DOMAIN-SPECIFIC

SERVICE DECOMPOSITION
WITH

MICROSERVICE API PATTERNS

Keynote,
International Conference on Microservices 2019

Dortmund, Germany
February 19, 2019

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect
Institute fur Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz ?

Abstract

m Service orientation is a key enabler for cloud-native application development.
Microservices have emerged as a state-of-the-art implementation approach for
realizations of the Service-Oriented Architecture (SOA) style, promoting modern
software engineering and deployment practices such as containerization,
continuous delivery, and DevOps.

m Designing (micro-)services interfaces to be expressive, responsive and evolvable
Is challenging. For instance, deciding for suited service granularities is a
complex task resolving many conflicting forces; one size does not fit all. Domain-
Driven Design (DDD) can be applied to find initial service boundaries and cuts.
However, service designers seek concrete, actionable guidance going beyond
high-level advice such as “turn each bounded context into a microservice”.
Interface signatures and message representations need particular attention as
their structures influence the service quality characteristics.

®m This presentation first recapitulates prevalent SOA principles, microservices
tenets and DDD patterns. It then reports on the ongoing compilation of
complementary microservices API patterns and proposes a set of pattern-based,
tool-supported API refactorings for service decomposition. Finally, the
presentation highlights related research and development challenges.

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 2
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Architecture of this Talk (“Micropresentations™)

Introduction to
Domain-Driven

Design
Real-World
Service Examples
Service (Case Studies) -
Granularity
and Loose (Experience)

& Design : :
(to Microservices)
Patterns

(Modeling)
Microservice API
Patterns (MAP) (

Research
Pbs/Qs

INSTITUTE FOR
SOFTWARE

Coupling _
Service Analysis Architectural -
Refactoring

O HSR

HOCHSCHULE FUR TECHNIK Page 3

. . RAPPERSWIL
© Olaf Zimmermann, 2019.

FHO Fachhochschule Ostschweiz

Sample Project: Financial Services Provider (for Retail Banks)

Reference: IBM, ACM OOPSLA 2004

| Websphers Bl

Web Services Wizardry

with WebSphere Studio
Application Developer

“Creating dynamic e-business with Web
sarvices

“Using the IBM toolset for Web -
sarvices

“introduction to
ViebSphere Studio

ibm.com/redbooks

Platf WSDL
in: e;;r:d ent Java Client .NET ;ient Browser Ofﬁch Q—
IBM
WebSphere® SOAP SOAP SOAP
(pSeries)
generate
Web Services Adapter Layer (<
Java™ API (Dynamic Interface)

]

o Java Backend Connectors &BM WebSphere MQ, CICS®)

5

'

©

=

==

-

generate
o

IBM CICS
(zSeries)

Repository

W Supports — and partially automates — core banking business processes

More than 1000 of business services, each providing a single operation

One database repository, logically partitioned

O HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 4

© Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

Exemplary Service Operations in Core Banking

| |Fine (business) Y me—

Fine (technical) “Hello world” of core banking: “Big data” customer profiling (condensed):
int ActivityClassificationEnum
getAccountBalance scoreMonthlyInvestmentActivity
(CustomerId) (CustomerId, Month, Year)

Coarse (technical) Single domain entity, but complex Deep analytics («<Kundengesamtibersicht»):

payload (search/filter capability): BankingProductPortfolioCollection
CustomerDTOSet prepareCustomerAnalysisForMeeting
searchCustomers (CustomerId, Timeframe)

(WildcardedCustomerName,
CustomerSegment, Region)

B Business granularity: %
S 9 i
Functional scope, domain model coverage _ _ N
_ _ Business alignment/agility?
u Technical granularity: Independent deployability?
Structure of message representations a.k.a. Client/server coupling?
Data Transfer Object (DTOS)
M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 5 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

SOFTWARE

Sample Project: Order Management Application (Telecommunications)

Multi-Channel Order Management SOA in the Telecommunications
Industry (in production since Q1/2005) [OOPSLA 2003] Reference: IBM,

ECOWS 2007

* Functional domain Interface granularity (WSDL contract design)?

Client Web Services Channel
Message- or transport layer encryption ? E 4

?

