
Chapter 8

Row polymorphism

Consider the following code:
type name_home = {name : s t r i n g ; home : s t r i n g }
type name_mobile = {name : s t r i n g ; mobile : s t r i n g }

l e t jane = {name = “Jane” ; home = “01234−654321”}

l e t john = {name = “John” ; mobile = “07654−123456”}

l e t print_name r = pr int_end l ine (“Name : ” ^ r . name)

l e t () =
print_name jane ;
print_name john

We create two records, one for jane and one for john, and then we print the
name fields of these records. These all seems pretty reasonable, but it doesn’t
work:

print_name jane;
^^^^

Error: This expression has type name_home
but an expression was expected of type name_mobile

The problem is that jane and john have different record field labels. Whilst
both records have fields labelled name, jane also has a field labelled home whereas
john has a field labelled mobile. Since they have different fields, jane and john
have different types, but print_name only works on a single type (in this case
name_mobile) hence the error message.

Since print_name only uses the name field, we would like to be able to use
it with any type that has such a field. In other words, we would like the type
of print_name to be polymorphic in such a way that it can be instantiated to
any type with a name field.

1

2 CHAPTER 8. ROW POLYMORPHISM

More generally, we would like all operations on records to have polymorphic
types, which can be instantiated to any record type which meets the require-
ments of that operation. There are three basic operations on records, from
which we can build up any more complex operations:

1. An empty record (empty)

2. Extend a record with a field (extend)

3. Access the contents of a field (access)

8.1 Presence variables
8.1.1 Presence and absence
For a finite set of field labels we can define polymorphic record types by repre-
senting an absent field using a nullary type constructor absent and a present
field using a unary type constructor present whose argument is the type of the
field.

For example, records with fields labelled either name, home or mobile can be
encoded as:

type absent = Absent

type ' a pre sent = Present : ' a −> ' a pre sent

type (' name , ' home , ' mobile) record =
{ name : ' name ;

home : ' home ;
mobile : ' mobile ; }

The basic operations on these records are defined as:

l e t empty =
{ name = Absent ; home = Absent ; mobile = Absent }

l e t extend name { home ; mobile ; _ } =
{ name = Present name ; home ; mobile }

l e t extend೦ home { name ; mobile ; _ } =
{ name ; home = Present home ; mobile }

l e t extend೦ೠೣ mobile { name ; home ; _ } =
{ name ; home ; mobile = Present mobile }

l e t a c c e s s { name = Present name ; _ } = name

l e t a c c e s s೦ { home = Present home ; _ } = home

8.1. PRESENCE VARIABLES 3

l e t a c c e s s೦ೠೣ { mobile = Present mobile ; _ } = mobile

which have types:

va l empty : (absent , absent , absent) record

va l extend : ' d −> (' a , ' b , ' c) r ecord −>
(' d present , ' b , ' c) r ecord

va l extend೦ : ' d −> (' a , ' b , ' c) record −>
(' a , ' d present , ' c) r ecord

va l extend೦ೠೣ : ' d −> (' a , ' b , ' c) record −>
(' a , ' b , ' d pre sent) record

va l a c c e s s : (' a present , ' b , ' c) record −> ' a

va l a c c e s s೦ : (' a , ' b present , ' c) r ecord −> ' b

va l a c c e s s೦ೠೣ : (' a , ' b , ' c pre sent) record −> ' c

As you can see, the functions for extending and accessing records are now poly-
morphic in the presence of the fields that they do not operate on.

Using this scheme, we can encode our print_name example as follows:

l e t jane = extend “Jane”
(extend೦ “01234−654321” empty)

l e t john = extend “John”
(extend೦ೠೣ “07654−123456” empty)

l e t print_name r =
pr int_end l ine (“Name : ” ^ (a c c e s s r))

l e t () =
print_name jane ;
print_name john

8.1.2 Polymorphic record extension
It is clear that field access should only work on records for which the field is
present. However, should record extension always return a record where the
field is present?

