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ABSTRACT
Deterministic replay presents challenges and often results in high

memory and runtime overheads. Previous studies deterministically

reproduce program outputs often only after several replay iterations

or may produce a non-deterministic sequence of output to external

sources. In this paper, we propose AggrePlay, a deterministic replay

technique which is based on recording read-write interleavings

leveraging thread-local determinism and summarized read values.

During the record phase, AggrePlay records a read count vector

clock for each thread on each memory location. Each thread checks

the logged vector clock against the current read count in the replay

phase before a write event. We present an experiment and analyze

the results using the Splash2x benchmark suite as well as two real-

world applications. The experimental results show that on average,

AggrePlay experiences a better reduction in compressed log size,

and 56% better runtime slowdown during the record phase, as well

as a 41.58% higher probability in the replay phase than existing

work.
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1 INTRODUCTION
Deterministic replay is a process of recording data from a program’s

execution and guiding a subsequent execution towards a specific

program state and/or program output [18, 25, 26, 30, 31]. It can be

used in, for example, software debugging [15, 17, 18] and software

testing [13, 27]. Deterministic replay consists of two phases, namely

record phase and replay phase.

In the record phase, such a technique logs data from an execution

of a multithreaded program. Logged data includes thread access

interleavings to shared memory locations and synchronization

objects’ access orders. The replay phase is an execution of the

program guided with an execution schedule generated based on

the data output from the record phase. Some techniques [11, 31]

further include an offline phase in between the record and replay

phases to resolve some data missed from the record phase.

We categorize deterministic replay techniques into

hardware-based [2, 20, 21, 29] and software-based [10, 11, 17] for

brevity. Hardware-based techniques may require specialized

hardware which may not be available on commodity systems

[22, 25, 29]. We focus on software-based deterministic replay

techniques in this work due to their ease of deployment compared

to hardware-based techniques.

Software-based replay techniques need to tackle data races
1
[6,

12]. As such, replay techniques record thread access interleavings

on shared memory locations and synchronization objects during

the record phase to generate an execution schedule which produces

the required interleavings in the replay phase. There are three types

of interleavings recorded on shared memory locations: read-write,
write-read and write-write. However, logging all the interleavings
in an execution incurs high memory and runtime overheads. As

such, some techniques record subsets of interleavings [17, 29, 31].

We refer to the proportion of interleavings recorded as the “degree
of recording fidelity” [6, 8].

We further categorize software-based deterministic replay

techniques (hereafter referred to as replay techniques) into

order-based and search-based replay techniques for brevity.

Order-based techniques [10, 17]: These techniques record the

order of thread accesses to shared memory locations as well as

synchronization objects. They may record all sets of thread access

interleavings (read-write, write-read and write-write) or subsets of
them. In the simplest form, order-based techniques protect

instrumentation events with some lock object, ensuring that the

1
A data race occurs when two or more threads accessing a shared memory location

without proper synchronization and at least one of the access operations is a write

operation.
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(a) trace σ1=⟨w1(x ), r1(x ),w2(x )⟩ The
interleaving r1(x)⇝w2(x) is not recorded.

(b) Replay trace σsr 1=⟨w1(x ), r1(x )⟩ Data race
race1 is missed by Light.

Figure 1: Illustration of thread interleavings recorded by existing replay techniques.

correct thread interleaving order is preserved. Thus, they exhibit

high recording fidelity. However, logging all thread interleavings is

costly due to the frequent use of locks during the record phase.

Moreover, excessive event matching in the replay phase reduces

concurrency and increases the execution overhead. Replay

techniques such as LEAP [10] use more than one lock object to

protect read and write accesses by to different shared memory

locations, increasing parallelism. However, LEAP incurs high

memory and runtime overheads as all events (both read and write)

executed on each shared memory location are recorded in a

serialized manner.

Search-based techniques [1, 11, 23]: These techniques like

Stride [31] and ODR [1] sacrifice recording fidelity in exchange for

a speedup in record time and low memory usage. Stride records

the values read by threads and couples each read value with a

previous write access to some shared memory location. Whilst

search-based techniques may sometimes reproduce the output of a

program, the process often requires several iterations and may

reduce the efficiency of such techniques. Another downside is that

low record fidelity means search-based techniques may generate

new data races or fail to reproduce data races during the replay

phase. Stride achieves up to 2.5x in slowdown reduction on

average compared to order-based technique LEAP. However, a

search-based strategy does not imply low overheads. For example,

the order-based technique Light achieves up to 4x in memory

overhead reduction in comparison to Stride.

An example is shown in Figure 1a where the execution trace is

given as σ1=⟨w1(x), r1(x),w2(x)⟩. There are two data races race1
and race2 on the interleaving r1(x)⇝w1(x) and r1(x)⇝w2(x)
respectively. Assuming both writes are protected by a lock, Light

records the write-read dependency from the trace σ1 as

w1(x)⇝r1(x). Light will reproduce race2 but will miss the

dependency r1(x)⇝w2(x) and transitively race1 . According to the

replay strategy of Light, the event w2(x) may not execute to

reproduce race1 [17]. As such, Light will never reproduce race1.
Also, supposing the events w1(x) and w2(x) were writes to output

devices, Light cannot guarantee the two events will be outputted

in a deterministic order. Therefore, Light’s strategy is not

output-determinisitc.
We propose our solution with the following insight: A list of

read events on a shared memory location by each thread are

strictly ordered and can be summarized and recorded before the

next immediate write (and write-write interleavings are globally

ordered). As such, summarized reads by different threads could be

ordered before some write to that shared memory location.