— Order entry management

Presen-
— Two business processes: tation - | .
new customer, relocation Channel | WS Fagades
enlcobi el — Main SOA drivers: deeper ~_controller [#Ewsor. e ===

Stefan Peuser ¥

fivity Stub 1 —’<i>—' Actiity Stubn @

== automation grade, share Bus
Perspectives on services between domains 5 >"o"

- Process >
Web Services = Service design Layer Transaction boundaries inside process? e /'¢
A PIYINE SOAR WS DL anC | Which BPM/workflow engine to use? | -
— - i i T T = BSF
Top-down from requirement Short Running e poo sen BH
and bottom-up from existing Process Activity =Tt
wholesaler systems Activities | ITRIEMENEEONT vy =
R Implementation n L s b
— Recurring architectural Business o
decisions: services L Message exchange pattern?
« Protocol choices “Application Tran‘c’p?'t p:’tow'? _____
. . Services "
« Transactionality S ___________________ﬁ[_____ S
- Security policies Core Business ﬂ %
. Systems Objects aa
« Interface granularity s e
11 Zurich Research Laboratory © 2007 IBM Corporation
™ HSR X &
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 6 ®
. . RAPPERSWIL ° SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

Exemplary Services in Order Management (Telecomunications)

Computation Function: no read, no write Event Processor: write only
aservicePorts aservicePorts
TelcoProcessingResource TelcoServiceAdapter
String convertDomesticTolnternationalMumberFormat(phoneMumber, countryCode) Acknowledgment receivesddressUpdatedMessage(relocationEvent)
aservicePorts
e S TelcoOrderWorkflowCoordinator

TelcolnformationHolderResource

boolean validateAddressicustomerName, address)

OrderDTO createMewPhoneService (customerMame, address)
boolean reservePhoneNumberForRelocation{customeriame, address)
DateTime scheduleTechnicianAppointment(OrderDTO)

OrderDTO relocateCustomericustomerld, address)

CustomerDTO lookupCustomerByldicustormerid)
CustomerDTOCallection lookupCustomerwithFilteriwildcardedMame, otherFilters)

Retrieval Operations: read only Business Activity Processors: read-write

® Endpoints play different roles in microservices architectures
— and their operations fulfill certain responsibilities):

Pre- and postconditions ?
o

Conversational state -
_ Impact on scalability and
Data consistency vs. currentness

changeability?
M HSR
EE HOCHSCHULE FUR TECHNIK Page 7 : INSTITUTE FOR
RAPPERSWIL - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

SOA 101 &
Microservices

What is Service-Oriented Architecture (SOA)? Tenets

No single definition — “SOA is different things to different people”: —
usiness
» A set of services and operations that a business wants to expose to iomlairtl
o . . . nalys
their customers and partners, or other portions of the organization. !

* Note: no scope implied, enterprise-wide or application!

» An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server). T
Architect

* Note: this is where the “business-alignment” becomes real!

» A set of architectural patterns such as service layer (with remote
facades, data transfer objects), enterprise service bus, service
composition (choreography/orchestration), and service registry,
promoting principles such as modularity, layering, and loose

coupling to achieve design goals such as reuse, and flexibility.
* Note: not all patterns have to be used all the time! /
» A programming and deployment model realized by standards,

tools and technologies such as Web services (WSDL/SOAP),
RESTful HTTP, or asynchronous message queuing (AMQP etc.)

Developer,
Administrator

* Note: the “such as” matters (and always has)!

Based on and adapted from: IBM SOA Solution Stack, IBM developerWorks

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 8
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

"Napkin Sketch" of SOA Realizations (Adopted from G. Hohpe)

_______‘_‘_‘——/——\
.....Discovery | Service
' Registry
: Service
Our focus today | Register: Endpoint
: ‘ Application
Message : ' PP
Document
1 el |
Data Contracts | 1 |

.‘ —
Conversation

; e
=

ransform

No longer popular OI‘Chesltration Application
o PoP I Our focus today

(term repurposed for
deployment context)

Microservices!

Rules

HOCHSCHULE FUR TECHNIK Page 9 © INSTITUTE FOR

. . RAPPERSWIL o
© Olaf Zimmermann, 20109. e SOFTWARE

hhhhhhhhhhhhhhhhhhhhhhh weiz

SOA101 &
Microservices

Seven Microservices Tenets (by Viewpoint) Tenets

Legend'

Independent-X Qfﬁﬂle
(X = Deployment,
Scaling, Change) AnaIyS|s
Business > < Polyglot > Dfi:ffﬁg&
P ' d

Alignment rogramming an

(e.9. via DDD) Persistence ?neepr:?é
IDEAL Cloud well-known Rum'me

""""""" Architectures TmTmmmmmommee o
(e.g.12-Factor App) airly recent advances

Decentralization
Containerization
& Automation and Clustering
(CI/ICD) Service
Monitoring

