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Kivonat

Az IoT rendszerek gyakran célpontjai kibertámadásoknak, és különösen sebezhető-

ek a kifinomultabb fenyegetésekkel, például rootkitekkel szemben. A rootkitek olyan

kártékony szoftverek, amelyek magas jogosultságokkal futnak, és különböző techni-

kákat alkalmaznak annak érdekében, hogy rejtve maradjanak. A memóriában lévő

komponenseik mellett a rootkitek rendelkezhetnek a háttértáron megbúvó perzisz-

tens komponensekkel is, melyek segítségével a rendszer újraindítását követően is

aktívak tudnak maradni, illetve képesek lehetnek kikerülni a víruskereső szoftverek

ellenőrzéseit. A rootkitek és perisztens komponenseik detekciója azért jelent kihívást,

mert a rootkitek képesek megfertőzni a kernelt, vagy akár magát az ellenőrző szoft-

vert is. Ezt figyelembe véve az általunk készített implementáció kihasználja a meg-

bízható végrehajtási környezetek által nyújtott lehetőségeket, hogy megakadályozza

a rootkit beavatkozását az ellenőrzési folyamatba. Dolgozatunkban a perzisztens

rootkit komponensek detekciójával foglalkozunk, amelyet az IoT eszköz fájlrendsze-

rén lévő fájlok integritásának periodikus ellenőrzésével valósítunk meg. Az elkészült

szoftver mellett bemutatjuk a tervezés és az implementáció főbb részleteit, továbbá

igazoljuk a megoldásunk helyességét egy saját fejleszétsű rootkittel való tesztelés

keretében.

i
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Abstract

IoT systems are subject to cyber attacks, and are especially defenseless against so-

phisticated threats, such as rootkits. Rootkits are malicious software that run with

elevated privileges, and employ a wide variety of techniques to remain hidden. Aside

from having components which are loaded into memory, rootkits also have disk res-

ident, persistent components, which they may use to survive system reboots, and

to evade detection software. Detecting rootkits and their persistent components

is challenging, because rootkits may compromise the kernel, or even the detection

software itself. For this reason, we take advantage of a Trusted Execution Environ-

ment (TEE), which prevents the rootkit from interfering with our detection process.

In this thesis, we address the challenge of persistent rootkit component detection

on embedded IoT devices by using File Integrity Monitoring (FIM) to search for

changes on the file system of the device, that may indicate the presence of a rootkit.

We provide a detailed description of the design and implementation of our soft-

ware, and the evaluation of our finished application, which is based on testing we

performed using a custom rootkit developed for this purpose.

ii
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Chapter 1

Introduction

The Internet has gone through significant transformation in the past decade. The

wide availability of low-cost, network-connected system-on-chip devices gave rise to

the Internet of Things (IoT) paradigm, which opened the possibility of many new,

exciting applications.

The IoT has brought with itself large changes in industry and manufacturing, which

has since been named the Fourth Industrial Revolution, or Industry 4.0. It has

integrated into transportation and delivery, healthcare, and transformed many of

our homes into smart homes. The popularity of the IoT is still on the rise, and the

number of connected devices is already measured in billions, and is estimated to

double in the next five years, as shown in Figure 1.1.

Unfortunately, the IoT technology has not matured yet, and these devices gained a

notoriety for their many issues regarding privacy, and security.

1.1 On the subject of IoT security

As the IoT expands, becomes more prevalent in our everyday lives, and also be-

comes an increasingly important component of critical infrastructure, securing its

systems becomes vital. While insecure home IoT devices may expose the owner’s

personal information, or become the targets of ransomware, the risks of insecure

1
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Figure 1.1: Number of connected IoT devices worldwide.1

cyber-physical devices are much greater. In 2014, attackers were able to remotely

take control over a German steel mill’s PLCs, and cause physical damage to the

facility’s blast furnaces2. Another, similar incident happened in 2015, when hack-

ers managed to compromise and take offline about 30 electrical substations across

Ukraine, causing hours long power outages across the country3, but the most widely

known example of such an incident is the attack against the nuclear program of Iran,

where the Stuxnet worm caused the fast-spinning gas centrifuges used to separate

nuclear material to tear themselves apart [15]. Based on these past incidents, we

can see how security failures may lead to substantial monetary loss, or even loss of

human life.

The reason behind the widespread security issues of the IoT is likely the lack of

standardisation and regulation. IoT has evolved using a wide range of different

technologies and protocols, often with proprietary solutions for security [13]. The

growth of the field was rapid, and first-to-market mentality was, and still is, very

common. For these reasons, security risk analysis, risk assessment, and countermea-
1https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/,

Last visited: 31.10.2020.
2https://ics.sans.org/media/ICS-CPPE-case-Study-2-German-Steelworks_Facility.

pdf, Last visited: 30.11.2020.
3https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf, Last visited: 30.11.2020.

2
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sure implementation was unable to keep up with application development, resulting

in reliance on ’security through obscurity’. Devices were released using weak, guess-

able, or hard-coded passwords, and no secure update mechanism while running old,

unpatched operating systems and software. The customers, meanwhile, were un-

aware of these insecurities and the possible risks.

On October 20, 2016, a large-scale distributed denial of service (DDoS) attack was

launched against the North American DNS provider Dyn, which caused several web-

sites and services from companies like Amazon, Twitter, GitHub and PayPal to be-

come unreachable for multiple hours throughout the day. The attack was carried out

through a massive IoT botnet. A sample of the Mirai malware that has been used

to build the botnet was retrieved and analyzed by the research group MalwareMust-

Die!4 in August 2016, and the source code of the malware has also been published

some time later5. As demonstrated by the Mirai botnet, hundreds of thousands of

Linux based, Internet-connected home-routers, IP cameras and printers with easily

brute-forceable passwords can be discovered and compromised through basic tech-

niques [2, 25], and privilege escalation, if needed, can also be easily achieved because

of the outdated, unpatched, or poorly-written software running on these devices.

Unfortunately, all this is only one part of the issue. Another part is that once

these devices have been compromised, often they have no ability to detect, diagnose

and report the infection, leaving backdoors open and malicious software running

unimpeded. Even rudimentary malware are capable of achieving persistence on the

infected system, surviving system reboots, but their components could be discovered

by scanning for suspicious running processes and files.

A more sophisticated form of malware are rootkits. Rootkits run with the highest

(root) privilege level, and are capable of modifying system programs and low-level

data structures, making themselves invisible for the diagnostic and monitoring tools

provided by the operating system (OS). Detecting rootkits and their persistent com-

ponents is challenging, because any detection program running at the same or lower

privilege levels than the rootkit may also be compromised or may be misled by the
4https://web.archive.org/web/20160905023500/http://blog.malwaremustdie.org/

2016/08/mmd-0056-2016-linuxmirai-just.html, Last visited: 08.11.2020.
5https://github.com/jgamblin/Mirai-Source-Code, Last visited: 08.11.2020.
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tricks and techniques used by the rootkit to hide itself. What is more, a sufficiently

advanced rootkit could avoid detection software designed to find hidden processes

and anomalies in the kernel by terminating, restoring the integrity of the memory,

but saving itself on the persistent storage for later execution.

1.2 Our contribution to this field

In this work, we address the challenges of persistent rootkit component detection

on Linux-based embedded IoT devices by leveraging the Trusted Execution Envi-

ronment (TEE) technology. The TEE is an isolated area of the main processor,

which provides a tamper-resistant processing environment with its own, separate

system partition and separate kernel. The TEE can guarantee the authenticity of

the executed code, and the integrity of the runtime states (e.g CPU registers and

memory) [24]. Consequently, even if a rootkit manages to gain root privileges on

the main OS, it will not be able to interfere with its operation.

An example for technologies that support TEEs is the ARM TrustZone technol-

ogy, available on many modern ARM Cortex-A and Cortex-M processors, which are

widely deployed in embedded systems6. TrustZone is based on the idea of parti-

tioning all of the system’s hardware and software into two worlds: the secure world

and the normal world. The two worlds implement concurrent secure and non-secure

operating systems. The non-secure, general OS running in the normal world (e.g.

Linux, Android, etc.) is prevented from accessing certain resources, such as the

designated secure regions of the physical memory, while the secure OS, such as OP-

TEE7, running in the secure world, has access to all resources. The isolated and

protected software running in the secure OS are known as Trusted Applications

(TAs). Implementing our rootkit detection software’s components as trusted appli-

cations provides two main advantages: it protects the detection software’s integrity,

preventing malicious modification of the executable binary or the code segment in
6https://developer.arm.com/ip-products/security-ip/trustzone Last visited:

23.11.2020.
7https://www.op-tee.org/, Last visited: 22.11.2020.
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memory, and it eliminates the reliance on the normal world programs and OS, which

could be compromised and providing false and misleading information.

