, cyclone, join_specific_test,
thr_exit_join

I Recommended to attempt several stress tests, e.g.:
I juggle 4 3 2 0, multitest, racer, paraguay

Ben Blum (CMU 15-410) Landslide 36 / 39



Evaluation Landslide for the People

User Study

Try Landslide on your P2!
I Bare minimum effort: No more than 1 hour

I Clone a github URL, run setup script, run tests, answer survey
I Landslide will automatically report test results (as described below)

I Full study plan: 4-8 hours of active attention
I (Estimated, including time to diagnose and fix bugs)
I However, many tests should run passively overnight – start soon!

Prerequisites
I You must pass the P2 hurdle before using Landslide.

I startle, agility_drill, cyclone, join_specific_test,
thr_exit_join

I Recommended to attempt several stress tests, e.g.:
I juggle 4 3 2 0, multitest, racer, paraguay

Ben Blum (CMU 15-410) Landslide 36 / 39



Evaluation Landslide for the People

User Study - Additional Information

Human Subjects Research
I CMU IRB has approved this study
I Landslide will collect results while you use it

I Record commands issued, take snapshots of your P2 code
I All data will be anonymized before publication

I No coercion: There is no penalty for not participating.
I I am not on course staff, cannot influence your grade
I Course staff will not have access to study data during semester

Risks & Benefits
I Benefit: Landslide may help you find/fix bugs, improving your grade!
I Risk: Landslide may find no bugs and be a waste of your time.
I Benefit: You might learn something...

Ben Blum (CMU 15-410) Landslide 37 / 39



Evaluation Landslide for the People

User Study - Additional Information

Human Subjects Research
I CMU IRB has approved this study
I Landslide will collect results while you use it

I Record commands issued, take snapshots of your P2 code
I All data will be anonymized before publication

I No coercion: There is no penalty for not participating.
I I am not on course staff, cannot influence your grade
I Course staff will not have access to study data during semester

Risks & Benefits
I Benefit: Landslide may help you find/fix bugs, improving your grade!
I Risk: Landslide may find no bugs and be a waste of your time.
I Benefit: You might learn something...

Ben Blum (CMU 15-410) Landslide 37 / 39



Evaluation Landslide for the People

User Study - How to Participate

Interested?

To participate. . .
I Meet prerequisites of passing P2 tests
I Complete sign-up form online to get further instructions

I (watch your email for the link)
I Optional “Landslide clinic” for in-person tech (or moral) support

I Next week, room and time TBD

Ben Blum (CMU 15-410) Landslide 38 / 39



End

Questions?

Ben Blum (CMU 15-410) Landslide 39 / 39



Bonus Slides State Space Reduction

Coping with State Space Explosion

Serious problem: State spaces grow exponentially
I With p preemption points and k runnable threads, size pk .
I Threatens our ability to explore everything.
I Fortunately, some sequences result in identical states.

Partial Order Reduction identifies and skips “equivalent” interleavings.
I After each execution, compare memory reads/writes of each thread.
I Find when reordering threads couldn’t possibly change behaviour.
I Example follows. . .

Ben Blum (CMU 15-410) Landslide 40 / 39



Bonus Slides State Space Reduction

State Space Reduction

Ben Blum (CMU 15-410) Landslide 41 / 39



Bonus Slides State Space Reduction

State Space Reduction

Ben Blum (CMU 15-410) Landslide 42 / 39



Bonus Slides State Space Reduction

State Space Reduction

Ben Blum (CMU 15-410) Landslide 43 / 39


	Introduction
	Introduction
	Race Conditions

	Systematic Testing
	Landslide
	Technical Overview
	Iterative Deepening

	Evaluation
	Landslide for the People

	End
	Bonus Slides
	State Space Reduction


