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Abstract—Existing deterministic replay techniques propose
strategies which attempt to reduce record log sizes and achieve
successful replay. However, these techniques still generate large
logs and achieve replay only under certain conditions. We propose
a solution based on the division of the sequence of events
of each thread into sequential blocks called transactions. Our
insight is that there are usually few to no atomicity violations
among transactions reported during a program execution. We
present TPLAY, a novel deterministic replay technique which
records thread access interleavings on shared memory locations
at the transactional level. TPLAY also generates an artificial
pair of interleavings when an atomicity violation is reported
on a transaction. We present an experiment using the Splash2x
extension of the PARSEC benchmark suite. Experimental results
indicate that TPLAY experiences a 13-fold improvement in record
log sizes and achieves a higher replay probability in comparison
to existing work.

Keywords-Concurrency, Deterministic Replay, Transactions,
Multi-threading.

I. INTRODUCTION

Deterministic replay of a program involves recording data
from the program execution and subsequently scheduling the
program to achieve some desired state or output [8], [11],
[16], [23], [29]. Deterministic replay techniques are generally
categorized into hardware-based [2], [20], [21], [26], [29] and
software-based [11], [12], [16] techniques.

Software-based techniques often consist of a record phase
and a replay phase. Some of them [12], [31] further include
an offline phase to compute/construct feasible schedules for
replay. Due to the non-ubiquitous nature of specialized hard-
ware required for most hardware-based techniques, we present
our technique in relation to software-based replay techniques.

In the record phase, replay techniques typically record three
types of thread access orders known as interleavings ( )
namely, read-write, write-read and write-write interleavings
[17], [22], [30] on shared memory locations. Interleavings on
synchronization primitives are also recorded. Some techniques
[1] also record other types of data such as read values to ensure
value determinism in the replay phase. Chen et al. [6] refer
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to the proportion of interleavings recorded as the “degree of
record fidelity” and indicate a positive correlation between the
degrees of recording fidelity and replay fidelity.

Towards the goal of achieving high record fidelity with
minimal overhead, Huang et al. [11] propose LEAP which
records data at a local level for shared memory locations.
This strategy reduces the record runtime overhead by 10x
compared to the prior local-order and global-order based
techniques. Zhou et al. [31] propose Stride, a relaxed recording
technique which reduces the need of synchronization whilst
recording interleaving orders and achieves a 2.5x improvement
in runtime overhead as well as a 3.8x reduction in record log
sizes compared to LEAP. Liu et al. [17] also propose Light
which achieves a 10x reduction in record log sizes compared
to Stride. However due to its recording strategy, Light may fail
to reproduce correct output for serialized write events to output
devices involving multiple shared memory locations. Also, its
replay phase enforces a global order on an execution which
increases replay runtime overhead and reduces concurrency.
AggrePlay [24] compresses some interleavings during the
record phase using a read vector. It then assigns thread-
local scheduling constraints during the replay phase improving
replay concurrency. However, it suffers higher record overhead
compared to Light.

A desirable attribute of a deterministic replay technique is
to minimize the impact of high record fidelity whilst ensuring
deterministic replay.

We propose our technique based on the following insight:
During a program execution, several interleavings may be
observed between events executed by different threads on
shared memory locations. However, there are usually few to
no atomicity violations (which means a thread accesses a
shared memory location in an atomic region at the same
time as another thread) reported during a program execution.
Therefore, modeling the sequence of events of each thread as
a sequence of transactions enables the application of transac-
tional attributes and conditions to the events executed in the
program.

In this paper, we present TPLAY, a novel deterministic
replay technique which segregates the sequence of events of
each thread into a sequence of transactions. During the record
phase, TPLAY creates a new transaction on each thread’s first



write event or on any write event preceded by a read event.
Consider a scenario where two transactions tr1 and tr2 are

created by threads t1 and t2 respectively. Suppose that, all
interleavings between tr1 and tr2 are in the form e  e’,
where e ∈ tr1 and e’ ∈ tr2, may be reduced to a single
interleaving recorded as tr1 tr2. This reduces the record log
whilst preserving record fidelity. During replay the two trans-
actions tr1 and tr2 can be executed sequentially, preserving all
interleavings between the two threads.

However to ensure deterministic interleaving reproduction
at a transactional level, the atomicity of each transaction must
be ascertained. We apply an existing transactional atomicity
checker during the record phase. For transactions whose
atomicity is violated, we propose a solution which we illustrate
as follows:

Suppose 〈e1, e4〉 ∈ tr1 and 〈 e2, e3〉 ∈ tr2 and the trace
σ is 〈e1, e2, e3, e4〉. TPLAY records tr1  tr2 based on the
interleaving e1  e2. Then on the interleaving e3  e4 , an
atomicity violation is reported on tr1. TPLAY removes the
transactional interleaving tr1 tr2 and records the interleaving
tr2 e4. However, as at event e4, no information about the
interleaving e1  e2 is known. To preserve any previous
interleavings, the immediate-preceding event of e4 in the same
transaction i.e., e1, is ordered before tr2, creating the artificial
interleaving e1  tr2 which is recorded by TPLAY. This
preserves all interleaving orders in the presence of an atomicity
violation on any transaction.

During the replay phase, TPLAY replays a program using
transactional level interleavings if no atomicity violation was
reported during the record phase. Otherwise the generated
interleavings are used in preserving the observed atomicity
violations. For the trace σ in our example, TPLAY enforces
the replay constraints tr2  e4 and e 1  tr2 during replay
due to the atomicity violation.

To evaluate the performance of TPLAY, we answer the
following questions using our experimental results:

RQ1: Can TPLAY achieve smaller overheads compared to
an existing technique in the record phase?

TPLAY’s recording strategy results in an average of
25.44MB in record log size compared to an average of
333.20MB for Light [17].

RQ2: Does TPLAY achieve a small runtime overhead in
the replay phase?

TPLAY’s replay strategy does not enforce a global ordering
of events on all threads. This results in a significant decrease in
replay runtime overhead especially. Our results indicate that
TPLAY’s replay phase executes at 76% of the record phase
runtime.

RQ3: Does TPLAY exhibit high replay fidelity?
TPLAY reproduces the program state of benchmarks with a

probability of 96.6%.
Our main contributions are as follows
• We present a novel deterministic replay technique which

models the event sequence of each thread as a sequence
of transactions, then records interleavings between the
transactions to reduce record log sizes.