Our work was performed as part of a larger project, the aim of which was to develop

a fully integrated, TEE-based rootkit detection solution for IoT systems. Our part

in this project was the detection of persistent rootkit components on the normal

world file systems. To detect persistent components, we implemented a TA capable

of automatic File Integrity Monitoring (FIM). FIM is a technology for monitoring

and detecting changes in files, that may indicate the presence of malicious software

on the device. This is achieved by calculating a secure baseline checksum for a

selected group of important files in a controlled environment, and comparing these

to the hashes of the same files calculated during operation. The advantages of this

technique are its comprehensiveness, and lack of reliance on any malware signature

databases, enabling us to potentially detect previously undiscovered or modified

rootkits. The main challenges of using FIM lie in being able to provide secure storage

for the trusted baseline, and keeping its potentially high false-positive detection rate

to a minimum. In order to address these challenges, we leveraged the trusted storage

functionalities of the TEE, and have cautiously designed a file system structuring

and file monitoring policy.

The rest of this thesis is organized as follows. In Chapter 2, we first provide a more

detailed description of rootkits, focusing on the ways they can use and hide persistent

components, then we introduce some examples of existing rootkit detection software

designed for Linux. In Chapter 3, we show what advantages using a TEE gives our

solution in comparison to existing solutions. In Chapter 4, we give an overview of

the larger rootkit detection software, and define the scope of our work in the project.

Chapter 5 contains the detailed design of the detection software’s architecture, and

Chapter 6 describes the specifics of the implementation of all its components which

relate to the detection of persistent rootkit components. In Chapter 7, we report

on the evaluation of our persistent component detection mechanisms, which we

performed with a custom rootkit that we developed for this specific purpose, and

finally, we conclude this thesis in Chapter 8.

5
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Chapter 2

Rootkits and their detection

A rootkit is a malicious software, often a collection of different malware components,

designed to enable unauthorized access to the infected system’s resources, while

remaining hidden. The term rootkit originates from the name of the privileged

user account in Unix-like operating systems, but this type of malicious software is

widespread in all types of systems. The name is also an indication to one of the main

characteristics of rootkits, which is that they can possess unrestricted, kernel-level

access to the infected system.

It is important to mention, that the rootkit itself is only installed on the target sys-

tem after the attacker has already gained root privileges. To do this, the attacker

must find an exploitable vulnerability in the operating system or the installed soft-

ware, which can be very easy, if the target system is badly secured and running

outdated software, or it could require tremendous resources and the discovery of a

zero-day exploit, but social engineering and blackmail have also been used for this

purpose in the past. The prominent thing to note, is that the presence of a rootkit

points to the presence of a vulnerability, which must be found and patched, lest

reinfection will inevitably occur.

6
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2.1 Rootkit classification and techniques

In addition to providing elevated privileges, the other characteristic feature of rootk-

its is that they are capable of employing a wide variety of techniques to remain

hidden. These techniques can provide a basis for the classification of rootkits [23],

dividing them into four main types.

Type 1 rootkits use simple user space techniques and deception to remain hidden,

often masquerading as disk-resident system programs (e.g. login, ps or ls). They

are easily detectable via a comparison of their hashes to the hashes of the original

system files, or via searching for suspicious running processes, since they were not de-

signed to intercept calls that enumerate files or running programs. Modern rootkits

often have no presence on the persistent storage at all, but the ability to temporar-

ily unload from the memory and hide on the file system could be a technique an

advanced rootkit could employ to avoid detection software.

Type 2 rootkits may use hooking – the modification of code or function pointers

in programs or dynamically loaded libraries – to divert the flow of code execution.

This allows the rootkit to intercept legitimate operating system calls to filter return

values, or skip certain checks. There are two main types of hooking techniques:

user space hooking, and kernel space hooking. One example of a well-known user

space hooking technique is the abuse of the LD_PRELOAD environment variable to

load malicious libraries before benign ones, therefore overriding their provided func-

tionalities. There exist a number of rootkits employing this technique, such as

BEURK1, Azazel2, vlany3 and Jynx24. Kernel space hooking techniques include the

replacement of pointers in the system call or interrupt descriptor table, and the use

of malicious device drivers and kernel probes. In the past, modifying the kernel

memory image by directly writing to /dev/mem and /dev/kmem was a widely used

technique to remain hidden on Linux system. However, recent Linux kernel versions
1https://github.com/unix-thrust/beurk, Last visited: 25.11.2020.
2https://github.com/chokepoint/azazel, Last visited: 25.11.2020.
3https://github.com/mempodippy/vlany, Last visited: 25.11.2020.
4https://github.com/chokepoint/Jynx2, Last visited: 25.11.2020.
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restrict access to these device files, mitigating this attack. Diamorphine5, OSOM6

and Suterusu7 all make use of kernel space hooking techniques. Although rootkits

that use such techniques are difficult to detect, their limitations lie in that the mod-

ification of function behaviour inherently leaves a detectable footprint, because it

introduces malicious code, either in the user space or the kernel.

Type 3 rootkits are able to use direct kernel object modification (DKOM) to sub-

vert the integrity of the kernel by targeting dynamic kernel data structures. This

technique can be used, for example, for process hiding. By exploiting that the task

schedulers in the operating systems generally use different data structures to track

processes than the data structures used for bookkeeping operations, a rootkit could

use DKOM to remove its own task structure from the process list or process tree in

the kernel, therefore no longer appearing as a running process, but still continuing

execution. DKOM attacks are not detectable by user space anti-malware software,

since they assume a trusted kernel and rely on it for information. DKOM attacks

are also much harder to detect than kernel hooks, because they target dynamic data

structures whose values change during normal runtime operation. This technique

is used by rootkits such as Adore-ng8, LilyOfTheValley9 Reptile10 and SucKIT [6].

The detection of DKOM often relies on the improper or incomplete implementation

of the technique. A rootkit attempting process hiding through the use of DKOM

might remove itself from one of the kernel structures, like the process list, but it

might appear in another, like the process identifier namespace, meaning that cross-

referencing these kernel structures could reveal the presence of a rootkit on the

system. In addition, the incorrect implementation of DKOM could easily result in

kernel crashes, which may draw attention from the system administrators.

Type 4 rootkits have been developed in proof-of-concept settings, and have been

first discovered in the wild in 201811. They operate at the virtualization layer, in
5https://github.com/m0nad/Diamorphine, Last visited: 25.11.2020.
6https://github.com/NinnOgTonic/Out-of-Sight-Out-of-Mind-Rootkit, Last visited:

25.11.2020.
7https://github.com/mncoppola/suterusu, Last visited: 25.11.2020.
8https://github.com/trimpsyw/adore-ng, Last visited: 25.11.2020.
9https://github.com/En14c/LilyOfTheValley, Last visited: 25.11.2020.

10https://github.com/f0rb1dd3n/Reptile, Last visited: 25.11.2020.
11https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf, Last

visited: 04.12.2020.
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the BIOS, and in hardware [9] [7]. Such rootkits are called OS-independent rootkits

since they reside at a lower level than the operating system, but they are still

dependent on the type of BIOS version, instruction set, and hardware. Rootkits in

the lowest-level components can survive reboots and re-installations, and they leave

no traces on the disk. Their detection is particularly challenging because they do

not make visible changes to the operating system.

2.2 Persistence techniques

Attackers install rootkits on compromised systems to maintain the privileged access

they obtained, even after the system is updated and the original vulnerability that

was used to gain the access is patched. A rootkit has gained persistence, when it is

able to survive system reboots, and continue operation. Linux rootkits are generally

implemented as either user space programs or Linux kernel modules (LKMs). Both

require to be started or loaded after boot to operate.

There are several system programs on Linux that read and execute shell com-

mands from files, for example, service managers and job schedulers, which could

be used to start a rootkit process or load a kernel module. Service managers, like

init or systemd execute shell commands directly after system boot. OSOM and

EnyeLKM12 are classic examples of this technique. Both rootkits modify run com-

mands (rc) files such as /etc/rc.local or the files in /etc/rc.d, which are files

init will read and execute shell commands from directly after boot, and load their

kernel modules this way. Time-based job schedulers, for example, cron, anacron,

or at, can be used for the same purpose. Cron parses crontab files from prede-

fined directories each minute, gathers jobs that are due for execution, and executes

the shell commands associated with these job entries. Another similar technique

is inserting commands into user-specific startup files. An example for such a file

is .bashrc, which runs certain shell commands whenever the user starts a bash

session. BROOTKIT13 implements all of the above mentioned techniques.
12https://github.com/David-Reguera-Garcia-Dreg/enyelkm, Last visited: 25.11.2020.
13https://github.com/cloudsec/brootkit, Last visited: 25.11.2020.
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Kernel modules can be loaded during boot, without the use of shell commands,

by placing them into certain directories and including their names in certain con-

figuration files. The exact methods of loading kernel modules this way can differ

between Linux distributions, which is something that the rootkits using this tech-

nique need to be prepared for. On Debian based distributions this could include

but is not limited to adding the kernel module to /etc/modules, or placing a

.conf file within /etc/modules-load.d/. On Red Hat based distributions this

could include, but is not limited to placing a .modules executable script within

/etc/sysconfig/modules/, adding the kernel module to /etc/modules.conf, or

placing a .conf file within /etc/modules-load.d/. Distributions using systemd

can also load kernel modules by placing a .conf file within /etc/modprobe.d/.

