Perceptrons and Neural Networks

Manuela Veloso 15-381 - Fall 2001

Motivation

- _ _ _ Beginnings of AI – chess, theorem-proving,... tasks thought to require "intelligence."
- - - - - -Perception (language and vision) and common sense reasoning not thought to be difficult to have a machine do it.
- _ _ _ _ _ _ _ The human brain as a model of how to build intelligent machines.
- _ _ _ _ _ _ _ _ _ Brain-like machanisms - since McCulloch early 40s.
- _ Connectionism – building upon the architectures of the brain.
- _ _ _ _ _ _ _ _ _ _ _ _ _ Massively parallel simple neuron-like processing elements.
- _ _ _ _ _ _ _ _ _ "Representation" – weighted connections between the elements.
- _ _ _ _ _ _ _ _ _ Learning of representation – change of weights.
- _ Common sense – extremely well organized gigantic memory of facts – indices are relevant, highly operational knowledge, access by content.
- - - - - -Classification tasks.

How the Brain Works

Memory

 $\bullet~10^{11}$ neurons, 10^{14} connections

Main Processing Unit

$$
a_i = g(\sum_j W_{j,i} a_j)
$$

Veloso, Carnegie Mellon 15-381 – Fall ²⁰⁰¹

Different Threshold Functions

Learning Networks

- _ _ _ _ _ _ _ _ _ How to acquire the right values for the connections to have the right knowledge in a network?
- _ _ _ _ _ _ _ _ _ _ _ Answer – learning: show the patterns, let the network converge the values of the connections for which those patterns correspond to stable states according to parallel relaxation.
- _ _ _ _ _ _ _ _ _ _ Neural networks that can learn: perceptrons, backpropagation networks, Boltzaman machines, recurrent networks, ...

Perceptrons

- _ _ _ _ _ _ _ _ _ _ Introduced in the late 50s – Minsky and Papert.
- Perceptron convergence theorem Rosenblatt 1962: Perceptron will learn to classify any linearly separable set of inputs.

What Can a Perceptron Represent?

- _ _ _ _ _ _ _ _ and?
- _ _ _ _ _ _ or?
- _ _ _ _ _ _ _ not?
- _ _ _ _ _ _ _ xor?

Boolean Functions and Perceptrons

Learning in Perceptrons

Rosenblatt 1960

Let y be the correct output, and $f(x)$ the ∞ $\left(\begin{array}{cc} \circ \end{array}\right)$ the $\circ \circ \cdot \cdot$ the output function of the network.

- _ _ _ _ _ _ _ _ _ Error: $E = y - f(x)$ - $\sqrt{2}$
- _ _ _ _ _ _ _ _ _ _ Update weights: $W_j \leftarrow W_j + \alpha x_j E$

Discussion - Perceptrons

- _ Classifies a linearly separable set of inputs.
- _ _ _ _ _ _ _ _ _ Too restrictive – Anything else?
- _ _ _ _ _ _ _ _ _ _ _ _ Multi-layer perceptrons – found as a "solution" to represent nonlinearly separable functions – 1950s.
- _ _ _ _ _ _ _ _ _ _ _ Many local minima – Perceptron convergence theorem does not apply.
- ____________ 1950s - Intuitive Conjecture was: There is no learning algorithm for multi-layer perceptrons.
- _ _ _ _ _ _ _ _ _ _ _ Research in neural networks stopped until the 70s.

Backpropagation networks

- - - - - - -Multi-layer perceptron.
- _ _ _ _ _ _ _ Goal again: Self-organizing neural networks – convergence to a stable structure.
- Weights change proportional to output errors.
- _ _ _ _ _ _ _ _ Gradient descent and chaining.
- _ _ _ _ _ _ _ _ _ After some training no more improvement.
- _ _ _ _ _ _ _ _ _ _ When to stop training?

Two-Layered Two-Unit Networks

xor?

Two-Layered Networks

$$
a_j=g(\sum_k W_{k,j}I_k)
$$

Veloso, Carnegie Mellon 15-381 – Fall ²⁰⁰¹

Learning

- _ _ _ _ _ _ _ _ If g is differentiable, then we can take the derivative of the error with respect to each weight using the chain rule: $\frac{d}{dx}f(g(x))=f(x)$ $f(x) = f'(x(x)) e'(x)$ $\frac{1}{2}$ $'(g(x))g'(x)$.
- \overline{E} \overline{T} \overline{C}
- $i \leftarrow W_{i,i} + \alpha \times a_{i} \times Err$ $\mathcal{L} \sim \mathcal{L}$ Fine $\mathcal{L} \sim \mathcal{L}(i\infty)$ $\sqrt{2}$
- If $\Delta_i=Err_ig'(in_i)$ then $rr_{i}g'(in_{i})$ then $W_{j,i} \leftarrow W_{j,i} + \alpha \times a_{j} \times \Delta_{i}$ $\times a_i \times \Delta_i$
- _ _ _ _ _ _ _ Error backpropagation - each hidden unit is responsible for some part of the error.
- \sim \sim \sim \sim \sim $= a'(in) \sum W_{i} \Lambda_{i}$ $i\Delta i$
- \bullet $1/1/7$ $1/1/7$ $i \leftarrow W_{k,i} + \alpha \times I_k \times \Delta$ $i + \alpha \times I_k \times \Delta_i$ the contract of the contract of

More machines

- ---------Boltzaman machines - simulated annealing to make it "jump" out of local minima.
- _ _ _ _ _ _ _ _ _ High "temperatures" units have random behavior.
- _ _ _ _ _ _ _ _ Low "temperatures" - Hopfiel networks.
- _ _ _ _ _ _ _ _ _ _ _ Reinforcement learning - reward
- - - - - - -Unsupervised learning - output units "fight" for control of input – competitive learning.

Hopfield networks

- - - - - - - - - -Hopfield – 1982 – a theory of memory.

_ _ _ _ A network of processing elements – units – connected by weighted, symmetric connections.

_ _ _ _ _ _ _ _ _ _ _ Weights are positive or negative.

- - - - - - - - - -Elements are on or off, active or inactive. procedure parallel relaxation while not-stable network pick a random unit let energy be the sum of the connections to all active neighbors if energy is positive then turn on the unit - unit becomes active else turn off the unit - unit becomes inactive

- - - - - - - - - - -Network is stable when no more units can change

their state.

- _ _ _ _ _ _ _ _ _ _ _ Parallel relaxation is search.
- - - - - - -Possibly many local minima.

Discussion - Hopfield networks

- _ _ _ _ _ _ _ For a particular set of values of the connections, the network may have only a finite number of stable configurations.
- _ _ _ _ _ _ _ _ _ _ Network stores patterns. Values of the connections and topology of the network are in direct correspondence to the stable configurations – patterns.
- _ _ _ _ _ _ _ _ _ _ _ Weights of connections represent the "knowledge" encoded in a network.
- _ _ _ _ _ _ _ _ _ _ Partial pattern or slightly wrong pattern – Hopfield network converges to the closest stable pattern.
- _ _ _ _ _ _ _ _ _ _ _ Partial pattern – content-addressable memory.
- _ _ _ _ _ _ _ _ _ From a random initial configuration goes to closest stable state - local minimum.