• We present an algorithm which preserves the original
event interleavings during a transactional atomicty vio-
lation by generating an artificial pair of interleavings.

• We show the feasibility of TPLAY by implementing it as
a tool and evaluate TPLAY through an experiment.

The rest of the paper is organized as follows. Section
II outlines preliminary information. Section III describes a
motivating example used in presenting our technique. Section
IV details our algorithm, while Section V contains evaluation
and experimental results. Section VI discusses the related
work. Finally, Section VII concludes the paper.

II. PRELIMINARIES

This section details the preliminary information used in this
paper.

TABLE I
PRELIMINARY INFORMATION

Operation op := w(x) | r(x) | acq(m) | rel(m) | fork(u) |
join(u)
x ∈ Memory Location; m ∈ Lock; u ∈ Thread;

Event e := 〈t, op〉 , t ∈ Thread; op ∈ Operation
Execution trace σ:=〈e1, e2, e3, . . . , en〉, ei ∈ Event

A. Execution Trace

An execution trace σ =〈e1, e2, . . . , en〉 is a sequence of
events observed from the execution of a program. An event e
represents one of the following:

• t.r(x): A read instruction executed by thread t on memory
location x.

• t.w(x): A write instruction executed by thread t on mem-
ory location x.

• t.acq(m): A lock acquisition instruction executed by
thread t on lock m.

• t.rel(m): A lock release instruction by thread t on lock m.
• t.fork(u): Thread t forks another thread u.
• t.join(u): Thread t joins another thread u.

Other synchronization primitives such as wait, signal, and
barrier are also considered by our algorithm and follow
procedures similar to the synchronization primitives above, as
show by Table I. We omit them for brevity.

B. Interleaving

An interleaving  is defined as the order by which dif-
ferent threads access shared memory objects. Three types of
interleavings may be observed in an execution:

1) write-write: two threads perform write events consecu-
tively on some shared object.

2) write-read: a thread performs a write event followed by
a read event by some other thread.

3) read-write: a thread performs a read event followed by
a write event by some other thread.



Fig. 1. Running example: An execution trace σ1 of a multi-threaded program
with three threads t1 t2, and t3. (Dashed arrows represent the global trace σ1)

C. Transactions

RegionTrack [28] defines transactions as “a sequence of
events executed by a thread t in between of a matching pair of
events begin(t, l) and end(t, l) as a (regular) transaction tx =
〈begin(t, l), ..., ex, ..., end(t, l)〉”, where begin(t, l) and end(t,
l) denote the beginning and the ending of an atomic region l
and ex ∈ tx.

We adapt their idea to formulate our notion of a transaction
and transactional atomicity violation (or atomicity violation
for short) as follows.

Definition 1. (Transaction). A transaction is a sequence
of events executed by a thread t represented by tr =
〈begin(t, l), ..., ex, ..., end(t, l)〉 where begin(t, l) refers to an
event ei which satisfies the following three conditions:

1) ei is a write event.
2) There is either an immediate preceding read event ei-1

or no event ei-1 exists.
3) ei, ei-1 ∈ σt. (thread t’s execution trace).
Also, end(t, l) is a either read event ej in σt which imme-

diately precedes a write event ej+1 in σt or the last event in
σt.

Definition 2. A transactional interleaving (TI)  tr is such
that if ei  ej and ei ∈ tr1 and ej ∈ tr2, then tr1 trtr2.

Definition 3. (Happens-Before Relation) [4], [10]: The
happens-before (HB) relation <α for a trace α is the smallest
transitively-closed relation over the events in α such that the
relation a <α b holds whenever a occurs before b in and one
of the following holds:

• Program order: The two operations are performed by
the same thread.

• Locking: The two events acquire or release the same
lock.

• Fork-join: One events is t.fork(u) or t.join(u) and the
other events is by thread u.

Fig. 2. Illustration of TPLAY record phase on σ1. Dashed arrows represent
transaction-level interleavings and double compound arrows represents event
level interleavings.

For events a, b, c ∈ α, If a <α b and b <α c, then a <α c.

D. Transactional Atomicity Violation

Each thread maintains a vector clock (VC) [14] under
RegionTrack and assigns a VC to each transaction created by
the thread. RegionTrack captures HB-relations across threads
by performing a join operation on the VCs of threads during
an HB event. When an HB relation is captured, the VC of the
current thread is updated via a join operation.

Given two events ei and ej where ei � ej and ej ∈ tx,
RegionTrack will report an atomicity violation on tx if the
VC of tx.begin ≤ the VC of ei.

E. Read Count Vector Clocks

A read count (RC) vector clock [24] (a variation of Lam-
port’s vector clock [14]) is a tuple of values where each value
which tracks the number of read events of the corresponding
thread in an execution trace. An RC vector clock maintains a
count of a thread’s read events to a shared memory location
in the form of RCt[t], where t represents the current thread.

III. MOTIVATING EXAMPLE

We present a running example to motivate our work. Fig. 1
shows an execution trace σ1 of a multi-threaded program with
three threads t1, t2 and t3, 14 write and read events labeled as
e1 to e14, and two shared memory locations x and y. In Fig.
1, t1 executes a write then two reads e2 and e3 on location x.
Thread t2 then executes a write e4 on y then two reads e5 and
e6 on location x. Thread t3 then executes a write e7 on x, then
a write e8 on y, followed by two reads e9 and e10 to y and
x respectively. Thread t2 executes two reads e11 and e12 to y
and x respectively. Thread t1 then executes a write on y then
executes e14, which is a read on y.

An existing technique Light [17] records inter-thread flow
dependencies (write-read interleavings). For σ1 , Light records
the set {e1  e5, e8  e11, e7  e12} and passes them as
constraints to a constraint solver to generate a feasible trace.



To enforce intra-thread access orders, Light also encodes the
constraints e1  e2, e2  e3, e3  e13, e13  e14, e4  e5,
e5  e6, e6  e11, e11  e12, e7  e8, e8  e9,
e9  e10 as constraints in the constraint solver. As such, Light
records a total 3 inter-thread interleavings and 11 intra-thread
interleavings for σ1 .

One main drawback of Light is that it may fail to reproduce
a serialized sequence of writes to an external device involving
multiple shared memory locations. As an example, the inter-
leaving e4  e8 may be e8  e4 in some trace σ′1. Light is
also limited by the capacity of constraint solvers to generate
traces.

