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Kivonat

IoT rendszereket is érnek kibertdmadasok, mint példaul rootkit fertézés. A rootkit-ek
olyan karos szoftverek, amik tipikusan magas jogosultsaggal futnak, ezért nehéz ket
detektalni. Ebben a dolgozatban ezzel a probléméval foglalkozunk: egy olyan rootkit
detekcids eljardst ismertetiink, ami egy trusted execution environmnet (TEE) segitségével
kinal megoldast erre a problémaéara IoT eszkézok szamara. A TEE egy izolalt kornyezetet
nyujt a detekcids algoritmusunk szamaéara, és meggatolja, hogy rootkit-ek beavatkozzanak
annak futdsiba, még ha a rootkit root jogokkal is fut. A detekciés eljardsunk olyan
modositasokat észlel, amiket egy rootkit a kernel kédjaban, felhasznaldi programokban,
vagy olyan adatokban visz véghez, amik befolyasoljdk a kernel kédjanak végrehajtasat
(pl. rendszerhivasok hook-oldsa). Emellett képes detektalni, ha egy rootkit inkonzisztens
allapotban hagy bizonyos adatstruktirakat (pl. azokat, amelyekben a folyamatokkal
kapcsolatos informacidk tarolédnak). Emellett rootkit-ek perzisztens komponenseit is
detektalja az altalunk bemutatott megoldas. Amellett, hogy bemutatjuk, hogyan terveztiik
meg ezt a detekcids alkalmazast, bemutatunk egy prototipust is, amely implementalja
ezeket az ellendrzéseket, valamint azt, hogy hogyan teszteltiik az alkalmazisunkat tobb

olyan rootkit segitségével, amiket direkt erre a célra fejlesztettiink.



Abstract

IoT systems are subject to cyber attacks, including infecting embedded IoT devices with
rootkits. Rootkits are malicious software that typically run with elevated privileges, which
makes their detection challenging. In this paper, we address this challenge: we propose
a rootkit detection approach for embedded IoT devices that takes advantage of a trusted
execution environment (TEE), which is often supported on popular IoT platforms, such
as ARM based embedded boards. The TEE provides an isolated environment for our
rootkit detection algorithms, and prevents the rootkit from interfering with their execution
even if the rootkit has root privileges on the untrusted part of the IoT device. Our
rootkit detection algorithms identify modifications made by the rootkit to the code of the
operating system kernel, to system programs, and to data influencing the control flow
(e.g., hooking system calls), as well as inconsistencies created by the rootkit in certain
kernel data structures (e.g., those responsible to handle process related information). We
also use algorithms to detect rootkit components in the persistent storage of the device.
Besides describing our approach and algorithms in details, we also report on a prototype
implementation and on the evaluation of our design and implementation, which is based

on testing our prototype with rootkits that we developed for this purpose.
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Chapter 1

Introduction

The Internet has grown beyond a network of laptops, PCs, and large servers: it also
connects millions of small embedded devices. This new trend is called the Internet of
Things, or IoT in short, and it enables many new and exciting applications such as smart
homes, intelligent transportation systems, smart factories, and personalized healthcare.
At the same time, [oT also comes with a number of risks related to information security.
The lack of security, however, cannot be tolerated in certain applications of IoT, including
those in the domains of healthcare, transportation, and industrial automation. In such
applications, security failures may lead to substantial monetary loss, physical damage of
expensive equipment, or even loss of human life. Therefore, one of the biggest challenges
today, which hinders the application of IoT technologies in many cases, is the lack of

security guarantees.

Unfortunately, [oT systems are notoriously insecure. One of the reasons is that they are
built from cheap embedded devices that are easy to compromise by exploiting weaknesses
in the way they are operated and vulnerabilities of the software components running
on them. A consequence of this is that malware for IoT devices has appeared [4, 20]
and gaining momentum [29]. Malware designed for IoT devices is similar to malware
designed for other types of computers: it compromises the integrity of the device by
installing unwanted, and potentially harmful, software components on it. These software
components can then be used to cause other types of compromise such as allowing the
attacker to access the device remotely by installing a backdoor, tampering with messages
sent by the device to other devices, or making data stored on the device unavailable by

deleting or encrypting them.

Sophisticated malware tries to maintain its presence on infected devices while remaining
invisible for the operators of those devices. This sort of malware is called rootkit [8].
Typically, rootkits run with elevated (root) privileges and they modify system commands
and/or code and various data structures in the operating system (OS) kernel such that
their files and running processes do not appear in the output of various system tools used

to monitor the operation of the devices. Detecting such a rootkit is challenging, mainly



because any detection program running at the same or lower privilege levels than the
rootkit may also be compromised or may be misled by the tricks used by the rootkit to
hide itself.

In this work, we aim at rootkit detection on embedded IoT devices, and we address the
above challenge by running our rootkit detection mechanisms in a Trusted Execution
Environment (TEE), which is isolated from the main OS of the device, and hence the
rootkit — even running with root privileges on the main OS — cannot interfere with its
operation. Such a TEE is supported on many embedded platforms, including the popular
ARM platform that supports the establishment of TEEs by its TrustZone! technology. A
TrustZone enabled ARM processor can execute in two modes: in untrusted mode (called
Normal World), it runs a common OS (e.g., Linux) and applications on top of it (often
referred to as the Rich Execution Environment, or REE for short), whereas in trusted mode
(called Secure World), it runs the trusted OS and the trusted applications of the TEE.
Isolation between these two modes are ensured by hardware based protection mechanisms.
As a result, software components running in the Normal World cannot access some of the
resources (including a part of the system memory) of the device, whereas trusted software
components of the TEE running in the Secure World have unlimited access to all resources.
Thus, the TEE provides two advantages for rootkit detection: it can protect the integrity
of some trusted rootkit detection code by keeping it inaccessible for potentially malicious
software running in the REE, and it can provide a safe execution environment for that

rootkit detection code where it can access and inspect all system resources.

However, as the same processor is shared between the trusted and the untrusted mode, the
execution of untrusted software is suspended when the processor switches to trusted mode
and starts executing trusted software. This means that our trusted rootkit detection code
cannot observe the behavior of untrusted software components during their execution,
but it can only inspect their memory images reflecting their state at the time of their
suspension. In other words, our rootkit detection approach is based on analyzing memory
snapshots of the untrusted system (OS and applications), and it consists of identifying
the anomalies caused by the rootkit in the state of the kernel data structures representing
processes, as well as computing the hash values of the memory images of running processes
and comparing them to known good hash values stored safely in the TEE. In addition, as
the rootkit may delete all its components from the memory before our rootkit detection
code is invoked and save itself to persistent storage for later execution, we also scan and
hash files stored on the flash disk of the device from within the TEE, and compare the
computed hash values to known good hashes stored safely in the TEE.

The rest of the thesis is organized the following way: In Chapter 2, we introduce the main
features of rootkits and describe the challenges what make their detection complicated.
Chapter 3 will describe multiple techniques rootkits can apply to hide certain resources,
and our solutions targeting these methods. The prototype we developed attempts to de-

tect persistent components of rootkits as well, however this part will not be described

Thttps://developer.arm.com /ip-products/security-ip/trustzone, Last visited: 20.09.2020



in details. More information about the persistence check can be found in the thesis of
Krisztian Németh [24]. Chapter 4 contains details about OP-TEE?, the Trusted Execu-
tion Environment we used to implement our solution, the test environments we used for
development and evaluation and detailed description of components and patches we had
to use in order to be able to implement our detection solution securely and properly. In
Chapter 5, we present rootkits we used to test our solution; some of them are open source,
or ports of existing solutions, but most of them were developed by us to demonstrate the
capabilities and limits of our solution against common rootkit techniques. In Chapter 6
we discuss future work and possible improvements, while in Chapter 7 we conclude the

thesis.

https:/ /www.op-tee.org, Last visited: 09.12.2020



Chapter 2

Rootkits

The term rootkit [26] refers to malware or modules of pieces of malware whose primary goal
is to maintain stealth on infected devices while allowing continued access to its resources.
Remaining hidden is in the best interests of the attackers: if the operators detect the
infection, they will try to eliminate the responsible pieces of malware by reinstalling the
system, and they will also try to patch the exploited vulnerability rendering the system

unavailable for the attackers.

Rootkits employ a wide variety of techniques to remain hidden on infected devices [10, 26,
27]. User-mode techniques target the user space of devices and include techniques such
as the manipulation of log files, modification of disk-resident system files (e.g., 1s, top)
or hooking libraries used by executables. One well-known user space hooking technique
is the abuse of the LD _PRELOAD environment variable to load malicious libraries before
benign ones, therefore overriding their provided functionalities. This technique is used
by rootkits such as Azazel', Jynx2 [11], BEURK?, vlany® and bedevil*. Other rootkits,
such as HORSEPILL [23], abuse valid kernel features offered to user space programs to

maintain stealth presence on the device.

Kernel-mode techniques, on the other hand, target the internal data structures and func-
tionalities in the operating system’s kernel. In the past, modifying the kernel memory
image was a widely used technique to remain hidden on Linux systems. However, recent
Linux kernel versions restrict access to /dev/mem and /dev/kmem®, mitigating this attack.
Other techniques in this category are kernel-space hooking [30] and direct kernel object
manipulation. The former includes the use of malicious device drivers and the modifica-
tion of the system call and interrupt descriptor table. Direct kernel object manipulation
tampers with the integrity of the kernel by targeting dynamic kernel data structures.

This technique can be used, for example, to hide processes from the system administra-

"https://github.com/chokepoint/azazel, Last visited: 16.09.2020

2https://github.com /unix-thrust /beurk, Last visited: 16.09.2020
3https://github.com/mempodippy /vlany, Last visited: 16.09.2020
“https://github.com/wiperpaul /bdvl, Last visited: 16.09.2020
Shttps://lore.kernel.org/lkml/18778.1508769258 @warthog.procyon.org.uk/, Last visited: 16.09.2020



tor. There exist a number of rootkits employing these techniques, including Adore-NG?Y,
LilyOfTheValley”, the work presented in [18], OSOM [16], SucKIT [12] and Suterusu®.

Many proof-of-concept rootkits compromise the virtualization layer, the BIOS and/or the
firmware of hardware components [15, 19, 22, 21]. Such rootkits are called OS-independent
rootkits and their advantages are manifold. Rootkits in the lowest-level components can
survive reboots and re-installations, and they leave no traces on the disk. Their detection
is particularly challenging because they do not make visible changes to the operating

system.

In response to the rising threat of rootkits, a number of detection methods have been
proposed [28]. Signature-based methods scan the files on the disk for byte sequences and
use a signature database to detect known rootkits. Tools that implement this method
include chkrootkit? and Rootkit Hunter!?. The main limitation of signature-based meth-
ods is similar to those of signature-based intrusion detection systems and virus scanners,

namely, that they cannot detect very recent or sufficiently modified old rootkits.

Behavior-based detection methods detect deviations from “normal" patterns of system be-
havior [17], e.g. timing discrepancies and irregularities in resources such as the Translation
Lookaside Buffer (TLB). Such methods, however, require a priori measurements of the an-
alyzed system in a controlled environment. Differences between the real and the controlled
environment can decrease the accuracy of such approaches. The baseline measurements
must also be stored securely on the device, otherwise, malware can influence the detection
method.

