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Abstract
Machine translation of ancient languages faces a low-resource
problem, caused by the limited amount of available textual
source data and their translations. We present a multi-task
modeling approach to translating Middle Egyptian that is in-
spired by recent successful approaches to multi-task learning in
end-to-end speech translation. We leverage the phonographic
aspect of the hieroglyphic writing system, and show that sim-
ilar to multi-task learning of speech recognition and transla-
tion, joint learning and sharing of structural information be-
tween hieroglyph transcriptions, translations, and POS tagging
can improve direct translation of hieroglyphs by several BLEU
points, using a minimal amount of manual transcriptions.

1. Introduction
The Middle Egyptian language was spoken for around 700
years, starting at around 2000 BCE, and is manifested on mon-
uments (tombs, temples, stelas), ostracas (clay fragments often
used by scribe apprentices) and papyri (mostly state admin-
istration documents, but also in the form of the well-known
“book of the dead”, letters and literature). Although the dry
climate of the desert regions helped to preserve the sources,
many cases of tomb pillaging, black market transactions, ma-
licious destruction, and simply the ravages of time, reduced the
possible amount of archaeological evidence. Thanks to efforts
such as the Thesaurus Linguae Aegyptiae1, a database that is
administrated by the Berlin-Brandenburgische Akademie der
Wissenschaften, digitized data of parallel textually encoded
hieroglyphs (hro), transcriptions (trans), POS tags (pos) and
German translations (de), are available for research. We use a
dump of their database, that - after pre-processing and clear-
ing out unusable data - contained 91, 398 parallel samples.
At the time we conducted our experiment, hieroglyphic en-
codings (hro) were available for 30% of the database.2 We
therefore conducted our experiments with an extremely low-
resource corpus of 29, 296 tuples.

Our goal is to build a neural machine translation (NMT)
1http://aaew.bbaw.de/tla/
2The reason that hieroglyphic encodings for the full dataset weren’t avail-

able at the time we conducted our experiments is owed to the fact that the
database creation is work in progress.

system that translates hieroglyphs directly, i.e., without re-
quiring a separate transcription step, while using manual tran-
scriptions and annotations only as means to improve the model
during training time. While we are not aware of any prior
work that addresses the severe data sparsity problem in the di-
rect translation of Egyptian hieroglyphs, we take inspiration
from a related, similarly under-resourced, problem of direct
speech translation. The data sparsity issue in this problem has
been successfully tackled by information sharing with larger
related tasks using multi-task sequence-to-sequence learning
techniques [1]. Similar to joint learning and sharing of struc-
tural information between the tasks of speech recognition and
translation, we can share information between the tasks of hi-
eroglyph transcription (i.e., the task of converting hieroglyphs
into alphabetic symbols representing uniliteral hieroglyphs)
and the task of direct translation of hieroglyphs (i.e., transla-
tion without the manual transcription step). Both tasks induce
a segmentation and disambiguation of a sequence of hiero-
glyphs into source or target words. The usefulness of a manual
transcription step is visible by a gap of 8 BLEU points between
translating hieroglyphs directly and translation of manual tran-
scriptions. Our experiments show that learning an automatic
transcription model for a pipeline of transcription and trans-
lation suffers from the small size and the noise in the tran-
scription data. However, integrating transcriptions (and re-
lated manual annotations by POS tags) into multi-task learning
approaches yields improvements of several BLEU points for
direct hieroglyph translation, showing that the structural signal
inherent to these data can overcome the noise and be success-
fully used for improved direct hieroglyph translation.

2. The Middle Egyptian Language
2.1. Writing System

Egyptian written languagewas realized in twomain forms. The
first is hieroglyphic pictograms which are commonly known
from wall paintings in Egyptian palaces and tombs. The sec-
ond form is the hieratic script, a cursive version of the hiero-
glyphs, that was used to write letters, bills and administrative
documents. Here, the text medium was mainly papyrus and
ostraca. Our data cover both sources of hieroglyphs.