TPLAY reproduces the program state by enforcing write-
write, read-write, and write-read interleavings in σ1 at a
transactional level. We discuss TPLAY in detail in the next
section.

IV. TPLAY ALGORITHM

In this section, we present TPLAY. The algorithms are
implemented as callback functions which are triggered on the
execution of specific events. The following notations are used
in algorithms 1 and 2:
• ⊥: represents a null instruction.
• {}: represents an empty set.
• dSett: The set of interleavings for thread t.
• rwSett: The set of read-write interleavings for thread t.
• aSett: The set of artificial interleavings for thread t.
• bSett: The set of event interleavings for thread t.
• trIDt: Current transaction ID for thread t.
• lwx: Last write operation to a shared memory location x.
• Ψt: Last instruction type for thread t.
• Lm: Last lock operation on lock m.
• Tid(e): Executing thread of operation e.
• Lock(e): Lock object acquired in operation e.
• var(e): Shared object being accessed by operation e.
• RCt: The RC vector clock for thread t.
• execute(e): The operation for event e is executed.
• t.yield(): The executing thread t waits for other threads

to advance without blocking.
• pop(): removes data from the first index position of a data

structure.
• first(): represents data in the first index position of a data

structure.
• sinkThread: the thread which performs the second event

in an interleaving.
• sourceThread: the thread which performs the first event

in an interleaving.

A. Record Phase

During the record phase, a modified version of RegionTrack
(RTm) is used to create transactions and track HB relations
across threads. When an interleaving is detected, TPLAY re-
trieves the transactional information of the interleaving events
from RTm and records a transactional interleaving (TI) in dSet.
When an atomicity violation over two events is reported by
RTm, TPLAY removes any recorded TI associated with the

two events, then generates two event access orders which are
stored in two different sets aSet and bSet.

The TPLAY record phase is presented in Algorithm 1. Lines
1-2 initialize the RC vector clock of thread t to 0, rwSett, aSett,
bSett and dSett to empty, trIDt to 0 and Ψ to ⊥ for each thread.
During a write access event, the transaction count of thread t
is incremented by 1 if no previous instruction exists or there is
a read for t (line 4). The write operation is executed at line 5.
If the last write to the shared memory location was performed
by some other thread t’, the last write (made up of t’ and the
trIDt’) is ordered before the current write event and appended
to dSett (lines 6 -7). This also eliminates thread-local orderings
which are inherently deterministic. Then the last write for the
shared memory location is updated using t and trIDt at line
8. Line 9 records any read-write interleavings in which the
write event is involved and updates the last instruction type
for thread t.

For each read access event, the index for the current thread
in its RC vector clock is incremented by 1 and the read
operation is executed at line 12. If the last write to the shared
memory location was performed by some other thread t’, the
last write is ordered before the current read event and appended
to dSett (lines 13 -14). Line 15 updates the last instruction type
for thread t.

On lock acquisition, the lock operation is executed at line
18. If the last lock access to some lock object m was performed
by some other thread t’, Lm is ordered before the current
synchronization event and appended to dSett (lines 19 -20).
The last lock access to the shared object is updated at line 21.

The function recordRW (lines 23-26) is invoked at line 9
in the onWrite function. This function retrieves the read count
values for every other thread in the set of Threads (line 24).
The updated RC vector clock for thread t and the current write
event are appended as a triple to rwSett (line 25).

Lines 27-33 detail the action taken when an atomicity
violation is detected by RTm. If the executing thread’s id and
current transaction id exist in the dSet of the last thread t to
access the shared object refrenced by e, the record is removed
(lines 29-30). Then at line 31, 〈Tid(e), e′, t, tr〉 is recorded in
aSett with e’ being the preceding event of e in σTid(e). Finally〈
t, tr, T id(e), trIDTid(e)

〉
is appended to bSetTid(e). Algorithm

1 produces a record log which consists of aSet, rwSet, bSet
and dSet.

Fig. 2 illustrates the TPLAY record scheme for σ1 . On event
e1, a transaction tr1 is created by t1. lwx is also updated with
the pair 〈t1, tr1〉. Events e2 and e3 each increments RCt1 [t1] by
1. On e4, a transaction tr2 is created by t2. lwy is also updated
with the pair 〈t2, tr2〉. RCt2 is updated using RCt1 and RCt3

and 〈RCt2 , t2, tr2〉 is appended to rwSett2 . Events e5 and e6

each increments RCt2 [t2] by 1. For e5, lwx is retrieved and
the interleaving 〈t1, tr1, t2, tr2〉 is appended to dSett2 . On e6,
〈t1, tr1, t2, tr2〉 is not recorded since it already exists in dSett2 .
On event e7 , a transaction tr3 is created by t3. lwx is also
updated with the pair 〈t3, tr3〉. RCt3 is updated using RCt1

and RCt2 . The triple 〈RCt3 , t3, tr3〉 is recorded in rwSett3 .
On e8, lwy is retrieved and the interleaving 〈t2, tr2, t3, tr3〉



is appended to dSett3 . lwy is then updated with the pair
〈t3, tr3〉. However, 〈RCt3 , t3, tr3〉 is not recorded on e8 since
the values in RCt3 have not changed. Events e9 and e10 each
increments RCt3 [t3] by 1. An atomicity violation is reported
on e11 for tr2. Since an interleaving with the pair 〈t2, tr2〉
exists in dSett3 , the interleaving is removed and an artificial
interleaving 〈t2, e6, t3, tr3〉 is then appended to aSett3 . This
ensures that tr2 will be paused until e6 has been executed to
reproduce the atomicity violation on tr2. Then the interleaving
〈t3, tr3, t2, e11〉 is appended to bSett2 . On event e13, t1 creates
transaction tr4. lwx is also updated with the pair 〈t1, tr4〉. RCt1

is updated using RCt2 and RCt3 . The triple 〈RCt1 , t1, tr4〉 is
recorded in rwSett1 . Event e14 finally increments RCt1 [t1] by
1.

TPLAY produces dSetσ1= {〈t1, tr1, t2, tr2〉}, bSetσ1=
{〈t3, tr3, t2, e11〉}, aSetσ1

= {〈t2, e6, t3, tr3〉}, rwSetσ1
=

{〈[2, 0, 0]t2 , t2, tr2〉 , 〈[2, 2, 0]t3 , t3, tr3〉 , 〈[2, 4, 2]t1 , t1, tr4〉}
as the record log for trace σ1.