Cross-view-based methods assume that there is no perfect rootkit which can perfectly
emulate all aspects of the system. In order to detect compromises, they enumerate system
parameters in at least two different ways and compare the results. However, the kernel
consists of many dynamically changing structures: a change in an enumerated structure
during cross-checking can lead to false alarms. To overcome this challenge, Carbonite!!
preempts scheduling, thereby prohibiting new processes to spawn. However, such an

approach has an impact on performance.

Integrity-based detection methods compare a snapshot with a trusted baseline. In the
case of files, the trusted baseline can be the hash value of a file computed in a controlled
environment, which can be checked with tools such as Samhain'?. Kernel data structures
can also be monitored for malicious changes, e.g. system call re-maps can be detected

using StMichael'®, running processes can be listed with KSTAT!*) and Gibraltar [6] uses

Shttps://github.com/yaoyumeng/adore-ng, Last visited: 16.09.2020

"https://github.com/Enl4c/LilyOfTheValley, Last visited: 16.09.2020

Shttps://poppopret.org/2013/01/07 /suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/,
Last visited: 16.09.2020

http://www.chkrootkit.org/, Last visited: 17.09.2020

http://rkhunter.sourceforge.net/, Last visited: 17.09.2020

"https://securiteam.com/tools/5jp0m1f40e/, Last visited: 21.09.2020

2https://www.la-samhna.de/samhain/, Last visited: 17.09.2020

B3https://sourceforge.net /projects/stjude/, Last visited: 21.09.2020

Mhttp:/ /www.s0ftpj.org/docs/lkm.htm, Last visited: 17.09.2020



a set of automatically derived data structure invariants for monitoring purposes. The main
challenge of integrity-based detection is the secure storage of the baseline: if the kernel is
assumed to be compromised, then no file or memory on the system is adequate for storage.
Rootkits in the kernel can modify the return value of system calls necessary for reading
files and may compromise the Virtual Memory Management unit of the operating system

to access and/or tamper with data stored in memory.

Reliable detection of rootkits requires that the detector runs with higher privileges than
the rootkit itself; as a result, detectors are placed in ever lower levels in the devices’
architecture or even into a separate hardware. Paladin [5] is an example of the former
approach. It defines protected zones for memory and files, and performs integrity checks
from the hypervisor. Copilot [25], on the other hand, is an example of the latter: it is
a coprocessor-based kernel integrity monitor implemented as a PCI card which connects
the monitored system to the remote detector. By contrast, our proposed method does not
need additional hardware: we leverage a Trusted Execution Environment to protect the
monitoring process from interference. Our detection method also incorporates ideas from
cross-view-based, integrity-based and signature-based detection methods. We also use the

TEE to safely store baseline values (e.g., file hashes and hash values of memory images).



Chapter 3

Design approach

3.1 High level overview

As mentioned previously, the basic idea of our rootkit detection approach is to leverage
the TEE (Trusted Execution Environment) for running functions aiming at detecting
integrity violations and inconsistencies in the state of the untrusted system components
of the REE (Rich Execution Environment) that may have been caused by a rootkit.
The primary targets for checking integrity and consistency are the kernel code and the
kernel data structures (in particular, data structures representing processes, as well as data
structures holding function pointers) of the untrusted OS, as rootkits typically modify
those to achieve their goals. The kernel code and data structures can be accessed from
the TEE by reading the memory snapshot of the REE that is left behind when execution
is transferred to our rootkit detection function in the TEE. In addition, besides checking
code and data structures in the memory, we must be prepared for malware that tries to
remove its traces from memory before the invocation of our rootkit detection function.
Because it cannot remain in memory, it may try to hide itself in persistent storage in
such a way that it can execute again later when the memory has been checked. Hence,
our rootkit detection approach also includes checking the persistent storage for signs of

malware.

To achieve our goals, we deploy two software components: a Trusted Application (TA)
running in the TEE and a client application (CA) running as a user space process on
top of the untrusted OS in the REE. Our CA should be started when the system is
booted and then it should run continuously. The main role of the CA is to invoke the TA
periodically and to pass certain data to the TA collected from the REE (e.g., the list of
running processes as seen by the ps program when executed on the untrusted OS). The
TA performs rootkit detection by executing different integrity and consistency verification
functions as described below. In order to ensure that the TA is indeed invoked periodically,
a watchdog timer can be started during the boot process that can only be reset by the TA;

therefore, if the TA is not invoked, the timer expires and the device reboots itself. When



the TA finishes its execution, control is returned to the CA, which runs concurrently with

other applications and services in the REE.

In the sequel, we assume that the OS running in the REE is Linux. Some of our rootkit
detection functions described below are specific to Linux, because rootkits often operate
at low level in the system architecture and exploit specific features or mechanisms of the
OS kernel. Yet, the principles even behind these Linux specific functions are sufficiently
general to be applied for other operating systems as well. More over, some of the detection

functions we present are agnostic to the OS used.

First some initialization needs to be done: our TA implements a function which can only
be called once. This creates reference hashes from the files and directories checked later

and discovers the available file systems, so we can detect tampering with these.

When invoked, our rootkit detection TA performs the following verification steps aiming at
detecting inconsistencies in the data held by certain kernel data structures or modifications

of kernel code:

o Looking for hooks in the Virtual File System (VFS): Rootkits often target the
so called operation structures of the VFS and replace (hook) function pointers there
such that file operations are handled by attacker code instead of legitimate kernel
code. For instance, the rootkit may hook the iterate_shared function in the file
operation structure of the /proc directory, and ensure that certain process IDs are
removed from its output, and hence, become invisible to certain system utilities.
Thus, in each operation structure of the VFS, we check if function pointers point
inside the address space where the kernel code segment is located. Any function
pointer pointing outside that address space is considered to be hooked. More details

on detecting hooks of the VFS file operations are provided in Subsection 3.2.2.

¢ Detecting hidden tasks: Another way of hiding certain processes is to manipulate
kernel data structures (a.k.a. Direct Kernel Object Manipulation or DKOM for
short) representing them. At the kernel level, processes (threads) are represented by
tasks, and there are different data structures, such as the task list, the task tree, and
so called PID namespaces that hold information about existing tasks. In addition,
tasks also appear in queues used by the kernel for scheduling them. Rootkits rarely
modify these data structures in a consistent manner. For instance, in order to hide
it, a rootkit may remove a task structure from the process list or process tree, while it
must be kept in the run queue to be scheduled and have the chance to be executed on
the CPU. Therefore, we check all those data structures that hold information about
existing tasks and we compare the list of tasks obtained from them to each other
and to the process list received from the CA running in the REE. Any inconsistency
among these lists is interpreted as an integrity violation of the system. More details

on detecting hidden tasks are provided in Subsection 3.2.3.



o Integrity checks: Besides manipulating task related kernel data structures, rootk-
its can also modify other important data structures in the kernel, as well as the code
of running processes. For instance, a common rootkit technique, called system call
table hooking, is to replace function pointers in the system call table such that when
certain system calls are invoked, attacker code is executed before control is given to
the legitimate function that handles those system calls. Another technique, called
inline hooking, has similar effects, but in this case, the system call handling func-
tions themselves are modified by inserting a jump instruction at the beginning of
the function that points to some attacker code. Similarly, the code of any processes
in the memory may be modified by the rootkit including the kernel code segment,
system programs, and user space applications. For this reason, we perform integrity
verification of the system call table, the kernel code segment (which includes the
functions that handle system calls), system programs currently executing, and the
code segment of our CA running in the untrusted execution environment. This in-
tegrity verification is based on accessing these pieces of data structures and code in
the REE memory from our TA, computing the hash values of their memory image,
and comparing the computed values to known reference values stored securely within
the TEE. These reference values are computed and saved in secure storage provided
by the TEE after system installation when the system runs for the first time. More

details on the integrity checks we perform are provided in Subsection 3.2.4.

e Looking for persistent rootkit components: As rootkits may remove their
components from memory before our TA is invoked and our consistency and integrity
verification is executed, and hide themselves on persistent storage, we must also look
for these persistent components. For this, our TA accesses the persistent storage
of the device, recursively hashes all files in a pre-selected set of folders, and then
compares the computed hash values to known reference values stored securely in
the TEE. These reference values are computed and saved in secure storage provided
by the TEE after system installation when the system runs for the first time. The
folders are pre-selected in such a way that they contain all the binaries and scripts
that could legitimately execute on the device. This requires a certain organization
of the files in the file system, notably to separate files (including programs) that
should not change from those that has variable content (e.g., files used mainly for
data storage). However, this is not a serious limitation of our approach, because this
kind of separation is also useful for many other reasons related to the maintenance

and troubleshooting of the device.

An issue that we have to consider is that while our TA is waiting for I/O operations
(i.e., reading file contents) to complete, control is given back to the REE. When
this happens, pre-scheduled jobs may be executed by the job scheduler (e.g., cron).
Hence, in theory, a rootkit can hide its persistent component in a program file A
and schedule the execution of A before removing itself from memory. Then, program
A (and hence the rootkit) could be executed by the job scheduler during the file



hashing operation performed by our TA, and when executing, the rootkit can move
itself from program file A into program file B. If this move operation happens after
file B has been hashed already and before file A being hashed, then the computed
hash values would be good, and we would not detect the rootkit, which can then
be re-installed when file B is executed. As I/O operations are usually slow, our
TA is mostly waiting during the file hashing, which means that control is mainly
at the untrusted execution environment, and hence, chances of the above described
scenario happening are not negligible. To cope with this issue, our CA suspends
file access operations for execution before invoking our TA and re-enables them only

after the TA completes its job.

The component responsible for file checks is an integral part of pur solution, however
it won’t be described in details, like other checks. The TA code responsible for
creating and verifying file signature hashes was the work of Krisztian Németh, for

more details, see his thesis[24].

e Network checks: Finally, we perform some checks regarding the network stack;
two common functionality implemented by rootkits in this component of the kernel
are hiding open ports and implement “magic packets”. This means executing certain
payloads triggered by specially crafted network packets. For example, the rootkit
opens a shell when the victim machine receives a TCP packet, on a specific port,
from a specific port, with a specific payload. The network stack uses several function
pointers, so this functionality can be implemented many ways. We do not attempt
to check the integrity of all of these pointers, we only check the Netfilter subsystem,
the most common target of rootkits, and some other structures containing function
pointers, what we were able to hook from our test rootkits. Port information is
provided to the userspace via the /proc file system, where many files are using so
called seq_ops structures. These encapsulate function pointers, what are used to
generate the content of the file. We check the function pointers the same way as we
did in the VFS layer.