In this paper, we present AggrePlay, a novel deterministic replay

technique which exploits the advantages of strictly ordered thread-

local operations. AggrePlay keeps a thread-local read count vector

clock for each shared memory location. Such a read count vector

clock is updated in two different ways during the record phase.

When a thread reads a value on each shared memory location, the

index for the thread in its read count vector clock is updated. Prior

to a thread’s write on a shared memory location, the thread’s read

vector is updated with read values from all other threads’ read count

vector clock. The executing thread’s read vector is constructed

before the current write event in the log. This enables us to keep

track of read-write interleavings.

During the replay phase, each thread maintains a read vector

similar to the record phase. On a write to each shared memory

location, the read vector for the executing thread is updated with

read values from all other threads’ read vectors. The thread’s read

vector is matched with the corresponding read vector from the

record log. The thread executes the write operation if the read

vectors are matched successfully.

To evaluate the performance of AggrePlay, we design our

experiments to answer the following research questions:

RQ: Can AggrePlay achieve smaller log sizes and runtime

slowdown compared to existing state of the art in the record

phase?

Our experimental results show an average of 6x reduction in log
sizes as well as 66% average slowdown compared to Stride. Light
however, achieves 0.75x on average of AggrePlay log sizes.

RQ: How much do the various space optimization techniques

employed by the replay strategies affect record?

Data recorded for write-read interleavings are compressed for
better storage efficiency, and all techniques employ different space
optimization approaches. Our experimental results show that
AggrePlay achieves a 3.6x compression for write-read logs compared
to Stride. AggrePlay is more efficient than Stride on 12 out of 17
benchmarks. Light achieves a 1.3x write-compression on average over
AggrePlay.

RQ: Is AggrePlay able to replay applications in high probability?

AggrePlay reproduces all the interleavings (and the output) with
86.8% probability across all 17 benchmarks, higher than Stride by
41.58%. AggrePlay also incurred 2.85x slowdown, compared to 3.54x
of Stride during replay.

568



AggrePlay: Efficient Record and Replay of Multi-threaded Programs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

2 PRELIMINARIES
This section details preliminary information used in this paper.

Table 1: Preliminary Information

Operation op B w(x) | r(x) | acq(m) | rel(m) | fork(u) |
join(u)
x ∈ Memory Location; m ∈ Lock; u ∈

Thread;

Event e B ⟨t,op⟩ , t∈Thread; op ∈ Operation

Execution trace σB⟨e1, e2, e3, . . . , en⟩, ei ∈ Event

2.1 Execution Trace
An execution trace σ =⟨e1, e2, . . . , en⟩ is a sequence of operations
observed from the execution of a software program. An operation

e represents one of the following:
• t.r(x): A read instruction executed by thread t on memory

location x.
• t.w(x): A write instruction executed by thread t on memory

location x.
• t.acq(m): A lock acquisition instruction executed by thread t
on lock m.

• t.rel(m): A lock release instruction by thread t on lock m.

• t.fork(u): Thread t forks another thread u.
• t.join(u): Thread t joins another thread u.

Other synchronization primitives such as wait, signal, and barrier
are also considered by our algorithm and follow procedures similar

to the synchronization primitives above. We omit them for brevity.

2.2 Read Count Vector Clocks
We track read-write interleavings with the aim of enforcing these

interleavings in the replay phase using read count vector clocks. A

read count (RC) vector clock (a variation of Lamport’s vector clock
[14]) is a tuple of values where each value which tracks the number

of read events of the corresponding thread in an execution trace.

An RC vector clock maintains a count of a thread’s read events to a

shared memory location in the form of RCt[t], where t represents
the current thread.

3 RUNNING EXAMPLE
We present a running example to motivate our work. Figure 2

illustrates an execution of a multithreaded program with three

threads t1, t2 and t3, as well as 9 operations which are write and

read, labeled e1 through to e9. In Figure 2, t1 executes a write on
location x. Thread t2 then executes a write e2 on y. Thread t3 then
executes a write e3 on x and t2 executes a read e4 on x. t3 thenwrites
on y. t2 then writes on z. t3 executes e7 which is a read on z. Thread
t2 executes a read on z. Finally, t1 executes e9, which is a write on

z. The trace σ 2 = ⟨e1, e2, e3, e4, e5, e6, e7, e8, e9⟩ is produced. The set
{e1 ⇝ e3, e3 ⇝ e4, e2 ⇝ e5, e6 ⇝ e7, e6 ⇝ e8, e8 ⇝ e9, e7 ⇝ e9} is
produced as thread interleavings.

To capture the trace σ 2, a simple strategy is to log all the events.

For Figure 2, nine locks events will be inserted during the

instrumentation for correctness. However, this recording strategy

Figure 2: Running example: An execution trace of a
multithreaded program t1 t2, t3. (Dashed arrows represent
the global trace σ2)

reduces parallelism and increases runtime slowdown for the record

phase.

The existing state of the art Light records only flow

dependencies (write-read interleavings). Synchronization events

are also encoded as read and write events. For trace σ 2, Light

records the write-read interleavings {e3 ⇝ e4, e6 ⇝ e7, e6 ⇝ e8}
then passes the set of interleavings to a constraint solver as

constraints. Light further includes constraints over the set of

constraints per shared memory location. The constraint solver

constructs a feasible trace for subsequent replay.

During the replay phase, Light attempts to replay the execution

using a member trace of the trace set generated by the constraint

solver. The events e1, e2 , e5 and e9 are not executed by Light since

they are considered blind writes by Light. Blind writes are write

events not involved in any write-read dependence [17]. As such,
Light is not able to reproduce the program state by design. The
main drawback is Light is unable to guarantee a deterministic order

of output for any set of serialized write events which may include

blind writes. Light is also limited by the capacity of constraint

solvers to generate traces.