Consider the following code:

l e t person p = i f p then jane e l s e john

4 CHAPTER 8. ROW POLYMORPHISM

With our original encoding this does not type-check because jane and john do
not have the same set of fields. However, it should be safe to give person the
type bool -> (string present, absent, absent) record because both jane
and john are records with a name field of type string. In general, it should
always be safe to treat a record as if it had fewer fields than it actually has.

Whilst it is safe to treat a record with a home field of type string as if it
did not have a home field, it is not safe to treat it as if the home field had type
int. So record extension can be polymorphic in the presence of a field but not
in the type of a field. This means that we would like the definition of record
extension to use higher-kinded polymorphism.

Since higher-kinded polymorphism in OCaml requires the module system
– which is quite verbose – we will express the type of record extension using
System F𝜔.:

extend೦ : ∀𝛼 : ∗ . ∀𝛽 : ∗ . ∀𝛾 : ∗ . ∀𝛿 : ∗ . ∀𝜑 : ∗ ⇒∗ .
𝛿 → Record 𝛼 𝛽 𝛾 → Record (𝜑 𝛿) 𝛽 𝛾

where 𝜑 is a type constructor variable that can be instantiated with either
Present or (𝜆𝛼:∗. Absent). We call such higher-kinded type variables pres-
ence variables.

8.1.3 Ensuring record types are well-formed
Polymorphic record types using presence variables allow some type expressions
that don’t make sense by instantiating the presence variables with type con-
structors other than Present or Absent (e.g. Record Int (Present String)
(Present String)) or by using Present or Absent outside of a record type
(e.g. List (Present Int)). This is still type-safe because all the operations on
record types only work on well-formed record types, however it is undesirable
to allow ill-formed types to even be expressed.

Such ill-formed types are usually prevented using a kind system by creating
a new kind presence such that:

Absent : pre sence
Present : ∗ ⇒ presence
Record : pre sence ⇒ presence ⇒ presence ⇒ ∗

8.2 Row variables
In the previous section we were able to encode polymorphic records for a fixed
finite set of field labels. This requires us to know in advance all the field labels
that will be used with our polymorphic records, which prevents separate compi-
lation. What we really want is to be able to encode polymorphic records for an
infinite set of field labels (e.g. all possible strings of alphanumeric characters).
We will write L to represent some infinite set of labels.

If we assume the existence of infinite record types, containing one field for
each of the field labels, then we can use the same encoding as in the previous

8.2. ROW VARIABLES 5

section to encode polymorphic records. We will write {…; foo: bar; …} to
represent such a record type with the foo field having type bar, and we will use
l and m to represent generic labels.

empty : { . . . ; l : Absent ; . . . }

extend : ∀𝛼 : ∗ . ∀ 𝛽 : p re sence ∀ 𝛾ೣ : p re sence
∀ 𝜑 : ∗ ⇒ presence .

𝛼 → { . . . ; m : 𝛽 ; . . . ; l : 𝛾ೣ ; . . . } →
{ . . . ; m : 𝜑 𝛼 ; . . . ; l : 𝛾ೣ ; . . . }

a c c e s s : ∀𝛼 : ∗ ∀ 𝛽ೣ : p re sence
{ . . . ; m : Present 𝛼 ; . . . ; l : 𝛽ೣ ; . . . } →

𝛼
Unfortunately, we cannot use such infinite record types directly, because

they have an infinite number of type parameters. This means, for example, that
unification of two of these types will not terminate. However, the type schemes
for empty, extend_m and access_m above only use infinite record types of a
particular form. Each record type appearing above can be divided into two
parts:

1. A finite part

2. A co-finite part where either every type parameter is a free variable or
every type parameter is Absent.

The infinite record types in the above definitions are divided as follows:

Record type Finite part Co-finite part
{... ; l : Absent ; ...} { } { ... ; l : Absent ; ...}
{... ; m : 𝛽 ; ... ; l : 𝛾ೣ ; ...} {m : 𝛽} {... ; l : 𝛾ೣ ; ...}
{... ; m : 𝜑 𝛼 ; ... ; l : 𝛾ೣ ; ...} {m : 𝜑 𝛼} {... ; l : 𝛾ೣ ; ...}
{... ; m : Present 𝛼 ; ... ; l : 𝛽ೣ ; ...} { m : Present 𝛼 } {... ; l : 𝛽ೣ ; ...}

By splitting our infinite record types up like this we can give them a finite
representation. If the co-finite part has every type parameter equal to absent
then we represent the record type by just its finite part. If the co-finite part has
type variables for every parameter then we represent the record type as a pair
of the finite part and a single type variable to represent the co-finite part. For
convenience we write this pair as { finite-part | 𝜌 }.

The type variables 𝜌 representing co-finite records are called row variables.
As with presence variables, the kind system is usually used to ensure that record
types are well formed. A row variable reprsenting a co-finite record without
labels mе to m is given kind row(mе, ..., m). This prevents types which
unify row variables with regular types (e.g. { m : Present Float | Int }),
or record types including multiple occurrences of the same label (e.g. { m :
Present Float | { m: Present Int } }).

Using this finite representation, our operations have the following type schemes:

6 CHAPTER 8. ROW POLYMORPHISM

empty : {}

extend : ∀𝛼 : ∗ . ∀ 𝛽 : p re sence . ∀ 𝜌 : row (m) .
∀ 𝜑 : ∗ ⇒ presence .

𝛼 → {m : 𝛽 | 𝜌} → {m : 𝜑 𝛼 | 𝜌}

ac c e s s : ∀𝛼 : ∗ . ∀ 𝜌 : row (m) .
{m : Present 𝛼 | 𝜌} → 𝛼

With this finite representation we can perform unification using variations of
the standard ML algorithms. These algorithms maintain all the good properties
that ML type inference has, in particular they still have principal types. Infinite
record types which can be represented in this way are closed under unification,
which means that we never have to handle a record type which is not of this
form.

8.3 Polymorphic variants
Consider the following code:

type number =
| Int : i n t −> number
| Float : f l o a t −> number

l e t square = func t i on
| Int i −> Int (i * i)
| Float f −> Float (f * . f)

type constant =
| Int : i n t −> constant
| Float : f l o a t −> constant
| S t r ing : s t r i n g −> constant

l e t pr int_constant = func t i on
| Int i −> pr int_int i
| Float f −> pr in t_ f l o a t f
| S t r ing s −> pr in t_s t r i ng s

l e t () = pr int_constant (square (Int 5))

We define a function square which squares a number that is either an int or
a float, and a function print_constant which prints something that is either
an int, a float or a string. We then use these functions to square 5 and print
the result.

This code seems reasonable, but will not type check.

Characters 24-40:

8.3. POLYMORPHIC VARIANTS 7

let () = print_constant (square (Int 5));;
^^^^^^^^^^^^^^^^

Error: This expression has type number but an expression was expected
of type constant

The square function and the print_constant function work on different
variant constructor labels. Whilst they both work on constructors labelled Int
and Float, print_constant also works on constructors labelled String. Since
they work on different constructors, square and print_constant work on dif-
ferent types, hence the error.

You may notice some similarity between the above example and jane and
john example from the beginning of this chapter. This comes from the duality
between records and variants. This duality implies that we can also use row
variables and presence variables to support this example.