(DevOps Way)

Comput Sci Bes Dev (2017) 32:301-310
Microservices Tenets: Agile Approach to Service Development and Deployment DOL1G1007/s00450-016-0337-0

0 Zimmermann
Computer Science - Research and Development (Sharelt:http:/frdcu_be/mJPz ... SPECIAL ISSUE PAPER

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 10
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

http://rdcu.be/mJPz
http://rdcu.be/mJPz

Cloud-native application architectures are API-centric

Cloud Application Architectures

Broker

Cloud Computing Platform Autonomy: accesses from different programming languages Fundamental Clqud Architectures
Patterns Reference Autonomy: routing between different locations * Lqus_e Coupllng_ _
oot e + Distributed Application

Time Autonomy: communication at different speed and time Cloud Application Components

. . Stateful Component

Format Autonomy: transformation of different data formats N P

» Stateless Component

J + User Interface Component

+ Processing Component

+ Batch Processing Component
+ Data Access Component

+ Data Abstractor

IDEAL: Isolated State, Distribution/Decomposition, Elasticity, Automation, Loose Coupling

. Presentation Tier . Business Logic Tier . Data Tier « [dempotent Processor
1 1 1 « Transaction-based Processor
: Load Anpli::;;soinat:;onem : Dplﬁ:::gisé;:f;conent I ot ¢ Timeout-based Message
y Balancer ' Processor
1 « Multi-Component Image

Multi-Tenancy
« Shared Component
« Tenantdisolated Component
« Dedicated Component
Cloud Integration
s Restricted Data Access

E Stoteless User Interfafe 3 ‘-E Stateless Prpcessing
omponent Componen ompanent Component

scale . scale '

=

[
: Number of Mumber of Number of Component
: Reguests — M:g;t;ic: oo Mzgﬁi‘;‘: Elastic + Message Mover
: Load Balancer Queve Queue « Application Component Proxy
« Compliant Data Replication
« Integration Provider
http://www.cloudcomputingpatterns.org
M HSR
EE :AD::Esﬂcsrlell.-E FUR TECHNIK Page 11 : INSTITUTE FOR
L SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Zimmermann, 2019

http://www.cloudcomputingpatterns.org/

Calls to Service Operations are EIP-style Messages

curl -X GET "http://localhost:B888/customers/rgppBwkpec” -H "accept: #=/x"

3 -t =

" Tlinks": [
{ T — =ender Cormmand Receiver
"href": "string", MESSEIQE
"hreflang": "string",
Sample request "media": "string", = getLastTradePrice("DIS");
"rel": "string",
message "templated": true,
. "title": "string",
(note: PUTs an_d POSTs S | Sayiond |
would look different) : } 7
"::r"ll'thd'ay“: "2819-82-12T89:10:87.3T8Z"
neity": "string", ’ E Wrapper
"customerId": "string",
"email": "string",
"firstname": "string", Header| Payload || Envelope
"lastname": "string",
"moveHistory": | *
{
"city": "string", E Wrapper
"postalCode": "string",
"streetAddress": "string"
Response .
message “;honeMumber": "string", Header Payload Envelope
"postalCode": "string",
structure nptreetAddress®s mstring" [Header || Payload |
{[...]} -- some JSON (or other MIME type) https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html
™ HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
BN ceeeersw Page 12 ®
L SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

https://www.enterpriseintegrationpatterns.com/patterns/messaging/CommandMessage.html

How to find suited granularities and achieve loose coupling?

context

We have decided to go the SOA and/or microservices way. We use DDD for
domain modeling and agile practices for requirements elicitation.

@ Problems (Industry, Academia)

How to identify an adequate number of API endpoints and operations?

How to design (command/document) message representation structures
so that API clients and API providers are loosely coupled
and meet their (non-) functional requirements IDEALy?

Which patterns, principles, and practices do you use? Do they work?

/ Microservice APl \

u HSR Patterns (MAP)
INSTITUTE FOR
SOFTWARE

HOCHSCHULE FUR TECHNIK Page 13

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

Introducing... Microservices API Patterns (MAP)

m |dentification Patterns:

DDD as one practice to
find candidate endpoints
and operations

Quality Patterns

How can an API provider achieve
a certain level of quality of the
offered APL, while at the same
time using its available resources
in a cost-effective way?

How can the quality tradeoffs be

communicated and accounted

for?

READ MORE —>

Foundation Patterns

What type of (sub-)systems and

components are integrated?