Figure 3.1 gives a high level overview of our rootkit detection components (i.e., the CA
and the TA), their interaction, and the operations they perform. As it can be seen, the
CA is started at boot time, it continuously runs, and it invokes the TA at random time
intervals. Before invoking the TA, the CA disables execution type access to files, such
that new programs cannot be started during the checks of the TA. Then the TA performs
the above described consistency and integrity checks on the kernel data structures and the
code segments of the kernel, running system programs, and our CA. If integrity violations
or inconsistencies are found, then they are reported to the operator of the device via some
remote attestation protocol, but this is out of the scope of this paper. If the verification of
the memory is successful, then the TA proceeds with hashing the files in the pre-selected
folders in the persistent storage, and comparing the computed hash values to the stored

reference values. Again, if an integrity violation is found, then it is reported. Otherwise,

10
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Figure 3.1:

High level overview of our rootkit detection compo-

nents, their interactions, and the operations they per-

form.

control is returned to the CA, which re-enables file access, and sleeps until the next round

of all these operations.
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3.2 Design details

In this section, we discuss the checks we implemented in order to detect the traces of
rootkit infections in the Linux kernel memory. These checks focus on the integrity of and
consistency between kernel objects and target common techniques applied by rootkits.
In the following subsections, we briefly introduce certain kernel objects, describe attacks
against them, and present our methods to determine whether the system is infected by
rootkits. In Subsection 3.2.2, we present the Linux kernel’s Virtual File System (VFS)
and our technique to detect rootkit attacks against its structures. In Subsection 3.2.3, we
discuss direct kernel object manipulation (DKOM) in details and our techniques to counter
this attack. In Subsection 3.2.4, we describe our proposed checks to examine the integrity
of the analyzed system, and finally in Subsection 3.2.5, we describe certain components
of the network stack, attacks against them and our methods to detect tampering in this

subsystem.

3.2.1 Initialization

Before we can execute our checks, we need to initialize our solution. This routine can only
be invoked once, and it’s called right after the setup of the Normal World components
of the TEE. Here we compute and store reference hashes of the file system, used by the
persistence checks, and explore the file system objects in the kernel. We collect all the
partitions the device has, so we can detect later if new ones are created, and we also collect
the ones, where users can execute binaries from, so we can ensure that no new process is

created while we perform our checks.

3.2.2 Detecting hooks in the Virtual File System

The Virtual File System (VFS) [7] is an API in the Linux kernel which hides the differences
of the various file system drivers. It uses 4 main data structures to abstract away the details
of different file system implementations, shown in Figure 3.2. The superblock structure
represents a mounted partition and stores metadata about the partition itself, which is
usually present in the first block of the underlying physical device. Superblocks are chained
together into a doubly linked circular list, which is accessible from the data segment of
the kernel binary. Each superblock maintains a circular, doubly linked list of the inodes
stored on the disk. An inode is the physical representation of a file or a directory stored on
the device. An inode can be used by one or more directory entries, or dentries for short.
For example, if we create a new file and a hard link pointing to it, then we will have one
inode and two dentires referencing the same inode. Open files are represented by so-called

file structures in the context of a process and can be accessed via file descriptors.

At code level, VFS uses so called operation structures which contain function pointers.
Each function pointer implements a functionality used by the layers above VFS (e.g.

lookup to retrieve the contained dentries in the inode of a directory or get_inode_usage
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Figure 3.2: Relationship of VFS objects. White objects are
checked, gray ones are ignored by our checks.

to find out how many inodes are used on a partition), where the implementation is provided
by the underlying file system drivers. These operation structures appear in all 4 of the

previously mentioned structures.

Rootkits often target the operation structures: by hooking certain function pointers, they
can alter the results returned by these functions. For example, an attacker can create
a Linux kernel module, find the file_operations of the /proc directory, and hook its
iterate_shared function, which implements the functionality of readdir. With a prop-
erly designed replacement, attackers can hide their presence by excluding certain process

IDs whenever process information is retrieved from /proc.

We perform integrity checks on 9 different types of operation structures. They cover all
the operation structures used by superblocks, inodes, dentries and files. For superblocks,
we analyze super_operations, which implement general file system operations (e.g., al-
locating inodes); dquot_operations, which handle quota objects on disk; quotactl_ops,
which manage quotas on the file system; export_operations, which are operations for
the NFS daemon to communicate with file systems and the default dentry_opartions,
which is assigned to dentries of the superblock. For inodes, we analyze inode_operations
and file_operations. The former provides operations to manage the inode, includ-
ing rename, unlink, etc. The latter one contains the file operations assigned to a file

structure when a process opens a dentry pointing to this inode. This structure con-
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tains function pointers like read, write, flush and many more. For dentries, we check
dentry_operations, which hold directory entry related operations. For example, delete
removes the dentry, but the inode remains intact, just in case other dentries use the inode
as well. We also check several file operation structures from the .rodata section of the

kernel by their addresses.

For each operation structure, we examine the function pointers, and consider one to be
hooked if it points outside of the address space where the code segment of the kernel is
located. We perform the check recursively, i.e., we inspect every inode of a superblock
and every dentry of an inode. Unfortunately, inspecting all superblocks is time consuming,
therefore, we only focus on /proc and the root file system as hooking their inode operations

is a common technique to hide rootkit files and processes.

We also check if no new superblocks are added to the list: this is a valid restriction for IoT

devices, the appearance of new file systems is considered to be tampering by an attacker.

3.2.3 Detecting hidden tasks

Processes and threads are represented by tasks in the Linux kernel. A task is approximately
equivalent to a thread: single-threaded processes consist of a single task, while multi-
threaded ones are made up of several tasks sharing the same address space. Each task is
represented with the so-called task_struct structure. In Linux 5.1, there are three data

structures which contain all of the existing tasks.

Task list: All task objects are linked together into a doubly linked circular list. In earlier

versions of the kernel, this list was used to populate the /proc file system.

Task tree: Tasks are also organized into a tree via the relation of creation. When a task
creates other tasks, they become its children and they refer to their creator as their
parent. The root of this tree is the so called init_task, the kernel task which starts

the init process (the first process in the user space).

Pid namespace, IDR and the struct pid: Pid stands for process identifier and IDR
is the rewritten version of the old ID allocation API. Linux provides pid namespaces
as an isolation feature. By default, there is only one such namespace, the initial
pid namespace. Each namespace maintains a radix tree', containing pointers to
pid structures? (struct pid #). Pid structures contain lists of pointers for the
tasks with an equal 1D, thread group ID, process group leader or session ID. The
Pid namespace is responsible for keeping track of taken pids and for fast access to
tasks via their pids®. In recent kernel versions, this mechanism populates the /proc

directory.

Mttps://lwn.net/Articles/175432/
*nttps://lvn.net/Articles/195627/
3https://lore.kernel.org/patchwork/patch/834401/
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Direct kernel object manipulation (DKOM) is a rootkit technique which modifies the data
structures traversed by the kernel when asked to retrieve information about resources. For
example, rootkits can use DKOM to hide a process by removing it from the data structure
queried for process information. Many rootkits target the task list to hide a backdoor on
older systems; the same can be achieved on modern Linux by removing a pid structure
from the IDR of the initial pid namespace. DKOM is rarely applied thoroughly, rootkits
usually remove processes only from the necessary data structures, thus leaving the kernel

memory in an inconsistent state.

For example, the deadlands rootkit?: it is capable of removing a process from the list of
tasks and a hash table (used by older kernel versions for fast access of tasks by their pids),
but the hidden task can still be found in the task tree.

Another example is how the Reptile rootkit® hides the kernel module implementing
its functionality by removing the module from the list used by the kernel to populate

/proc/modules. However, it is still visible under /sys/module.

Our analysis attempts to detect these inconsistencies. We assume that a trivial goal of
an attacker is to hide a process from the output of the ps utility. First, in the REE, we
execute ps and pass its output to our TA running in the TEE in order to compare it to pid
lists we can extract from the REE kernel memory. The pid of ps itself must be excluded
from this list because it is not running when we perform our check. Our TA, after checking
the VFS layer, iterates through the task list, saves the pid of every task, and then looks
for pids present in the list, but missing from the output of ps. If no hidden process found,
the TA performs a depth-first search on the task tree and compares the pid list created
this way with the sample from ps. If no inconsistency is found, the TA performs the same
check for the IDR. If it does not find any hidden processes, it tries to determine if there is
any process present in any of the mentioned data structures, but missing from any of the
others. This is done by taking the union of the three lists and comparing each list to the

union.

The most important feature of the kernel is the capability to schedule processes. A task
is considered to be runnable, if it is not waiting for anything (usually 1/O) and is not
stopped. Runnable tasks ready to be executed are collected in separate data structures;
these are called run queues. Run queues are per-CPU data structures, i.e., each CPU
has its own run queue, and every run queue wraps sub-runqueues implementing the data
structures used by the scheduling algorithms. These scheduling policies are implemented
via a structure called sched class, which works similar to the operation structures at
VFS: it contains multiple function pointers, and each scheduling policy must implement

these. Linux 5.1 supports the following three schedulers:

Completely Fair Scheduler (CFS)[1] This is the default scheduler. It stores a tree

of scheduling entities (task sets), each maintaining a red-black tree of tasks. CFS

“https://github.com/majdi/deadlands, Last visited: 18.09.2020
Shttps://github.com/forbldd3n/Reptile, Last visited: 18.09.2020
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orders tasks by their virtual run time, meaning how long each should run, and always

picks the one associated with the smallest time.

Real-Time Scheduler[3] It stores 140 lists (one for each priority level), and a bitmap
to speed up lookup of non-empty lists. The next task is searched by testing the bits
of the bitmap, and on the first set bit, its position is used as an index to get a list.
The first task in the list is chosen.

Deadline Scheduler[2] On multiprocessor systems, the scheduler maintains two red-
black trees of tasks. In the first one, the tasks are ordered by their deadline, and
the leftmost element of the tree is picked. The other one contains tasks what can be

pushed to other cores. In case of one single core, only the first tree is present.

We assume that removing a task from a run queue would make it unschedulable perma-
nently, which is why we include run queues in our consistency check. Our TA collects the
pids of all of the tasks found in the data structures of the schedulers and then compares
them to the union of pids created earlier. If it finds a task in a run queue which is not

present in the union, then the kernel is considered to be compromised.

3.2.4 Integrity checks

So far, we focused on revealing hidden processes by verifying the integrity of VFS com-
ponents and by performing consistency checks on task-related data structures. In this
subsection, we leave the concept of hidden processes and instead target common rootkit
techniques; some of the checks presented here ensure the integrity of the system itself,

while others defend our solution from a possible attacker.

First, we must ensure that our CA can be trusted. To this end, the CA is compiled as
a static executable (i.e., its binary contains the code for all the used library functions
as well). This allows us to protect it against LD_ PRELOAD hooks, a common rootkit
technique applied in the user space. The CA passes its own pid as a parameter to our TA,
such that the TA can look for the corresponding task in the kernel memory. Each task has
a pointer to a memory map structure, which stores information about the task’s memory
mappings. From this structure, we can determine the start and the end of the task’s code
segment, and we can use it to translate the virtual addresses of the process to physical
addresses. Via physical addresses, we can access the contents of the memory pages storing
the code of the task, and we can compute its hash to check whether the code of the CA
has changed. The address translation depends on the system’s configuration; in our case,
the kernel uses 4 Kb pages and 4 (ARM64°) or 2 (ARM327) layers of translation tables.