Drovorub14 and rkduck15 are both rootkits that use this technique for loading their

kernel modules.

We have already touched on LD_PRELOAD hijacking as a stealth technique in Sec-

tion 2.1, but did not mention its uses when it comes to maintaining persistence.

LD_PRELOAD can be set via the environment variable or /etc/ld.so.preload file.

Attackers may set LD_PRELOAD to point to malicious libraries that match the names

of legitimate libraries which are requested by a victim program, causing the op-

erating system to load the malicious code upon execution of the victim program.

Aside from stealth, these malicious library functions could also be used to launch an

executable component of the rootkit, or load a kernel module, but most commonly

they are used for connecting to remote services. BEURK, Azazel, vlany and Jynx2

all use LD_PRELOAD for establishing remote shell sessions.

Ramdisk based rootkits are the final category of persistent rootkits that is important

to mention. Their main feature is that they are capable of activating even before the

init process. The initial ramdisk, or initrd, is a compressed archive containing files

needed by a Linux system early in the boot process. The initrd is dynamically

generated on each system, so that kernel modules that are needed for a specific

environment (e.g. hardware, files systems, etc.) can be included. The initrd is
14https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_

RUSSIAN_GRU_MALWARE_AUG_2020.PDF, Last visited: 25.11.2020.
15https://github.com/QuokkaLight/rkduck, Last visited: 25.11.2020.

10

DocuSign Envelope ID: E4E568A1-8978-433E-A15E-38A89FE5B794

https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF
https://media.defense.gov/2020/Aug/13/2002476465/-1/-1/0/CSA_DROVORUB_RUSSIAN_GRU_MALWARE_AUG_2020.PDF
https://github.com/QuokkaLight/rkduck


loaded into memory, alongside the compressed kernel image, by the bootloader (e.g.

GRUB or Gummiboot). At boot, the kernel runs the init script from the initrd,

which in turn executes the run-init binary from the initrd to start the initial

user-mode process of the system. Horse Pill [17] is a proof-of-concept ramdisk based

containerizing rootkit, that infects klibc, a minimalistic C library used in the early

user space to start the init process. Horse Pill replaces run-init, gaining control

over the system at boot time. It places the whole system into a newly created Linux

kernel namespace, places a backdoor outside this namespace, and fakes some newly

created processes to appear as kernel threads to make the system appear normal

from within. Horse Pill can be detected by inspecting the fake kernel threads, since

they are actually renamed user space processes, by auditing the namespace links in

the /proc filesystem, or by performing regular integrity checks on the initrd.

2.3 Hiding persistent components

In general, gaining persistence requires writing some form of data on the persistent

storage (i.e. the hard disk or solid state drive), the exception being the previously

mentioned Type 4 rootkits, which may, for example, reside in SPI flash ROM chips

[10, 11]. These pieces of data are what we refer to as persistent rootkit components,

and we have already listed several examples of them in Section 2.2. In addition to

those examples, anything that allows backdoor access for the attacker (e.g. autho-

rized ssh keys, newly created user accounts, etc.) and is stored on the disk can be

considered a persistent component.

Early user space rootkits relied on obscure or deceptive naming and placement to

avoid detection, but this is insufficient for avoiding any kind of rootkit detection soft-

ware. Modern rootkits can easily hide their persistent components from the output

of different system programs using hooking. User space rootkits using LD_PRELOAD

hooking, for example, the previously mentioned Azazel and BEURK, hijack POSIX

library functions such as readdir(3), opendir(3), open(3), or stat(3). When

a hooked library function is called, they check the caller’s shell environment vari-

ables, and unless the call came from their own shell, they remove their components
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from the output of these functions. LKM rootkits that use kernel space hooking

can hook the underlying system calls of library functions directly. OSOM hooks the

getdents(2), open(2) and read(2) system calls, and removes its kernel module,

"osom.ko", from the output of these functions, or acts as if the file did not exist.

Another type of hooking technique that can be used for hiding files is Virtual File

System (VFS) function pointer hooking. VFS is the software layer in the kernel

that provides the file system interface to user space programs. It also provides

an abstraction within the kernel which allows different file system implementations

to coexist. VFS uses four different data structures to represent the file systems, as

shown on Figure 2.1. File objects represent open files associated with a process. The

superblock structure represents a mounted partition and stores metadata about the

partition itself. An inode is the physical representation of a file or a directory stored

on the device. An inode can be used by one or more directory entries, or dentries

for short. For example, if we create a new file and a hard link pointing to it, then

we will have one inode and two dentires referencing the inode.

Figure 2.1: Components of the Linux Virtual File System
(VFS).

At code level, VFS uses so called operation structures which contain function point-

ers. These operation structures appear in all 4 of the previously mentioned struc-

tures. The function pointers, like *lookup, *create, or *rename point to functions
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of the underlying file system drivers. By hooking certain function pointers, rootk-

its can hide certain files or directories. For example, Liinux16 hooks the *lookup

pointer of the inode corresponding to the /proc directory, and excludes its own pro-

cess id whenever process information is retrieved from /proc. The same technique

can be applied for hiding any other file or directory. VFS operation structure hooks

can be detected by examining the function pointers, since normally they should be

pointing inside the kernel’s code segment.

2.4 Rootkit detection

Rootkit detection methods can be divided into multiple categories [28]. Signature-

based methods compare hashes of files or memory patterns to a database of signa-

tures associated with known malware. Signatures cannot be directly used to discover

new rootkits, but code reuse is very common in all types of malware, which means

that certain characteristic byte patterns can appear even in undiscovered rootkits

[1, 22]. The classification of such byte patterns using machine learning models has

been widely studied and deployed as integral components of anti-malware systems

[27].

Behavioral/Heuristic detection methods detect deviations from “normal” patterns

of system behavior. Discrepancies in resource usage and timing can be used to

detect virtual-machine based rootkits (VMBRs), which install a virtual-machine

monitor underneath an existing operating system and place the main OS into a

virtual machine [16, 14]. Network level traffic analysis can be used to detect the

presence of even advanced rootkits. Information stealing rootkits, like Duqu and

Flame connect to their command and control (C&C) server to send the gathered

data from the system [4]. This can create periodic, anomalous network traffic, for

example, when the rootkit is sending out screen captures from the infected system.

This technique is especially useful in detecting rootkits that turn the hosts into parts

of a botnet, or rootkits that are able to hide network connections from the host. The

disadvantage of this technique is that it requires very complex implementations,
16https://github.com/a7vinx/liinux, Last visited: 26.11.2020.
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and it generally has a high false-positive rate [26], but machine learning techniques

were shown to be able to reduce the false-positive rate, and improve accuracy and

performance [18].

Cross-view-based methods observe the same aspect of a system in multiple ways,

with the assumption that there is no perfect rootkit which can perfectly emulate all

aspects of the system. They enumerate OS objects (e.g. files, processes, open ports,

etc.) in multiple, independent ways, and compare the results to each other. De-

pending on the implementation, cross-view-based methods may or may not assume

a trusted kernel, and therefore may even be applied to detect DKOM. However,

there are a limited number of API and system calls for requesting certain informa-

tion, and the detection software may need to have its own implementation to be

able to make an adequate number of comparisons. Also, the observed structures

are often dynamically changing, which can lead to false-positive results. This can

be circumvented by preventing certain operations and prohibiting the start of new

processes, but this approach has an impact on system performance.

Integrity-based detection methods are based on invariant specification, which means

that they define aspects of the system that should not change during normal be-

haviour, and periodically monitor these aspects, comparing them to a secure base-

line. In the case of files, the trusted baseline can be the hash value of a file computed

in a controlled environment. Kernel data structures (e.g. the system call table, the

list of running processes, etc.) can also be monitored for malicious changes. This

technique can also be used for performing integrity checks on running processes, but

exploit code placed on the process memory’s dynamic segments, such as the stack

or the heap, and return-oriented rootkits [12] cannot be detected this way. The

main challenges of integrity-based detection are the proper definition of invariant

parameters and the secure storage of the baseline. Since the kernel is assumed to

be compromised, no file or memory on the system can be considered secure, and no

system call return value can be considered accurate. For this reason, this method

is most effective for rootkit detection when the trustworthiness of the kernel can be

ensured.
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2.5 Existing solutions

Several different rootkit detection solutions are available for Linux systems, both

open-source and licensed. In this section we name a few examples, ones that use

different approaches, and evaluate their abilities and shortcomings.