A hieroglyph can bear one of the following meanings:



Gardiner Code Sign(s) Transcription Description

G1 a Ꜣ Egyptian vulture
D36 A Ꜥ arm
D4 e ỉr eye
D50 5 ḏbˁ finger

Table 1: Example of Egyptian literals

1. Phonogram
2. Ideogram
3. Determinative

The phonographic meaning of hieroglyphs conveys 1-, 2-,
3- or (very rarely) 4-consonant sounds which can be combined
following the rebus principle, i.e., the meaning is represented
by the sound, instead of being abstracted from the single pic-
tograms that the hieroglyph is constituted of.

Ideograms are signs that bear the visual meaning of the
pictogram, paired with a mute vertical stroke. The image of a
housej without a stroke denotes the phonogram pr for us-
age in words like prỉ (“go out of smth.”) or pr-Ꜥ Ꜣ (“palace”,
“pharao”). Paired with the vertical stroke it signifies an actual
house (more specifically: the layout of the same).

The third function of a literal can be an unread determina-
tive, denoting the semantic sphere of a word. The addition or
the switch of a determinative can change the meaning or even
the word class of a words. The following example (taken from
[2]) displays two words that are pronounced as mḥr, with the
last literal differentiating their meaning:

Figure 1: “pyramid” Figure 2: “pain”

2.2. Transcription
The phonographic reading of hieroglyphs allows to interpret
them as phonograms of consonants that can be transcribed into
uniliteral signs of a conventionalized transcription language.3
These signs do not specify the exact sounds of how hieroglyphs
were pronounced, but are abstracted from how the Egyptian
language has been conveyed in other languages (especially in
Coptic). This phonemic alphabet, consisting of Latin and He-
brew letters, contains also “vowel-like” signs (Ꜥ) and literals that
denote some (unknown) vowel (j). Table 1 visualizes some
of these signs together with their symbolic meanings. Col-
umn one denotes the Gardiner Code [3], a segmentation of
the signs found in Middle Egyptian texts into 26 groups. Note

3Wewill not distinguish between a transliteration of graphemes and a tran-
scription of phonemes and instead use the terms transliteration and transcrip-
tion interchangeably.

Type Source Target

Nominal sentence sn.t=f ꜣs.t “His sister is Isis”
Adjectival sentence nfr sn.wt=f “His sisters are beautiful”
Adverbial sentence jnk m pr=f “I’m in his house”

Table 2: Nonverbal phrases

Type Source Target

Nominal subject jw sḏm zj “The man hears.”
Pronominal subject jw sḏm=f “He hears.”
Pronominal object jw sḏm sw zj “The man hears him.”

Table 3: Verbal phrases

that the standard egyptological transcription does not capture
determinatives: The transliterated representation will be the
same for any word with different determinatives (as long there
is no other reason to transcribe it differently).

2.3. Grammar

The classification between non-verbal and verbal phrases plays
a major rule when deciphering Middle Egyptian. Non-verbal
phrases can be distinguished into nominal, adjectival and ad-
verbial phrases that do not contain an inflected verb. The pred-
icative role to the subject noun is then taken by another noun,
an adjectival or adverbial phrase. Example sentences are given
in table 2, where “.” denotes the separation of genus and num-
ber tokens.

As the name already reveals, verbal sentences introduce
verbs that are inflected by suffixes (e.g. =f → “he”/“his”).
Syntactic constituents can be classified by the basic rule of
word-order, which is Verb-Subject-Object, although the or-
der changes when objects become pronominal. Table 3 shows
some examples. jw, in each case, initiates a main clause.