B. Replay Phase

During the replay phase, RTm is used to create transactions
only. TPLAY divides the record log into constraint sets based
on the sinkThread in each interleaving. Each thread is assigned
a set in the form {aSett,rwSett, bSett and dSett}. The constraint
set is treated as a stack where only the first record in each
data structure is used in evaluating the current event. When a
record is successfully used in evaluating an event, the record
is popped out of the stack.

The TPLAY replay phase is shown in Algorithm 2. The
record log (aSet, rwSet, bSet and dSet) is used as input to
replay callback functions. Lines 1-3 initialize RC vector clock
to 0, trIDt to 0 and Ψ to ⊥ for each thread respectively.

For each write event, the checkEvent and checkAv functions
are called on line 3 to ensure that the current event is not
involved in some atomicity violation. The current operation is
aborted if read-write conditions are not satisfied (line 4).

If the thread’s dSetTid(e) is not empty, and the current
transaction id of the thread is lower than the sink transaction id
of the topmost record in dSetTid(e), the write event is executed
(lines 5 - 7). This means each sinkThread can execute up
until its first transaction involved in an interleaving. Also, If
the thread’s dSetTid(e) is not empty, and the current transaction
id of the sourceThread is greater than or equal to the source
transaction id of the topmost record in dSetTid(e), this means the
interleavings has been fulfilled. The topmost record is popped
out of dSetTid(e) and the write event is executed. (lines 8-9).
When neither of the two previous conditions are met at lines
7 and 8, the thread waits without blocking other threads at
line 10. At Lines 11 and 12 the transaction id for the thread
is incremented if the last event for the thread is either a read
event or a null event. The write event is executed and the last
instruction for the thread is updated at line 13.

On handling read events, on line 16, the two functions
checkEvent and checkAv are called to ensure that the current
event is not involved in some atomicity violation. Lines 17-
18 update the RC vector clock of Tid(e), execute the read

Algorithm 1 TPLAY record algorithm

1) ∀t ∈ Thread do RCt=0; Ψt=⊥; trIDt=0; dSett={};
2) rwSett={}; aSett={}; bSett={};

3) onWrite (Event e) do
4) if (ΨTid(e) ∈ {⊥,read}){ trIDt++; }
5) execute(e);
6) if (Tid(lwvar(e)) 6= Tid(e)){
7) dSett ^=

〈
Tid(lwe), lwe, T id(e), trIDTid(e)

〉
; }

8) lwe =
〈
Tid(e), trIDTid(e)

〉
;

9) recordRW(Tid(e), e); ΨTid(e)= write;
10) onWrite

11) onRead(Event e) do
12) RCTid(e) [t] ++; execute(e);
13) if (Tid(lwe) 6= Tid(e)){
14) dSett ^=

〈
Tid(lwe), lwe, T id(e), trIDTid(e)

〉
; }

15) ΨTid(e)= write;
16) end onRead

17) onLockAcquire(Event e):
18) execute(e); m = var(e);
19) if (Tid(Lm ) 6= Tid(e)){
20) dSett ^=

〈
Tid(Lm), Lm, T id(e), trIDTid(e)

〉
; }

21) Lm ^=
〈
Tid(e), trIDTid(e)

〉
;

22) End onLockAcquire

23) recordRW(Thread t, Event e) do
24) ∀t’ ∈ Thread do RCt[t’] = RCt’ [t’];
25) rwSett ^=

〈
RCt, T id(e), trIDTid(e)

〉
;

26) end recordRW

27) onAtomicityViolation(Event e):
28) ∀θ ∈ (Lvar(e), lwvar(e)){ t =Tid(θ); tr = θ.trID; }
29) if(

〈
Tid(e), trIDTid(e)

〉
∈ dSett){

30) dSett = dSett /
〈
Tid(e), trIDTid(e), t, tr

〉
);

31) aSett ^= 〈Tid(e), (e′), t, tr〉; }
32) bSetTid(e) ^=

〈
t, tr, T id(e), trIDTid(e)

〉
;

33) end onAtomicityViolation

event and update the last instruction of the thread with a read
instruction.

Lock access events follow a similar replay strategy to read
and write events. If the current transaction id for Tid(e) is less
than the topmost transaction id in dSetTid(e), the lock operation
is executed (lines 21-23). Otherwise if the sourceThread in-
volved in the dependency has a trIDt’ greater than or equal to
the transaction id from dSetTid(e), the lock operation is executed
(line 24-25) and the topmost record in dSetTid(e) is removed
since the interleaving constraint has been satisfied at line 24.
The thread waits without blocking other threads at line 26 if
the conditions on lines 22 and 24 are not satisfied.

The checkRW (lines 28-33) function is invoked at line 4 in
the onWrite function. This function retrieves the read count
values for every other thread in the thread set Thread and
updates the RC vector clock of t (line 29). Line 31 iterates



Algorithm 2 The TPLAY replay algorithm

1) ∀t ∈ Thread do RCt=0; Ψt=⊥; trIDt=0;

2) onWrite (Event e) do
3) checkEvent(); checkAv();
4) if (!checkRW(Tid(e), e)){ Tid(e).yield(); }
5) if (dSetTid(e) contains records){
6) rec = dSetTid(e).first();
7) if (trIDTid(e) < rec.trIDTid(e)){ skip to line 11 }
8) else if (trIDt’ >= rec.trIDt’){
9) dSetTid(e).pop(); skip to line 11 }

10) else { Tid(e).yield(); } }
11) if (ΨTid(e) ∈ {⊥, read}){
12) trIDTid(e)++; }
13) execute(e); ΨTid(e)= write;
14) end onWrite

15) onRead(Event e) do
16) checkEvent(); checkAv();
17) RCTid(e) [Tid(e)] ++; execute(e);
18) ΨTid(e)= read;
19) end onRead

20) onLockAcquire(Event e):
21) rec = dSetTid(e).first();
22) if (trIDTid(e) < rec.trIDTid(e)){
23) execute(e); }
24) else if (trIDt’ >= rec.trIDt’){
25) execute(e); dSetTid(e).pop(); }
26) else { Tid(e).yield(); }
27) End onLockAcquire