Chkrootkit17 is a signature-based, open-source rootkit detection software imple-

mented as a shell script, with certain functions written in C. It can detect a fixed

set of rootkits, since it implements the checks for each one separately. The current

version supports 71 different rootkits and worms. The checks for user space rootkits

are based on finding their characteristic components on the file system, for example,

when checking for the SucKIT rootkit, it searches for the strings .sniffer and FUCK

in sbin/init. It is also able to detect certain LKM rootkits that hide their processes

and files, by applying some cross-view-based techniques. It can detect processes hid-

den from the output of ps(1) by attempting to open every possible sub-directory

in /proc directly, where the sub-directory names are the possible Linux process

ids, from 1 to 99999. It can also detect directories hidden from readdir(3) by

invoking lstat(3) and comparing the number of links to the directory with the

number of sub-directories returned by readdir(3). Overall, Chkrootkit is a useful

tool for detecting infections by the most well-known and well-documented rootkits

and worms, but it lacks the ability to detect modified or new malware. Being a

simple user space process, it is also defenseless against attacks specifically targeting

detection software. Rootkit Hunter, also known as rkhunter18, is another popular

signature-based detection software, but due to its similarity to Chkrootkit, we will

not provide further information about it.

Lynis19 is a security auditing and hardening tool, not directly a rootkit scanner. It

can perform a system audit that can reveal vulnerable configurations and anomalous

behaviour. The audit extends to the file systems, kernel, firewall, networking set-

tings, file permissions, and many more. While not designed to find rootkits present
17https://github.com/Magentron/chkrootkit, Last visited: 27.11.2020.
18http://rkhunter.sourceforge.net/, Last visited: 27.11.2020.
19https://github.com/CISOfy/lynis, Last visited: 27.11.2020.
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on the system, the regular audits using Lynis can potentially have a bigger impact

on the security of the system than a rootkit scanner.

St. Michael20, also known as St. Jude, is an integrity-based rootkit detection tool

implemented as a LKM. It provides protection against LKM rootkits by monitoring

various portions of the kernel for modifications, and can backup and restore a copy

of the kernel, in case a catastrophic kernel compromise is detected. It is able to

generate and check the MD5, and optionally SHA1, checksums of various kernel

data structures, such as the system call table, and file system call out structures.

It can also generate and check the MD5 checksum of the kernel code segment. St.

Michael noticeably shares some features with rootkits, such as hiding itself from the

list of loaded kernel modules, and loading through initrd, but such techniques are

warranted when real rootkits have unrestricted privileges on the system and employ

more and more advanced methods to stay hidden. Unfortunately, just like any other

host-based intrusion detection software (HIDS), St. Michael is unable to defend itself

against targeted attacks, and a rootkit that took the presence of detection software

on the target into consideration could easily disable it after gaining privileged access.

Examples of non-LKM HIDS software with a similar feature set to St. Michael are

Samhain21 and OSSEC HIDS22.

20https://sourceforge.net/projects/stjude/, Last visited: 27.11.2020.
21https://la-samhna.de/samhain/, Last visited: 27.11.2020.
22https://github.com/ossec/ossec-hids, Last visited: 27.11.2020.
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Chapter 3

Technical background

As we have shown in Chapter 2, reliable detection of rootkits is not possible when

the detection software runs at the same or lower privilege level than the rootkits

themselves. A well-designed rootkit that has successfully compromised the kernel

can return a false view of the memory, making detection attempts that rely on

kernel-provided information ineffective, and even LKM-based security solutions are

vulnerable to targeted attacks. In response to this issue, a number of detection

methods were implemented, that completely circumvent the need for a trusted ker-

nel.

3.1 Addressing the fundamental issues of rootkit

detection

Rather than relying on the kernel to provide a correct view of memory, hardware-

based solutions can use direct memory access (DMA) to read and analyze memory

data on a separate system. Copilot [20] uses DMA via the PCI bus and uses a co-

processor to perform fast hashes over static kernel memory, and reports violations to

a supervisory machine. This technique can subverts any rootkit’s ability to change

the view of memory, with the exception of a rootkit implemented in the hardware

itself. The main limitation of this technique is that DMA approaches cannot acquire

locks on kernel data structures, so race conditions resulting in false-positive detection
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results can arise when the kernel is updating a data structure during a DMA read.

This problem was also documented with user space rootkit detection software when

using asynchronous page fetching [3].

Figure 3.1: The two types of hypervisors.

Virtualization-based approaches involve the virtual machine monitor (VMM or hy-

pervisor) in the inspection of system resources. The hypervisor operates at a higher

privilege level than the guest OS, either directly on the hardware (bare-metal hyper-

visor), or simulated in software (host type hypervisor), and manages the resource

allocation between the guest systems. Since the hypervisor holds control over the

hardware resources, it can use DMA to read data from the kernel memory in a

synchronous way [8], and monitor the static or dynamic kernel objects of the guest

OS. Hooksafe [29] is a tool, based on the Xen hypervisor, for detecting kernel hooks.

It gathers kernel hooks (system call table pointers, inode operation function point-

ers, etc.) into a dedicated memory space, and directs all read or write access to

these protected hooks through a monitored indirection layer. One of the issues

with virtualization or using hypervisors is the performance overhead involved in the

virtualization process, especially in the case of resource-constrained embedded IoT

devices. The other issue is that hypervisors themselves may be vulnerable to a tar-

geted attack, if there is a bug in the hypervisor that can be exploited from the guest

system [5].
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For reliable detection of rootkits on IoT devices, our proposed solution leverages

a Trusted Execution Environment (TEE) to protect the detection software from

targeted attacks through hardware level isolation, and to eliminate the need for a

trusted kernel. Our software incorporates ideas from both signature-, cross-view-,

and integrity-based detection methods, and uses the trusted storage functionality of

the TEE to store baseline values (e.g. file hashes and memory image signatures) in

a secure way.

3.2 Trusted Execution Environments

Trusted Computing can be considered one of the predecessors of TEEs. It was devel-

oped and promoted by the Trusted Computing Group, and was aimed to to achieve

secure computation, privacy and protection of data through the use of hardware

components known as Trusted Platform Modules (TPMs)1. TPMs can generate

cryptographic keys securely, store them in a separate, tamper-evident hardware

module, and perform regular integrity checks, detecting changes to hardware or

software components. TPMs raised many privacy concerns because of their use of

remote software validation and general lack of transparency2, and they were also

unable to satisfy the need for a local, secure, isolated execution environment, since

their functionality was reduced to the predefined set of APIs provided by the man-

ufacturer.

A new approach to address trusted computing is to allow the execution of arbitrary

code within a confined environment, that can provide tamper-resistant execution to

applications, without the need for additional special purpose hardware. As defined

by Global Platform3, a Trusted Execution Environment is a secure area of the main

processor of a connected device that ensures sensitive data is stored, processed

and protected in an isolated and trusted environment. In practice, TEEs enable

the coexistence of separate systems with different levels of security on the same
1https://trustedcomputinggroup.org/work-groups/trusted-platform-module/, Last

visited: 28.11.2020.
2https://www.gnu.org/philosophy/can-you-trust.html, Last visited: 28.11.2020.
3https://globalplatform.org/wp-content/uploads/2018/05/

Introduction-to-Trusted-Execution-Environment-15May2018.pdf, Last visited: 28.11.2020.
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platform. Basically, it divides the system into multiple partitions, and guarantees

a strong isolation between them, except for the carefully controlled interface for

inter-partition communication. These isolated system partitions possess their own

separate kernel and operating system, that may have different levels of access to

system resources.

TEE implementations have to fulfill a certain set of basic design criteria in order to

be considered secure:

• They must implement a Secure Boot protocol, which can validate code integrity

during the bootstrapping process.

• Scheduling between separate systems must be efficient, assuring that the tasks

running in the TEE do not affect the responsiveness of the main OS.

• The communication between the TEE and the rest of the system must be

protected, reliable, and work with a minimal overhead.

• The authenticity, and optionally confidentiality of I/O communication must

be ensured.

• There must exist a Secure Storage, where the confidentiality, integrity, and

freshness of stored data is guaranteed, and only authorized entities can access

data.

3.2.1 ARM TrustZone

TrustZone [19, 21] is hardware and virtualization based implementation of the TEE

design principles for ARM Cortex-A and Cortex-M processors. It defines two sep-

arate system partitions: the secure world (TEE) and the normal world, which is

often referred to as the Rich Execution Environment (REE). The secure world pos-

sesses unrestricted access to system resources, while the normal world is restricted

by hardware barriers from accessing the secure portions of the physical memory.

The two worlds may house separate kernels and separate operating systems. Secure

boot is implemented using ARM’s own Secure Boot Sequence, which cryptographi-
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cally verifies each step of the boot process, with the unique verification keys stored

in One-Time Programmable memory (OTP-ROM).