Next, we check the system call table. System calls are the interface between user space

and kernel space. Whenever a user space process needs to perform an operation that is the

Snttps://www.kernel.org/doc/html/latest/arm64/memory.html, Last visited: 12.04.2021
"https://people.kernel .org/linusw/arm32-page-tables, Last visited: 12.04.2021
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kernel’s responsibility, it invokes the appropriate system call. The system call table is an
array of function pointers indexed by the system call number. On the ARM and ARM64
architecture, the system call table resides in the .rodata section of the kernel binary,
which is marked read-only at boot time. If an attacker can remove the write protection, it
is possible to overwrite pointers in the array and alter the kernel’s control flow to execute
a different implementation of the system call. This is the most popular target of kernel

space rootkits. [9]

We were able to remove the write protection for both architectures. On ARM, we could
use the set_kernel text_rw® function to disable write protection, and we could re-enable
it with set_kernel text _ro”. Despite their names, these functions cover the write pro-
tection of the .rodata section as well. On ARM64 we used the update_mapping_prot
function'®, borrowed from the boot sequence. We changed the last parameter from
PAGE_KERNEL_RO to PAGE_KERNEL to disable write protection. Re-enabling the write pro-

tection can be done with the same function.

If kernel space randomization is disabled, we are able to retrieve the location of the system
call table after the kernel is compiled. With this information and the number of entries
in the table, we can easily determine the memory area to check. We do this by creating a

hash and comparing it against the one computed on the intact system call table.

Another common technique is inline hooking. In this case, the attacker chooses a function
to hook and replaces its first few bytes with an unconditional jump instruction and a
pointer to the implementation he wishes to execute instead of the original one. The
previously mentioned write protection is applied to the kernel’s text segment as well, but
similarly to the system call table, it can be removed by calling set_kernel text_rw or
update_mapping_prot on the text segment!!. We detect inline hooking, by hashing the
kernel’s entire text segment and comparing the hash value to a reference value. The
location and size of the kernel’s text segment is determined after the kernel is compiled.
Note that this solution does not support self modifying kernel code and kernel address
space layout randomization. The very same approach is used to verify the integrity of the

text segment of the system processes and our CA running in the REE.

The Linux kernel provides APIs for monitoring file system operations (e.g., fanotify and
inotify, which both use the same underlying kernel mechanism, fsnotify). We use fanotify
in our CA to ensure that no executable is started while our TA performs our checks. We
do this by placing marks at every mount point to make sure the kernel does not allow

execution until the CA approves it. While our checks are performed, the CA suspends

8https://elixir.bootlin.com/linux/v5.1/source/arch/arm/mm/init .c#L666, Last visited:
22.04.2021

“https://elixir.bootlin.com/linux/v5.1/source/arch/arm/mm/init.c#L675, Last visited:
22.04.2021

10https://elixir.bootlin.com/linux/vB.1/source/arch/arm64/mm/mmu. c#L525, Last visited:
18.09.2020

"https://elixir.bootlin.com/linux/v5.1/source/arch/armé4/mm/mmu. c#L445, Last  visited:
12.04.2021
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all execution requests. When the checks are completed, the marks are removed and every

execution request is approved.

Since we use another kernel functionality and we assume that the kernel is compromised,
our TA needs to check if the fanotify marks placed by our CA are intact. Therefore,
the CA passes the file descriptor returned by fanotify and the pid of the CA. The TA
then locates the fsnotify group among the open files using the received pid and the file
descriptor. This group stores a list to the marks placed. The TA checks if all the necessary

superblocks are marked.

3.2.5 Detecting hooks in the network stack

The checks we present in this subsection focus on the integrity of the subsystem of the
kernel responsible for networking. This component is called the network stack and rootk-
its often target it. The two features rootkits implement here are hiding open network
connections and a so-called “magic packet” functionality. “Magic packet” is when an at-
tacker implements some mechanism which can be triggered by a specially crafted network
packet. The payload can be arbitrary, but usually a shell is opened when the infected
system receives the packet. The common way to implement this functionality is to use the
Netfilter subsystem, the backend of Linux firewall solutions, but since the network stack
uses many function pointers, other solutions are possible as well. We present 3 different
checks to cover magic packets; this cannot be considered a full solution, probably there are
other pointers what can be hooked by attackers. However, our solution covers all common
methods, and some uncommon ones as well. We also present a check to discover port
hiding.

First we check the data structures of Netfilter. Netfilter uses chains to store firewall rules.
Every supported protocol (like IPv4, IPv6 or ARP) has 5 chains for different sections
of packet processing. These chains are called PRE_ROUTING, INPUT, FORWARD,
OUTPUT and POST_ROUTING, and their relationship is presented at figure 3.3.

Each of these chains act like an arraylist for so-called Netfilter hooks. These hooks have
a function pointer, and when a packet is processed by a chain, every entry’s function is
invoked on the packet. If all of them return with NF_ACCEPT, the packet is accepted and

it’s forwarded to the next entity.

The trick rootkit authors use here is that these hook functions can have side-effects.
Netfilter is a common choice, since it’s relatively easy to use, only a filter function needs

to be implemented, which executes the payload if all conditions are met.

We traverse all chains of all supported protocols and a hook in any of the chains is con-

sidered to be malicious, if the function pointer points outside of the kernels text segment.

The next structure we check is called icmp_control'?. The kernel has an array of these

structures (called icmp_pointers), and when it receives ICMP messages, it uses the type

2https://elixir.bootlin. com/linux/v5.1/source/net/ipv4/icmp. c#L193, Last visited: 12.04.2021
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Figure 3.3: Relationship of the 5 Netfilter chains. Arrows show
the directions of packet processing.

field of the message header as an index to determine which handler function must be
executed. We check the integrity of these structures the same way as we did previously:
if the function pointer points outside of the kernel’s text segment, it’s considered to be
hooked. We didn’t find any rootkit implementing magic packet functionality this way, but

we were able to create a proof of concept rootkit which hooks one of these pointers.

net_protocol13

structures can also be hooked. These are used by the kernel when the
network stack is initialized to register handler functions for different protocols, like TCP,
UDP or IGMP. These structures contain handler, error handler and demultiplexer function
pointers. Their integrity check is identical to the previous function pointer checks. Again,
we didn’t find any application of this technique in the wild, but we managed to create a

proof of concept rootkit.

Finally, we check for hidden sockets. Many files in the /proc directory use seq_ops
structures, used to generate the content of the file. These structures contain function
pointers called start, stop, next and show. The first two are called at the beginning and
end respectively, while next returns an entity which will be displayed by show. This is
how the Linux kernel supplies information about open ports via files like /proc/net/tcp
or /proc/net/udp. We collected as many seq_ops structures as we could and perform
an integrity check on all of them by verifying their functions pointers. Rootkits usually
hook show because it’s easier to implement a replacement for it, then implementing one

for next.

Bhttps://elixir.bootlin.com/linux/v5.1/source/include/net/protocol .h#L41, Last visited:
12.04.2021
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Chapter 4
Implementation

We use the Open Portable Trusted Execution Environment! (OP-TEE) as the trusted
execution environment. It was initially developed by ST-Ericsson and currently owned

and maintained by Linaro. Our implementation uses version 3.6.

Besides the TEE itself, which is essentially a minimal OS running in the Secure World,
OP-TEE consists of Normal World components as well: Linaro has its own fork of the
Linux kernel, which includes an OP-TEE driver. This driver is responsible for shared
memory allocation between the two worlds and provides the RPC functionality through
which the CA and TA can communicate. The driver exposes its functionality to the user
space via a block device. However, in order to increase usability, the driver also has a

counterpart in the user space, a daemon called tee-supplicant.

This daemon is capable of performing REE user-space actions and it communicates with
the driver using ioctl. This is a bidirectional channel, meaning that the driver is also

capable of requesting operations from the daemon.

There is also a method for extending the functionality of the OP-TEE kernel: pseudo-
trusted applications (PTAs). These applications must be compiled into the OP-TEE OS
and they are capable of exposing core functionality to TAs or CAs. We used this feature
to implement functionality necessary for accessing non-secure memory, which is otherwise
forbidden for TAs. We discuss how we read REE memory and files via PTAs from the
TEE in Sections 4.1 and 4.2, respectively, and describe our watchdog driver in Section
4.3. We also implemented checks in order to protect the REE components of OP-TEE,
these are discussed in Subsection 4.4. Finally we describe how our solution is built and
what environments we used for development and testing. These are covered by Sections

4.5 and 4.6, respectively.

https://waw.op-tee.org, Last visited: 20.09.2020
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4.1 Normal World memory API

To be able to read the memory of the REE kernel, we had to instruct the memory manage-
ment unit of the OP-TEE OS to map the physical memory range where the Linux kernel
resides. We determined this range from the boot log and modified core_mmu. c to register
it as non-secure RAM. This makes it accessible in the context of the TEE, but TAs cannot
read it due to address translation issues. The Normal and Secure Worlds are using two
distinct address spaces, which means that if we take the address of a Linux kernel object,
OP-TEE will not be able to process it. We solved this issue by translating Normal World
addresses to physical address, and back to Secure World virtual addresses. Fortunately,
OP-TEE provides us with tools to accomplish the latter task, so we only needed to imple-
ment the former one. The Linux kernel uses a macro called __virt_to_phys_nodebug for
kernel addresses, and so-called page global directories for user-space address translation.
Since the implementation of address translation is highly platform dependent, we discuss

it later in Section 4.6.

In order to access the physical memory in which the Linux kernel resides, we had to use
a PTA. The PTA implements the following interface:

read__mem This function expects two parameters, a memory region to copy data into
and a physical address to copy data from. It translates the address to a Secure
World virtual address, and after performing the necessary checks, it populates the

buffer with the requested amount of data.

hash__mem This function is used to create a hash from non-contiguous REE memory
ranges. It expects an array of phys_mem_range structures (containing a pointer
to a memory region and a size), and a buffer where to store the created hash. It
initializes a hash context, iterates through the array of physical memory ranges,
translates the addresses back to virtual addresses and feeds the specified regions to
the hash function. When it is done, it copies the produced hash into the output
buffer. We chose the SHA-256 hash function and OP-TEE OS is configured to use
the libtomcrypt library? by default.

This API was originally written by Szildard Domotor and Istvan Telek[13, 14], we only had

to apply minor modifications to make it work in our environment.

