APPLICATION NOTE

M1 PS R4000 Synchronization Primitives

Duk Chun & Shabbir Latif
Technology Products Group
MIPS Technologies, Inc.
2011 N. Shoreline Blvd.
Mountain View, CA 94039

Publication No.: AP004
Publication Date: April, 1993

MIPS Technologies, Inc. reserves the right to make changes to any products herein at any time without noticein order
to improve function or design. MI1PS does not assume any liability arising out of the application or use of any product
or circuit described herein; neither doesit convey any license under patent rights nor imply the rights of others.

Copyright 1992 by MIPS Technologies, Inc. No part of this document may be reproduced in any form or by any
means without the prior written consent of MIPS Technologies, Inc.

R4000 and R4400 are registered trademarks of MIPS Technologies, Inc.

The R4000 /R4400 is avail able from the following manufacturers:

Integrated Device Technology, Inc. (Attention - RISC Microprocessor Marketing)
2975 Stender Way

Santa Clara, CA 95052-8015

Tel: (408) 727 6116

LSl Logic Corporation (Attention - MI1PS Division)
1551 McCarthy Blvd.

Milpitas, CA 95035

Tel: (408) 433 8000

NEC Corporation (Attention - Microcomputer Division)
401 Ellis St.

Mountain View, CA 94039

Tel: (415) 960-6000

Performance Semiconductor Corporation (Attention - Microprocessor Marketing)
610 E. Weddell Drive

Sunnyvale, CA 94089

Tel: (408) 734 9000

Siemens Components Inc. (Attention - Integrated Circuit Division)
10950 Tantau Ave.

Cupertino, CA 95014

Tel: (408) 777-4500

Toshiba Corporation
9740 Irvine Blvd.
Irvine, CA 92713
(714) 583-3000

Table of Contents

1. INErOAUCHION oottt e e 1
2. General description of synchronization techniques........................... 2
TES-ANA-SEL ..o 2
COUNTET ...ttt nnne s 3
3. LL AN SC .ottt 5
4. Examples Using LL and SCc.ccocoiviiniiiiiiiicc 7
Implementation of Test-and-Set Technique..........ccccoevevveieecieciene, 8
Implementation of Counter Technique...........ccocoeve e, 9
5. Load Link Address (LLAddr) Register-...........cccccceovviniiniiinininnnee. 11
6. Link Address Retained Bit........ccccccceevieeiienieniieieceeeeeeeee e, 12
7. SUIMIMATY ..o 13
8. Reader’'s COMMENLSccceeviieeiieiieeieeeieeeeere ettt eve e e 14

MIPS R4000 Synchronization Primitives

MIPS R4000 Synchronization Primitives

Introduction

In a multiprocessing system, it is essential to have a way in which two or more
processors working on a common task can each execute programs without
corrupting the other’s sub-tasks. Sometimes, it is also necessary to restrict the
number of processors that can access a particular section of memory (for example,
in the case when multiple licensees are allowed to access the same code).
Synchronization, an operation that guarantees an orderly access to shared
memory, must be implemented for a properly functioning multiprocessing
system.

There are many synchronization techniques in existence, but for the sake of
simplicity, only two widely used methods will be discussed in this application
note. One allows only a single processor to access some part of shared data or code
(from now on referred to as “critical section”) and another one allows a fixed
number of processors to access a critical section. The general description of these
techniques is given in chapter: 2. Examples are given in chapter: 4 to show how
these techniques can be implemented using Load Link and Store Conditional
instructions, in conjunction with other coherency mechanisms and protocols
provided by the R4000 family. Moreover, the functions of Load Link Address Register
and Load Link Retained Bit are discussed in chapter: 5 & 6. These are the two
mechanisms, provided by R4000, to support the implementation of the above
techniques in special cases.

MIPS R4000 Synchronization Primitives 1

General description of synchronization techniques

Test-and-Set

Test-and-set is a typical way to achieve synchronization where only one processor
is allowed to access a critical section. In general, this technique involves using a
variable called the semaphore and assigning values to this variable for the “lock-off”
or “lock-on” state. Semaphore can be interpreted as a lock to some critical section.
Each processor checks if the lock is off; if so, it tries to lock it by modifying the
variable appropriately. Caution: the system must guaranty that only one
processor, at a time, can get the ownership to modify the variable and lock it or
unlock it. Once a processor gets the lock, it is then allowed to modify restricted
data or access the critical section. After it is done, it gets out of the critical section
and modifies the semaphore to the “lock-off” state so that other processors can get
a chance to access it.

