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Motivation
� Beginnings of AI – chess, theorem-proving,... tasks

thought to require “intelligence.”

� Perception (language and vision) and common
sense reasoning not thought to be difficult to have
a machine do it.

� The human brain as a model of how to build
intelligent machines.

� Brain-like machanisms - since McCulloch early 40s.

� Connectionism – building upon the architectures of
the brain.
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� Massively parallel simple neuron-like processing
elements.

� “Representation” – weighted connections between
the elements.

� Learning of representation – change of weights.

� Common sense – extremely well organized gigantic
memory of facts – indices are relevant, highly
operational knowledge, access by content.

� Classification tasks.
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How the Brain Works
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Different Threshold Functions
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Learning Networks
� How to acquire the right values for the connections

to have the right knowledge in a network?

� Answer – learning: show the patterns, let the
network converge the values of the connections for
which those patterns correspond to stable states
according to parallel relaxation.

� Neural networks that can learn: perceptrons,
backpropagation networks, Boltzaman machines,
recurrent networks, ...
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Perceptrons
� Introduced in the late 50s – Minsky and Papert.
� Perceptron convergence theorem Rosenblatt 1962:

Perceptron will learn to classify any linearly separable
set of inputs.
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What Can a Perceptron Represent?
� and?

� or?

� not?

� xor?
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Boolean Functions and Perceptrons
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Learning in Perceptrons
Rosenblatt 1960

Let � be the correct output, and � ���



the output
function of the network.

� Error: E � � � � ���



� Update weights:
� � � � � � �	�
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Discussion - Perceptrons
� Classifies a linearly separable set of inputs.

� Too restrictive – Anything else?

� Multi-layer perceptrons – found as a “solution” to
represent nonlinearly separable functions – 1950s.

� Many local minima – Perceptron convergence
theorem does not apply.

� 1950s - Intuitive Conjecture was: There is no learning
algorithm for multi-layer perceptrons.

� Research in neural networks stopped until the 70s.
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Backpropagation networks
� Multi-layer perceptron.

� Goal again: Self-organizing neural networks –
convergence to a stable structure.

� Weights change proportional to output errors.

� Gradient descent and chaining.

� After some training no more improvement.

� When to stop training?
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Two-Layered Two-Unit Networks
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Two-Layered Networks
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Learning
� If � is differentiable, then we can take the derivative

of the error with respect to each weight using the
chain rule:
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� Error backpropagation - each hidden unit is
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More machines
� Boltzaman machines - simulated annealing to make

it “jump” out of local minima.

� High “temperatures” units have random behavior.

� Low “temperatures” - Hopfiel networks.

� Reinforcement learning - reward

� Unsupervised learning - output units “fight” for
control of input – competitive learning.
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Hopfield networks

� Hopfield – 1982 – a theory of memory.

� A network of processing elements – units –
connected by weighted, symmetric connections.

� Weights are positive or negative.

� Elements are on or off, active or inactive.
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procedure parallel relaxation
while not-stable network

pick a random unit
let energy be the sum of the

connections
to all active neighbors

if energy is positive
then turn on the unit - unit becomes

active
else turn off the unit - unit becomes

inactive

� Network is stable when no more units can change
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their state.

� Parallel relaxation is search.

� Possibly many local minima.

Veloso, Carnegie Mellon
15-381 – Fall 2001



Discussion - Hopfield networks
� For a particular set of values of the connections, the

network may have only a finite number of stable
configurations.

� Network stores patterns. Values of the connections
and topology of the network are in direct correspondence
to the stable configurations – patterns.

� Weights of connections represent the “knowledge”
encoded in a network.

� Partial pattern or slightly wrong pattern – Hopfield
network converges to the closest stable pattern.
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� Partial pattern – content-addressable memory.

� From a random initial configuration goes to closest
stable state - local minimum.
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