Where should an API be

accessible from?

How should it be documented?

Responsibility Patterns

Which is the architectural role
played by each API endpoint and
its operations?

How do these roles and the
resulting responsibilities impact
(micro-)service size and

granularity?

READ MORE =

Structure Patterns

What is an adequate number of
representation elements for

request and response messages?

How are these elements

structured?

How can they be grouped and
annotated with usage

information?

READ MORE =

B Evolution Patterns:

Work in progress
(EuroPLoP 2019?)

http://microservice-api-patterns.org

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 14
© Olaf Zimmermann, 2019.

Microservice API
Patterns (MAP)

http://microservice-api-patterns.org/

MAP Example: Pagination (1/2)

m Context
An API endpoint and its calls have been identified and specified.

® Problem
How can an API provider optimize a response to an API client that should
deliver large amounts of data with the same structure?

m Forces

Data set size and data access profile (user needs), especially number of
data records required to be available to a consumer

Variability of data (are all result elements identically structured? how often
do data definitions change?)

Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)
Security and robustness/reliability concerns

B HSR
HOCHSCHULE FUR TECHNIK . .
B caerersw Page 15 hglCLoseN;:niApl;’l
: atierns
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

MAP Example: Pagination (2/2)

P
(——)
Il
e

B Solution [:
Divide large response data sets into manageable and easy-to-transmit chunks.

Send only partial results in the first response message and inform the consumer
how additional results can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as
needed; agree on a request correlation and intermediate/partial results
termination policy on consumer and provider side.

Legend: Request

B Variants D @ m@ P
Cursor-based vs. offset-based e = —
* | Page 1: {(r),{r2)} e {:;,l :?g:;,r r?::u?.',’osrrs;
m Consequences ") T rage
E.g. state management required povez f—j @ (), 62, (13
Z(/_: L MNext Page: 3 (r1ﬂl”
®m Know Uses ? e X
= Page 3 () e
Public APIs of social networks = % B
B HSR
EE :2:::;;5\# FOR TECHNIK Page 16 E Microservice API

FHO Fachhechschule Ostschweiz © Olaf Zim mermann, 2019. Patterns (MAP)

Structure

Representation Elements
Atomic Parameter
Atomic Parameter List
Parameter Tree

Parameter Forest

Element Stereotypes

Entity Element

Id Element

Link Element

Metadata Element

Composite Representations

Annotated Parameter Collection

Context Representation

Pagination

N

Ea)
°

- 800

T

.8
¥
=

Processing Responsibilities

J£)e

s

J

B

£

(&0

I

Responsibility

Endpoint Roles

Processing Resource

Information Holder Resource

Lookup Resource

Connector Resource

Computation Function

Event Processor

Retrieval Operation

Business Activity Processor

Information Holders

Transactional Data Holder

Master Data Holder

Static Data Holder

o

http://microservice-api-patterns.org

Quality Management

and Governance

API Key

Rate Limit

Rate Plan

Service Level Agreement

Error Report

Data Transfer Parsimony

Conditional Request

Request Bundle

Embedded Entity

Linked Information Holder

Wish List

Wish Template

https://microservice-api-patterns.org/
https://microservice-api-patterns.org/
http://microservice-api-patterns.org/

Recurring Architectural Decisions in (Micro-)Service Design

® Quality-related decision model published at ICSOC 2018 l/,#,

. S ICSOC 2018
Avoid Unnecessary Data Transfers

Usability

Decision Criteria Privacy Security
Sustginability
e Client Information Needs 1. () Wish List \ /
« Network bottlenecks 2. (¥ Wish Template SR Tty
e Performance 3. = Conditional Request APl
) g Cost \Evolvablllty
e Security 4. = Request Bundle
s Development and Testing Reli blllty Mamtamabmw
Complexity Perforhance Scalability

B More problem-pattern mappings (emerging):
MAP Cheat Sheet: https://microservice-api-patterns.org/cheatsheet
Attribute-Driven Design: https://microservice-api-patterns.org/patterns/byforce

O HSR
HOCHSCHULE FUR TECHNIK . .
B ceecrsw Page 18 ﬁglcaosewiaiApl;’l
: atierns
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

https://microservice-api-patterns.org/cheatsheet
https://microservice-api-patterns.org/patterns/byforce