MIPS R4000 Synchronization Primitives

Figure 2-1 illustrates a test-and-set synchronization procedure which uses a
semaphore.

A

L oad semaphore

No
Yes

Try toown & lock
semaphore

No

Successful ?

Yes

Execute critical section
(Access shared data)

Y

Unlock semaphorel

Figure 2-1: Synchronization with test-and-set

Counter

If N processors (N>1) are to be allowed to have permission to access a critical
section or access limited resources, a common synchronization technique uses a
variable as a counter to count number of limited resources or number of permits
available. Each processor checks if a permit is free to be used; if available, it tries to
modify the counter and thus obtain permission. Again it is critical that only one
processor, at a time, is allowed to get the ownership and modify the counter. All
processors after the Nth processor must wait until a permit becomes available--
when any one of the N processor exits the critical section and modifies the counter

MIPS R4000 Synchronization Primitives 3

to reflect the new status. The flowchart in Figure 2-2 shows synchronization using

a counter.

L oad counter

N

No
Yes
Try toown &
decrement counter
No
Successful ?
Yes

Execute critical section

Y

L oad counter

Y

Try toown &
increment counter

]

Successful?

Yes

Continue processing

Figure 2-2: Synchronization using a counter

MIPS R4000 Synchronization Primitives

LL and SC

3

MIPS II instructions Load Linked (LL) and Store Conditional (SC)l, in conjunction
with the cache coherency mechanism and protocol, provide synchronization
support for R4000 processors. The two instructions work very much like their
simple counterparts load and store. The LL instruction, in addition to doing a
simple load, has the side effect of setting a user transparent bit called the load link
bit(LLbit). The LLbit forms a breakable link between the LL instruction and a
subsequent SC instruction. The SC performs a simple store if and only if the LLbit
is set when the store is executed. If the LLbit is not set, then the store will fail to
execute. The success or failure of the SC is indicated in the target register of the
store after the execution of the instruction. The target register is loaded with 1 in
case of a successful store or it is loaded with 0 if the store was unsuccessful. The
LLbit is reset upon occurrence of any event that even has potential to modify the
lock-variable (like semaphore or counter) while the sequence of code between LL
and SC is being executed. The most obvious case where the link will be broken is
when an invalidate occurs to the cache line which was the subject of the load. In
this case, some other processor successfully completed a store to that shared line.
In general, the link will be broken if following events occur while the sequence of
code between LL and SC is being executed:

1. External Update to the cache line containing the lock-variable.
2. External Invalidate to the cache line containing the lock-variable.

3. Intervention or Snoop invalidating cache the line containing the lock-
variable.

4. Upon completion of an ERET (return from exception)

The most important features of the LL and SC primitives are:

1. They provide a mechanism for generating all of the common
synchronization primitives including test-and-set, counters,
sequencers, etc. with no additional overhead.

2. They operate in a fashion so that bus traffic is generated only when the
state of the cache line changes; locked words stay in the cache until
another processor takes ownership of that cache line.

1. While LL & SC are MIPS II instructions, for MIPS III instructions LLD & SCD also operate similarly on double words.

MIPS R4000 Synchronization Primitives 5

For additional information regarding LL and SC instructions, cache-coherency
mechanism and protocols, please refer to the MIPS R4000 Microprocessor User’s
Manual.

MIPS R4000 Synchronization Primitives

Examples Using LL and SC

In this chapter, it is shown how the LL and SC instructions can be used to
implement the techniques discussed previously. The flowchart shows general
methodology and an example of implementation code is listed next to the
corresponding flow symbol, with comments next to the code line. Possible actions
taken by the processor that are not as a direct result of the instructions are written
in parenthesis.