3. Data
3.1. Thesaurus Linguae Aegyptiae

Our work is based on a dump of the Thesaurus Linguae Ae-
gyptiae (TLA) of the Berlin-Brandenburgische Akademie der
Wissenschaften of 2018/01/30. The TLA project collects and
edits Egyptian texts of different research groups in a database.
The texts within the corpora are adapted to the Text Encod-
ing Initiative4 (TEI) and administrated within a schema-free
database with many diverse attributes. All texts are tokenized
and both hieroglyphic encoding and transcription are available.
Each token possesses a link to a dictionary, where further in-
formation like POS tag and lemma is stored. The sentences
are mostly translated into German, few into English or both.
As stated in section 1, hieroglyphic encoding in Gardiner stan-
dard codes is available for around 30% of all sentences. The

4http://www.tei-c.org/index.xml



Gardiner encoding also includes special markers for spatial ar-
rangement of the hieroglyphs as signs can be grouped in differ-
ent ways. For example, the word for “heart” jb can be writtenG| orG|, depending on the available space and the writer’s pref-
erences. We deleted these markings as they were considerably
predominant, so that the hro sources resulted in contiguous se-
ries of Gardiner signs.

The selection of sources contains papyri and inscription
ranging from the Old to the New Kingdom, therefore cover-
ing the years from around 2500 to 1000 BCE. The text objects
we used mainly date back to the Middle and Old Kingdom.
Although the present paper aims to examine “classical” Mid-
dle Egyptian, grammar and vocabulary between former named
epochs are similar. A small percentage of the texts may even
contain Late Egyptian language.

3.2. Data Extraction

The data was extracted from an intermediate json file using
jq5. Parsing the file resulted in 29, 269 parallel sentences, in-
cluding hieroglyphs (hro), transcriptions (trans), POS tags for
transcriptions (pos) and German translations (de). In addi-
tion to these data, 62, 129 tuples of pos/trans/de were avail-
able (where hieroglyphic encodings were absent). An example
tuple is given in table 4.

Type Alignment
hro D21 Y1 A1 D21 N35 A2 V31A
trans rḫ =j rn =k
pos verb pronoun substantive pronoun
de ich kenne deinen namen .

Table 4: Example paralled data

3.3. Textcritic Signs

The TLA project follows the TEI conventions for dealing with
historical text objects. This especially affects textual witnesses
from dead languages, as text objects could be (partially) de-
stroyed, hardly readable or grammatically ambiguous. The
textcritic signs used in the TLA corpus and their handling dur-
ing pre-processing are illustrated in table 5.

Symbol Meaning Handling
() defective erase parenthesis and content
[] lost erase parenthesis
{} surplus erase parenthesis
<> omitted erase parenthesis
⌈⌉ damaged erase parenthesis
؟ ? unclear erase parenthesis

Table 5: Handling of textcritic markers
5https://stedolan.github.io/jq/

The overall aim was to keep as much information as pos-
sible. Only the information about defective passages had to be
deleted as also comments and explanations of the translators
were often mistakenly added in the same type of parentheses.

4. Multi-Task Learning
4.1. Multi-Task Setup
We followed the approach of [4] in our implementation of
multi-task learning. During training, the system switches be-
tween multiple encoders/decoders, according to a probabilis-
tic schedule that controls the expected ratio between main and
assistance tasks. We denote the main task as hieroglyphic en-
coding to German (hro2de), whereas assistance tasks could be
one of the following:

• transcription to German (trans2de)
• hieroglyphic encoding to transcription (hro2trans)
• hieroglyphic encoding to transcription POS tags
(hro2pos)

As depicted in figure 3, models with one source and multiple
targets are understood to be one-2-many systems, models with
multiple sources and one targetmany-2-one systems, and mod-
els with multiple sources and multiple targets many-2-many
systems. Our experiments in section 7 cover all of these vari-
ations. During runtime only one of the encoder/decoder pairs
and their according inputs/outputs is active. The error back-
propagation during learning is thus specific to the respective
current task.

Figure 3: Possible multi-task learning setups

4.2. Learning Schedule
We adapt a multi-task schedule similar to [4] with a parame-
ter αi that denotes the average ratio between two tasks. When
fixing α1 = 1.0 for the main task, the system switches to an
assistance taski with probability αi∑

j αJ
. We employ αi ∈

{0.05, 0.10, 0.20, 0.30, 1.00} to verify the amount of assis-
tance data needed for the best results. When incorporating
multiple assistance sources/targets, we didn’t experiment with



different ratios for each tasks, but fixed α to be the same ratio
for all of them.