More Decisions that Recur in (Micro-)Service Design

ISSUE

API clients report interoperability and usability

problems

My clients report performance problems

I need to implement some access control

PATTERNS TO CONSIDER

Switch from minimal to full API DESCRIPTION

Add METADATA ELEMENT to PARAMETER TREES

to realize an ANNOTATED PARAMETER

COLLECTION

Switch from EMBEDDED EMTITIES to LINKED

INFORMATION HOLDERS

Reduce transferred data with a WisH LIsT or
a WISH TEMPLATE

Consider any other QUALITY PATTERN
improving data transfer parsimony (e.qg.,

CoONDITIONAL REQUEST, REQUEST BUNDLE)

Introduce PAGINATION

Introduce API Keys or full-fledged security
(CIA/IAM) solution such as OAuth

https://microservice-api-
patterns.org/cheatsheet
(emerging)

PATTERNS TO CONSIDER

Use ATOMIC PARAMETER LIST and/or ATOMIC

PARAMETER LIsT if data is simple

Use PARAMETER TREE and/or PARAMETER
ForesT if data is complex

Add ENTITY ELEMENT with one or more

EmBeDDED ENTITIES (following relationships)

Add ID ELEMENT

Upgrade from ID ELEMENT to LINK ELEMENT to
support HATEOAS and reach REST maturity

level 3

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 19
© Olaf Zimmermann, 2019.

Microservice API
Patterns (MAP)

https://microservice-api-patterns.org/cheatsheet

Open Problem: Service Identification/Design ("DDD 4 SOA/MSA”)

Introduction to
Domain-Driven
Design

Real-World
Service Examples
(Case Studies)

Service
Granularity
and Loose
Coupling

Microservice API
Patterns (MAP)

Architectural
Refactoring
(to Microservices),

Service Analysis
& Design
(Modeling)

@ Research Questions

Which existing patterns are particularly suited to analyze and design cloud-
native applications and to modernize existing systems (monoliths/megaliths)?
How can these patterns be combined with Microservices API Patterns (MAP)

and other SOA/microservices design heuristics
to yield a service-oriented analysis and design practice?

Q' Which patterns and practices do you apply? What are your experiences?

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 20
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Strategic DDD Context Map: Relationship Example

B [nsurance scenario, source: https://contextmapper.github.io/

Customer Self-Service

Context

Customer/Supplier

Customer
Management Context

e
“GWFORNE

Risk Management

Printing

Context
&

S
u /pl U

U

D

ACL

Partnership

Context

D: Downstream, U: Upstream; ACL: Anti-Corruption Layer, OHS: Open Host Service

Policy Management
Context

Debt Collection

Context

Shared Kernel

B HSR
HOCHSCHULE FUR TECHNIK
BN ceeeersw Page 21

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

SOFTWARE

INSTITUTE FOR

https://contextmapper.github.io/

Context Mapper: A DSL for Strategic DDD

What is Context Mapper?

Context Mapper provides a DSL to create context maps based
on Domain-driven Design (DDD) and its strategic patterns. DDD
and its bounded contexts further provide an approach for
decomposing a domain into multiple bounded contexts. With
our Service Cutter integration we illustrate how the Context
Mapper DSL (CML) can be used as a foundation for structured
service decomposition approaches. Additionally, our context
maps can be transformed into PlantUML diagrams.

CONTEXT
MAPPER

ContextMap {

B Eclipse plugin Based on: type = SYSTEM_LANDSCAPE

state = AS IS5

Xtext
contains CargoBookingContext
ANTLR contains VoyagePlanningContext
Sculptor (tactic DDD DSL) contains LocationContext
[| Author S Kapferer CargoBookingContext <-* VoyagePlanningContext : Shared-Kernel
. ¥
Term project HSR FHO
™ HSR
EE :AD::Esﬂcsrwlll.-E FUR TECHNIK Page 22 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019 SOFTWARE

https://contextmapper.github.io/
https://contextmapper.github.io/

DDD Applied to (Micro-)Service Design

m M. Ploed is one of the “go-to-guys” here (find him on Speaker Deck)

Applies and extends DDD books by E. Evans and V. Vernon

Microservices

)
V

Domain-driven Design

Michael Plod, @bitboss

INNOQ

Context Maps

Top
Down
Microservice
Bounded Contexts
Bottom

Up

Aggregates

Reference: JUGS presentation, Berne, Jan 9, 2019

HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Page 23
© Olaf Zimmermann, 2019.

https://speakerdeck.com/mploed
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2
https://speakerdeck.com/mploed/microservices-love-domain-driven-design-version-2

Implementing Domain-Driven Design with RESTful HTTP APIs

® Mentioned in DDD book by V. Vernon (and blog posts, presentations):