Stride [31] is a search-based replay technique which reduces

recording overhead by maintaining a write version (counter) for all

writes on a shared memory location. To record data on write-read

interleavings, it pairs the read value (valuee) of each read operation

with a possible matching write version (versione).
For trace σ 2, Stride records the write-write interleavings e1⇝e3

and e6⇝e9. The candidate write-read pairs

〈
valuee4 ,versione3

〉
,〈

valuee7 ,versione6
〉
and

〈
valuee8 ,versione6

〉
are recorded. During

a write operation in the replay phase, the write-read pairs are used

to infer possible interleaving candidates with the versione being the
upper and the valuee being the matching criterion.

For the trace σ 3 in Figure 3, t2 executes two writes, ei and e
k

after t3 executes e7. Suppose that e5 and e
k
write the value 1, but

ei writes the value 0. In this case, Stride may record the pair〈
valuee7 ,versionek

〉
because write-read interleavings are not

ordered in the record phase. During the replay phase, the

interleaving e6⇝e7 will be missed by Stride because the
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Figure 3: Modified running example with trace σ3.
(Double compound arrow represents the recorded pairing〈
valuee7 ,versionek

〉
).

interleaving e
k
⇝e7 matches Stride’s search criterion for the

pairing

〈
valuee7 ,versionek

〉
. Note that Stride can correctly infer

e6⇝e7 if there is no write operation after e6 which writes to the

same memory location having the same value as e6.
In the case of Light, let us consider the events e2and e5. e2 will

be correctly ordered by Light when outputting to external devices

only because of the write-read interleaving e3⇝e4. However, the
events e1 and e3are not explicitly ordered by Light and may be

incorrectly ordered.

AggrePlay records write-write and write-read interleavings with

optimizations as well as read-write interleavings in a novel strategy.

As such, it can keep track of all events in both traces σ 2and σ 3. We

present our AggrePlay algorithm in the next section.

4 AGGREPLAY ALGORITHM
In this section, we present AggrePlay. The following notations are

used in our algorithms:

• Wx : The write access list for shared object x.
• repWx : The write access list for shared object x during the

replay phase.

• Lm: The lock acquisition list for lock m.

• EXt : The thread-local read-write access list for thread t.
• WRx : The write-read access list for shared object x.
• Tid(e): The executing thread of operation e.
• Lock(e): The lock object acquired in operation e.
• var(e): The shared object being accessed by operation e.
• RCt.x: The RC vector clock for thread t for shared memory

location x.

• init(RCt.x) : this function instantiates all the elements of RCt
to 0.

• inc(RCt.x[t’]) : this function increments the read count value

of the thread t’ in RCt by 1 for shared memory location x.

• last_write(var(e)): The last write event to the shared memory

location in event e.
• lwx : Last write event to a shared memory location x.
• execute(e): event e is executed.
• t.yield(): The executing thread t waits for other threads to

advance without blocking.

• top(Input): reads data from the first index of Input. (Input =
Wx | Lm | EX | WRx ).

• pop(Input): removes data from first index position of Input.

4.1 AggrePlay Record Phase
The record phase of AggrePlay is presented in Algorithm 1. Lines

1-3 instantiate the RC vector clock for each thread for each shared

memory location in the program execution to ⊥RC , where every

element in the vector clock ⊥RC is zero. Lines 5-11 detail the

onWrite function. On a write to a shared memory location,

AggrePlay first checks the read accesses to that memory location

by the other threads. Line 7 invokes the updateReadVectors
function. This function enables us to keep track of read-write

interleavings. Our insight is that due to read events on all shared

memory locations being ordered by that thread, and all write

events on each shared memory location are globally ordered, we

need not track read-write interleavings at the shared memory level.

Rather, we track the total number of reads (for each shared

memory location) for each thread prior to a write event.

The write event is executed at line 8. The write event is added to

the write access list of the shared memory location (line 9).

ALGORITHM 1: -The AggrePlay recording algorithm

INPUT: Execution trace σB ⟨e1, e2, e3, . . . , en ⟩, e ∈ Event

OUTPUT: EX
Tid(e) ; Wvar(e); WR

var(e); LLock(e);

(1) for each t,e ∈ Thread, Event {

(2) init(RCt.var(e));
(3) }

(4) // write access performed by event e
(5) onWrite (Event e) do
(6) Sync {
(7) updateReadVectors (e);
(8) execute(e); // the write instruction is executed
(9) W

var(e) B W
var(e) ^ ⟨e ⟩;

(10) }
(11) end onWrite

(12) // read access returned by event e
(13) onRead(Event e) do
(14) t B Tid(e);
(15) RCt.var(e) [t] B inc(RCt.var(e) [t]);
(16) Synch { lw = last_write(var(e)); }
(17) execute(e); // the read instruction is executed
(18) WR

var(e) BWR
var(e)^ ⟨lw , e ⟩;

(19) end onRead

(20) updateReadVectors(Event e):
(21) for each t’ ∈ Thread and RC

t’.var(e) [t’] > 0 do
(22) RC

Tid(e).var(e)[t’] B RC
t’.var(e) [t’];

(23) end for
(24) EX

Tid(e) B EX
Tid(e)^

〈
RCT id (e ), e

〉
;

(25) end updateReadVectors

(26) onLockAcquire(Event e):
(27) execute(e);
(28) L

Lock(e)
B L

Lock(e)
^ ⟨T id (e)⟩;

(29) End onLockAcquire

For lines 13-19, on every read to a shared memory, the executing

thread and shared memory location are obtained. Then, the index
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Figure 4: AggrePlay record phase for running example.

for the current thread in its RC vector clock is incremented by 1 at

line 15. The last write to the shared memory location for the current

read operation is retrieved at line 16. The read event is executed

at line 17 and is ordered before the current read in the write-read

access list of the shared memory location at line 18.

