
Canonical LR(1) Parsers

Def: An LR(1) item is a two-component element of the form

[A ,]

where the first component is a marked production, A , called the core of the item and is a lookahead

character that belongs to the set Vt { }.

An LR(1) item [A ,] is said to be valid for viable prefix if there exists a rightmost derivation

S *
R A R

where = is the viable prefix and is the first symbol of or if = .

Aside:

Consider the grammar

1. S A d
2. | B e

3. A a A b
4. | c

5. B a B b
6. | c

Is this grammar LR(k) for some fixed k?

What about LL(k) for some fixed k?

Consider the grammar

 1. S A d

 2. A e

 3. A a A b

 4. c

Is this grammar LR(k) for some fixed k?

What about LL(k) for some fixed k?

Consider the grammar

 1. S A B

 2. A a A b

 3. c

 4. B d

 5. e

Is this grammar LR(k) for some fixed k?

What about LL(k) for some fixed k?

LR(1) Item Construction

1. Generate the start state item set, C0.

 1.1. Basis Set: [S ,]

 1.2. Closure Set: if [A X ,] where X P, then add

[X ,] to C0 where FIRST1().

2. Do until no new states or item sets can be created

 2.1 {Perform a read operation}

For each item [A X , c] in some state U include the item [A X , c] in a new
state V. If the basis set already exists, the merge the two states.

 2.2 {Close the new state}

 For each item [A X , c] in state V and every production

X P, add [X , d] to V where d FIRST1(c).

The LR(1) item sets are Consider the following grammar:

C0 0. G S

 1. S E = E
 2. | f

 3. E T
 4. | E + T

 5. T f
 6. | T * f

Click here for the answer.

LR(1) Constructor

Given: LR(1) item sets, C0, C1, …, Cm, where C0 is the start state and the states of the parser, 0, 1, …, m, we
have the following algorithm for constructing the LR(1) parse tables F and G.

1. Repeat for each state i in the LR(1) item sets

 1.1 {Compute F}

a. if [A u , c] Ci where u Vt and there is a transition from Ci to Cj on u, then

F(i, u) Shift.

b. if [A , u] Ci where A is the jth production and u Vt { }, then

F(i, u) Reduce j.

 c. if [S ,] Ci, then F(i,) Accept

 d. Otherwise Error

 1.2 {Compute G}

 a. If there is a transition from Ci to Cj on A, then G(i, A) j.

 b. Otherwise Error

Note: State 0 is the start state of the parser.

From the partial LR(1) item sets below, we obtain the following partial LR(1) action table.

State Basis Set Closure Set Next State
 or Reduce

0 [G S,] 17

[S E = E,] 1

 [S f,] 3

 [E T, =:+] 2

 [T T * f, =:+:*] 2

 [T f, =:+:*] 3

 [E E + T, =:+] 1

1 [S E = E,] 4

 [E E + T, =:+] 5

2 [E T , =:+] R3

 [T T * f, =:+:*] 11

3 [S f ,] R2

 [T f , =:+:*] R5

4 [S E = E,] 6

 [E T, :+] 7

 [T f, :+:*] 8

 [T T * f, :+:*] 7

 [E E + T, :+] 6

 Action F

 f = + *

0

1

2

3

4

Click here for the answer.

From the partial LR(1) item sets below, we obtain the following partial next state table.

State Basis Set Closure Set Next State
 or Reduce

0 [G S,] 17

[S E = E,] 1

 [S f,] 3

 [E T, =:+] 2

 [T T * f, =:+:*] 2

 [T f, =:+:*] 3

 [E E + T, =:+] 1

1 [S E = E,] 4

 [E E + T, =:+] 5

2 [E T , =:+] R3

 [T T * f, =:+:*] 11

3 [S f ,] R2

 [T f , =:+:*] R5

4 [S E = E,] 6

 [E T, :+] 7

 [T f, :+:*] 8

 [T T * f, :+:*] 7

 [E E + T, :+] 6

Next state G

State S E T f = + *

0

1

2

3

4

Click here for the answer.