28) checkRW(Thread t, Event e) do
29) ∀t’ ∈ Thread do RCt[t’] = RCt’ [t’];
30) ∀t’ ∈ Thread do
31) if (RCt[t’] < rwSett[0].RCt[t’]){ return false; }
32) rwSett.pop(); return true;
33) end checkRW

34) checkEvent(Event e) do
35) rec = bSetTid(e).first();
36) if (eTid(e) < rec.e){
37) execute(e); }
38) else if (trIDt’ > rec.trIDt’){
39) execute(e); bSetTid(e).pop(); }
40) else { Tid(e).yield(); }
41) end checkEvent

42) checkAv(Event e) do
43) rec = bSetTid(e).first();
44) if (trIDTid(e) < rec.trID){
45) execute(e); }
46) else if (et’ > rec.e){
47) execute(e); aSetTid(e).pop(); }
48) else { Tid(e).yield(); }
49) end checkEvent

over RCt and returns false if each thread’s current read count
value is less than the recorded value in rwSett. Or else the
interleaving is satisfied and removed from rwSett at line 32.

The checkEvent function ensures that the sinkThread blocks
prior to an event which is involved in an atomicity violation.
Lines 36-37 ensure thread execution until the the event in the
topmost record in bSetTid(e) has been executed.

Alternatively line 38 checks if the sourceThread’s transac-
tion id is greater than the recorded transaction id in bSetTid(e).
If the condition is satisfied, the event is executed and the
interleaving is removed from bSetTid(e) at line 39. When both
conditions are not met, the thread identifying by Tid(e) waits
without blocking other threads at line 40.

The checkAv function ensures the artificial interleaving is
enforced by the source thread. Lines 44-45 ensure thread
execution until the event in the topmost record in aSetTid(e).
Otherwise line 46 checks if the source thread’s current event
is greater than the recorded event. If the condition on line
46 is satisfied, the event is executed and the interleaving is
removed from bSetTid(e) at line 47. Otherwise Tid(e) waits
without blocking other threads at line 48.

The trace σ1 is replayed as follows: During the replay
phase, t1 creates tr1 with event e1 in the abscence of any
interleaving constraint involving tr1. Events e2 and e3 are
executed and each event increments RCt1 [t1] by 1. Then t3

attempts to create tr3 but fails since there are two constraints
on tr3 ({〈t2, e6, t3, tr3〉} and {〈[2, 2, 0]t3 , t3, tr3〉} not yet
satisfied. t1 then attempts to create tr4 and t1 fails due to
the interleaving {〈[2, 4, 2]t1 , t1, tr4〉} not yet satisfied. t2 then
proceeds to create tr2 since the constraints {〈t1, tr1, t2, tr2〉}
and {〈[2, 0, 0]t2 , t2, tr2〉} are satisfied. t2 executes e5 and e6

and updates RCt2 [t2]. t2 pauses at e11 due to the interleaving
{〈t2, e6, t3, tr3〉} not yet satisfied. t3 proceeds to create tr3 and
executes events e7 and e8. Events e9 and e10 each increments
RCt3 [t3] by 1. t2 then executes e11 and e12, reproducing the
atomicity violation on tr2. Finally, t1 creates tr4 and executes
e13 and e14.

C. Thread abstraction & matching

Algorithms 3 and 4 present the thread abstraction process
in the record phase and subsequent matching process in the
replay phase using the following notations:
• osTidt: System-assigned value for thread t.
• opsTidt: System-assigned value for parent thread of

thread t.
• pTidt: The ID of the parent thread of thread t.
• Ω: Data Structure mapping opsTidt to osTidt.
• tLog: Set of thread abstractions.
• Γ: Data Structure mapping each replay thread to its

current number of children threads.
• Φ: Data Structure mapping replay threads to threads from

tLog.
At line 1 of algorithm 3, Ω and tLog are initialized as empty
structures. On thread creation, a value pair made up of the
system-assigned value and the thread id is appended to Ω (line
3). For all threads with the exception of the main thread, a



value pair made up of the thread id and its parent thread id is
appended to the set of thread abstractions tLog at line 4.

Algorithm 3 TPLAY thread abstraction algorithm

1) tLog={}; Ω={};

2) onThreadCreate (Thread t) do
3) Ω ^= 〈osT idt, T idt〉;
4) if (Tidt 6= 0){ tLog ^= 〈Tidt,Ω[opsT idt]〉; }
5) end onThreadCreate

For Fig. 1, the resulting thread abstraction set is
{〈1, 0〉 , 〈2, 0〉 , 〈3, 0〉}.

Algorithm 4 TPLAY thread matching algorithm

1) Ω={}; Γ={};Φ={}; tLog;

2) onThreadCreate (Thread t) do
3) Ω ^= 〈osT idt, t〉;
4) if (Tidt == 0){ Φ ^= 〈0, 0〉; }
5) else { Γ[ Ω[opsTidt]]++;
6) freq = 1; parent = Φ[Ω[opsTidt]];
7) childFreq = Γ[Ω[opsTidt]];
8) ∀〈a, b〉 ∈ tLog {
9) if (b == parent && freq == childFreq ){

10) Φ ^= 〈t, a〉; break; }
11) elseif (b == parent && freq 6= replayFreq ){
12) freq++ ; } } }
13) end onThreadCreate

Algorithm 4 presents the thread matching algorithm in the
replay phase. tLog is used as an input to the thread matching
algorithm. Data structures Ω, Γ and Φ are all initialized as
empty sets at line 1. On thread creation, the system-assigned
value and the thread id pair is appended to Ω at line 3. If the
thread is the main thread, the pair 〈0, 0〉 is appended to Φ (line
4). The main thread in each execution is always assigned with
id 0.

Otherwise, the number of children threads for the current
thread’s parent is incremented by 1 at line 5. Then we iterate
over each thread abstraction in tLog (lines 8-12). If the second
value (b) of a thread abstraction matches a parent thread and
the parent thread’s freq value matches the value of childFreq,
the current thread id and the first value (a) of the matching
abstraction is appended to Φ (lines 9-10). Otherwise, the
freq value is incremented by 1 at line 12 when the thread
abstraction is parent thread is matched but the child frequency
is not.

V. EVALUATION

A. Execution Environment

Our hardware setup consisted of a Dell PowerEdge R930
running the Dell Customized Image ESXi 6.0.0 Update 2
A01. Our experiments were conducted on a 64 bit virtual
machine running the guest OS Ubuntu 18.04 Linux with 8

TABLE II
EXECUTION METADATA FOR BENCHMARKS USED IN OUR EXPERIMENT.