The updateReadVectors (lines 20-25) function is invoked at line

7 of the onWrite function. This function retrieves the read count

values for every other thread in the set of Threads with a read count

value greater than zero. The updated read count for the current

thread is then paired with the write event and added to the thread-

local read-write access list.

Lines 26-30 details the lock acquisition function. The lock

acquisition event is executed at line 27. The executing thread is

appended to the lock’s access order list at line 28.

Figure 4 illustrates the RC vector clock values for the trace σ 2

in the running example. On events e1,e2 and e3, the write access
lists for shared memory locations x and y are updated by t1,t2 and
t3, respectively. On event e4, the read value for t2 in RCt2.x [t2] is
incremented by 1. Thewrite-read dependency e3⇝e4is also recorded
by AggrePlay Events e5 and e6 also result in the write access lists
for y and z being updated by t3 and t2, respectively. On event e7,
the read value in RCt3.z [t3] is incremented by 1. The write-read
dependency e6⇝e7is also recorded. Then RCt2.z [t2] is incremented

by 1 on handling e8. On e9, the RC vector clock for t1 is updated
with the read count values from t2 and t3. Then RCt1.z [0,1,1], is

constructed before event e8 and saved in the record. The record

output for the trace is shown in Figure 5.

4.2 AggrePlay Replay Phase
The AgrrePlay replay phase is shown in Algorithm 2. The output

from the record phase (EX, W
var(e)

, WRTid(e) , LLock(e)) are used as

input in the replay phase.

t1.z = ⟨⟨[011] , e9 ⟩⟩ Wx =⟨e1, e3 ⟩

WRx =⟨e3 ⇝ e4 ⟩ Wy = ⟨e2, e5 ⟩

WRz =⟨e6 ⇝ e7 ⟩ Wz =⟨e6, e9 ⟩

Figure 5: AggrePlay output data for trace σ2 in Figure 2

The repW var(e) is the access list for the shared memory location

var(e) in the replay phase. Line 3 instantiates the RC vector clocks

for each thread in the program execution to ⊥RC , where every

element in the vector clock ⊥RC is zero.

Lines 6-15 detail the onWrite function: During a write event,

an updateReadVectors function is invoked. This function updates

the currently executing thread’s RC vector clock with read count

values from all other threads. Next, the write event is matched with

the first element in the write input list (W var(e)) for that shared

memory location var(e) at line 8. If the two events match, then the

checkReadVector function is invoked to ensure that all necessary

reads have been executed prior to thewrite event. If checkReadVector
returns true, the write event is executed, the repW var(e) is updated

with the write event. The first element is removed from theW var(e)
input list (lines 10-12). Otherwise, if checkReadVector returns false,
the thread yields the processor at line 13. Lines 17-27 show the

onRead function. During a read event, the last write event for the
shared memory location in the replay phase is matched to the first

element in the WRvar(e) input list (line 13). If the two elements

match, the read event is executed (line 20). The read count vector

clock for the current thread is incremented, then the first element

in the WRvar(e) input list is removed (lines 22-23). Otherwise, if the

condition at line 19 is evaluated to false, the thread yields at line 25.
This way, each thread can individually replay the correct sequence

of read events without synchronization with other threads.

Lines 28-34 detail the onLockAcquire function. If the currently
executing thread does not match the first element of the input list

LLock (e)) , then the thread yields (lines 29-30). Otherwise, the lock

acquisition event is executed and the first element of the input list

LLock (e)) is removed (lines 32-33).

The updateReadVectors function at lines 35-39 updates the RC

vector clock of the currently executing thread with read count

values from the RC vector clocks of threads other than the currently

executing thread with read count values greater than zero. This
function is invoked in the onWrite function at line 7.

The checkReads function is detailed at lines 40-52. This function

is invoked at line 8 in the onWrite function. During the record phase,
we record a null line instead of the original write-read interleaving

which is removed by O1. Lines 41-44 show the implementation

for handling such null lines (Θ) in the replay phase. If the first

element of EX t is a null line, then the first element is removed and

checkReads returns a true value. The thread is allowed to execute as
there are no preceding read(s) or the preceding read(s) are ordered

by the executing thread. Lines 45-52 match the read count value

for all threads other than the current thread t in the read count

vector clock of the current thread against the first element of the

EXt input list (line 46). If the condition at line 46 evaluates to false,
the function returns false. If the condition at line 45 is evaluated to

true, the algorithm at line 50 removes the first element of the EX t

input list. The function then returns true at line 51.
AggrePlay replays the execution in Figure 2 as follows: t3

attempts to execute e3 but the match between e3 and the first

element in the write access list W x evaluates to false. t3 yields the
underlying thread scheduler. t1 then attempts to execute e1. As no
reads have been executed prior to e1, the checkReads function

evaluates to true. e1 is then matched with the first element in the

write access list for W x . t1 proceeds to execute e1 which is then
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added to repW x and the matched element is removed from W x . t2
is scheduled to execute e2 . The matched element of W y is

removed. When t2 tries to executes e3 , the last write event on x
(e3) is retrieved from repW x and matched with the first element in

WRx . Since the two events do not match, t2 yields the scheduler. t3
then executes e3 and the matched element is removed from W x . t2
then executes e4, then increments RCt2.x [t2] by 1. The matched

element is removed from WRx . t2 executes e6 as no reads have

been executed on z prior to e6. Next, t3 then executes e5 and the

matched element is removed from W y . t3 executes e7 and updates

RCt3.z [t3] by 1. t2 executes e8 and updates RCt2.z [t2] by 1. Finally t1
tries to execute e9. The updateReadVectors function updates RCt1.z
with the read count values from RCt2.zand RCt3.z . t1 executes e9
when e9 is matched with the first element in W z and the

checkReads function returns true.