Using the LR(1) parse tables above, the LR parse configuration 5-tuple for f + f = f * f yields

N S A/

- 0 f + f = f * f -

 Action F

 f = + *

0 S
1 . S S . .
2 . R3 R3 S .
3 . R5 R5 R5 R2
4 S
5 S
6 . . S . R1
7 . . R3 S R3
8 . . R5 R5 R5
9 . R5 R5 R5 .
10 . R4 R4 S .
11 S
12 . R6 R6 R6 .
13 S
14 . . R4 S R4
15 S
16 . . R6 R6 R6
17 A

 Next State G
 S E T f = + *

0 17 1 2 3 . . .
1 4 5 .
2 11
3
4 . 6 7 8 . . .
5 . . 10 9 . . .
6 13 .
7 15
8
9
10 11
11 . . . 12 . . .
12
13 . . 14 8 . . .
14 15
15 . . . 16 . . .
16
17

 Grammar

0. G S

1. S E = E
2. | f

3. E T
4. | E + T

5. T f
6. | T * f

Click here for the answer.

ANSWERS

The complete LR(1) item sets for the above grammar are

State Basis Set Closure Set Next State
 or Reduce

0 [G S,] 17

[S E = E,] 1

 [S f,] 3

 [E T, =:+] 2

 [T T * f, =:+:*] 2

 [T f, =:+:*] 3

 [E E + T, =:+] 1

1 [S E = E,] 4

 [E E + T, =:+] 5

2 [E T , =:+] R3

 [T T * f, =:+:*] 11

3 [S f ,] R2

 [T f , =:+:*] R5

4 [S E = E,] 6

 [E T, :+] 7

 [T f, :+:*] 8

 [T T * f, :+:*] 7

 [E E + T, :+] 6

5 [E E + T, =:+] 10

 [T f, =:+:*] 9

 [T T * F, =:+:*] 10

6 [S E = E ,] R1

 [E E + T, :+] 13

7 [E T , :+] R3

 [T T * f, :+:*] 15

8 [T f , =:+:*] R5

9 [T f , =:+:*] R5

10 [E E + T , =:+] R4

 [T T * f, =:+:*] 11

11 [T T * f, =:+:*] 12

12 [T T * f , =:+:*] R6

13 [E E + T, :+] 14

 [T f, :+:*] 8

 [T T * f, :+:*] 14

14 [E E + T , :+] R4

 [T T * f, :+:*] 15

15 [T T * f, :+:*] 16

16 [T T * f , :+:*] R6

17 [G S ,] A

Return

 Action F

State f = + *

0 S
1 . S S . .
2 . R3 R3 S .
3 . R5 R5 R5 R2
4 S
5 S
6 . . S . R1
7 . . R3 S R3
8 . . R5 R5 R5
9 . R5 R5 R5 .
10 . R4 R4 S .
11 S
12 . R6 R6 R6 .
13 S
14 . . R4 S R4
15 S
16 . . R6 R6 R6
17 A

Return

Next State G

State S E T f = + *

0 17 1 2 3 . . .
1 4 5 .
2 11
3
4 . 6 7 8 . . .
5 . . 10 9 . . .
6 13 .
7 15
8
9
10 11
11 . . . 12 . . .
12
13 . . 14 8 . . .
14 15
15 . . . 16 . . .
16
17

Return

N S A

- 0 f + f = f * f - -
3 3 0 + f = f * f S -
2 2 0 + f = f * f R 5
1 1 0 + f = f * f R 3
5 5 1 0 f = f * f S -
9 9 5 1 0 = f * f S -
10 10 5 1 0 = f * f R 5
1 1 0 = f * f R 4
4 4 1 0 f * f S -
8 8 4 1 0 * f S -
7 7 4 1 0 * f R 5
15 15 7 4 1 0 f S -
16 16 15 7 4 1 0 λ S -
7 7 4 1 0 λ R 6
6 6 4 1 0 λ R 3
17 17 0 λ R 1
 Accept