No 1:1 pass-through (interfaces vs. application/domain layer)

Bounded Contexts (BCs) offered by API provider, one APl endpoint and
IDE project for each team/system BC (a.k.a. microservice)

Aggregates supply API resources or (responsibilities of) microservices
Services donate top-level (home) resources in BC endpoint as well

The Root Entity, the Repository and the Factory in an Aggregate suggest
top-level resources; contained entities yield sub-resources

Repository lookups as paginated queries (GET with search parameters)

m Additional rules of thumb (own experience, literature):
Master data and transactional data go to different BCs/aggregates
Creation requests to Factories become POSTs
Entity modifiers become PUTs or PATCHes
Value Objects appear in the custom mime types representing resources

HSR
HOCHSCHULE FUR TECHNIK Page 24 INSTITUTE FOR
SOFTWARE

RAPPERSWIL

© Olaf Zimmermann, 2019.

FHO Fachhochschule Ostschweiz

https://www.youtube.com/watch?v=lUCLFOISuXk
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DDD_Aggregate.html

On the Criteria To Be
Used in Decomposing
Systems into Modules

D.L. Pamas
Carnegie-Mellon University

Open Problem: Service Decomposition

Traditional

SOA

Logic

Data

Services

How Do Committees Invent?
Melvin E. Conway

Copyright 1963, F. D. Thompseoen Publications, Inc.
Reprinted by permission of
Datamation magazine,
where it appeared Apnl, 1968,

@

Research Questions

How can systems be decomposed into services (in forward engineering)?
How do the applied criteria and heuristics differ
from software engineering and software architecture “classics”
such as separation of concerns and single responsibility principle?

Which methods and practices do you use? Are they effective and efficient?

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 25

© Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

Heuristics that do not suffice (IMHO)

m Two-pizzarule (team size) Polyglot

Alignment Programming and

(e.g. via DDD) Persistence
®m Lines of code (in service implementation)

Decentralization

. utomation Containerizaltion
B Size of service implementation in IDE editor
onitoring

(DevOps Way)

?

°- What is wrong with these “metrics” and “best practice”
NY recommendations?

m Simple if-then-else rules

E.g. “If your application needs coarse-grained services, implement a SOA,;
if you require fine ones, go the microservices way” (I did not make this up!)

® Non-technical traits such as “products not projects”
Because context matters, as M. Fowler pointed out at Agile Australia 2018

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 26

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://martinfowler.com/articles/agile-aus-2018.html

Agility, Consistency, State/Scalability (CAS) Tradeoffs

Business B Data freshness

Agility m Ability to respond to change
“Conservative” SOA
(Macroservices) Microservices

4 N

m Big datarequirements

ACS
Dichotomy

Sharding, partitioning ®m State management

Strict & eventual consistency

Quick access, caching?
Stickiness in cluster?

® Audit requirements

Incl. backup Ve ™
Resource Scalable
Consistency _ State Mgmt.
Modular Monolith
\ /
: . E:?Esgwts FUR TECHNIK Page 27 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 20109. SOFTWARE

[HOCHSCHULE FUR TECHNIK Service Cutter (Proc. Of ESOCC 2016, Springer LNCS)

RAPPERSWIL

. . COMPUTER SCIENCE

(_s\, Advisor: Prof. Dr. Olaf Zimmermann
ii ’:
Bachelor Thesis Fall Term 2015 ZUhIke -

Co-Examiner: Prof. Dr. Andreas Rinkel

empowering ideas

Software Lukas Kolbener Michael Gysel Project Partner: Zuhlke Engineering AG

A Software Architect’s Dilemma....

e Con | | Compatibility | I Conatraimts | | Communication
O Step 1: Analyze System senar :

) — Entity-relationship model I | I I
How do | split - Use casers] - EaaEaa
. — System characterizations BTy
my system into - Aggregates (DDD)
services? o o
Coupling information is Pralen

extracted from these artifacts.

Step 2: Calculate Coupling |

— Data fields, operations and artifacts

are nodes. Step 3
— Edges are coupled data fields. Visualize Service Cuts [Sumiee < 8 - i
— Scoring system calculates edge ‘ m . . - a 7,“ -
weights. — Priorities are used to

— Two different graph clustering reflect the context.