MIPS R4000 Synchronization Primitives 7

Implementation of Test-and-Set Technique

Figure 4-1 shows how test-and-set can be implemented using LL and SC

instructions.
#(Semaphore located in cache at address r1)
} + (if unlocked[X---X0| if locked[X--XT)
L oad semaphore Loop: LL r2,(r1) #12 <- Semaphore

(Processor will set LLbit)

(LLbit will be reset if
#thelink breaks)
No ORI r3r2,1 P
Unlocked? BEQ r3,r2,L oop :
NOP #Loop if locked (LSB of
Semaphore, r2 = 1)
Yes
SCr3,(rl)

#Try to store semaphore with
. #LSB changed fromOto 1
Try Iocrlil ng # (After completion of SC,
semaphore #r3<- 0if storedid not

succeed; otherwise, r3 <- 1)
(If SC successful -
Invalidate or Update
No # Request to other_procrs
#will break their link and
#their LLbit will be reset)
Ces Eg% r3,0,Loop #Loopif r3=0; and try again

L]
L]
Execute critical section N
(Access shared data) o # Critical section
* .
ORI r3,r2,1
Unlock semaphore SW r3,(r1) #(r1) <-r2
#(UpdateoltllnvalidaIeR uest
to other processors)

Figure 4-1: Test-and-set using LL and SC

MIPS R4000 Synchronization Primitives

Implementation of Counter Technique

Synchronization using a counter is shown in Figure 4-2.

N

¢ #(Counter located in cache
at addressrl)

Load counter Loopl: LL r2,(r1) #12 <- Counter
(Processor will set LLbit)

(LLbit will be reset if
the link breaks)

BLEZ r2,L oopl#Loopif no permit available
NOP #r2<or=0)

Yes SUB r3,12,1 # Decrement the permit available

#and try to own it
SCr3(rl) # (After completion of SC,
#r3<- 0if storedid not
succeed; otherwise, r3 <- 1)
(If SC successful -
Invalidate or Update
Request to other processors
#will break their link and
No #their LLbit will be reset)

Try to decrement
counter

BEQ r3,0,Loopl #Loopif r3=0andtry again

NOP
Yes

Execute critical section

vy

L oad counter Loop2: LL r2,(rl) #12 <- Counter

(Processor will set LLbit)

* # (LLbit will be reset if
the link breaks)

Try incrementing ADDr3,12,1 #Increment the permit No.
counter SCr3,(rl) #and try to release the permit

(After completion of SC,

#r3<- 0if storedid not

succeed; otherwise, r3 <- 1)
(If SC successful -

Invalidate or Update

Request to other processors
No #will break their link and

Successful? #their LLbit will be reset)

BEQ r3,0,Loop2 #Loopif r3=0and try again
B o% P p Y ag

Critical section

Yes

Continue processing

Figure 4-2: Counter using LL and SC

For both synchronization mechanisms to work properly, the cache line which
contains the word addressed by (r1) in the LL instruction, must not be uncached
or noncoherent. If the line is not in the cache, then it will be brought in from
another processor or the memory. If the line is in the cache of only one processor it
could exist as clean exclusive; but, unless more than one processor has the line, the
synchronization question doesn’t arise. However, as soon as another processor
will request a line it will be changed to shared state.

MIPS R4000 Synchronization Primitives 9

In the implementation of the Test and Set technique, shown in figure: 4-1, the
“logic 1” in the LSB of the semaphore at location (r1) represents that the “lock is
ON”; a “logic 0” in the same location represents that the “lock is OFF”. One of the
scenario could be that the locked semaphore in the cache of Processor #1 is in the
shared state; this means some other processor owns the lock. If the processor #1 is
trying to lock the semaphore, it will keep checking the semaphore and wait for the
owner, say processor #2, to unlock it. When unlocked by the processor #2, the
processor #1 will lock it by writing the “logic 1” in LSB, using SC instruction. If the
processor #1’s cache-line, containing the semaphore, is found locked and in the dirty
shared state, means, either processor #1 or#2 could own the lock. If the processor
#1, erroneously, didn’t unlock the cell after executing SC, it might loop forever
because it owns the lock and the cache-line; so no other processor can modify it.
However, to avoid this problem, one could include in the semaphore the number of
the processor which owns the lock. The processor #1 would then check not only if
the semaphore is unlocked but if it is locked by processor #1. In this case, the
processor, trying for the lock, would not loop if it owned the lock.