4.2 Normal World file API

OP-TEE does not provide access to the REE file system by default. However, we noticed
that OP-TEFE’s trusted storage stores encrypted data on that file system, hence we sus-
pected that there must be a way to access the REE file system from OP-TEE. After digging

“https://optee.readthedocs.io/en/latest/architecture/crypto.html, Last visited: 18.09.2020
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the source code, we discovered that the tee-supplicant daemon can be instructed via
RPC calls to perform REE file operations. However, the set of RPC functions available
to perform file operations were not written for general purposes, but they were designed
specifically for the trusted storage. As a result, to be able to pass arbitrary filenames as
parameters, we had to modify the open and opendir functions. Function readdir also
had to be modified due to a bug we discovered. Our pull request with the fix is merged
already?, but it is only included in the 3.10 release. We modified the previously mentioned
functions by making copies of them in our PTA and applying the necessary changes to
the copies. In addition, as the root of the trusted storage is /data/tee/ and filenames
are prefixed with this string in tee-supplicant, the PTA expects absolute filenames and
prefixes them with . ./.. before passing them to open and opendir. The PTA implements

the following interface:

hash_ file This function expects a filename as a string and a buffer to store the computed
hash in. It opens the requested file (if exists), reads its content by 4096 bytes and
passes these blocks to a hash function. When the end of the file is reached, it finalizes

the hash and copies it into the output buffer.

hash_ dir This function takes four parameters: a directory name, an output buffer, an
integer to indicate if we want to hash recursively (0 for false, 1 for true) and a pointer
to a blacklist, a null-terminated array of strings. It creates a hash context, opens
the specified directory (if exists) and reads its content. For every entry, we check the
blacklist first (to avoid hashing files with changing content, e.g. /etc/random-seed).
If the entry is not on the blacklist, we try to determine if it is a regular file or a
directory. Since we have no stat-like primitive, we do this by invoking opendir.
If opendir fails, we have a file, otherwise, a directory. For files, we do the same
as above: read the file by blocks and feed every block to the hash function. If the
entry is a directory and we hash recursively, then the function calls itself recursively
on the entry. Otherwise, the entry is skipped. Finally, the hash is copied to the
output buffer. We use the SHA-256 hash function from the libtomcrypt library.
This function supports two ways of recursive hashing: it is capable of feeding all file
contents into one hash, or create one hash per file/directory, and the parent’s hash is
computed from the hashes of its children. This method was implemented to comply
with later remote attestation solutions, where reference hashes might be computed

on other devices, by inspecting firmware images.

In order to ensure the proper functioning of the above described PTA, we had to apply
two patches to the tee-supplicant daemon. First, we had to give it root privileges,
otherwise it cannot read certain files. Second, tee-supplicant’s readdir handles certain
directories improperly: if a directory only stores hidden files, it is considered to be empty.

From the aspect of our persistence checks, this behavior can be fatal, so we had to patch

*https://github.com/0P-TEE/optee_os/pull/3962, Last visited: 18.09.2020
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the appropriate function to only skip ., .. and .nfs* (these files are created by an NFS

server, when an open file is deleted).

4.3 Secure World watchdog API

To properly handle discovered rootkit infections, our solution needs to be able to utilize
the functionality of a watchdog timer. Unfortunately, the watchdog driver implementation
in OP-TEE is rather incomplete, so we had to provide our own implementation in the form
of another PTA. This application is used only when we test our solution on an i.MX board,

which will be described in detail later in this chapter.

The i.MX 6 SoC (System-on-Chip) we used contains two watchdog timers, namely WDOG1
and WDOG2. The former one can be used both from the Normal and Secure World, while
the later one can only be used by software running in the TrustZone. When these timers
are set and enabled, they start to count down from the supplied timeout value, and if zero
is reached, it emits a signal which will reset the entire system. Resets can be avoided, if
predefined values are written into the appropriate register of the watchdog before zero is
reached. In this case, the countdown starts again. This mechanism is typically used to

detect hardware failures that might be solved by the reset.

NXP (manufacturer of the i.MX SoCs) use the same watchdog hardware in every SoC of
the i.MX series, named imx2-wdt. It has 4 registers, each 16 bits wide:

Watchdog Control Register (WCR) : to configure properties and timeout of the
watchdog. The lower 8 bits are used to enable/disable certain features of the timer,
while the top 8 bits hold the timeout value (0x0O = 0.5 sec, Ox1 = 1 sec, ...,
Oxff = 128 sec).

Watchdog Service Register (WSR) : this is used to "service" the timer, so it will
restart the countdown instead of resetting the board. First the value of 0x5555
must be written into this register, and then it must be overwritten with OxAAAA to

complete the service routine.

Watchdog Reset Status Register (WRSR) : stores the source of the last reset for

debugging purpose (not used by our implementation).

Watchdog Miscellaneous Control Register (WMCR) : for additional configura-

tions (not used by our implementation).

These registers must be mapped into the virtual address space; in our case, this is per-
formed by OP-TEE OS. We can get the virtual base address by translating the timer’s
physical address to virtual. From the base address of the timer, we can access the registers

simply by adding their offset to the base address.

23



The watchdogs are connected to other hardware components, namely the System Reset
Controller (SRC) and the Secure Non-Volatile Storage (SNVS). The SRC performs the reset
operations, while the SNVS can wipe sensitive information from its registers before invoking
the SRC. This is done only if WDOG2 reaches zero. They are both connected to the Generic

Interrupt Controller (GIC), since watchdogs can generate interrupts before the timeout.

GIC

WDOG SRC

Y

wWDoG2

SMVS

Y

Figure 4.1: System-level connectivity of watchdogs.

It’s important to note that our PTA is not a full-featured driver, it only implements the
functionality absolutely necessary for our solution to work. This can be accessed via the

following interface:

setup this function performs the initialization of the watchdog. It sets the appropriate
configuration, the timeout received as parameter and starts the countdown. Its only

parameter is an 8 bit long unsigned integer.

set__timeout this function can be used to set a new timeout value. When a new value
is set, the timer won’t start to use it immediately, it will only be loaded when
the watchdog is "serviced". Setup uses this function to set new timeout. Its only

parameter is an 8 bit long unsigned integer.

keep__alive writes the appropriate values into the WSR, so the timer won’t reset the board.

Setup uses this to start the timer. This function does not have any parameters.

reset__now this function is used to reset the board immediately. To do this, it sets the
timeout to zero (0.5 sec) and loads this new value by invoking keep_alive. This

function does not have any parameters either.

Currently our implementation is able to use WDOG1, but not WDOG2. We suspect, this might
be because SNVS is not configured to react to the security violation signals emitted by the
TZ watchdog.

24



4.4 Verification of OP-TEE specific components

As we do not trust software components in the REE, but our implementation relies on
using OP-TEE’s Normal World components, we needed to ensure the integrity of them.
For OP-TEE’s Linux driver, we did not need to implement any additional checks, because
it is compiled as a part of the kernel, so its integrity is verified when our TA checks the
integrity of the kernel code. The daemon tee-supplicant, however, had to be slightly
modified before we applied the same technique as we used for checking the integrity of our
CA. First, we built it as a static binary. Next, we had to ensure that the pages containing
the code of the daemon are present in the memory, and not swapped out. We implemented
a Linux driver to create an entry under /proc. If pids are written to it, it looks for the
corresponding task, and if it is a thread of tee-supplicant, it generates a page fault for
every page of its code segment. With these preparations, we can apply the same check on
tee-supplicant as we did on the CA, except that we compute the hash of every task,
if it has the proper name (tee-supplicant). This check is executed right after we check
the code of our CA. We could extend this kind of integrity check to other tasks as well,
as described in Subsection 3.2.4, however, our implementation currently verifies only the

tee-supplicant daemon and the CA.

4.5 Building

OP-TEE provides makefiles for the example applications which we can reuse for building
our solution and a framework for building TAs. Our solution however requires some extra

steps to be built successfully, so we summarize these steps in this section.

At this point, we must note that we actually compile 2 CAs and 1 TA. The two client apps
are responsible for triggering the initialization routine of the TA and invoking the checks
repeatedly. These could have been implemented in one binary as well, but we found this

approach more comfortable.

Building a CA is simple: we use an example makefile to cross-compile our application.
All .c files are compiled by gcc to object files and the linker creates an elf file from
these. The only customization we implemented is to compile statically linked executables,
meaning that all necessary library functions are part of the executable and not linked to
it in runtime. We do this to be able to verify the integrity of the code section. This way
we only need to implement one hash check, we don’t need to look up all the used libraries
in the address space of the running application. To achieve this, we added -static to the

linker flags.

TA building is more complicated, many variants can be created. We use a legacy TA
stored on the REE filesystem. These are digitally signed but not encrypted. OP-TEE

provides us build scripts to compile such an application. The TA file is formatted as:

hash = H(<struct shdr> || <stripped ELF>)

25



signature = RSA-Sign(hash)

legacy_binary = <struct shdr> || <hash> || <signature> || <stripped ELF>

shdr is a structure containing metadata like the used cryptographic primitives, size of the

hash and signature and others.

The build scripts provided by OP-TEE produce this file, we only need to enumerate the
source files we want to be compiled and optionally locations for header files, compiler and

linker flags.

To be able to interact with the memory image of the kernel, we had to implement some
preparation steps. First, for interpreting the data found in the memory image, we needed
to know the layout of several data structures used by the kernel, like tasks or inodes. A
possible solution would have been compiling these manually, but the structures we use
usually depend on many more structures, what also have dependencies, so we abandoned
this approach. Instead, we use a script called dwarfparse?, which is capable for generating
header files based on the debug section of an executable. In our case, this executable was
a dummy kernel module which uses the data structures we need in our application. These

headers were generated and manually fine-tuned for each platform we support.

Another issue is the location of data structures in the kernel memory. Many are dy-
namically allocated, so we cannot determine their base address and access them directly,
however they might be accessible from some global variable, like tasks through the task
list from the initial task structure, or the list of superblocks, accessible from a list defined
in the data section of the kernel. To obtain addresses of these data structures, we use the
System.map file of the kernel. This is essentially a symbol table used by the kernel. Using
a simple script, we can generate a header file defining addresses. The input of the script

is the symbol table we use to look up addresses from a list of pre-defined symbols.

Many of our checks has to be performed only if the certain functionality is compiled into
the kernel. This can be achieved by writing configuration manually for each kernel, but if
the kernel is reconfigured, our config needs to be changed as well. We solved this issue by
using another file generated by the kernel, called autoconf.h. This header is generated
from the kernels configuration and contains macros the developers can use to check if
certain configuration options are enabled or not. Before compiling our application, we
copy this file to our include directory. It is also used to check if certain features we rely

on are enabled, and if not supported ones are disabled.

Besides using autoconf.h, other aspects of our application can be configured as well.
For example, we were not able to clearly determine all parameters of userspace address
translation from autoconf.h, and directories needed to be checked by the persistency
component can also vary between platforms. We solved this issue the same way as Linux
developers did: we created a Kconfig file to describe the possible configurations of our

application and borrowed a minimal set of python script from the Kconfiglib® project.

‘https://github.com/realmoriss/dwarfparse, Last visited: 08.04.2021
"https://github.com/ulfalizer/Kconfiglib, Last visited: 08.04.2021
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We created default configurations for all of the supported platforms and our build system
uses these and the scripts to generate a header file, containing macros for checking the

configuration options.

4.6 Development environments

4.6.1 Qemu

As one of our development environments, we used OP-TEE’s official Qemu-based distri-
bution. OP-TEE has a github repository® containing manifest files. By using these, users
can clone several repositories and build the whole solution with a few commands only. One
of these manifest files describe an environment based on Qemu for Aarch64. It includes
the OS, client, test, benchmark and example repositories of OP-TEE, the ARM Trusted
Firmware, a bootloader, Buildroot and a custom Linux kernel with the OP-TEE driver
included. Also there is a build package, which can be used to compile all the mentioned
components and boot a virtual machine suitable for development and experimentation
with OP-TEE. The process of setting up an environment like this is briefly described in
the documentation of OP-TEE”

This was an ideal and comfortable development environment, but as we proceeded with
the development, we discovered special needs of our rootkit detection solution, thus we

had to customize certain components.

First, to fit our needs better, we had to modify the configuration of busybox. Busybox is
software suit aiming to be a minimal replacement of classic Unix utilities. It implements
the functionality of more than 300 commands in one single executable, making it an

excellent choice for embedded systems.