Benchmarks # of Events
Read Write Lock

cholesky 13,539,277 3,576,547 1,529
fft 23,738,757 14,934,083 34
lu_cb 95,376,483 45,684,566 274
lu_ncb 94,188,973 45,662,755 274
ocean_cp 95,195,697 18,453,146 4,434
ocean_ncp 95,164,212 18,453,231 4,427
raytrace 319,947,352 69,805,540 239,444
radiosity 3,403,130 2,061,336 76
radix 237,630,987 78,661,575 213,960
volrend 35,082,358 10,642,543 7,133
water_nsquared 117,250,198 46,340,899 6,294
water_spatial 104,690,984 41,625,532 159
barnes 2,784,956,319 1,680,710,156 275,331
mysql 1,560,872 542,635 6

Intel Xeon(R) CPU E7- 4850 v3 @ 2.20Ghz processors, and
16GB of RAM.

We have implemented TPLAY and Light using Intel PIN
version 3.0-76991 [19]. To be specific, for each tool, we
implemented two separate pintools, for the record and replay
phases respectively. In the case of Light, we followed the
implementation in the paper using a solver for the Integer
Difference logic theory in z3 [9]. The record implementation
of Light is publicly available without the replay phase and
constraint solver and can only handle Java applications. Our
benchmarks were run on C/C++ programs with the pthread
standard. This made direct comparison difficult. A precaution
taken was to test the correctness of our implementation of
Light on a small benchmark we developed prior to our exper-
iments. We also used code inspection on our implementations.

B. Benchmarks

We evaluated our implementation using benchmarks from
the Splash2x extension of the PARSEC 3.1 benchmark suite
[3], specifically barnes, ocean_cp, radiosity, raytrace, vol-
rend, water_spatial, water_nsquared, water_spatial as well
as kernel applications cholesky, fft, lu_cb, lu_ncb, radix, and
mysql. We selected the Splash2x extension of PARSEC for its
focus on concurrent computation on parallel machines. Table
II details the number of read, write and lock acquisition events
in each program under the experiment configuration.

C. Methodology

We ran each benchmark in the native configuration to
establish native execution runtime. We reported this as the
base time in our experiment results.

Each Splash2x benchmark program was configured with
4 worker threads with the gcc-pthreads configuration option
and the test-input workload. This configuration provided each
program adequate concurrency and input. The input for mysql
was MySQL (Bug #85413) .

1) Record and Replay setup: For our record phase, each
thread kept a local instruction counter and incremented it by
1 for each instruction executed. Each thread also kept a vector



TABLE III
EXPERIMENTAL RESULTS ON RECORD PHASE OF TPLAY AND LIGHT.

Benchmark Application Domain Log Size (MB) Base time(s) Normalized Slowdown
TPLAY Light Light/TPLAY

cholesky HPC 10.5 39.90 0.02 0.19
fft Signal Processing 12.20 32.70 0.05 0.19
lu_cb HPC 8.30 503 0.09 0.64
lu_ncb HPC 8.30 502.50 0.125 0.72
ocean_cp HPC 17.50 44 0.188 0.47
ocean_ncp HPC 27.70 43.90 0.19 0.77
raytrace Graphics 50.90 765 0.0574 0.03
radiosity Graphics 7.50 13.10 0.092 0.05
radix General 59.30 720 0.554 0.01
volrend Graphics 12 152.30 0.086 0.06
water_nsquared HPC 10.10 561.10 0.17 0.13
water_spatial HPC 5.20 396.90 0.16 0.11
barnes HPC 126 890 1.044 1.97
mysql Database application 0.60 0.40 0.8548 0.75

Mean 25.44 333.20 0.26 0.44

TABLE IV
RECORD PHASE DATA FOR TPLAY AND LIGHT. (TI REFERS TO TRANSACTIONAL INTERLEAVINGS. AV REFERS TO ATOMICITY VIOLATIONS. THE

VALUES MARKED WITH * REPRESENT THE INTERLEAVING SET SIZES NOT SOLVED BY Z3).

Benchmark # of Transactions # of TI # AV # of Light W-R interleavings
cholesky 9,632 761 - 2,009,143*
fft 11,355,241 639,294 - 1,672,548*
lu_cb 46,392,503 399,169 - 23,785,125*
lu_ncb 46,117,695 397,970 - 23,757,388*
ocean_cp 18,536,819 239,971 - 2,360,277*
ocean_ncp 17,545,516 287,698 - 2,351,007*
raytrace 17,108,800 1,203,113 2 73,440,436*
radiosity 2,057,238 413,560 - 777,345*
radix 21,165,176 2,177,458 - 77,013,873*
volrend 5,559,482 421,344 98 7,711,556*
water_nsquared 42,878,818 254,304 - 28,316,969*
water_spatial 39,523,924 217,046 - 20,725,403*
barnes 69,510,023 8,510,541 - 411,164,199*
mysql 49,821 9,581 - 352
Mean 24,129,334 1,083,700 50 48,220,401

clock to track reads by other threads as well as a transaction
counter which was incremented for every transaction created
by the thread. For all shared memory locations, we maintained
a data structure to store data on the last access to each
shared memory location. We also kept a global map of each
memory address with its associated data structure which is
write protected by a single lock during initial creation and
storage of the data structure. However, for subsequent access
to each memory address index in the map, we maintained a set
of 210 locks which were acquired via a hash function (similar
to Light).

For read events, we configured each thread to keep track of
its read accesses to shared memory locations and made this
data structure accessible to other threads. We protected access
to this data structure by assigning each thread its own lock.
Throughout the record phase, TPLAY was configured to keep
all recorded data in memory until the program exited or was
terminated.

Apart from read-write interleavings, we stored each in-
terleaving (regardless of interleaving type) in the format
〈a, b, c, d〉 where a, b, c and d represented the sourceThread
id, the transaction/event id executed by the sourcThread, sink-

Thread id and transaction/event id executed by the sinkThread
respectively. A thread id was typically a 32-bit integer whereas
an event/transaction id was a 64-bit unsigned integer. Read-
write interleavings were stored in the format 〈RC, a, b〉 where
RC represented a vector of read aggregate values from all
threads and a and b represent the sink thread id and sink
transaction/event id respectively.