4.3. Evaluation Technique

To reliably evaluate our learning setups, we applied 10-fold
cross validation in every experiment series: Every fold was
split into a disjoint train (90%) and test (10%) set, where we
sampled another 1, 000 pairs from the train set as a held out
validation set. After training our experiments for 200 epochs,
we evaluated the system on the test set with parameters that
achieved best results on the validation set. We report the aver-
age BLEU and the standard deviation from all ten runs.

5. Neural Architecture
Our implementation extended the machine translation frame-
work Joey NMT [5], a neural toolkit written in Pytorch whose
minimalist structure facilitated incorporating the multi-task
learning schedule whereas still providing highly competitive
performance. The base settings stayed the same for all exper-
imental variations: We used an encoder/decoder sequence-to-
sequence system with attention mechanism [6] that was fixedly
attached to a decoder (and therefore was shared, when us-
ing many-2-one models). As encoders/decoders we employed
GRU cells with a hidden size of 512 and a 20% dropout rate.
For training we utilized ADAM as an optimizer with a learn-
ing rate of 2 · 10−4. We trained every system for 200 epochs
with a mini-batch size of 32 and tested from checkpoints that
achieved best scores on a small holdout validation set. 10-fold
cross validation helped to compensate bias of our low resource
data. The only variable parameter was the embedding dimen-
sion for every data type. Here, we set 512 for trans and de
respectively, 128 for hro and 32 for pos.

6. Baselines
Simultaneously to the multi-task experiment series, we
trained several end-to-end systems, including a very strong
transcription-to-translation upper bound. All runs besides
back translation were repeated with 10-fold cross validation.

6.1. Hieroglyphs-to-Translation

The system that constitutes a baseline in our experiments is
direct translation from hieroglyph script (hro) into to German
text (de). The goal of our experiments is to improve the 19.77
BLEU (see table 6) by joint learning and information sharing
with other tasks, however, avoiding a mandatory manual tran-
scription step at test time.

BLEU result stddev

hro2de 19.77 1.11

Table 6: Results for hro2de.

6.2. Transcription-to-Translation
The system that translates manual transcriptions trans to
German text de constitutes the upper bound in our experi-
ments. Manual transcription incorporates both word bound-
aries and disambiguation of defects or variations in ortho-
graphic spellings. Table 7 shows that a gap of 8 BLEU points
between trans2de and hro2de translation.

BLEU result stddev

trans2de 27.67 1.58

Table 7: Results for trans2de

6.3. Backtranslation
A common strategy to enhance learning in low resource
sequence-to-sequence modeling scenarios is to augment the
available corpus with synthetic samples [7]. Back-translation
in our scenario meant to first train a de2hro system on the avail-
able parallel data, and create synthetic pairs to gradually en-
rich the basic hro2de sentence pairs. Table 8 shows BLEU
results from 2,000 up to 10,000 additional samples. As can be
seen, only backtranslation with the largest amount of data can
slightly improve the results of the hro2de baseline.

Additional data 2,000 4,000 6,000 8,000 10,000

BLEU 19.42 19.67 19.39 19.37 20.57

Table 8: Results for various back-translation settings.

6.4. Pipeline
As pointed out in section 2.2, the transcription of hieroglyphs
conveys phonograms, and as such also provides word bound-
aries. When considering hieroglyphs as a form of “speech”,
this transcription resembles the target output when training a
speech recognition system. A straightforward baseline sys-
tem could therefore build a pipeline to first translate the hi-
eroglyphic encodings to the transcription (as in ASR) and then
translate the generated transcription to the German target lan-
guage (as in MT). We propose three training methods that all
start from training an encoder/decoder model for hro2trans
(systembase). Building on systembase,

1. train an encoder/decoder model for trans2de with the
original training data for this pair (system1);

2. train an encoder/decoder model for trans2de with the
inferred training data from system1 as source (system2);

3. train an encoder/decoder model for trans2de with both
the original from systembase and the inferred training
data from system1 as source (system3).