In our case, the functionality of ps is also implemented by busybox. It is also
capable of listing threads, not processes, which suits our needs better, since we
work with tasks. This feature can be enabled by -T flag. To compile it into
busybox, we had to modify its config via make busybox-menuconfig and enable
Process Utilities/Support thread display in ps/pstree/top. After this modifi-
cation, we had to recompile Buildroot, which recompiled busybox with the requested

modification and created a new rootfs file.

Some modifications also had to be performed on OP-TEE. These patches were discussed
in details in Section 4.1 for OP-TEE OS and Section 4.4 for OP-TEE client.

In order to make it compliant with our solution, the configuration of the Linux kernel
had to be modified as well. Since we check the hash of the entire code segment of the

kernel, components using self-modifying code break this check. We changed the file used

Shttps://github.com/0P-TEE/manifest, Last visited: 06.04.2021
"https://optee.readthedocs.io/en/latest/building/devices/qemu.html#qemu-v8, Last visited:
06.04.2021
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by OP-TEE’s build system to generate kernel config, to not allow components of KVM to
be compiled into the kernel. Since the intended use-case of our application is to protect

IoT devices, the lack of virtualization support in the kernel is acceptable.

A new driver had to be introduced: as we check code segments of user-space applications,
we need all their code containing memory pages to be in the physical memory, not in
swap files or swap partitions. The easiest way to achieve this was to create a driver which
can generate page fault events on-demand. These event occur when accessing a memory
page fails because it is swapped out. The kernel reacts to this by reading the page into
the physical memory. For our CA, we could do this easily within the application, but
to be able to hash the text segment of arbitrary processes without modifying them, we
had implement a Linux kernel module which triggers the page fault events. It creates an
entity under the /proc directory of the system, and if a pid is written to this file, the
driver checks if the corresponding process is present in its whitelist and triggers a page
fault for all of the pages containing the code segment of the process. The heavy lifting is
done by the get_user_pages_remote® function of the memory management subsystem,

we only had to implement the process lookup and invocation of the function.

Although this module could be compiled separately from the kernel and inserted by the init
system, in the design phase we decided to disable module support. This is an acceptable
restriction for IoT devices, it makes installing rootkits significantly harder and solves
the issue of differentiating malicious modules from benign ones. Therefore we decided
to compile this module as part of the kernel. However, to make testing easier, module
support wasn’t disabled in our development environments; all the kernel-level test rootkits
presented in section 5 are implemented as Linux kernel modules. In a production-ready
environment, module support must be disabled and all necessary drivers must be compiled

into the kernel!

In the previous section, we discussed how we use the symbol table to locate kernel objects
in the virtual address space. However, not all the objects we use are meant to be accessible
this way, like runquques. They are per-cpu data structures, meaning there is one for every
CPU, and a special section of the memory is dedicated to contain such variables. To
get the location of the runqueues, we had to patch the kernel to print the addresses
somewhere in the boot process. We chose the point before the init system is invoked,
namely the run_init_process function?. We placed one print call into the function for
every runqueue, and obtained their addresses via the cpu_rq!® macro. The addresses

printed by the kernel are hard-coded into our application.

Another important and highly platform-dependent component of our solution is the one
responsible for address translation. We need it because the Normal and the Secure World

are using two distinct virtual address spaces. When the physical memory holding the

®https://elixir.bootlin.com/linux/v5.1/source/mn/gup.c#L1114, Last visited: 08.04.2021
Shttps://elixir.bootlin.com/linux/v5.1/source/init/main.c#L1007, Last visited: 11.04.2021
10https://elixir.boo‘clin.com/linux/vS.1/source/kernel/sched/sched.h#LQ987 Last  visited:
11.04.2021
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Linux kernel is mapped into the address space of OP-TEE, it can be accessed via TEE
virtual addresses. The kernel data structures however use REE virtual pointers, and
directly using these would result in a translation fault, since these are incomprehensible
from OP-TEE’s point of view. We solve this issue by translating REE virtual addresses
to physical ones, what we can translate to TEE virtual ones. OP-TEE solves the later

one for us, but REE address translation must be implemented in our TA.

Linux kernel address translation consists of two parts: kernel- and user-space translation.
Both of them had to be implemented, since we need to access the memory of certain

processes as well.

To translate kernel addresses, we copied the ARMG64 version of a macro called
__virt_to_phys_nodebug and all of its dependencies transitively. This resulted in ap-
proximately 30 macros and it’s capable of translating kernel address to physical addresses

by performing only simple arithmetic- and bit-operations.

User-space address translation is less straightforward: it’s implemented using a so called
page table hierarchy, where memory pages contain pointers to other memory pages, and
parts of the virtual address can be used as indexes within the current page to look up
the page on the next level. This way pages form a tree, and a lookup operation can be
considered as a path in the tree, from the root to a leaf. The leaf contains the physical

address of the memory page, corresponding to the virtual one.

In our Qemu based environment, the kernel uses 4 levels of page tables, each page having
the size of 4kB. Translation is originally performed via macros capable of determining the
offset of the next pointer in the current page, however, in our case, we need to access these
pages via the normal world memory api. Figure 4.2 illustrates how these page tables are

used to look up pages from virtual addresses.

4.6.2 i.MX 6

Using Qemu as a development environment was an ideal choice, since it’s easy to use, works
out of the box and very little customization was necessary. However it’s not suitable for a
full-featured proof of concept solution, since our application relies on mechanisms provided
by certain hardware elements. Thus we implemented the rootkit detection solution for a
real hardware as well, where we could use a watchdog timer to handle discovered infections
properly.

To achieve this, we used an i.MX 6Quad SoC (System-on-Chip) with an Apalis Evaluation
Board, a carrier board which provides a wide range of peripherals. In this environment,
we could implement Secure Boot and we could utilize the functionality of a watchdog
timer. This way we can test our solution in an environment, where we can defend our
application against rootkits trying to disable the detection solution. Also Secure Boot
makes it possible to handle infections by resetting the system, since we know it will be in

a clean state when it finishes the boot process.
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Figure 4.2: This figure illustrates how sections of a memory ad-
dress are used to look up physical pages by travers-
ing the page table hierarchy on ARM64. mm->pgd is
a pointer in the memory management object of the
task.

Unfortunately, OP-TEE does not support i.MX6 the same way as it supports Qemu or
Rasperry Pi. OP-TEE OS is ported to i.MX6, but there are no manifest files, so we had
to create our own build environment. We used Buildroot, just like OP-TEE’s manifest
files, but in this case, we had to setup a custom Buildroot project to collect, compile and

assemble the necessary components.

We used version 2019.08-rcl of Buildroot, which had to be patched first. It would use
the version 3.5.0 of OP-TEE, however our solution was developed to 3.6.0. So we had
to delete these packages from Buildroot and we supply the appropriate version of these

components as external packages.

Our customized Buildroot project consists mostly of configurations, patches and custom
packages. In this section, we first describe the used configurations. Then we discuss the
applied patches and the packages added to Buildroot. Finally we describe how we had
to modify some files on the created rootfs, how we implemented secure boot and what

platform specific features we had to implement in our solution.

We added our own busybox configuration, where we enabled thread listing in process util-
ities, like described in the previous section. We also have our own Linux config. This file

is based on the default iMX6 configuration of the kernel and contains the same customiza-
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tions as the Qemu Linux config, like the pagefaulter driver and disabling KVM, and some
more. We had to enable fsnotify, since it was disabled by-default. Also we had to disable
CONFIG_ARM PATCH PHYS VIRT!! and CONFIG_HIGHPTE'2. These are memory management
related configurations, and their absence made it easier to implement address translation
for this environment. Regarding OP-TEE, we don’t have a config file to collection our con-
figuration options, we had to place place them in the Makefile used to compile the package
itself. Here we had to specify the platform we use, the architecture and the address where
the Linux kernel will be loaded into the memory. We also want the device tree files to be

embedded in the image and we enabled the Power State Coordination Interface (PSCI).

Our patches are pretty much the same as in the Qemu environment: we also had to patch
the Linux kernel to get runqueue addresses and we also had to patch OP-TEE OS and the
client. There is one additional patch: since OP-TEE OS doesn’t have device tree files for
the evaluation board we use, we had to copy some device tree files from the Linux kernel
to the appropriate location in order to make sure that every hardware component can be
used by the TEE.

The patches are collected into a directory, where every package has its own subdirectory.
Patch files are placed in these folders and Buildroot is capable of applying them before it

compiles the packages.

We also extended Buildroot with several external packages. We compile the test, client and
OS packages of OP-TEE this way, so we can use the version we used when we developed
on Qemu, and we can set our configuration for OP-TEE OS more easily. Although it’s not
an external package, but we must note that we use the same Linux kernel as we did for
Qemu. Our PTAs are also added as external packages, but they are not compiled directly.
Their source is copied to the appropriate directory of OP-TEE OS before it’s built, and
they are also copied to the build directory of Buildroot, so our TA can find the necessary
header files. Our rootkit detection solution is also an external package. The build scripts
of OP-TEE are used to compile the TA, while the CA is cross compiled with the toolchain
used by every other package. We also have a test rootkit which will be discussed in details
at the end of Section 5.1; it’s built by Buildroot’s makefiles for kernel modules. Finally,
we created a vulnerable web application for demonstrational purpose. It doesn’t require
building, the PHP files are just installed to the appropriate directory of the target folder,

which will be used to create the image of the rootfs.

We also have an overlay directory whose content is applied to the rootfs created by Buil-
droot before it packages the created file system into a single file. This overlay contains
configuration files for the web server we use to host our demo application (described later
at the end of Section 5.1), a configuration file for sudo (also used by our demo) and a

network config file to assign a static IP address to the network interface of the board.

"https://elixir.bootlin.com/linux/v5.1/source/arch/arm/KconfighL229, Last visited:
19.04.2021

2https://elixir.bootlin.com/linux/v6.1/source/arch/arm/Kconfig#l1622, Last visited:
19.04.2021
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We also managed to partially implement Secure Boot on the device. An ideal implemen-
tation of the boot process would be the following: The firmware checks its own integrity
using a key stored in a write-once hardware component. Next, it checks if OP-TEE is
intact and starts it. When OP-TEE finished initialization, it gives the control back to the
firmware, who checks the integrity of the boot loader (U-Boot in our case). If the check
succeeds, the firmware starts the boot loader. It then checks the Linux kernel and the
rootfs, and then starts the REE OS. The integrity check of the rootfs can also be performed
by the Linux kernel itself. Our implementation executes a slightly different flow and some
of the low-level components are not checked. In our case, the firmware starts the boot
loader, which executes OP-TEE. OP-TEE then starts the Linux kernel. Integrity checks
are only performed on OP-TEE, the Linux kernel and the rootfs. Figure 4.3 illustrates
the difference between the described approaches. The main reasons of this setup was the

lack of Arm Trusted Firmware for i.MX6 and the lack of time for further refinements.

Cptimal Boot flow

—
Firmware OP-TEE
-—
Uboot B Linuzx — Rootis

Current Boot flow

Firmware e Uboot — | OP-TEE — Linux —_— Roaotfs

Figure 4.3: The optimal and currently implemented boot flow.
Checked components are green, unchecked ones are
yellow.