As with records, what we would like is for all operations on variants to have
polymorphic types, which can be instantiated to any variant type which meets
the requirements of that operation. The three basic operations on variants, dual
to the three basic operations on records, are as follows:

1. Match a variant with no constructors (match_empty)

2. Extend a match with a variant constructor (extend_match)

3. Use a variant constructor (create)

Using these operations, we can write square and print_constant as follows:
l e t square =

extend_matchೀ೫ (fun i −> crea t e ೀ೫ (i * i))
(extend_matchಽೣ೦೫ (fun f −> crea t eಽೣ೦೫ (f * . f))

match_empty)

l e t pr int_constant =
extend_matchೀ೫ (fun i −> pr int_int i)

(extend_matchಽೣ೦೫ (fun f −> pr in t_ f l o a t f)
(extend_matchೊ೫೩ೠೞ (fun s −> pr in t_s t r i ng s)

match_empty))

l e t () = pr int_constant (square (c r e a t e ೀ೫ 5))
To distinguish polymorphic variant types from polymorphic record types we

will write them using the syntax [Foo : bar | 𝜌] where Foo is a constructor
label, bar is the type of the constructor labelled Foo and 𝜌 is the (optional) row
variable.

Using row variables and presence variables, we can give the basic operations
on variants the following types:

match_empty : ∀ 𝛼 : ∗ . [] → 𝛼

8 CHAPTER 8. ROW POLYMORPHISM

extend_matchೄ : ∀𝛼 : ∗ . ∀ 𝛽 : p re sence . ∀ 𝛾 : ∗ .
∀ 𝜌 : row (M) . ∀ 𝜑 : ∗ ⇒ presence .

(𝛼 → 𝛾) → ([M : 𝛽 | 𝜌] → 𝛾) →
[M : 𝜑 𝛼 | 𝜌] → 𝛾

c r e a t eೄ : ∀𝛼 : ∗ . ∀ 𝜌 : ∗row (M) .
𝛼 → [M : Present 𝛼 | 𝜌]

8.4 Row polymorphism in OCaml
Regular OCaml records and variants are not polymorphic. There are two good
reasons for this:

1. Monomorphic records and variants can be implemented more efficiently
than their polymorphic counterparts.

2. Polymorphic records and variants are more flexible, but this additional
flexibility makes types more complicated and type errors more difficult to
understand.

However, OCaml does also provide objects (similar to polymorphic records)
and polymorphic variants. Both of these are typed using forms of row poly-
morphism. In both cases the form of row polymorphism is more restrictive
the row polymorphism described in this chapter, and this section discusses the
limitations of these restricted forms.

8.4.1 OCaml’s objects
The jane and john example from the beginning of the chapter can be imple-
mented using OCaml objects:

l e t jane = ob j e c t
method name = “Jane”
method home = “01234−654321”

end

l e t john = ob j e c t
method name = “John”
method mobile = “07654−123456”

end

l e t print_name r = pr int_end l ine (“Name : ” ^ r#name)

l e t () =
print_name jane ;
print_name john

8.4. ROW POLYMORPHISM IN OCAML 9

The OCaml object type syntax comes in two forms:

• < foo : int; bar : float > represents an object type where the
method foo has type int and the method bar has type float. Both
methods are present, and all other methods are absent.

• < foo: int; bar : float; .. > is the same as above, except the
object may contain other methods besides foo and bar. In other words,
the .. represents an unnamed row variable.

Using this syntax, the type schemes of jane, john and print_name are as
follows:

va l jane : < home : s t r i n g ; name : s t r i n g >

va l john : < mobile : s t r i n g ; name : s t r i n g >

va l print_name : < name : s t r i n g ; . . > −> unit

8.4.2 OCaml’s Polymorphic variants
Using OCaml’s polymorphic variants we can write the square example:

l e t square = func t i on
| ` Int i −> ` Int (i * i)
| ` Float f −> `Float (f * . f)

l e t pr int_constant = func t i on
| ` Int i −> pr int_int i
| ` Float f −> pr in t_ f l o a t f
| ` S t r ing s −> pr in t_s t r i ng s

l e t () = pr int_constant (square (` Int 5))
The OCaml polymorphic variant type syntax is a bit complicated and comes

in four forms:

• [`Foo of int | `Bar of float] represents a variant type where the
constructor `Foo has type int and the constructor `Bar has type float.
Both constructors are definitely present.