We recorded time spent (total processor clock ticks for each
run) using the clock function1. The time spent for each tool
is calculated by recording the value returned by the clock
function at the beginning and at the end of each run. The
normalized slowdown difference between TPLAY and Light
was calculated using the following formula (time spent for
Light / time spent for TPLAY) and is shown in column 6 of
Table III.

During the replay phase, each thread created during the
replay phase was matched to a record phase thread using
our thread matching algorithm i.e. Algorithm 4, and each
thread only kept a record of interleavings within which it
served as a sinkThread. During replay, we maintained an

1man7.org/linux/man-pages/man3/clock.3.html



instruction counter, transaction counter for each thread. To
ensure optimal concurrency, each thread was configured to
evaluate the interleaving constraint without synchronization.
This meant for every interleaving 〈a, b, c, d〉, the sinkThread c
only had to check if the sourceThread a’s current transaction
id was greater than the recorded transaction id b. This ensured
that the sourceThread was not blocked until the interleaving
was confirmed by the sinkThread. The artificial interleavings
created on atomicity violations were evaluated in the same
manner.

Each interleaving was removed from the data structures
once it was satisfied. TPLAY relinquished control of the pro-
gram execution to the system scheduler when all interleavings
were satisfied.

We recorded each interleaving for Light in the format
〈a, b, c, d〉 where a, b, c and d represent the source thread id,
the source event id, sink thread id and sink event id respec-
tively. Our implementation of TPLAY in the Pin framework
is available online2.

D. Constraint solving Approach

To benchmark the Light replay technique, the Z3 constraint
solver was used with write-read interleavings from the Light
record phase as inputs. We did this in accordance with the
steps stated in [17]. A constraint solver accepts as input a
set of statements which are encoded as constraints. In our
experiments, we implemented a constraint solver using the
Z3Py library (version 4.8.4) of Z3 [9] theorem solver for
python programming. We present an example of the constraint
solving approach as follows:

Fig. 3. Running example: An execution trace of a multi-threaded program
with threads t1 t2, t3. (Dashed arrows represent the global trace σ2 )

The trace σ2 = 〈e1, e2, e3, e4, e5, e6, e7, e8, e9〉 represents
the execution shown in Fig. 3. The interleavings produced
from σ2 are e1 e3, e3 e4, e2 e5, e6 e7 , e6 e8, e8 e9

and e7 e9.
Light records the inter-thread interleavings e3  e4,

e6  e7 and e6  e8. We encode each interleaving for the
constraint solver in the form {a− b− c− d} where a, b, c and

2github.com/testrepo007/TPLAY

d represent the thread id from the write event, the event id for
the interleaving write event, the thread id for the read event
and the event id for the interleaving read event respectively.

The set of write-read interleavings for σ2 is encoded
as {{3− 3− 2− 4}, {2− 6− 3− 7}, {2− 6− 2− 8}}. The
constraint solver also accepts the intra-thread interleaving
constraint set {{3− 3− 3− 7}, {2− 6− 2− 8}}.

The execution schedules 〈3− 3, 2− 4, 2− 6, 2− 8, 3− 7〉
and 〈3− 3, 2− 4, 2− 6, 3− 7, 2− 8〉 are generated by the
constraint solver.

Our Z3Py code for the constraint solver is available online3.

E. Record Phase results

Table III details our experimental results for the record
phase. The first two columns detail the benchmarks and their
respective application domains. The next two columns show
the record log sizes for TPLAY and Light in megabytes.
Base Time represents the native runtime for each benchmark
in seconds. Column 6 of Table III shows the difference in
time spent between TPLAY and Light. On average, Light
achieves 44% of runtime overhead of TPLAY because TPLAY
incurs runtime cost in creating and maintaining transaction
data structures as well as the transaction atomicity checker
RTm.

Our experimental results indicate an average of 25.44MB,
which is a 13-fold improvement when compared to Light’s
average of 333.20MB. Specifically, TPLAY records a smaller
log size for 13 out of 14 programs. Light experiences a slight
gain for mysql, which does not produce enough transactions
to highlight the efficiency of TPLAY.

Table IV shows the results on trace reduction for TPLAY
and Light. Column 2 shows the number of transactions created
by TPLAY for each program execution. Column 3 shows the
number of transactional interleavings whilst column 4 shows
the number of atomicity violations reported for each program
execution. Finally, Column 5 shows the interleavings recorded
by Light.

We also compare the number of transactional interleavings
with the number of write-read interleavings recorded by Light.
Table IV shows a 44-fold improvement in trace reduction by
TPLAY over Light.

Atomicity violations were reported for two benchmarks
volrend (98) and radiosity (2). For each atomicity violation
reported, TPLAY created a pair of interleavings, one inter-
leaving was stored for the sourceThread in aSet and another
was saved for the sinkThread in bSet. No atomicity violations
are reported for 12 out of 14 benchmarks, thereby confirming
our insight. This also means that these benchmarks could be
replayed exclusively at the transactional level.

F. Replay Phase results

Table V presents the experimental results on replay phases
for TPLAY. A successful replay run for TPLAY in our
experiment was the reproduction of interleavings observed in

3github.com/testrepo007/Constraint-solver



TABLE V
EXPERIMENTAL RESULTS FOR REPLAY PHASE.

Benchmark Normalized Slowdown # Successful Executions % Replay ProbabilityTPLAY Light
cholesky 0.86 - 45 90
fft 0.83 - 50 100
lu_cb 0.8 - 50 100
lu_ncb 0.77 - 50 100
ocean_cp 0.77 - 50 100
ocean_ncp 0.71 - 41 82
raytrace 0.72 - 50 100
radiosity 0.8 - 50 100
radix 0.77 - 50 100
volrend 0.79 - 50 100
water_nsquared 0.85 - 50 100
water_spatial 0.64 - 50 100
barnes 0.7 - 40 80
mysql 0.57 0.77 50 100
Mean 0.76 0.77 48.3 96.6

the record phase and the program output. A successful replay
for Light was the reproduction of write-read interleavings for
a program. Each subject program was run 50 times.

Recall that Light employs a constraint solver in generating
possible schedules for replay. However, in our experiment
we found the constraint solver strategy to be limited in con-
structing feasible schedules due to the high number of write-
read interleavings generated for our benchmarks. Column 5
of Table IV shows the number of inter-thread write-read
interleavings recorded by Light. With the exception of mysql
(26 possible traces), the constraint solver did not return any
output even after several hours of constraint solving. For
mysql, Light succeeded in reproducing correct interleavings
80% of the time.