Cutter
algorithms calculate candidate — Published Language vt [T
service cuts (=clusters). (DDD) and use case oy
A [.
N7 responsibilities are . o A
N |~ ~ B Fommnk o .~]
AN X shown. | = ™ o B
(e ‘\\ _2) . B
AN A S N i
) ¥ O ot]
"flé*{\:%m\‘ X o -
AN) o . Gompatlbility Criteria
_ Ao@}:&\ \ TN e
\‘\‘_\'y‘ Technologies: e Cansistency Cricaly
Java, Maven, Spring (Core, FE—

Boot, Data, Security, MVC),
Hibernate, Jersey, JHipster,
AngularJS, Bootstrap

A clustered (colors) graph. https://github.com/ServiceCutter

Coupling Criteria (CC) in “Service Cutter” (Ref.. ESOCC 2016)

Cohesiveness

Constraints

Communication

Consistency .-
Constraint [Mutability
Security Network Traffic
Constraint Suitability

Semantic
Proximity Shared Owner
Identity &
Lifecycle Latency
Commonality - o
h J i N
Security
Contextuality

Compatibility
Structural Content
Volatility Volatility
Consistency Availability
Criticality Criticality
Storage Security
Similarity Criticality

Predefined
Service
Constraint

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

m E.g. Semantic Proximity can be observed if:

Service candidates are accessed within same use case (read/write)

Service candidates are associated in OOAD domain model

® Coupling impact (note that coupling is a relation not a property):

Change management (e.g., interface contract, DDLS)

Creation and retirement of instances (service instance lifecycle)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 29
© Olaf Zimmermann, 2019.

INSTITU

TE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

Open Research Problem: Refactoring to Microservices

Traditional SOA

Users

o |@ %

Applications - Services
Logic . .
Data b .
Discrete Applications gacket of Services
(Two or Three Tiers)

@ Research Questions

How to migrate a modular monolith to a services-based cloud application
(a.k.a. cloud migration, brownfield service design)?
Can “micro-migration/modernization” steps be called out?

Q' Which techniques and practices do you employ? Are you content with them?

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 30
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

Code Refactoring vs. Architectural Refactoring

m Refactoring are “small behavior-preserving transformations” e s
(M. Fowler 1999) =

Convert Anonymous Class to Nested...
Convert Member Type to Top Level...

m Code refactorings, e.g. “extract method”

Convert Local Variable to Field...

Reracrorivg —
I\||'|§(>\x\q. THE DESIGN Extract Interface...
Operate on Abstract Syntax Tree (AST) _
s -'-'::R_ “ Pull Up...
Extract Class...

Based on compiler theory, so automation possible
(e.g., in Eclipse Java/C++) i o

Introduce Parameter...

Encapsulate Field...

m Catalog and commentry: http://refactoring.com/ -

m Architectural refactorings

Resolve one or more architectural smells, have an impact on quality attributes

Architectural smell: suspicion that architecture is no longer adequate (“good enough”)
under current requirements and constraints (which may differ form original ones)

Are carriers of reengineering knowledge (patterns?)
Can only be partially automated

M HSR
HOCHSCHULE FUR TECHNIK Page 31 : INSTITUTE FOR
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

http://refactoring.com/

Refactoring to Microservices API Patterns

Computing (2017) 99:129-145 @ CrossMark

| Template and CIOUd refactorlngs DOI 10.1007/500607-016-0520-y
First published @ SummerSoc 2016

Coupling Smells
Smell

AFI clients and their providers can only be deployed and
updated jointly due to a tight coupling

Granularity Smells

Smell

God service with many operations that takes long to update,
test and deploy

Fat Information Holder viclating SRP
Big Ball of Service Mud (doing processing and data access)

Service proliferation syndrome (unmanageable)

Architectural refactoring for the cloud: smm
a decision-centric view on cloud migration

,lll » .lJ-.‘...'

Olaf Zimmermann!

Suggested Refactoring(s)

Downsize data contract by adding Linked
Information Holders replacing Embedded Entities

m Microservices refactorings:

Suggested Refactoring(s) Future work for MAP

Split Service

Work in progress!

Split Information Holder according to data lifetime
and incoming dependencies

Split into Processing Resource and Information
Holder Resource (CQRS for API)

Consolidate different processing responsibility types
into single Business Activity Processor

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Page 32
© Olaf Zimmermann, 2019.

https://www.infoq.com/articles/architectural-refactoring
https://www.infoq.com/articles/architectural-refactoring

Open Problem: Service/Data Visualization (Modeling)

s oy 7, nsoms | KdlEmE
| PEE
Why They Just Don'’t Get It

Communicating about Architecture
with Business Stakeholders

Noctan Scheni op0er And Eco Ranaes

@ Research Questions

What is an intuitive, easy-to-sketch graphical representation for (micro-)services
and their endpoints, operations, and message representations?