• [< `Foo of int | `Bar of float] is the same as above, except that it
is polymorphic in the presence of both constructors. In other words, the
< represents two unnamed presence variables.

• [< `Foo of int | `Bar of float > `Bar] is the same as above, except
that it is only polymorphic in the presence of the `Foo constructor – the
`Bar constructor is definitely present. In other words, the < represents a
single unnamed presence variable associated with `Foo.

10 CHAPTER 8. ROW POLYMORPHISM

• [> `Foo of int | `Bar of float] is the same as the first form, except
their may be more constructors than just `Foo and `Bar. In other words,
the > represents an unnamed row variable.

Using this syntax, the type schemes of the square and print_constant
functions are as follows:
va l square : [< `Float o f f l o a t | ` Int o f i n t] −>

[> `Float o f f l o a t | ` Int o f i n t]

va l pr int_constant :
[< `Float o f f l o a t | ` Int o f i n t | ` S t r ing o f s t r i n g] −>

unit

8.4.3 Limitations
Hidden row variables

Both object types and polymorphic variant types in OCaml hide the row vari-
ables. This simplifies the types and avoids the need to expose the user to type
variables of kinds other than *. However, it also places some limitations on how
objects and polymorphic records can be used – relative to the more explicit row
polymorphism described in the previous sections.

Not allowing row variables to be named means that row variables cannot
be shared between different object types. Looking at the types of the basic
operations on records, we can see that this means we cannot express the type
of polymorphic record extension (extend).

Instead of supporting polymorphic record extension, OCaml objects can only
be created monomorphically using object literals. This is equivalent to providing
a family of operations of the form:

va l c r e a t e ೣಲಲ : ' a −> ' b −> ' c −>
< l : ' a ; m : ' b ; n : ' c >

instead of empty and extend.
In practical terms, this means that we cannot take a generic object and

extend it with a new method. We can only create a new record if we statically
know all of the its methods.

As with object types, row variables cannot be shared between different vari-
ant types. Looking at the types of the basic operations on variants, we can see
that this means we cannot express the type of polymorphic match extension
(extend_matchೄ).

Instead of supporting polymorphic match extension, polymorphic variants
can only be matched using a single match statement. This is equivalent to
providing a family of operations of the form:

va l matchೃಲೄಲ :
(' a −> ' d) −> (' b −> ' d) −> (' c −> ' d) −>

[< `L o f ' a | `M of ' b | `N o f ' c] −> ' d

8.4. ROW POLYMORPHISM IN OCAML 11

instead of match_empty and extend_matchೄ.
In practical terms, this means we cannot take a generic function on poly-

morphic variants and extend it with a new case for a variant constructor.

Objects and presence variables

OCaml’s objects (unlike OCaml’s polymorphic variants) do not support presence
variables. This simplifies the types for objects, but means that the person
example cannot be type-checked using OCaml objects:

l e t person p = i f p then jane e l s e john

Characters 35-39:
let person p = if p then jane else john

^^^^
Error: This expression has type < mobile : string; name : string >

but an expression was expected of type
< home : string; name : string >

The second object type has no method mobile

However, separately from row polymorphism, OCaml does provide an ex-
plicit subtyping coercion operator :>, which can be used in this case:

l e t person p =
i f p then (jane :> < name : s t r i n g >)
e l s e (john :> < name : s t r i n g >); ;

va l person : bool −> < name : s t r i n g > = <fun>

Subtyping is a related but separate concept from row polymorphism. For a
good overview of subtyping see Part III of Types and Programming Languages
by Pierce.

	Row polymorphism
	Presence variables
	Presence and absence
	Polymorphic record extension
	Ensuring record types are well-formed

	Row variables
	Polymorphic variants
	Row polymorphism in OCaml
	OCaml's objects
	OCaml's Polymorphic variants
	Limitations