The time spent for each tool in the replay phase was
calculated in a manner similar to the record phase (See
paragraph 6 of subscetion C of Section V). The normalized
runtime for each tool in the replay phase is calculated as the
(time spent for tool in replay phase / time spent for tool in
record phase). The results are presented in columns 2 and 3 of
of Table V. TPLAY’s replay phase is able to execute at 76%
of its record phase on average.

On average, TPLAY replays programs with a 96.6% prob-
ability, with a mean of 48.3 successful executions out of
50 executions. For cholesky, and ocean_ncp, TPLAY fails to
achieve 100% probability due to the program outputs being
different from that observed in the record phase.

G. Threats to Validity

The ability of the TPlay tool in the experiment to report
atomicity violations was dependent on the algorithm in [28].
Our implementation of Light (and TPLAY) was also subject
to inherent binary instrumentation limitations of Pin. Also the
constraint solver was developed using the python library of
z3 (Z3Py)4. Another way of encoding constraints or other
constraint solvers may make Light able to produce thread

4github.com/Z3Prover/z3

schedules for its replay phase. TPLAY may also suffer over-
heads in the record phase mainly during the creation and
maintainance of data structures for transactions. Threads not
previously encountered in the record phase but observed in the
replay phase may not be handled by TPLAY.

VI. RELATED WORK

There are many existing deterministic replay techniques
such as Samsara [26] and Odr [1] that are implemented for
C/C++ applications based on the pthread execution model.
TPLAY follows a similar implementation style to these tech-
niques.

Some recent techniques such as DoubleTake [18] conduct
record and replay in one sinlge phase. In these techniques, an
execution is divided into epochs based on either irrevocable
system calls or user-defined conditions. The programs state
is logged just before each epoch creation and execution, and
the epoch is analyzed afterwards. If any error is found in an
epoch, the program state prior to the epoch is restored and the
epoch is replayed to reproduce the error. Otherwise, the next
epoch is created and executed. DoubleTake requires special
hardware support whereas TPLAY does not. Unlike MobiPlay
[25], TPLAY does not modify the underlying framework to
facilitate replay. AggrePlay [24] tracks the number of read
accesses by each thread prior to some write event, then
aggregates these numbers of read accesses by all threads in
a read vector. The read vector is then associated with the
write event. AggrePlay however, incurs higher overheads in the
record phase compared to TPLAY by recording all interleaving
sets.

Checkpointing is often used in replay techniques. iReplayer
[16] stores the system state in memory and enables user-
customizable checkpointing rules. iReplayer acheives small
log sizes by not monitoring data races during record. It may
report them in the replay phase by iteratively replaying an
epoch if there is a divergence from the thread interleavings
observed during replay and the recorded thread interleavings.
TPLAY does not use checkpointing and replays data races
without iteration.



Processor-oblivious record and replay [27] focuses on
recording the synchronization order for programs which em-
ploy task-parallelism. Such programs do not have any notion
of threads or data and are inherently data-race free, e.g.,
Cilk programs. However, current mainstream software sup-
ports multi-threaded parallelism. TPLAY is applicable to most
mainstream software.

Recording write-read interleavings has been explored by
existing work. Light [17] records inter-thread and intra-
thread write-read interleavings and uses a constraint solver
to generate feasible execution schedules with the interleav-
ings as constraints. TPLAY records write-read interleavings
at a transactional level and does not require any constraint
solver. Minimizing record impact on runtime overhead via
thread-local data storage has been explored by existing work
CLAP [12], which relies on constraint solving to generate
execution schedules. CARE [13] maintains thread-local caches
for shared memory locations, records cache-missed write-read
interleavings but does not record write-read interleavings if the
interleaving results in a cache hit. CARE records exact read-
write interleavings unlike TPLAY. Some existing techniques
focus on trace reduction strategies. Netzer [22] has proposed
an adaptive tracing strategy which records the minimal amount
of data required to replay a specific race condition. This is
achieved by optimizing transitively-implied inter-thread de-
pendencies similar to Light. TPLAY by default does not record
interleavings at the event level.

Xu et al. [30] proposes a regulated transitive reduction
algorithm which improves Netzer’s trace reduction technique
by generating artificial dependencies on inter-thread depen-
dencies. TPLAY generates artificial dependencies but only
when an atomicity violation is reported on an event within a
transaction. OCTET [5] avoids creating thread interleavings by
associating each shared object with a thread-local state variable
and a mechanism based on the concurrent read, exclusive write
strategy. TPLAY reduces thread interleavings by executing
threads’ instructions as atomic code regions and recording
interleavings on these atomic regions.

Existing replay techniques like Stride [31] include a search
process and attempt to re-construct the missing interleavings
before generating a trace with the targeting output in its replay
phase. Bbr [7] uses a predefined set of location checkpoints
to minimize record log sizes as well as a symbolic-execution
based search process to generate feasible traces involving the
checkpoints. TPLAY does not rely on a search process, sym-
bolic execution nor any offline phase.Similar to Stride, ODR
aims to reproduce a specific program output by extracting
some execution trace data from a core dump and generating a
trace through a search process.

Deterministic replay is applied in other fields of discipline.
DETER [15] is a deterministic replay tool used in recording
transmission control protocol (TCP) packets to reproduce
communication network states. TPLAY does not focus on
replay of communication networks.

VII. CONCLUSION

Existing deterministic replay techniques proposed strategies
which attempt to reduce record log sizes and achieve suc-
cessful replay. However, these techniques still generate large
logs and and achieve replay only under certain conditions.
We have proposed a solution based on the division of the
sequence of events of each thread into sequential blocks called
transactions. Our insight is that there are usually few to
no atomicity violations among transactions reported during
a program execution. We have presented TPLAY, a novel
deterministic replay technique which records thread access
interleavings on shared memory locations at the transactional
level. TPLAY also generates an artificial pair of interleavings
when an atomicity violation is reported on a transaction. We
present an experiment using the Splash2x extension of the
PARSEC benchmark suite. Experimental results have indicated
that on average, TPLAY experienced a 13-fold improvement
in record log sizes and achieved a high replay probability.

Future work includes solving the problem of high runtime
overhead in the record phase for TPLAY.
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