Figure 3.2: The arrangement of security states and exception
levels in ARMv8-A architecture processors.4

At any moment, the processors of an ARM TrustZone enabled CPU may either be

in secure state, executing secure world code, or non-secure state, executing normal

world code. The current state of a processor is indicated in the Secure Configura-

tion Register’s (SCR) 0th, "Non-Secure" (NS) bit. Communication between the two

worlds, processor context switching, and the setting/clearing of the NS bit is man-

aged by the Secure Monitor, as shown in Figure 3.2. Context switching is invoked

through a Secure Monitor Call (SMC) or an interrupt (IRQ or FIQ). With these

mechanisms, it is possible run a trusted program inside the secure world without

the need to trust the integrity of the normal world kernel, since attempts to access

the secure world address space will result in access violations, that will be trapped

by the secure monitor.
4https://developer.arm.com/architectures/learn-the-architecture/

trustzone-for-aarch64/trustzone-in-the-processor, Last visited: 28.11.2020.
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3.2.2 OP-TEE

OP-TEE5 stands for Open Portable Trusted Execution Environment. It was origi-

nally developed by ST-Ericsson, but is now an open-source project hosted by Linaro6.

OP-TEE is based on ARM TrustZone, but implements the TEE Internal Core API7

and TEE Client API8 defined by Global Platform, which were aimed to standard-

ize TEE functionality, making OP-TEE potentially compatible with other future

technologies.

Figure 3.3: The structure of OP-TEE.9

OP-TEE has components in both the normal world and the secure world, as shown

in Figure 3.3. There are four components to OP-TEE:
5https://www.op-tee.org/, Last visited: 28.11.2020.
6https://github.com/OP-TEE/optee_os, Last visited: 28.11.2020.
7https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_

API_Specification_v1.1.2.50_PublicReview.pdf, Last visited: 28.11.2020.
8https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_

Specification-V1.0.pdf, Last visited: 28.11.2020.
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• The TEE Client API is what Client Applications (CAs) use to invoke a

Trusted Application (TA).

• The OP-TEE driver is integrated into Linaro’s own version of the Linux

kernel, an is responsible for shared memory allocation between the two worlds,

and provides the Remote Procedure Call (RPC) functionality through which

the CA and TA can communicate.

• The tee-supplicant is a user space daemon, that handles services that are

supported by OP-TEE and require some level of normal world OS interaction.

It communicates with the OP-TEE driver through a bidirectional channel,

meaning that it can both send and receive requests for an action.

• In the secure world, OP-TEE implements its own, minimal OS, which com-

municates with TAs through the TEE internal API.

There are two ways to implement TAs: user mode TAs and pseudo TAs. User

mode TAs are loaded by OP-TEE in the secure world when a CA invokes it from

the normal world using their universally unique identifier (UUID). They run at a

lower privilege level than OP-TEE core code, just like how normal world user space

applications run at a lower privilege level than the kernel.

Pseudo TAs (PTAs) are used to extend the functionality of the OP-TEE kernel, just

like kernel modules in the normal world. These applications must be compiled into

the OP-TEE OS and they are capable of exposing core functionality to TAs or CAs.

OP-TEE was chosen as the basis for our TEE-based persistent rootkit detection

software due to its open source nature and continuously expanding feature set. Since

OP-TEE OS is based on Linux, and the core is designed around the ARM TrustZone

technology, it is an ideal test-bench for the development of software intended to run

on embedded IoT devices.

9https://developer.arm.com/architectures/learn-the-architecture/
trustzone-for-aarch64/software-architecture, Last visited: 28.11.2020.
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Chapter 4

The scope of our work

As mentioned previously, our approach to the issue of reliable detection of persistent

rootkits is to run the detection software in a Trusted Execution Environment (TEE),

specifically, in OP-TEE. By using OP-TEE, our detection software is protected from

targeted attacks originating from the normal world, however, all efforts must be

made to avoid introducing vulnerabilities into the detection software itself.

We can create a snapshot of the Rich Execution Environment (REE) OS memory

when execution is transferred to our Trusted Application (TA), and perform integrity

and consistency checks on the kernel code and the kernel data structures. In order

to make the detection process complete, we have to account for a rootkit that tries

to evade our checks by removing its traces from memory before the invocation of

our rootkit detection function, and hides itself on the persistent storage in such

a way that it can execute again later when the memory has been checked. This

can be done by performing File Integrity Monitoring (FIM) on chosen files and

directories, the list of which designed to counter the persistence techniques, which

were discussed in Section 2.2. The main focus of our work is to create a secure and

reliable implementation of FIM, as part of a Trusted Application designed to detect

rootkits.

Unfortunately, OP-TEE does not provide a way to access the REE file system by

default. While we managed to implement this functionality through a PTA and the

tee-supplicant, reliance on components of the REE OS could not be entirely negated
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for file system access. In our case, this is not an issue, since we can assume the kernel

to be reliable after the memory checks are complete. What has to be addressed,

is that if a rootkit stored itself on the file system to evade the memory checks, it

should not be allowed to activate and clean itself from the persistent storage before

we finish our scan of the file systems.

While the detection of stealth rootkits in the memory is not the main topic of

this thesis, it is necessary to understand the capabilities and limitations of the

larger detection software in order to contextualize the functionalities of the FIM

component, to understand the interactions between the software modules, and to

be able to design the required protection measures.

When invoked, the TA performs a series of verification steps aiming at detecting

inconsistencies in the data held by certain kernel data structures or modifications

of kernel code. These checks counter the most common techniques employed by

rootkits for the purpose of process hiding. The following checks are performed:

• The integrity of the system call table, kernel text segment, and system pro-

grams currently executing is checked through hash comparison.

• The kernel data structures, which could be modified through DKOM to achieve

process hiding, are checked in a cross-view-based way.

• The integrity of the normal world components that are required for the FIM

process, such as the tee-supplicant, is checked through text segment hash

comparison.

• The operation structures in the Linux Virtual File Systems (VFS) are checked

for modified function pointers. Since these checks have to be performed re-

cursively, they can become very time consuming when applied for multiple

directories. For this reason, only the operation structures relating to /proc are

checked, which is enough to counter this method of process hiding.

Since only the VFS objects that are available from the superblock of the /proc

file system are checked, file hiding is still possible through the modification of the

operation structure function pointers. In practice, this is only an issue if the rootkit
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can avoid all other checks, while keeping the malicious function hook in the memory.

The addressing of this issue is outside the scope of this thesis.
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Chapter 5

Design

5.1 The architecture of the detection software

Our rootkit detection solution has two main software components: a Trusted Appli-

cation (TA) running in the TEE and a Client Application (CA) running as a user

space process on top of the normal world OS in the REE. Our CA should be started

when the system is booted and then it should run continuously. The main role of

the CA is to invoke the TA periodically and to pass certain data to the TA collected

from the REE (e.g. the list of running processes, as seen by the ps(1) program when

executed on the normal world OS). The TA performs rootkit detection by executing

different integrity and consistency verification functions. In order to ensure that

the TA is indeed invoked periodically, a watchdog timer can be started during the

boot process that can only be reset by the TA; therefore, if the TA is not invoked,

the timer expires and the device reboots itself. When the TA finishes its execution,

control is returned to the CA, which runs concurrently with other applications and

services in the REE.

5.1.1 The client application

Figure 5.1 gives an overview of the tasks performed by the CA, and its interactions

with the TA. As it can be seen, the CA is started at boot time, during the init

process. It runs continuously, and invokes the TA at random time intervals.
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Figure 5.1: The functionality of the client application.

The CA establishes the communication channel with the TA by requesting the TEE

to open a session between the two applications. During this process, the CA refers

to the TA by its universally unique identifier (UUID).

Before invoking the TA, the CA disables execution type access to files. Consequently,

new programs cannot be started until the rootkit detection function finishes, and

the control is transferred back to the CA, but processes that were started before

that point can continue to run normally. We provide a more detailed description of

this functionality in Sections 5.4 and 6.5.

After the checks are finished, the CA re-enables execution, closes the session with

the TA, and sleeps for a randomized length of time before invoking the detection

function again.

5.1.2 The trusted application

After the detection function of the TA is invoked, it performs a series of consistency

and integrity checks on the kernel data structures, the text segment of the kernel,
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Figure 5.2: The functionality of the trusted application.

the running system programs, the tee-supplicant, and our CA. It is important to

note, that we compiled the tee-supplicant and our CA as static binaries, so all code

they use during execution can be found in their text segment, and they do not

dynamically load any libraries.

If integrity violations or inconsistencies are found, then they are reported to the

operator of the device via a remote attestation protocol, but this is outside of the

scope of this thesis.

If the verification of the memory is successful, then the TA can proceed with the

integrity checks on the files systems, since at that point the tee-supplicant, and the

normal world kernel is assumed to be clean. The tee-supplicant uses the functions

of the REE kernel, which is why the integrity of both of these components has to be

verified. Before starting the process itself, the TA fetches the baseline hashes from

OP-TEE’s Secure Storage. The baseline is created during the initialization process,

which we discuss in Section 6.4.
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After the baseline has been successfully retrieved, the TA proceeds with calculating

the SHA-256 hashes for the predefined list of target directories and files. The hashing

itself is done by our PTA, which accesses the contents of the REE file systems

through the tee-supplicant. We provide more information about this process in

Section 6.3. Once all hashes have been calculated, the TA compares them to their

baseline values, reports all integrity violations through the previously mentioned

remote attestation protocol, and returns control to the CA.