To achieve this, we created a script which is executed by Buildroot after it created binaries
from the Linux kernel and OP-TEE. This script creates a so-called FIT image which can
be loaded by U-Boot. It contains the kernel, OP-TEE, the rootfs and device tree blobs, all
digitally signed. We modified the boot command in U-Boot, so it downloads this image
via TFTP, and if all signatures are valid, it boots OP-TEE, which will pass the execution

to the Linux kernel, when it finished initialization.

Finally we need to discuss the platform specific components of our solution. One of these is
an error handler function which act as a wrapper around the TEE watchdog API, described
in Section 4.3. This is required to maintain compatibility with the Qemu environment,
where the watchdog API is not present. This function invokes the reset now routine of

the PTA when any of the checks fail. Beside this, we had to implement address translation
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for this environment as well. The translation of kernel addresses is even simpler than it
was for ARM64: with the proper configuration (CONFIG_ARM_PATCH_PHYS_VIRT disabled)

we only need one macro to compute addresses, which depends on two others.

User-space address translation is, however, just as complicated as it was for ARM64. Here
we only have 3 layers of page tables (actually only 2, the kernel is tricked to handle them

as 3 layers). Translation happens similarly as described in Subsection 4.6.1.
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Chapter 5

Evaluation

In this chapter, we describe the rootkits we used for testing our solution. Unfortunately,
only a few 3rd party rootkits could be tested against our solution, so many checks were
tested by rootkits written by us. We describe what are the goals of each rootkit, how they
implement it and why our solution is capable (or not capable) of detecting them. We also
summarize which rootkit is detected by which check in table 5.1. Later, in Section 5.2 we

describe some performance measurements regarding the checks we implemented.

5.1 Test rootkits

VFS proc fops hooking: The goal of this rootkit is to hide a process, and it does this
by hooking a function pointer in the VFS layer. Two functions are responsible
for populating the /proc directory: most of the files are returned by the lookup
function of the inode operations structure, but creation of the pid directories is the
responsibility of the iterate_shared member of the proc_root_operations, a file
operation structure in the .rodata section of the kernel. By designing an appropriate
replacement, we could hide a specific process in this layer; namely, we used init for
testing, since it’s always present in the system. Our replacement function is a copy of
the original, except for one thing. It calls our version of proc_pid_readdir, which
we also copied from the kernel and slightly modified to ignore tasks whose pid is
equal to the one we intend to skip. Our solution can detect this rootkit, since it
hooks a function of a well known file operation structure, which is checked at the
beginning of the VFS layer checks. When we reach proc_root_operations, we
detect that the value of iterate_shared is not in the allowed interval, so an error

is raised.

VFS inode number 0: This rootkit achieves the same goal in the same layer with a
different method. The inode structure has a member called i_ino, which holds
the inode number. Some file system implementations, like the procfs, for example,

handle 0 as an invalid value for the inode number. Thus such filesystems might not
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list inodes with invalid inode numbers. In case of the procfs, we were able to hide a
process by setting the corresponding inode’s number to 0. In our VFS checks, every

time we check an inode, we inspect the inode number and raise an error, if it’s 0.

Removeing from IDR: As we described earlier, Linux 5.1 uses a radix tree to store
pid structures, and these structures have lists of tasks with equal ID, thread group
ID, etc. As we stated earlier, this tree is used to fill /proc with the currently
active processes. This rootkit removes a pid structure from this tree to hide the
corresponding process. We can easily detect this kind of tampering: before executing
our process targeting consistency checks, we query ps, and we find the hidden process
in the list of tasks. However it’s missing from the output of ps, thus we raise an

error, since a hidden process was found.

Removeing from the task list: This rootkit is very similar to the previous one, except
that it removes a task from the list of tasks. It was originally written to an earlier
version of the kernel, since at an early stage of development we were experimenting
with Linux 4.12, where /proc was populated from the task list. In our current
environment, this rootkit is not capable of hiding processes, yet it can demonstrate
a powerful property of our solution. We can detect this rootkit because it makes
kernel objects inconsistent. When the list, the tree and the IDR are traversed, a
union of the found pids is created, and every one of the collected lists is checked
against the union. At this check, our solution raises an error, since there is a task

which is present in the union, but missing from the task list.

Removeing from list, tree & IDR: An obvious improvement of the previous two
rootkits is to remove a process from all three data structures containing information
about processes. Removal from the task list and the IDR are trivial. The process
tree however is a bit more complicated because of the way Linux implements the
tree. Each process has a pointer to its first and last child, and the children are
linked to each other via the siblings list. To successfully remove a process from this
tree, we have to remove it from the list of its siblings and from the parent as well.
In this case, we have four cases: if we remove the only child, the first, the last or
if the parent does not reference the process directly. If all of these removals were
successful, the detection depends on the payload of the rootkit, the removed process.
If the payload is a computationally intensive task, like a crypto miner for example,
it is likely to be detected, since it spends most of the time in runqueues, where we
can find it. If the rootkit hides a backdoor, or something that spends most of its

time waiting, it is unlikely to be detected.

System call hooking: Our next rootkit hooks the system call table. It overwrites a
pointer in the syscall table with one pointing to its own code segment, so if the
hooked syscall would be called, execution would jump to the function implemented
by our rootkit. We can detect this, since when we hash the syscall table, the hash

won’t be the same as the hash of the intact pointer array.
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Inline hooking: This rootkit modifies the text segment of the kernel. It overwrites the
first few bytes of one of the functions implemented in the kernel. Just like in the
case of the syscall table, the computed hash will change after the hook and we can
detect this.

Netfilter hooking (ICMP& TCP): We implemented two rootkits targeting the Net-
filter subsystem, one for ICMP and one for TCP. Both of them create a new hook
with a function implemented by them. They are capable of executing arbitrary
payload if an incoming packet matches the criteria implemented by these functions.
Since these functions reside in the memory area where kernel modules are loaded,
and not in the text segment of the kernel, by inspecting the function pointers of the

hooks, we are capable of detecting these rootkits.

ICMP controls hooking: This rootkit hooks one of the pointers in the icmp_control
array used to determine what function should handle the incoming ICMP packets.
We hooked the function responsible for handling ICMP echo requests, so our own
implementation is executed when the system is pinged. Again, since the value of the
function pointer in one of the icmp_control structures is not in the allowed interval,

we raise an error.

Protocol hooking: This time, we hooked the handler member of the icmp_protocol
structure. This is the function which handles all ICMP packets and in fact, it
calls the appropriate handler described at the previous rootkit. The mechanism of
detection is identical to the previous one: we check all function pointers of all of
the net_protocol structures, and as we identify one pointing outside of the kernel’s

text segment, an error is raised.

seq__ops hooking: This rootkit hooks a structure called tcp4_seq_ops, the seq_ops
structure for IPv4 TCP. It is used when the content of /proc/net/tcp is printed.
We overwrite the value of the show pointer with our own implementation, which
calls the original, and if it finds the port to be hidden in the buffer where the output
is collected, it sets the position back to the beginning of the line, so it will be
overwritten by the next line. As we check all available seq_ops structures, when we

reach tcp4_seq_ops, we find the invalid pointer and raise an error.

So far, we described the test rootkits that we created for testing our solution. These were
specifically written to test certain features of our rootkit detection solution. However we
were able to make some open source rootkits work in our environment. Next, we describe

these and the way how our solution could detect them.

BEURK: BEURK is a userspace rootkit, the name stands for Beurk Experimental Unix
RootKit. It exploits the linker’s capability to load a library into the address space
of a process before everything else, thus, it can hook certain library calls. It creates

a backdoor when the accept function is called and certain conditions are met (local
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port matches its configuration, remote port is in range specified in its configuration).
The created process is hidden from every other process, except its children. This
is achieved by hooking the readdir and readdir64 functions, which are wrappers
around the getdents and getdents64 system calls, respectively. When they are
called on /proc, if the next entry is the pid of the backdoor, then it is skipped. We
were able to detect the presence of the BEURK backdoor because it is missing from

the output of ps, but present in the task list.

A HORSEPILL variant: HORSEPILL [23] is a ramdisk-based rootkit, which exploits
namespaces. It infects klibc, a minimal library used in the early user space. It
hides a process by creating a new pid namespace and executes systemd in this
namespace. Normally, it would not be possible to see kernel threads with this setup,
but HORSEPILL has a workaround to fake these in the freshly created namespace.
Unfortunately, HORSEPILL is not compatible with our test environment, as we use
a different init system, we do not use klibc, and we do not assemble ramdisks on
the system like personal computers usually do. However, we were able to port the
idea behind HORSEPILL to work in our environment. In our case, the ramdisk is
assembled by Buildroot!, and starting the init process happens as follows: First, the
Linux kernel calls /init, a minimal shell script, that sets the 3 default file descriptors
to /dev/console. Then, it invokes /sbin/init, which is a symlink to busybox?.
We managed to start our HORSEPILL variant by replacing the symbolic link to
another binary. This binary clones two new threads and executes the original init
and our backdoor in them. Busybox is executed in a new pid namespace to hide
the backdoor from the rest of the system. Our implementation lacks HORSEPILL’s
feature of faking kernel threads, therefore, they appear as hidden processes to our
detection solution, much like the backdoor process. Originally, HORSEPILL fakes
kernel threads by collecting their names, creating new processes in the namespace
of init, and renaming them to the names of the kernel threads. The output of our
detection mechanism would be the same in this case: we would find the original ones
and the backdoor.

Diamorphine: Diamorphine is a kernel-space rootkit compatible with a wide range of
Linux kernel versions (2.6.x-5.x). Originally it was supporting x86-based architec-
tures only, but we were capable of porting it to ARM64 and our pull request?® is
already accepted. Diamorphine uses system call hooking to hide files and processes.
getdents and getdents64 are hooked to hide files and processes while kill is
hooked to provide easy communication with the rootkit. Files are hidden if they
have a magic prefix, while processes can be turned invisible if they receive signal 31.
Since the rootkit is tampering with the syscall table, our hash check can detect it

easily.

"https://buildroot.org/, Last visited: Sep 18, 2020
*https://busybox.net/, Last visited: Sep 18, 2020
3https://github.com/mOnad/Diamorphine/pull/21, Last visited: 14.04.2021

37


https://buildroot.org/
https://busybox.net/
https://github.com/m0nad/Diamorphine/pull/21

Finally we created a complex rootkit, a combination of our previously described rootkits,
and an environment where we can properly demonstrate the capabilities of our solution.
This test rootkit was designed to grant access to a compromised system and hide the
backdoor as much as possible. First, it creates a Netfilter hook which spawns a backdoor
process if a packet is received on a predefined port which is coming from a predefined
port and its content is a secret defined at compile time. When the rootkit creates the
backdoor process, it immediately hides it by removing it from the list of tasks, the process
tree and the IDR as well. The payload of the rootkit is a bind shell written in go, so it
opens a TCP port immediately. To hide this, our rootkit hooks the appropriate seq_ops
structure. In order to operate as stealthy as possible, our rootkit implements a special
dropper mechanism: the executable of the backdoor is stored inside the data segment of
the rootkit and it’s spawned by creating a temporary file which exists only as long as the
process is started. This way we do not need to write it to a disk and start it from there.
For a proper demonstration, we implemented a vulnerable web application running on the
i.MX6 board. This application contains a local file inclusion vulnerability? which can be
exploited by log poisoning®. This can be used to install our rootkit. Our detection solution
is invoked periodically, and once the rootkit is installed, we can detect its presence by the
Netfilter hook. If the backdoor is triggered, the hidden process might be detected, but
since we implemented DKOM thoroughly, it’s unlikely. The Netfilter hook however will
be detected, and if our solution wouldn’t stop scanning on the first suspicious result, it
would detect the seq_ops hook as well. When the malicious Netfilter hook is detected, the
watchdog driver is used to reset the board and it boots again from an clean, uninfected
image containing the kernel, the TEE and the root filesystem. Signature verifications

ensure the integrity of these components.