5 EVALUATION
5.1 Execution Environment
Our hardware setup consisted of a Dell PowerEdge R930 running the

Dell Customized Image ESXi 6.0.0 Update 2 A01. Our experiments

were conducted on a 64 bit virtual machine running the guest

OS Ubuntu 16.04 Linux with 4 Intel Xeon(R) CPU E7- 4850 v3 @

2.20Ghz processors, as well as 16GB of RAM.

We implemented AggrePlay, Light and Stride using Intel PIN

version 3.0-76991 [19]. To be specific, for each tool, we implemented

two separate pintools, one each for the record and replay phases

respectively. In the case of Light, we followed the implementation

in the paper using a solver for the Integer Difference logic theory

in z3 [9](See Appendix
2
). The original implementation of Light

is made available without the constraint solver and replay phases.

Both can only handle Java applications. We also implemented Stride

by following the paper despite the unavailability of implementation

by the authors. A precaution taken was to test the correctness of

our implementations of Stride and Light on different variants of

a small benchmark we developed that includes different thread-

interleaving code patterns.We also used code inspection on our

implementations.

5.2 Benchmarks
We evaluated our implementation using the Splash2x extension of

the PARSEC 3.1 benchmark suite [3], specifically barnes, ocean_cp,
radiosity, raytrace, volrend, water_spatial, fmm, water_nsquared,
water_spatial as well as kernel applications cholesky, fft, lu_cb,
lu_ncb, radix.We selected the Splash2x extension of PARSEC for

its focus on concurrent computation on parallel machines.

We also include 2 real-world applications/simulations including

mysql 5.6.28 database server and apache 2.0.65 webserver. We

further include an implementation of blockchain
3
to test the

robustness of our tool for emerging software technology.

2
Github Link https://github.com/testrepo007/AggrePlay-Appendix

3
Github Link https://github.com/teaandcode/TestChain

ALGORITHM 2: -The AggrePlay replay algorithm

INPUT: EX; W
var(e)

; WRTid(e) ; LLock(e) ; // output from record
phase
OUTPUT: Program output; //valued outputted by subject program

(1) for each t ∈ Thread do
(2) init(RCt );
(3) init(EX t );
(4) end for

(5) / / write access performed by Event e
(6) onWrite (Event e) do
(7) updateReadVectors(e):
(8) if (e = top(W

var(e)
)) ∧ checkReads( Tid(e)) then

(9) execute(e);
(10) repW

var(e)
B repW

var(e) ^ ⟨e ⟩;
(11) pop(W

var(e)
);

(12) else
(13) Tid(e).yield();
(14) end if
(15) end onWrite

(16) // read access returned by operation e
(17) onRead(e):
(18) /* match write event from WR Input list */
(19) if (last_write(var(e)) = top(WR

var(e)
).lw) then

(20) execute(e);
(21) t = Tid(e);
(22) RCt [t] := inc(RCt [t]);
(23) pop(WR

var(e)
);

(24) else
(25) Tid(e).yield();
(26) end if
(27) end onRead

(28) onLockAcquire(e):
(29) if (Tid (e) , top(LLock (e))) then
(30) Tid(e).yield();
(31) else
(32) execute(e);
(33) pop(LLock (e));
(34) End onLockAcquire

(35) updateReadVectors(e):
(36) for each ’t ∈ Thread and RC’t [’t] > 0 do
(37) RC

Tid(e)[’t] = RC’t [’t];
(38) end for
(39) end updateReadVectors

(40) checkReads(thread t):
(41) if top(EX t) = Θ then
(42) pop(EX t);
(43) return true;
(44) end if
(45) for each t’ ∈ Thread do
(46) if (RCt [t’] < top(EX t.RC[t’]) then
(47) return false;
(48) end if
(49) end for
(50) pop(EX t);

(51) return true;
(52) end checkReads
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Table 2: Execution metadata for benchmarks used in our
experiment. All benchmarks were configured with 8 worker
threads except apache, mysql, and Test Chain which were
configured with 2 threads.

Benchmarks # of Events

Write Read Locks

cholesky 1.16 x 10
7

2.9 x 10
8

22,066

fft 1.6 x 10
9

3.0 x 10
9

66

fmm 8.0 x 10
8

6.2 x 10
9

6.3 x 10
5

lu_cb 2.9 x 10
9

6.0 x 10
9

2,082

lu_ncb 2.9 x 10
9

6.0 x 10
9

2,082

ocean_cp 1.6 x 10
9

5.6 x 10
9

6,666

ocean_ncp 2.1 x 10
9

5.6 x 10
9

6,506

raytrace 1.0 x 10
9

15.2 x 10
9

985,599

radiosity 1.2 x 10
9

1.3 x 10
9

481,866

radix 6.7 x 10
8

1.1 x 10
9

217

volrend 8.6 x 10
8

3.5 x 10
9

705,342

water_nsquared 10.2 x 10
9

26.0 x 10
9

160,298

water_spatial 3.0 x 10
9

8.8 x 10
9

315

barnes 6.5 x 10
9

11.5 x 10
9

1.0 x 10
6

mysql 5.1 x 10
5

1.6 x 10
6

21

apache 5.8 x 10
5

6.5 x 10
5

6

Test Chain 4.17 x 10
11

8.14 x 10
11

0

5.3 Methodology
To carry out our experiment, we first conducted a “dry” run on each

benchmark using a pintool with no instrumentation functions. We

recorded the execution time as the base time for each benchmark

in the “dry” run.