Between the LL and SC instruction, while the processor #1 is trying to lock the
variable, if another processor, say #2, succeeds in locking it (i.e. the SC in the
processor #2 succeeds), an “Invalidate Request” or an “Update Request” will come
from the processor #2. This will cause the LLBit in the processor #1 to be reset and
the SC in the processor #1 will not succeed. Regardless of whether the state of the
semaphore is shared or dirty shared, if the SC succeeds, because LL-Bit stayed in
logical 1 state, then the processor #1 (the processor with successful SC) will send
an Invalidate or an Update to other processors and the state of the cache line in the
processor #1 will be modified depending on the page attribute. The LLBit will
guaranty that only one processor, at a time, modify the semaphore used as a lock.
The processor will check the success of the SC by reading the target register used
by the SC instruction; since the content of the LL-Bit is transferred into this register
after the completion of SC. If the processor finds that the content of the target
register r3 is not 0, it enters the critical section of the code.

10

MIPS R4000 Synchronization Primitives

Load Link Address (LLAddr) Register

During the time the LL/SC sequence is being executed, the processor must have
access to the address of the target line of the LL/SC instruction; to support
externally initiated coherency operations to that line. Typically, this line will be in
the cache; however, it is possible that this line could be replaced during the time
after the LL instruction executed and before the SC is executed; for example, if the
instruction area containing a LL/SC sequence is mapped to the data location
targeted by the LL and SC instructions used in that sequence. In such a case, the
processor, after performing the Write-Back and Invalidate or Update, will save the
address of the targeted line into a register called “Load Link Address (LLAddr)
Register” and will consider it retained in a shared state. Thus, if the LL-Bit is set and
the target line is not found in the cache, the processor will always compare the
content of the LLAddr Register with the address of any external request received.
If necessary, it will reset the LL-Bit and if there is an Intervention or Snoop to this
target line, the processor will return an indication that the cache line is present in
the cache in a shared state. A shared indication, even though the processor does not
have the data, is consistent since the processor never returns data in response to an
intervention request for a cache line that is in the shared state. The shared response
guarantees that the cache line that contains the link location will remain in a shared
state in all other processor’s caches. Thus, any other processor attempting a store
conditional to this link location must issue a coherence request in order to complete
the store conditional instruction.

MIPS R4000 Synchronization Primitives 11

Link Address Retained Bit

If a system is designed in which the external agent keeps track of the cache
coherency (for example, using a directory based protocol or using a duplicate set
of secondary tags), it would be necessary to have some mechanism by which the
external agent is notified that a line is retained in a shared state, even if it is not in
the cache. The R4000 notifies the external agent of the above situation during the
read request it issues, as a result of the miss on the cache line that contains the link
location, while the link bit is set. During this request, bit #2 on the SysCmd bus,
assigned as Link Address Retained Bit, is set to 1. The external agent interprets this
bit as the indication that the line being replaced in the cache is actually retained in
the LLAdr Register as shared and the processor must see any coherent traffic that
targets this cache line.

12

MIPS R4000 Synchronization Primitives

Summary

In any multiprocessing system, synchronous operations are needed to prevent one
processor from corrupting other’s task or to restrict fixed number of processors to
access a section of code or data. R4000 provides Load Link (LL) and Store Conditional
(SC) instructions and the coherency mechanism to support such synchronous
operations. Two techniques were discussed as examples to show how these
features provided by R4000 can be used. “Test and Set technique”, which uses
semaphore, provides a way to restrict only one processor to access a section of the
shared memory and the “Counter” technique provides a way to allow a maximum
number of processors to access shared data or code.

R4000 uses an internal Load Link Address (LLAdr) Register to support synchronous
operations even if the cache line, which is the target of the LL and SC instructions,
was replaced by another line during the operation of the load link store conditional
sequence.

R4000 also provides an indication to the external agent, using Link Address Retained
Bit, that a linked cache line, which was replaced in the cache, is retained as shared
cache line in the LLAdr Register. This allows the external agent to use coherency
schemes like “directory based protocol” or schemes using dual secondary tags.

MIPS R4000 Synchronization Primitives 13

Reader’'s Comments

Please FAX your comments about this document to:
Anjaneya Thakar: Fax: (415) 390-6170
Address: P.O. Box 7311, MS 952, Mountain View, CA 94039-7311

Areas of Improvement:

Errors:

Reader Information:
Name:
Company:

Address:

Phone: FAX:

Thank you for your feedback.

14 MIPS R4000 Synchronization Primitives