°- Which notations and tools do you use?
N Do they make communication effective and efficient?
M HSR
EE :AD::ES;Sth FUR TECHNIK Page 33 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 20109. SOFTWARE

https://ieeexplore.ieee.org/document/7458757?arnumber=7458757
https://ieeexplore.ieee.org/document/7458757?arnumber=7458757

Visualizing Operations and Message Representations

m Ports-and-adapters combined with layering (“hexagonioning”):

Inspired by https://herbertograca.com/2017/11/16/explicit-architecture-01-
ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/

@

Adapters
Legend: Data Ports

> Domain Logic {[...1} J
Response message representation
Required interface c @® Provided interface RepresentationJ

Request
message
representation

Message

M HSR
EE HOCHSCHULE FUR TECHNIK Page 34 © INSTITUTE FOR

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Zim mermann, 20109. SOFTWARE

https://herbertograca.com/2017/11/16/explicit-architecture-01-ddd-hexagonal-onion-clean-cqrs-how-i-put-it-all-together/

Example: Lakeside Mutual Microservices

Customer Self Service Application

Interface Layer

(’_
o 3

MAP: Atomic Parameter List } MAP: Parameter Tree

Domain Layer

Data
Layer
n/a

Customer Core Microservice

Mutation
Checker

Customer
Endpoint

Customer
Proxy

myLakesideMutual
Web Forms

Customer
Data

B Use patterns to specify:
Role and responsibility of API call
Message representations
Documentation and governance

O HSR

HOCHSCHULE FUR TECHNIK Page 35

. . RAPPERSWIL
© Olaf Zimmermann, 2019.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

Microservices — Summary and Opinions

m Microservices have many predecessors (evolution not revolution)

Implementation approach and sub-style of SOA
More emphasis on autonomy and decentralization

(of decisions, of data ownership), less vendor-driven m

. . Scaling Change)

Automation advances and novel target environments 3:‘;"::5. e
ia DDD) Persistence

. . . IDEAL Cloud

® One service size does not fit all (o0 s27aco o)
Decem;?:‘izaii‘:zn Containerization
Context matters and forces at work D /) [s

(DevOps Way)

Size and granularity are not ends in themselves

Goal: achieve “Independent X” — but do not forget BAC and CAP (and ACS)
Architecture and architects needed more than ever

More options, higher consequences of not making adequate decisions

m Microservices API Patterns; Context Mapper, Service Cutter

Public website now available
Pattern language, sample implementations, supporting tools

m Service modeling, identification, decomposition, refactoring problems

O HSR
HOCHSCHULE FUR TECHNIK

BN ceeeersw Page 36
FHO Fachhochschule Ostschweiz © Olaf Zimmermann, 2019.

INSTITUTE FOR
SOFTWARE

https://microservice-api-patterns.org/

Microservices Publications

B Zimmermann, O.: Microservices Tenets — Aqgile Approach to Service Development and Deployment

Springer Comp Sci Res Dev, 2017, http://rdcu.be/mJPz

Microservices in

Practice, Part 2
INSIGHTS

Service Integration and Sustainability

(screen captions — \icroservices in
are hyperlinks)

Practice, Part 1 Microservices are in many ways a
best-practice approach for realizing
Reality Check and Service Design service-oriented architecture.

Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis

B Pardon, G., Pautasso, C., Zimmermann, O.: Consistent Disaster Recovery for Microservices: the
Backup, Availability, Consistency (BAC) Theorem

In: IEEE Cloud Computing, 5(1) 2018, pp. 49-59.

B Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural Principles for Cloud Software

In: ACM Trans. on Internet Technology (TOIT), 18 (2) 2018, pp. 17:1-17:23.

B Furda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A.: Migrating Enterprise Legacy Source Code
to Microservices: On Multitenancy, Statefulness, and Data Consistency

In: IEEE Software, 35 (3) 2018, pp. 63-72.

O HSR
HOCHSCHULE FUR TECHNIK Page 37

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2019

INSTITUTE FOR
SOFTWARE

https://link.springer.com/article/10.1007/s00450-016-0337-0
http://rdcu.be/mJPz
http://design.inf.usi.ch/publications/2018/bac-theorem
https://www.researchgate.net/publication/317348634_Architectural_Principles_for_Cloud_Software
https://ieeexplore.ieee.org/abstract/document/8186442/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