In the record phase, each Splash2x benchmark program was

configured with 8 worker threads with the gcc-pthreads option
and the simlarge workload. The inputs for apache and mysql are
Apache (Bug #25520) and MySQL (Bug #85413) respectively. This
configuration provided each program adequate concurrency and

input. The blockchain implementation was set to mine 2 blocks

(append two transactions) to a block chain.

5.4 Thread Abstraction and Matching
To ensure that any pintool matched threads between record and

replay runs, we abstracted each thread as a pair of unsigned integers

abst := <a,b>, where a represents the child count value assigned to

the thread by its parent thread and b represents the index value for
the parent thread. We assumed that the main thread (usually thread

0) always begins first in each run and as such we did not abstract

and record it. During thread creation, we mapped each thread’s

index to the thread’s uniquely assigned system ID. (e.g., all threads
created by the main thread had a pairing abst := <a,0>, where a was
the child count value under the main thread, and 0 is main thread’s

index value). The abstraction pair was then outputted to a log file.

On thread creation during replay, the frequency of encountering a

particular thread as a parent index was matched against the first

item in the logged pair of values (i.e., freqParent_ID == abs.a).

5.5 Record and Replay Setup
During the record phase, each thread kept a thread-local counter,

one each for read and write events to shared memory locations

and synchronization objects respectively. Each thread also kept

a thread-local data structure to maintain the thread’s RC vector

for each shared memory location. The write file was accessed by

all the threads and we used a lock in moderating accesses to it.

AggrePlay maintained internal data structures for writes, reads

and synchronization events which were indexed by the shared

memory locations and locks (in the case of synchronization events).

AggrePlay stored all recorded data in memory and wrote to the

log file when the benchmark terminated, with the exception of

read-write data which was written to file intermittently. With the

exception of thread-local data structures, accesses to all remaining

data structures was controlled by locks. For Stride, we used locks

to protect write events and synchronization events being recorded

to the log file. Apart from write events, thread-local read events

and their associated read values were not protected by locks based

on the algorithm of Stride.

We recorded time spent (total processor time spent on each

execution) using the clock function
4
. The slowdown factor was

computed as the time spent divided by the base time.
For AggrePlay, each thread kept a local counter for all events.

The record log format for synchronization events was a list of pairs

in the form of ⟨a,b⟩ where a represents the thread id and b refers to
the value for this thread local counter. The write logs also feature a
similar format to the synchronization logs.

Each read-write interleaving is recorded during a write event

by some thread on some shared memory location. As such, the

read-write log was recorded as a pair ⟨RC,write⟩ where RC refers

to the read count vector clock of the current thread and write refers
to the write event.

For Stride, the write and read event pairs which made up

write-read interleaving candidates were recorded separately. We

also implemented the last one value predictor for the write-read

candidate interleavings as described in the paper [31].

We have made our AggrePlay implementation available online

for data reproduction
5

5.6 Record Phase Results
Table 3 shows our experimental results. The first and second

columns show the names of the benchmarks and their application

domains. The third, fourth and fifth columns show the log sizes (in

MB) for AggrePlay, Light and Stride respectively after compression

with gzip. The sixth column shows the base execution time for

each benchmark with no instrumentation or analysis. The seventh,

eighth and ninth columns show the slowdown factor for

AggrePlay, Light and Stride with respect to the base time. The last

two columns show the ratio of slowdown factor for Light and

Light over AggrePlay.

From Table 3, AggrePlay resulted in an average of 44.39 MB,

which was a 6-fold improvement on average compared to Stride.

Out of 17 benchmarks, AggrePlay recorded a smaller log size for

16 of these subject programs; whereas Stride experienced about

4http://man7.org/linux/man-pages/man3/clock.3.html
5
Github Link https://github.com/testrepo007/AggrePlay
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Table 3: Experimental Results on AggrePlay (AP), Light (LI), and Stride (ST). The column BT represents the Base runtime
slowdown presented in seconds. Columns A, B and C represent the slowdown runtime slowdown factors for Stride, AggrePlay
and Light respectively.

Benchmark Application Domain Log Size (MB) BT Slowdown factor

AggrePlay Light Stride A B C B/A C/A

cholesky HPC 25.30 18.00 130 5.92 25.41 16.60 18.26 0.63 0.72

fft Signal Processing 15.10 11.30 259.90 2.53 52.48 45.70 125.65 0.87 2.39

fmm HPC 19.02 12.02 160.24 3.71 40.4 34.20 45.25 0.84 1.12

lu_cb HPC 17.37 11.37 9.80 21.84 3.74 4.54 2.18 1.21 0.58

lu_ncb HPC 14.60 9.60 8.70 21.36 3.90 4.60 2.20 1.17 0.56

ocean_cp HPC 52.30 41.70 215.10 4.53 53.12 45.21 35.8 0.85 0.67

ocean_ncp HPC 76.50 53.50 292.62 5.7 62.5 39.5 42.36 0.63 0.68

raytrace Graphics 82.60 68.40 432.48 6.58 23.1 20.50 35.2 0.89 1.52

radiosity Graphics 40.23 32.35 290.36 5.74 36.81 39.64 41.1 1.07 1.12

radix General 31.39 24.25 253.12 2.9 43.1 35.70 118.26 0.82 2.74

volrend Graphics 17.20 14.20 249.40 2.63 43.65 40.60 120.4 0.93 2.76

water_nsquared HPC 18.00 11.10 143.70 2.2 20.2 18.80 98.97 0.93 4.9

water_spatial HPC 18.80 11.60 170.90 4.77 31.6 26.40 74.5 0.83 2.36

barnes HPC 172.40 120.40 864.58 5.63 46.82 41.70 108.2 0.89 2.31

mysql Database 0.65 0.53 2.10 6.25 1.45 1.12 1.35 0.77 0.93

apache webserver 1.20 0.90 3.50 5.7 3.1 3.30 4.6 1.06 1.48

Test Chain Blockchain simulation 152.00 135.10 935.12 287.23 8.9 9.50 12.4 1.07 1.39