5.2 Possible approaches to File Integrity Moni-

toring

As mentioned previously, one of the main challenges of File Integrity Monitoring

(FIM) lies in keeping the false positive detection rate to a minimum, while providing

ample coverage for the files and directories at risk. Correctly choosing the list

of monitored directories and files is crucial in addressing this challenge. There

are two possible approaches to constructing this list. The static approach is to

construct the list manually, according to our knowledge of possible rootkit techniques

and the system itself. The dynamic approach is to gather information about the

state of the system, and construct the list accordingly before each scan. In our

case, the goal of both approaches is to cover all the binaries and scripts that could

legitimately execute on the device. The reason behind this is that potential rootkits

are assumed to have been forced to unload from the memory at this point, and can

only reinfect the system if a program or user executes their component from the

persistent storage. For our implementation, we chose to use a static, predefined list,

but we experimented with the possibilities of the dynamic approach too.

5.2.1 The dynamic approach

There are a limited number of ways the previously mentioned rootkit components

could reinfect the system, especially in the case of IoT devices, where user activity

is rare or nonexistent. We already provided a list of the possible methods to reinfect
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the system with the use of system programs in Section 2.2. The discussed system

programs, like cron, execute commands from a fixed directory, file, or set of files. For

this reason, we could limit our list of monitored files and directories to the potential

locations of these command files. Unfortunately, this list would give us incomplete

coverage, because the referenced legitimate programs could have been modified, so

they all would have to be monitored too.

We created a prototype solution where we experimented with parsing the crontab

files of the system. Our goal was to extract all file references from the scheduled

shell commands, so we could dynamically modify the list of target entries of our

FIM component. We used a static analysis approach based on the source code of

the bash command parser and cron’s crontab entry parser.

Figure 5.3: The extraction of shell commands from crontab
files, and resolution of non-absolute paths.

The crontab format defines two types of valid lines. One is used to define an en-

vironment variable, the other, to schedule a job. We managed to extract all envi-

ronment variables and all scheduled commands from the crontab files, using regular

expressions, which we implemented as state machines, since no regex libraries were

available in the TEE. The PATH and HOME environment variables are needed for
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resolving non-absolute file paths, and the others could be referenced in any of the

job entries.

Crontab files can belong to individual users, or the system itself. The entry format

is slightly different between the two types of crontab files. System crontabs have a

mandatory username field, and execute jobs as the specified user, while user crontabs

have no username field, and execute jobs with the privileges of the their owners. This

has to be accounted for, and all jobs have to be matched with their corresponding

user profile and HOME directory in /etc/passwd, in order to be able to resolve non-

absolute paths. Figure 5.3 shows an example of this process.

Figure 5.4: A simple shell command and its corresponding
AST.

After we collected all environment variables and matched all entries with the correct

user profiles, we could proceed to extract the shell commands from the job entries.

We built an abstract syntax tree (AST) for each command in the crontab file. As

shown on Figure 5.4, the AST representation helps with the tokenization of the shell

commands. We expanded all valid paths into absolute paths using the PATH and
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HOME variables, and extracted the possible file paths from the command’s parameters

(including the invoked command’s own file).

However, this approach has serious limitations which may cause the target list to

be incomplete. For example, if the crontab file includes a program which dynami-

cally loads and executes another binary, our static analysis would miss that binary.

What is more, our static analysis would need to be able to handle paths which are

constructed dynamically (e.g. using loops). In order to overcome this challenge,

either a “cron policy” is needed which limits how the users can define scheduled

commands or the analysis should be extended with dynamic tools which run the

commands in a controlled environment and extract the directories and files accessed

during execution.

Another approach to the issue of having to monitor all legitimate programs, is

to identify all executable files on the file system. However, we cannot identify

such files using the x permission flag, because file permissions are easy to change.

Recognizing ELF binaries by reading the first few bytes for the magic value is doable

but the device may contain other types of executable files (e.g. different script files).

Differentiating between script files for different interpreters, such as Python, Perl

and Bash, and simple text files is challenging without executing them, so again, this

would require dynamic analysis in a controlled environment.

5.2.2 The static approach

The static approach to covering all the binaries and scripts that could legitimately

execute on the device is to monitor a predefined list of directories and files. A list

like this will provide sufficient coverage, but it will either cause an increased run

time, because it will cover binaries that are never actually executed by any system

programs, or it will have to be meticulously, manually constructed for each system.

As our method is designed for embedded IoT devices, we assume a small local file

system. For this reason, we can expect to perform a thorough scan in a reasonably

short amount of time. Therefore, we compiled a general list of file entries to hash

which consists of many of the well-known top-level Linux directories, like /bin, /lib
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and /etc. There are directories with highly volatile contents, such as /tmp, /var

and /dev, which we do not include in our scanning process.

To support this approach, we recommend a certain organization of the files on the

file system. Files (including programs) that should not change should be separated

from those that have variable content (e.g. files used mainly for data storage). This

kind of separation is also useful for many other reasons related to the maintenance

and troubleshooting of the device.

5.3 Secure storage of the baseline

In the previous sections we addressed one of the main challenges of FIM, namely

the issue of balancing the false positive rate with the coverage of the scans, but

we have not yet addressed the other main challenge, which is the secure storage of

the baseline. OP-TEE provides an implementation of the Global Platform trusted

storage API1, which is referred to as Secure Storage in the OP-TEE documentation.

We use the Secure Storage to store our baseline hashes in the format shown on

Figure 5.5. In this subsection, we briefly discuss a few important features of the

Secure Storage that are necessary for protecting the authenticity and integrity of

our reference hashes.

Figure 5.5: The format of the hashes stored on the Secure
Storage.

It is important to mention that according to the specification of the trusted storage

API, a single, designated Trusted Storage Space is provided for each TA. As a result,
1https://globalplatform.org/wp-content/uploads/2018/06/GPD_TEE_Internal_Core_

API_Specification_v1.1.2.50_PublicReview.pdf, Last visited: 03.12.2020.
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our stored reference hashes are accessible only by authorized TAs running on the

same device in the same TEE as in which the data was created.

The inner workings of the trusted storage are highly dependent on the TEE im-

plementation. The trusted storage may not be entirely separated from the REE

file system. Consequently, file modifications from a root privileged user account

could be a valid concern. The trusted storage is expected to provide confidentiality

and authenticity through the use of authenticated encryption. This protects our

reference hashes against targeted modification and replay attacks. For additional

protection and separation from the REE file system, the reference files can be stored

on a Replay Protected Memory Block (RPMB) partition2.

An attacker could attempt to delete the reference hashes from the trusted storage,

but according to the specification, the trusted storage is protected from such attacks

because a stored object should not be accessible from outside the TA that created

it. How this functionality is achieved in practice is, again, highly dependent on

the TEE implementation. In the case of OP-TEE, the TEE recognizes the data

corruption and generates an alert.

5.4 Attack surface and security measures

During the design process, we discovered an architectural weakness in the rootkit

detection software. What we had to consider is that while our TA is waiting for I/O

operations (i.e. reading file contents) to complete, control may be given back to the

REE. When this happens, pre-scheduled jobs may be executed by a job scheduler

(e.g. cron). Hence, in theory, a rootkit can hide a persistent component in a new or

existing program file, and schedule the execution of said program before removing

itself from memory.

We would detect no integrity violations or inconsistencies in the memory, because the

rootkit has made sure to remove all its traces. Then, the malicious program could be

executed by the job scheduler during the file hashing operation performed by our TA.

When executing, the rootkit could move itself from the program file immediately to
2https://lwn.net/Articles/682276/, Last visited: 03.12.2020.
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Figure 5.6: Cron executing the attacker’s code during the
timing window between the integrity checks.

memory and delete the program file before the hashing process reaches the directory

containing it. Alternatively, the rootkit could move itself to a different file that has

already been hashed at that point, and execute at some time in the future. In either

situation, the computed hash values would match the baseline, the rootkit would

be undetected, and could continue to operate. Figure 5.6 illustrates how a rootkit

could avoid our checks by using this technique.