Results for all three setups are shown in table 9. As can be
seen, none of the pipeline reaches the hro2de baseline results.



System system1 system2 system3

BLEU 18.97 19,86 19,76
stddev 1.40 1.80 1.76

Table 9: Pipeline results.

7. Multi-Task Experiments
In the following experiments, data for the main and the auxil-
iary tasks were taken from the 29, 269 tuples of hro, trans, pos,
and de annotations.

7.1. Many-2-One

Our many-2-one multi-task experiment uses the transcription
as additional input such that transcription and hieroglyphic en-
coding share the decoder for translation. Our reasoning why
this setup could be beneficial is that during training of trans2de,
the decoder is provided helpful information about word bound-
aries and syntax structure from the transcribed data, and keeps
this as stored knowledge when switching back to hro2de. We
experimented both with a basic (1 layer) and a deep (4 lay-
ers) and employed the ratios mentioned in section 4.2. Tables
10 and 11 show that up to α = 0.20 nearly no improvements
are recorded. Only with 4 layers we gain around 1 BLEU for
α = 0.30 and 2 BLEU for α = 1.00.

α 0.05 0.10 0.20 0.30 1.00

BLEU 19.53 18.25 18.91 19.62 21.61
stddev 1.35 0.74 1.39 1.55 1.40

Table 10: Results for many-2-one with 1-layer architecture.

α 0.05 0.10 0.20 0.30 1.00

BLEU 20.38 19.82 20.06 20.41 21.60
stddev 1.25 0.63 1.28 1.55 1.24

Table 11: Results for many-2-one with 4-layer architecture.

7.2. One-2-Many

In our one-2-may setup, transcription and translation share the
same encoder with hieroglyphic encodings as input. In these
experiments we used the same settings as in section 7.1, but
with the transcription as additional target language. The mo-
tivation for this setup is to condition the encoder on syntactic
structure, word boundaries and disambiguation of varied pic-
togram compositions. The results shown in tables 12 and 13
show no improvements for 1-layer architectures and a gain of
2 BLEU for 4-layer structures.

To fully exploit all data available in these settings, we added
an additional decoder for hro2pos pairs. We found that POS

α 0.05 0.10 0.20 0.30 1.00

BLEU 18.45 18.74 18.33 19.26 19.96
stddev 0.91 0.70 0.66 1.64 1.21

Table 12: Results for one-2-many with 1-layer architecture.

α 0.05 0.10 0.20 0.30 1.00

BLEU 19.99 20.31 20.03 20.78 21.92
stddev 1.46 2.06 1.18 1.18 1.45

Table 13: Results for one-2-many with 4-layer architecture.

α 0.05 0.10 0.20 0.30 1.00

BLEU 20.34 20.81 21.31 22.76 22.79
stddev 1.57 2.02 2.08 1.24 0.92

Table 14: Results for one-2-manywith additional POS tags and
4-layer architecture.

information that allows to disambiguate between word classes
offers complementary information to the structural informa-
tion already provided by transcriptions. Table 14 highlights
improvements of 3 BLEU in comparison to the hro2de base-
line for α = 0.30 and 4 layers. Remarkably, this improvement
does not change when increasing α to 1.00, showing that it is
sufficient to transcribe and tag 30% of the main data for opti-
mal results.

In order to assess the contribution of hro2pos to the in-
crease of BLEU found in table 14, we removed the hro2trans
decoder and left hro2pos as sole assistance task. We found
that this model showed a slight decrease 0.5 BLEU over the
best result, demonstrating that both assistance tasks offer ben-
eficial structural information. Additionally, we evaluated if the
same results could have been achieved when solely using auto-
encoding, but this was not the case. Only 21.34 BLEU was
reached for the assistance task hro2hro. Both results are listed
in table 15.

Type POS tags only Auto-encoding All-in

α 0.30 0.30 0.30

Layers 4 4 4

BLEU 22.38 21.34 21. 38
stddev 1.64 1.58 1.46

Table 15: Results for one-2-many with POS tag only & auto-
encoding and many-2-one results for the all-in variant.



