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Minimizing the Maximum Firewall Rule Set

Abstract—A firewall’s complexity is known to increase with the size of its rule set. Empirical studies show that as the rule set grows

studies the problems of how to place the firewalls in a topology during network design and how to construct the routing tables during
operation such that the maximum firewall rule set can be minimized. These problems have not been studied adequately despite their
importance. We have two major contributions. First, we prove that the problems are NP-complete. Second, we propose a heuristic

solution and demonstrate the effectiveness of the algorithm by simulations. The results show that the proposed algorithm reduces the
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larger, the number of configuration errors on a firewall increases sharply, while the performance of the firewall degrades. When
designing a security-sensitive network, it is critical to construct the network topology and its routing structure carefully in order to
reduce the firewall rule sets, which helps lower the chance of security loopholes and prevent performance bottleneck. This paper
maximum firewall rule set by 2-5 times when comparing with other algorithms.
Index Terms—Firewall configuration, access control rules, network security.
<+
1 INTRODUCTION

FIREWALLS are the cornerstones of corporate network
security. Once a company acquires firewalls, the most
crucial management task is to correctly configure the
firewalls with security rules [1], [2]. A firewall’s configura-
tion contains a large set of access control rules, each
specifying source addresses, destination addresses, source
ports, destination ports, one or multiple protocol ids, and an
appropriate action. The action is typically “accept” or
“deny.” Some firewalls can support other types of actions
such as sending a log message, applying a proxy, and
passing the matched packets into a VPN tunnel [3]. For
most firewalls, the rule set is order-sensitive [4]. An
incoming packet will be checked against the ordered list
of rules. The rule that matches first decides how to process
the packet. Other firewalls (such as early versions of Cisco’s
PIX) use the best-matching rule instead.

Due to the multidimensional nature of the rules (includ-
ing source/destination addresses and ports), the perfor-
mance of a firewall degrades as the number of rules
increases. Commercially deployed firewalls often carry tens
of thousands of rules, creating performance bottlenecks in
the network. More importantly, the empirical fact shows
that the number of configuration errors on a firewall
increases sharply in the size of the rule set [5]. A complex
rule set can easily lead to mistakes and mal-configuration.
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After analyzing the firewall rule sets from many organiza-
tions including telecommunication companies and financial
institutes, Wool [5] quantified the complexity of a rule set as
R+0+ w, where R is the number of rules in the set, O
is the number of network objects referenced by the rules,
and [ is the number of network interfaces on the firewall.
The number of network objects and the number of
interfaces are normally much smaller than the number of
rules. Therefore, it is very important to keep a firewall’s rule
set as small as possible in order to lower the chance of
security loopholes [5]. In a network with multiple firewalls,
reducing the number of rules requires not only local
optimization at individual firewalls, but also global
optimization across all firewalls. This paper studies how
to minimize the maximum rule set among all firewalls in
the network, which has not been adequately studied despite
its importance in practice.

We investigate a family of related problems. The first one
is about how to place the firewalls in a topology during
network design. The so-called firewall placement problem (FPP)
is to find the optimal placement of firewalls that connects a
set of domains in such a way that minimizes the maximum
number of rules on any firewall. However, allowing the
complete freedom in topology construction may be rare in
practice. It is more often the case that only limited freedom is
available to be exploited for rule-set reduction, while most or
the entire network topology is a given input. In the following,
we extend FPP to a series of more practical problems.

The second problem, called as partial FPP, is to expand an
existing topology with new firewalls and domains such that
the maximum rule set remains minimized. This problem
arises during incremental deployment or in case that a
partial network topology has been determined based on
more important performance criteria before firewall rule
sets are considered. FPP is a special case of partial FPP (with
an empty existing topology).
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We now move to operational networks whose topologies
have already been fully established. Our third problem,
called firewall routing problem (FRP), is to establish the optimal
routing paths on an existing network topology such that the
maximum number of rules on any firewall is minimized. The
fourth problem is called partial FRP. It assumes that the
routing tables in the network have been partially populated
based on other performance criteria (such as reliability and
bandwidth utilization). For example, if bandwidth is the
most important criterion, some routing entries should be
selected to optimize the use of bottleneck links, but the choice
of other entries may be flexible if alternative paths after
bottleneck links are allowed (since end-to-end bandwidth
is solely decided by the bottleneck). In this case, we can
determine those routing entries by using the secondary
criterion of minimizing the maximum firewall rule set.

Our fifth and sixth problems are called weighted FPP/
FRP. We assign each rule a weight (possibly representing
the volume of traffic covered by this rule), and also assign
each firewall a weight (possibly representing the capacity of
the firewall). The goal is to find the optimal network
topology and/or routing paths that minimize the maximum
weighted number of rules at any firewall. The solutions to
the weighted problems take not only the number of rules,
but also traffic distribution, firewall performance, and
possibly other factors into consideration.