As I/O operations are usually slow, our TA is mostly waiting during the file hashing,

which means that control is mainly at the normal world, and hence, chances of the

above described scenario happening are not negligible. This problem is even more

prevalent on multi-core systems, where it is possible for one core to execute code

in the TEE, while another is executing code in the REE. To cope with this issue,

our CA disables the execution of programs before invoking our TA and re-enables

it only after the detection process completes, and control is returned to the CA. To
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disable the execution of programs, we use the fanotify API, which we provide more

information about in Section 6.5.
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Chapter 6

Implementation

6.1 Development for OP-TEE

In the past, TEE development required proprietary hardware and software, which

is why it was done within the bounds of the company that owned the license for

the technology. With the release of OP-TEE, TEE development became a lot easier

for independent individuals. Unfortunately, while the software was open source,

supported hardware was still hard to acquire. Soon after the release of OP-TEE,

Linaro added support for running OP-TEE in QEMU, and some time later QEMU

received official support for the ARM TrustZone technology. As of today, OP-TEE

supports a variety of available devices, but development is still often done in QEMU,

because the environment is more convenient to set up.

QEMU, short for “quick emulator”, is a widely used open source machine emulator.

It is capable of emulating a variety of client architectures across a number of host

architectures, with near native performance through the use of dynamic binary

translation.

For our implementation, we use QEMU to run OP-TEE version 3.6 in an emu-

lated, ARMv8-A based system. OP-TEE currently only supports the C language

for Trusted Application (TA) development, and only a small part of the standard

library is available in the secure world.
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6.2 The hashing process

The hashing process is performed entirely in the Trusted Execution Environment

(TEE). We take our predefined list of directory and/or file paths to be monitored,

and create a hashing context for each entry. In the case of directories, we recursively

read the contents of all files from all subdirectories, and load them into the hashing

context. Alternatively, we provide a non-recursive option for hashing directories,

where we load only the top level files into the hashing context, and do not traverse the

subdirectories. We also provide the option to exclude specific files or subdirectories

from the hashing of a directory. Each entry in the list of targets consists of an

absolute path, a flag to indicate whether to traverse the subdirectories recursively

or not, and a list of files to exclude from the hashing. We produce a single SHA-256

digest for every individual entry in the target list, as shown in Figure 6.1. We use

the SHA-256 hash function from the libtomcrypt library.

Figure 6.1: The recursive hashing of directories results in a
single hash for each target entry.

The list of paths to be hashed is shuffled before each new scan to provide a degree of

unpredictability to the hashing order; this serves as a secondary hardening technique

against timing window attacks, supplementing the use of the fanotify API. This
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does not affect the digests themselves, since the order in which we read files inside

directories remains unchanged.

The baseline hashes are loaded from the trusted storage and compared to the com-

puted hashes. Targets with mismatching hashes are noted and should be examined

further by the operators. Since we produce a single hash for each directory, we

cannot pin-point exactly which file caused the mismatch in the directory tree. Pin-

pointing mismatching locations would require keeping a 32-byte hash on the Secure

Storage for every entity present on the file system. This approach, however, requires

much storage space, which is a drawback in the case of IoT devices, as they are of-

ten equipped with only a small flash memory for storage. As a result, a trade-off

must be made between the amount of storage available and the precision with which

mismatching locations can be identified. It is recommended to keep a full reference

hash set based on the initial state of the storage in order to find the exact cause of

the mismatch.

6.3 Accessing REE file systems from the TEE

As mentioned previously, OP-TEE does not provide access to the REE file system

by default. However, since the trusted storage implementation of OP-TEE stores

the encrypted Secure Storage data on the REE file system, there must exist a way

to access arbitrary files and directories on the same file system.

We discovered that the tee-supplicant daemon can be instructed via RPC calls

to perform REE file operations. However, the set of RPC functions available for

performing file operations were designed specifically for the trusted storage, not

for general purpose access. As a result, to be able to pass arbitrary filenames as

parameters, we had to modify the open and opendir functions. We re-implemented

said functions in a Pseudo Trusted Application (PTA), with the parts specific to

accessing Secure Storage objects removed. We also had to prefix the path strings

with "../..", because the root of the Secure Storage on the REE file system is the

/data/tee directory.
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We use this PTA as an interface for our TA, through which we can read and hash

data from the REE file system. The PTA interface provides two functions for the

TA.

The hash_file function expects a filename as a string and a buffer to store the

computed hash in. It opens the requested file (if exists), reads its content by 4096

bytes and passes these blocks to a hash function. When the end of the file is reached,

it finalizes the hash and copies it into the output buffer.

The hash_dir function takes four parameters: a directory name, an output buffer,

an integer to indicate if we want to hash recursively (0 for false, 1 for true) and a

pointer to a null-terminated array of strings. It creates a hash context, opens the

specified directory (if exists) and reads its content. For every entry, we check the

blacklist first (to avoid hashing files with volatile content, e.g. /etc/random-seed).

If the entry is not on the blacklist, we try to determine if it is a regular file or a

directory. Since we have no stat-like primitive available, we do this by invoking

opendir. If opendir fails, we have a file, otherwise, a directory. For files, we do the

same as above: read the file by blocks and feed every block to the hash function.

If the entry is a directory and we hash recursively, then the function calls itself

recursively on the entry, otherwise, the entry is skipped. Subdirectory traversal is

done up until the length of the file path reaches 4096 bytes (same value as MAX_PATH,

as defined in linux/limits.h), and any paths longer than this are assumed to be

signs of tampering. Finally, the hash is copied to the output buffer.

In order to ensure the proper functioning of the above described PTA, we had to

apply two patches to the tee-supplicant daemon. First, we had to give it root

privileges, otherwise it cannot read certain files. Second, tee-supplicant’s readdir

handles certain directories improperly: if a directory only stores hidden files, it is

considered to be empty. From the aspect of our persistence checks, this behavior

can be fatal, so we had to patch the appropriate function to only skip ".", ".." and

".nfs*" (these files are created by an NFS server, when an open file is deleted).
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6.4 Updating the baseline

Regular software updates are an integral part of security, and it is important to

realize, that users will install updates a lot more frequently, if the update process

is convenient and seamless. With every system update, the hashes of the files on

the system can and will change. Consequently, our baseline hashes have to be

recalculated whenever an update is installed.

The baseline must only be calculated at a moment when the integrity of the system

can be verified. To verify system integrity during the boot process, we use a Secure

Boot protocol. Secure Boot is based on a chain-of-trust, where each piece of the boot

process must be digitally signed before it can start up. The root-of-trust is generally

provided by a hardware-based cryptography subsystem, for example, CryptoCell1

on ARM TrustZone platforms, or simply stored in a non-volatile memory chip. Once

one piece of code has been validated, it can then validate the next section and so on

until the system is fully booted and control handed over to the operating system.

Because of Secure Boot, integrity can be verified up until the OS has started. This

allows us to calculate the baseline during the init process. We created a new

CA, that is started at a stage of init, where the tee-supplicant is active, but

networking has not been set up yet, so remote interference is not possible. The

new CA will call the update function in our TA. The update function performs

the hashing of the predefined directories and files, saves the result on the Secure

Storage. Before returning, the TA makes sure that the update function cannot be

called again until the device is restarted. We achieved this by introducing a global

variable for indicating whether the update function has already been called, and

compiling the TA with the keep_alive tag, causing that the TA instance context

will be preserved, even when there are no sessions connected to the instance.
1https://www.arm.com/products/silicon-ip-security/crypto-cell-300, Last visited:

03.12.2020.
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6.5 Securing the detection software

In order to defend against the timing window attack described in Section 5.4, we

disable the execution of programs during our rootkit detection process. Our first

solution for this problem was to hook certain system calls, similarly to rootkits, but

we found a more elegant solution in the form of the fanotify API2.

The Linux kernel provides APIs for monitoring file system operations (e.g. fanotify,

inotify, which both use the same underlying kernel mechanism, fsnotify). Fanotify

was introduced in Linux 2.6.36, and was intended to supersede inotify, and solve

its deficiencies relating to scalability. It received major updates in Linux 4.2 and

Linux 5.1, and became an efficient way to intercept and be notified about file system

events on a large file system.

Its intended use cases are virus scanning and hierarchical storage management. Com-

pared to the inotify API, it includes the ability to monitor all of the objects in a

mounted filesystem, the ability to make access permission decisions, and the possi-

bility to read or modify files before access by other applications.

To disable the execution of programs, we first create and initialize an fanotify no-

tification group in our CA before invoking our detection function in the TA. This

gives us a file descriptor referring to the group. The fanotify notification group is a

kernel-internal object that holds a list of files, directories, file systems, and mount

points for which events shall be created. We place fanotify marks on all file systems

that possess execute permissions.

Our marks are created with the FAN_OPEN_EXEC_PERM mask, which results in an

event being created whenever a execution type operation occurs on a marked file

system. As the name of the mask suggests, these events are not simple notifications,

but requests for permission. These requests will be placed in a queue, inside the

notification group, along with an open file descriptor for the object being accessed,

and a PID or TID for the process or thread that caused the event. The programs

that were trying to invoke the execute will be forced to wait until the requests are
2https://www.arm.com/products/silicon-ip-security/crypto-cell-300, Last visited:

03.12.2020.
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granted or the marks are released. Our CA will not grant any permissions, but will

release the marks after the detection function finishes and the TA returns control

back to the CA.