7.3. Many-2-Many
In this last experimental series, we allowed all connections as
depicted in figure 3. We wanted to find out if the improve-
ments gained frommany-2-one and one-2-many settings could
in some way accumulate to even better BLEU scores. As acti-
vating all connections caused relatively long run times, we only
explored variations with α = 0.05 and α = 0.30. Results in
table 16 for both of these settings showed that it was not pos-
sible to tune the model to benefit from the multiple tasks in
a many-2-many setup. These results reflect the only marginal
increases in BLEU from the corresponding many-2-many ex-
periments reported in [4], where they achieved +0.5 BLEU
when using autoencoding.

α 0.05 0.30

BLEU 17.78 18.07
stddev 1.31 1.46

Table 16: Results for many-2-many 4-layer architectures.

7.4. “All-in”
For this experimental series, we evaluated if our best
many2one system could achieve even better results if it was
provided all the available data pairings of trans2de. We there-
fore manipulated the algorithm to accept the same ratios as be-
fore, but created the assistance data iterator over all trans2de
pairs. In this way, the amount of assistance data processed
stayed the same, the data itself instead was taken from the com-
plete set of parallel assistance pairs. The result was, that with
a model of 4 layers, the maximum BLEU was reached earlier
(at αall−in = 0.30 instead of α = 1.00), but dropped again
at α = 1.00. This revealed that there was no improvement
when the amount of assistance data was bigger than that of of
the main task - no matter what ratio was employed. Table 17
summarizes these results.

α 0.30 1.00

BLEU 21.38 21.34
stddev 1.46 1.91

Table 17: 4-layer many-2-one system that iterates over all
trans2de pairs within the scope of a certain switch ratio.

8. Analysis
In this section, we analyze translations from our best one-2-
many system (mixing between hro2de, hro2trans and hro2pos)
and compare them to translations of the baseline system
hro2de. We found that indeed in many cases the improvements
could be attributed to better segmentation of the hieroglyphic
input sequence in the multi-task systems. Table 18 demon-
strates the superior segmentation capabilities of the multi-task

system on a test set sample. Whereas hro2de interpreted D21
(r) incorrectly as the beginning of a new word rꜤ (“saying”),
one2many+pos correctly split the input sequence between X1
(t in k.t = “another”) and F46 (pẖr as triliteral in the beginning
of pẖr.t) and produced the output “heilmittel”, which is a valid
translation for pẖr.t.

Another finding was that the training on multiple targets
helped the system to correctly remember specific tokens. In
the example of table 19 one can see that hro2de outputs the
wrong name of the god mentioned in the source sentence. We
conjecture that especially the transcription supports the system
to memorize words in complex sequences.

hro V31 X1 F46 D21 X1 N33 Z2
trans kt pẖr.t
hde (reference) ein anderes rezept .
hro2de ein andere spruch .
one2many+pos ein anderes heilmittel :

Table 18: Sample translation 1

hro P6 D36 N35 G26B G7 D2 Ff100 Z1 . . .
trans ꜥḥꜥ.n Ḏḥw.tj ḥr ḏd n Pꜣ-Rꜥ-Ḥr.w-ꜣḫ.tj.du
hde (reference) da sagte thot zu reharachte :
hro2de da sagte reharachte zu reharachte :
one2many+pos da sagte thot zu reharachte :

Table 19: Sample translation 2

9. Conclusion
We presented an approach to direct translation of Middle
Egyptian hieroglyphs that circumvents the need for segmenta-
tion and disambiguation via manual transcription at test time.
Instead, we show that adding manual transcriptions and POS
tags in multi-task training at an amount of 30% of the parallel
hieroglyph data is sufficient to boost translation performance
by 3 BLEU points, amounting to a 40% error reduction rela-
tive the upper bound of translation frommanual transcriptions.
This approach outperforms by far a straightforward pipeline
that attempts to automatically transcribe hieroglyphs before
translation. Our approach thus shows that sharing of structural
information between related tasks is beneficial even in tasks
that are too under-resourced to allow to build straightforward
processing pipelines.
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