Mean 44.39 33.90 260.10 23.25 29.43 25.16 52.16 0.90 1.66

55% reduction in log size for over AggrePlay for two benchmarks

lu_cb and lu_ncb, two kernel-based applications. A contributing

factor to this result is the optimization of Stride’s last one value
predictor [4, 5] for write-read candidate pairs which enabled Stride

to compress a number of read events if they returned the same value.

AggrePlay maintained read count vector clocks for each thread and

outputs read-write events to logs.

Stride did not log read-write relations, it had some advantage in

generating smaller log sizes over AggrePlay. Light generated a 30%

lower log size on average compared to AggrePlay. Light achieved

smaller log sizes by recording only write-write dependencies.
The seventh, eighth and ninth columns show the runtime

slowdown results. AggrePlay had better slowdown on 12 out of 17

benchmarks. On average, AggrePlay incurred a 66% improvement

in slowdown over Stride. In the recording phase, Light also

achieved only a 1.2x speedup over AggrePlay. This is because

AggrePlay monitored more events than Light did.

5.7 Thread Interleaving Results
During the replay phase, We followed [10] in reading log files as

input. AggrePlay retrieves read-write interleavings by comparing

the read count VC values of the executing thread against the logged

read vector values (Line 46 of Algorithm 2). The complexity of

determining a read-write interleaving is O(n), where n represents

the number of threads in the subject program. Table 4 shows the

comparison on write-read pairs between all 3 replay techniques.

Recall that AggrePlay logged write-read interleavings (as well

as other interleaving data as stated in Algorithm 1). During this

process, AggrePlay achieved small logs by applying three

optimization functions (See Section 5.9). Stride records write-read
interleaving candidate pairs and read values to infer write-read
interleavings during each replay execution. This strategy can

increase parallelism in the record phase.

Despite the space optimization used by Stride, AggrePlay

achieved similar write-write event numbers.

AggrePlay achieved relatively small read-write logs due to the

read count vector clock strategy. Also, AggrePlay is the only

technique among the three to record read-write events.

5.8 Replay Phase Results
Table 5 presents the experimental results on replay phases for

AggrePlay, Light and Stride. A successful replay run for AggrePlay

in our experiment was the reproduction of interleavings observed

in the record phase. Each subject program is run 50 times.

AggrePlay outperforms Stride in successfully reproducing thread

interleavings in all benchmarks with an average probability of

86.78% compared to 45.22% for Stride. However, Stride does not

guarantee to reproduce all interleavings.

Recall that Light employs a constraint solver in generating

possible schedules for replay. The constraint solver iteratively and

progressively searches for candidate schedules which satisfy the

given constraints. However, in our experiment we found the

constraint solver to be incapable of generating candidate schedules

mainly due to the high number of constraints generated for our

benchmarks. With the exception of mysql (26 possible traces) and
apache (322 traces), the constraint solver did not return any output

even after several hours of constraint solving. For mysql and

574



AggrePlay: Efficient Record and Replay of Multi-threaded Programs ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 4: Comparison on thread interleaving sets recorded by AggrePlay (AP), Light (LI), and Stride (ST).

Table 5: Replay Results on AggrePlay (AP), Light (LI), and Stride (ST).The second column COE (Correct Output Executions)
represents number of executionswith successfully reproduced output. The third and fourth columnsCIE (Correct Interleaving
Executions) show the number of successfully reproduced interleavings. (-) represents no results for the benchmark under that
column. (*) represents worse-performing runtimes for AggrePlay.

Benchmark # COE # CIE Mean Slowdown factor

ST AP LI ST AP LI ST

cholesky 36 48 - 21 2.1 - 3.2

fft 28 43 - 20 3.2 - 3.65

fmm 26 40 - 18 2.7* - 2.3

lu_cb 27 41 - 15 2.1 - 2.9

lu_ncb 25 44 - 19 2.64 - 3.3

ocean_cp 36 41 - 26 3.15 - 4.72

ocean_ncp 32 39 - 24 3.18* - 2.8

raytrace 29 37 - 19 3.35 - 3.73

radiosity 32 42 - 23 2.2 - 2.9

radix 32 40 - 22 3.5 - 4.28

volrend 24 42 - 18 1.7 - 2.4

water_nsquared 36 48 - 24 1.9 - 2.85

water_spatial 37 45 - 21 1.85 - 2.3

barnes 31 39 - 17 4.8 - 5.2

mysql 40 48 40 31 4 5.4 5.5

apache 40 46 38 28 2.4 3.5 3.9

Test Chain 30 48 - 25 4.9 - 5.25

Mean 32.56 43.39 39 22.61 2.85 4.45 3.54

apache, Light succeeded in reproducing correct interleavings 78%

of the time.
The second column in Table 5 shows the number of executions

with successfully reproduced outputs by Stride. Stride produced

output of benchmarks with an average probability of 65.12%. In the

case of Stride, unexpected program halts due to its replay strategy

counted as unsuccessful runs. The mean slowdown factor for each

technique on all the benchmarks is shown in the last two columns

of Table 5. For mysql and apache, AggrePlay reproduced all

interleavings with an average probability of 94% compared to 80%

for Stride. AggrePlay incurs the least amount of slowdown among

the three techniques except for fmm.
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5.9 AggrePlay Optimization Functions
To reduce the number of entries in the record log, the

implementation of AggrePlay includes three optimization

functions in the record phase as follows:

O1: If the read count vector clock for the current thread remains
unmodified during the updateReadVector function, the event is not
recorded.