Since fanotify is another kernel functionality and we assume that the kernel is com-

promised, our TA needs to check if the fanotify marks placed by our CA are intact.

Therefore, the CA passes the file descriptor of the notification group, the pid of the

CA, and the count of the marks placed to the TA. The TA then locates the fsnotify

group among the open files using the received PID and the file descriptor. The TA

counts the marks of the proper type, and if it is not equal to the count received from

the CA, then the fsnotify group is not intact, and we detected an integrity violation.
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Chapter 7

Evaluation

7.1 Verification and validation

In order to illustrate how our solution can detect the persistent components of

rootkits, we created a proof of concept user space rootkit, that attempts to avoid

detection by executing the timing window attack described in Section 5.4.

Our example rootkit is a statically linked C program, which stores its own executable

binary’s bytes on the heap, and is able to place and delete the binary on the file

system at will. To simulate the perfectly timed scenario, instead of using cron, we

used a small bash script to execute the binary on time.

The flow of the attack is shown on Figure 7.1 When first executed, our rootkit

loads its own binary into the heap, and then deletes the binary from the file system.

After that, it waits for the rootkit detection process to start. Before the bash script

launches the scanning process, the rootkit writes the bytes of the binary from the

heap into a file, and terminates. At this point, the integrity checks in the memory

execute, and do not find signs of the rootkit process, since it terminated before our

client gathered the IDs of the running processes.

After the checks in the memory have finished, the bash script, simulating cron, gives

execute privileges to the rootkit binary and attempts to execute it. If the fanotify

marks have been placed down by our client, the execution will cause an event, and

will force the bash script to wait for permission. The rootkit binary will eventually
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Figure 7.1: Cron’s activation is blocked by fanotify, the tim-
ing window attack will fail.

be read and hashed by the TA, causing a mismatch in the directory hash. If the

marks have not been in place, the script would have launched the rootkit, which

would have immediately loaded and deleted its binary from the file system, before

it could be read and hashed by the TA.

We also tested the attack with cron, instead of the bash script that we used to

simulate it. In that case, we scheduled a job to launch our rootkit on time. When

the cron daemon returned from its sleep state, it attempted to execute /bin/sh

to open a shell session where it could run the scheduled job. This execution was

blocked by fanotify, so cron could not execute any jobs, including the one that was

intended to launch the rootkit.

We tested the persistent component detection process for different inputs, and made

sure it works correctly for cases where files are added, removed, or modified. We

made sure the process does not fail if it encounters irregular files, like faulty sym-

bolic links. Additionally, we performed static code analysis on the project using
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flawfinder1, and investigated each warning, to make sure we have not used any dan-

gerous functions incorrectly, and have not made mistakes that could lead to a buffer

overflow.

7.2 Performance measurements

Our implementation runs in a virtualized environment with 1057 MBs of RAM and 2

Cortex-A57 cores. The persistent component detection is the most time-consuming

part of the whole rootkit detection process, since it requires RPC calls and world

switches to read the bytes of the files. Unfortunately, since the I/O operations take

up most of the runtime, we cannot significantly reduce it by optimizing other parts

of the software.

The directories we hash during each scan are listed on Table 7.1, along with their

overall size and number of contained file objects. The average runtime of the process,

with the default entries is 49 seconds, with a standard deviation of 1.33 seconds,

and a range (max - min) of 3.8 seconds (based on 20 individual measurements).

Path Recursive Num. of objects Size (Kbytes)
/etc Y 37 160
/bin Y 74 49644
/sbin Y 54 36720
/usr Y 192 110808
/lib Y 62 11196
/mnt Y 15 26136
/ N 3 688
Total - 437 235352

Table 7.1: Our default list of monitored directories.

To measure the execution time depending on the number of files and amount of

data read, we created files with random content from /dev/urandom, and ran the

hashing process on the directory containing these files. As shown on Figure 7.2,

runtime scales evenly with the amount of data read and hashed, and no errors or

additional slowdowns are caused when hashing large files, since we load data into

our hashing context in fix sized chunks.
1https://dwheeler.com/flawfinder/, Last visited: 06.12.2020.
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Figure 7.2: The runtime of the process scales evenly with the
amount of data read and hashed.

Figure 7.3 shows what happens when the same amount of data is divided into

multiple files. Having to open and close files causes an additional I/O overhead.

While our scanning process is being executed in the TEE, it uses only one of the

cores. As a result, the REE can execute on the other core. Processes running in

the REE are not halted while we perform our checks, but significantly less resources

are available to them until the checks are completed. Until our TA reaches the file

system checks, the core it uses can only execute REE code when an interrupt occurs

that has to be handled in the REE. During the file system checks, however, our

implementation needs to wait for a lot of I/O operations, and while waiting, control

is given back to the REE, where the Linux kernel’s scheduler can execute other tasks

on the first core as well.

7.3 Limitations and possible improvements

The first limitation we have to consider relates to the the way we read and hash data.

The sequence that file and directory names are returned by calls to readdir(2)

is unpredictable. The order of the names returned is entirely dependent on the

implementation of the directory, which can differ based on the type of the file system,
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Figure 7.3: Hashing a larger number of smaller files results in
additional I/O operation cost.

and file order can change as the file system fills gaps in the directory list after files

are removed. Inconsistent file order can result in data being loaded into the hashing

context in an incorrect order, causing a false positive mismatch detection. A possible

solution would be to make a small change to the PTA, to always gather all the file

names when opening a directory, and only read them in an alphabetical order.

The second limitation comes from OP-TEE and the way it handles interrupts. In-

terrupts are divided into two groups, foreign and native interrupts. The former one

needs to be handled by the normal world, and the latter one by the secure world.

If an interrupt rises and the CPU which should handle it is not in the appropriate

world, the machine switches to the correct world, and the interrupt handler is ex-

ecuted. However, OP-TEE does not have its own scheduler, but it uses the Linux

kernel’s scheduler. When a CPU is executing code in the secure world and a foreign

interrupt occurs, the execution of the TA does not continue immediately after the

handler exits. It only resumes execution when the scheduler gives the CPU to the

thread associated with the TA.

In addition, on a system with multiple cores, it is possible for one core to execute

in the Normal World and another in the Secure World. This behavior can make

our inconsistency checks unreliable, and can cause false positive detections. This
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issue might be resolved if we can disable other cores during our checks, and disable

interrupts as well to ensure the uninterrupted execution of our checks. Disabling a

core is possible from the REE, however, it has a negative impact on the performance

of the system. Disabling interrupts is a bit more complicated, although, PTAs can

do it while they are running. It might be possible to disable and re-enable interrupts

for other secure world threads as well, or the check itself can be implemented in a

PTA in order to use this feature.

Finally, a way to bypass all of our checks would be for a malware to uninstall itself

before the checks are performed. When the checks are completed, the malware

could be reinstalled by exploiting the same vulnerability it originally exploited to

infect the system. Note, however, that this can work against any rootkit detection

approach, because there remains nothing malicious to detect in the system.
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Chapter 8

Conclusion

In this thesis, we addressed the problem of detecting persistent rootkit components

on embedded IoT devices.

Rootkits are malicious software that run with elevated privileges, and employ a wide

variety of techniques to remain hidden. Attackers install rootkits on compromised

systems to maintain the privileged access they obtained by exploiting a vulnerabil-

ity in the system. Rootkits are able to survive system reboots through the use of

persistent components, which they write on the persistent storage (i.e. the hard disk

or solid state drive). Persistent components may be hidden using different hooking

techniques, but these techniques leave detectable traces in the kernel memory. A so-

phisticated rootkit may attempt to avoid rootkit detection software by restoring the

integrity of the memory, hiding itself in a persistent component, and restarting after

the detection process finishes. Such a rootkit could only be detected by monitoring

the file system for persistent components.

Our work was part of a larger project, that aimed to create a full-fledged rootkit

detection software, which leverages the Trusted Execution Environment technology.

Such Trusted Execution Environments are supported on many embedded platforms

used in IoT applications, and their protection measures ensure that malicious code

cannot interfere with our detection mechanisms even when running with root priv-

ileges. Our solution for the detection of persistent rootkit components is based on

File Integrity Monitoring (FIM), which is a technique for monitoring and detecting
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changes in files by comparing the hashes of the monitored files to a secure baseline.

We described in detail how we read and hash the file system data of the untrusted

execution environment, how we solved the secure storage of our baseline hashes, and

how we implemented a secure, automatic baseline update mechanism. We addressed

the potential vulnerabilities in the designed architecture, and built countermeasures

to make the application safe and reliable. Finally, we evaluated our design and

implementation by testing the prototype with a rootkit that we developed for this

purpose, and listed some limitations along with some possible solutions.

In summary, we are able to detect the presence of rootkit components in the per-

sistent storage of the IoT device in a reliable and safe way, with an acceptable

impact on system performance. Despite its limitations, we believe that our work

can contribute to protecting the small embedded devices used in IoT applications

from sophisticated and powerful software based attacks.
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