5.2 Performance measurements

Performance impact is always a concern with anti-malware solutions. In this subsection,
we present the performance characteristics of each part of our implementation and review
their impact on the system. These measurements were performed in our Qemu-based
environment, which uses 1057 MBs of RAM and 2 Cortex-A57 cores.

Since many of our checks are process-related, we measured the execution speed depending
on the number of currently running processes: we spawned new background processes
with the less command, which did not consume relevant amount of CPU time slices,
but increased the size of the data structures we needed to check. Figure 5.1 shows the

execution time of the checks separately and in total as well.

RPC call stands for the communication between the CA and TA: all necessary input is
collected, the TA is invoked and it performs normalization of its input. As expected, the

number of running processes is irrelevant in this case.

‘https://www.acunetix.com/blog/articles/local-file-inclusion-1fi, Last visited: 15.04.2021
"https://owasp.org/www-community/attacks/Log_Injection, Last visited: 15.04.2021
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Check VES K. obj. Integrity Network

Rootkit Ops ‘ Ino | Adm ‘ Sched | K. text ‘ Syscalls | Nf ‘ Proto ‘ Tcmp ‘ seq_ops

vis proc fops hook | X

inode number 0 X

idr remove X

list remove X

wait hider ?

syscall hook X

inline hook X

icmp nf hook X

tep nf hook X

protocol hook X

icmp ptr hook X

tcp seq_ops hook

prototype test ? X

beurk X

HORSEPILL X

Diamorphine X

Table 5.1: The test rootkits and the checks detecting them.
(X: successful detection, 7: possible detection)

Checking the integrity of the VFS does not scale well. This is due to the nature of the
/proc file system. For every process, approximately 300 new files are created by the
kernel. These are regular files and symbolic links, resulting in an increasing number of

inodes. Our checks scale linearly with respect to the number of inodes.

The DKOM check achieves better performance with respect to the growth in the process
count: for m processes, it traverses a list made of n elements and two trees with n nodes
each. It also sorts arrays of n pids and performs binary searches to find differences between
the collected lists of pids.

Integrity checks scale very well, the hash check of the kernel’s text segment and the
system call table can be performed with constant time complexity, and interaction with
task-related data structures is necessary only when it is looking for the task of the CA
(for the purpose of hashing its text segment and verifying the integrity of the fanotify
marks) and the tasks of tee-supplicant. However, extending this integrity check to other

tasks would probably have an impact.

After the integrity checks, our solution performs the file system checks. These checks have
no relation to the process count, they depend on the number of files included in the check
and the overall size of those files. This part is by far the most time consuming, since it

requires RPC calls and world switches to read the bytes of the files.

Finally, we perform checks on the network stack. As expected, the execution time of these

checks is independent from the process count. The performance of the Netfilter check is
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Figure 5.1: Execution time in seconds depending on the number
of processes

linear to the number of active firewall rules, while all the other checks in this section has

a constant execution time.

Our plot shows that these checks are sometimes executed faster, than the RPC call itself,
which is part of all our measurements. This anomaly comes from the way we measure: we
calculated averages from multiple execution, and due to their small performance impact,
they are indistinguishable from the baseline. On our second plot, which shows total
execution time, they practically disappear, since there we plot network_avg — rpc__avg.

To circumvent this issue, we present the average execution times in Table 5.2

While our scanning process is being executed in the TEE, it uses only one of the cores. As
a result, the REE can execute on the other core. Processes running in the REE are not
halted while we perform our checks, but significantly less resources are available to them
until the checks are completed. Until our TA reaches the file system checks, the core it
uses can only execute REE code when an interrupt occurs that has to be handled in the

REE. During the file system checks, however, our implementation needs to wait for a lot

40



Proc count
Check ~55 ~TH ~95 ~115 | ~135
RPC calls 0.168 0.189 | 0.214 | 0.215 | 0.236
VF'S check 2.412 2.906 | 3.404 | 3.891 | 4.322
DKOM checks 2.311 2.568 2.82 2.928 | 3.129
Integrity checks 1.876 1.922 | 1.981 | 2.008 | 2.068
File system check 39.2871 | 38.988 | 39.055 | 39.232 | 39.654
Network checks 0.178 0.219 | 0.208 | 0.234 | 0.254

Table 5.2: Average execution times in seconds, the raw data presented in Figure 5.1

of I/O operations, and while waiting, control is given back to the REE, where the Linux

kernel’s scheduler can execute other tasks on the first core as well.
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Chapter 6

Discussion

In this section, we present some known weaknesses of our approach and discuss ideas to

overcome them.

6.1 Known limitations and possible solutions

The first limitations comes from OP-TEE and the way it handles interrupts. Interrupts
are divided into two groups, foreign and native interrupts. The former one needs to be
handled by the Normal World, and the latter one by the Secure World. If an interrupt
rises and the CPU which should handle it is not in the appropriate world, the machine
switches to the correct world, and the interrupt handler is executed. However, OP-TEE
does not have its own scheduler, but it uses the Linux kernel’s scheduler. When a CPU
is executing code in the Secure World and a foreign interrupt occurs, the execution of the
TA does not continue immediately after the handler exits. It only resumes execution when
the scheduler gives the CPU to the thread associated with the TA.

In addition, on a system with multiple cores, it is possible for one core to execute in the
Normal World and another in the Secure World. This behavior can make our inconsistency
checks unreliable: it is possible for a new thread to start during our checks, making them
fail despite the lack of any hidden processes. This issue might be resolved if we can disable
other cores during our checks, and disable interrupts as well to ensure the uninterrupted
execution of our checks. Disabling a core is possible from the REE, however, it has a
negative impact on the performance of the system. Disabling interrupts is a bit more
complicated, although, PTAs can do it while they are running. It might be possible to
disable and re-enable interrupts for other Secure World threads as well, or the check itself

can be implemented in a PTA in order to use this feature.

Another, less manageable issue is the way the Linux kernel handles waiting tasks. This
is implemented via wait queues, which store the tasks waiting for the same event. When
the event occurs, it is possible to wake up all the tasks or just one of them. The issue lies

with how Linux creates wait queues: some exists as global variables, but most of them are
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created on stacks or as members of other structures. So far, we have not been able to find
a way to enumerate all the currently existing wait queues in memory, thus, we are unable

to check all of them, only those implemented as global variables.

Our current method is unable to handle self modifying features in the Linux kernel and
Address Space Layout Randomization in the kernel. These features would break the

integrity check of the kernel’s text segment.

Finally, a way to bypass all of our checks would be for a malware to uninstall itself
before the checks are performed. When the checks are completed, the malware could be
reinstalled by exploiting the same vulnerability it originally exploited to infect the system.
Note, however, that this can work against any rootkit detection approach, because there

remains nothing malicious to detect in the system.

6.2 Future work

There are multiple features with which our method could be extended. First, our current
implementation does not support updates. REE package updates would modify or add
new files to the file system, so they would likely break the file system check for persistent
rootkit components, and a kernel update would certainly break the integrity checks and
probably the VFS and task-related ones too. In the future, we would like to address the
former issue by recomputing reference hashes in a secure way. The latter issue may require

re-implementing certain checks, making its automation challenging.

We discussed multiple checks for Linux kernel modules. They are the most convenient
way to execute code in kernel space [10], therefore, rootkits often use them and try to
hide their modules. Consequently, we can disable module support in the Linux kernel
configuration, making rootkit installation more challenging. In our test environment, we
only left it to be enabled in order to be able to test rootkits & the solution more easily.
However, without module support, all necessary drivers must be compiled into the kernel,

which is a functional restriction.

We would also like to make our solution compatible with other kernel security features.
We reviewed a long list of possible configurations and our solution is incompatible with
only two of them: structure randomization and Kernel Address Space Layout Random-
ization. In case of structure randomization, the members of selected kernel structures are
randomized at compile time. We could make our method compatible with this feature by
compiling a kernel module with access functions, for example, to get the next task in the
task list, and use these functions from a library in our TA. Kernel Address Space Layout
Randomization is a technique which places the kernel’s text segment at a random location
at boot time. This feature interferes with several of our checks and we do not have a

solution so far that can support this feature.

Finally, we found an anomaly we cannot fully explain yet: when we execute our checks for

the first time after the boot, everything works fine. However, from this point on, every
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time our TA is invoked, our process checks identify a task who is missing from the list
of tasks, but present in the task tree, the IDR and the output of ps. This task bears
the name of the tee-supplicant daemon, and by its pid, we suspect this might be the
process which executes our TA. We suspect the cause of the issue might be something in
the OP-TEE driver, where the TA_FLAG_INSTANCE_KEEP_ALIVE configuration is handled
erroneously. Yet this is all hypothetical, this topic needs further investigation. Once we
have more information about this anomaly, we will involve the developers of OP-TEE to

resolve this issue.
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Chapter 7

Conclusion

In this paper, we addressed the problem of detecting rootkits on embedded IoT devices.
Rootkits are malicious software that typically run with elevated privileges, which makes
their detection challenging. Our solution is based on identifying signs of a rootkit infection
(i.e., modifications to the code of system programs and the operating system kernel, as
well as inconsistencies in certain kernel data structures) using a trusted application that is
running in an isolated trusted execution environment. Fortunately, such trusted execution
environments are supported on many embedded platforms used in IoT applications, and
their protection measures ensure that malicious code cannot interfere with our detection
mechanisms even when running with root privileges. We described in detail how we
check both the memory of the untrusted execution environment and the persistent storage
from our trusted application, looking for integrity violations and inconsistencies. We
also reported on a prototype implementation of our approach, including some specific
implementation level issues that we had to solve to make our prototype working in practice.
Finally, we evaluated our design and implementation by testing the prototype with rootkits

that we developed for this purpose.

Our approach has some limitations that we discussed in the paper. In summary, we
can detect modifications of the kernel code and system programs, as well as hooking
attacks in the memory, and we can also detect the presence of rootkit components in the
persistent storage of the IoT device. Detection of manipulations of process related kernel
data structures is not complete, as we were not able to analyze certain data structures
(e.g., wait queues). In addition, at the time of this writing, we do not support multi-core
processors, address space layout randomization, and self-modifying code in the kernel.
Some of these limitations can be addressed (e.g., the kernel can be statically compiled
with all the drivers included), while others require more work in the future. Despite all
these limitations, we believe that our work demonstrates that it is possible to protect even
small embedded devices used in IoT applications from sophisticated and powerful software

based attacks, and that IoT is not necessarily as insecure as it is commonly perceived.
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