O2: If there is a change in the read count vector clock for the current
thread, and the only modified value is that of the current executing
thread, the event is not recorded.

O3: If more than one thread has the same read count value, the
values are recorded in the format c,d where c refers to the read count
value and d refers to its frequency in the read vector.

For O1 and O2, we modify Line 24 of Algorithm 1 with as

follows: if a condition RC_changed (evaluates to true when a

thread’s RC vector clock is modified, and evaluates to false
otherwise) evaluates to true, then EX

Tid(e) B EX
Tid(e)^

〈
RCT id (e), e

〉
.

If RC_changed evaluates to false then a null line Θ is appended to

EX
Tid(e) as EXTid(e) B EX

Tid(e)^ Θ;
In algorithm 2, lines 41-42 show how the records missed by O1

and O2 are recovered. If the first element of EX t matches a null line

(Θ), it means the last read event to the shared memory location prior

to the current write was executed by the currently executing thread.

As such, the first element of EX t is removed and the checkReads
function returns true. For O3 in algorithm 2, the init(EX t ) function

recovers all ⟨c,d⟩ pairs recorded and resolves each pair to a RCt

object.

5.10 Limitations
Our implementations of all 3 replay techniques suffer the

constraints of any tool created using PIN, which serializes the

instrumented events from the subject program to a pintool

regardless of support for multi-threading. AggrePlay may not

deterministically reproduce interleavings which involve worker

threads spawned non-deterministically by long-running

applications like apache or mysqlas the workload increases during

the replay phase.

6 RELATEDWORK
Some replay techniques aim to reproduce a target output

(including particular program state) only. ODR [1] takes a core

dump as input, extracts some program state values from the latter,

and generates a trace to reproduce these values at target code

locations through a search process. Bbr [7] needs a predefined set

of location checkpoints to reduce log sizes and uses a search

process with symbolic execution in constructing feasible traces

passing through these checkpoints. AggrePlay does not rely on

symbolic executions to construct target traces. Rather, AggrePlay

records the counts on the numbers of thread-local read accesses at

the execution point of handling the write instructions. AggrePlay

can be further augmented with a technique [5] that records the

non-deterministic inputs in the record phase and compares the

corresponding values in the replay run against these logged inputs.

Recording write-read interleavings has been explored by

existing work. Light [17] records inter-thread and intra-thread

write-read interleavings, and uses a constraint solving approach to

find thread schedules having these interleavings whilst

constructing replay traces. AggrePlay also records write-read

interleavings explicitly but uses no constraint solver. Keeping

thread-local data for efficient recording has also been explored by

existing work such as CLAP [11]. CLAP relies on constraint

solving in an offline phase to symbolically analyze expression

values, which is proven by our experiment with Light to be

unscalable, and “has limitations in handling complex arithmetic

computations in practice.” CARE [12] maintains thread-local

caches for shared memory locations, records cache-missed

write-read interleavings but does not record write-read

interleavings if the interleaving results in a cache hit. Maintaining

such caches incur high memory overheads. CARE keeps each

read-write interleaving in the record phase. AggrePlay does not

need constraint solving nor have an offline phase and records a

read count vector for read-write dependencies.

Some techniques combines record and replay into one phase.

DoubleTake [18] divides an exaction into epochs by the locations

of irrevocable system calls. It iteratively logs the system state right

before the epoch, executes the instructions in the epoch, analyzes

the program state for derivations and replays that fragment if

derivations are found; otherwise it proceeds to reply the next

epoch. DoubleTake requires special hardware to support. Unlike

MobiPlay [24], AggrePlay does not need to modify the underlying

framework to support its replay.

Checkpointing is frequently used in replay techniques.

iReplayer [16] stores the system state in memory and allows users

to specify checkpointing rules. It monitors data races in its replay

phase and iteratively executes an epoch (in a sense similar to

DoubleTake) if the replay schedule for the involving interleavings

differs from the required thread interleavings. AggrePlay does not

use checkpointing.

Processor-oblivious record and replay [28] has been proposed

for data-race free systems such as Cilk programs. This replay

strategy focuses on recording the synchronization order for

programs which employ task-parallelism. Such programs do not

have any notion of threads or data. However, current mainstream

software supports multi-threaded parallelism. AggrePlay can be

applied to most mainstream software.

7 CONCLUSION
We have presented AggrePlay, a deterministic replay technique

which is based on recording read-write interleavings leveraging

thread-local determinism and summarized read values. During the

record phase, AggrePlay records a read count vector clock for each

read on each shared memory location. In the replay phase, each

thread matches the logged read count against each executing read

event to ensure a target number of read events prior to the next

write. We have presented an experiment and analyzed the results

of our experiment using the Splash2x benchmark suite, apache and

mysql, and a blockchain implementation. The experimental results

indicated that on average, AggrePlay experiences better reduction

in compressed log size, and 56% better runtime slowdown during

the record phase, as well as a 41.58% higher probability in the replay

phase than an existing technique.
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