We have two major contributions. First, by reducing the
well-known set-partition problem to the above problems, we
prove that they are NP-complete. Second, we propose a
heuristic algorithm to solve the FPP problem approximately.
Not only does it construct a network topology among
domains and firewalls, but also identify routing paths that
minimize the maximum firewall rule set. The algorithm can
be easily modified to solve partial FPP, FRP, partial FRP,
weighted FPP, and weighted FRP. Hence, the algorithm can
be used to construct a new topology, complete a topology
that has been partially constructed (based on other perfor-
mance criteria), expand an existing topology, or work on an
established topology to build a new routing structure or
complete an existing routing structure that has been partially
populated (based on other performance criteria). We
demonstrate its effectiveness by simulations, which show
that the proposed algorithm achieves far better results than
two other solutions. The maximum size of all firewall rule
sets produced by our algorithm is 2-5 times smaller than
those produced by others.

The rest of the paper is organized as follows: Section 2
defines the network model and the problems to be solved.
Section 3 proves that the problems are NP-complete.
Section 4 proposes a heuristic algorithm. Section 5 presents
the simulation results. Section 6 surveys the related work.
Section 7 draws the conclusion.

2 PROBLEM DEFINITION

2.1 Network Model

We consider a security-sensitive enterprise network con-
sisting of domains (subnets) that are connected with each
other through firewalls. We assume that intradomain
security is appropriately enforced. This paper focuses on
interdomain access control. We further assume that
dynamic routing is turned off on firewalls, while static
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routes are used to direct interdomain traffic, which is
today’s common practice in banks or other institutions that
have high-level security requirements. In fact, some popular
firewalls (such as many Cisco PIX models) do not support
dynamic routing protocols. With static routes, robustness is
achieved by using dual firewalls, which will be discussed
shortly. Using static routes on firewalls is a direct
consequence of the high complexity in managing the
security of a mesh network. It has a number of practical
advantages. First, it ensures that traffic flows are going
through their designated firewalls where appropriate
security policies are enforced. Second, predictable routing
paths simplify the security analysis in a complex network
environment, and consequently, reduce the chance of error
in firewall configuration. Third, most existing dynamic
routing protocols are not secure. Counterfeit routing
advertisement can divert traffic through insecure paths
where the packets may be copied or tampered. Note that
dynamic routing is still used inside each domain as long as
it does not cross an interdomain firewall.

2.2 Notations

Let N be a set of n domains and M a set of m firewalls. Each
firewall has two or more network interfaces. Different
firewalls may have different numbers of interfaces. A
network interface can be connected to any domain, forming
a physical link between the firewall and the domain. In our
model, two firewalls do not directly connect with each other
because, otherwise, we would treat them as one firewall
with combined interfaces; two domains do not directly
connect with each other because, otherwise, we would treat
them as one domain. Let e be the total number of network
interfaces available on all firewalls. The maximum number
of links in the topology is bounded by e. A network
interface that has not been used to connect a domain is
called a free interface.

Each domain has one address prefix. Static routes are
defined to route interdomain traffic, which ensures that
each traffic flow has a specific path going through certain
firewall(s) where the security policy governing this flow
will be enforced. In order to support stateful inspection,
routing symmetry is assumed. It means that the routing
path from domain z to domain y is the same as the path
from y to z, Vz, y € N. This assumption is made to comply
with Cisco’s CBAC (context-based access control) and other
firewalls” stateful inspection mechanisms, which allow the
system administrator to only specify the rules for traffic
from clients to servers, while the firewall automatically
inserts the rules for the return traffic on the fly. CBAC
requires that a connection uses the same (interdomain) path
for two-way communication. We want to stress that this
assumption is made only for practical reasons. Our analysis
and algorithm design can be easily modified to work for
asymmetric routing.

For each pair of domains z, y € N, there is a set R(x,y) of
access control rules, defining the traffic flows that are
permitted from domain x to domain y. The optimization of
the rule set is beyond the scope of this paper. Let
r(z,y) = |R(z,y)|. Similarly, the number of rules from y to
z is denoted as r(y,x). The total number of rules between
the two domains is r(z,y) + r(y, z). Once the routing path
between z and y is determined, these rules will be enforced
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TABLE 1
Notations
N the set of domains
n the number of domains, i.e., n = |N]|
M the set of firewalls
m the number of firewalls, i.e., m = [M]
e the total number of network interfaces of all firewalls
#l, 1) the number_ of access control rules for flows from domain
v x to domain y
w(f) tpe number of access control rules to be enforced on a
firewall f

on the firewalls along the path. Each firewall may sit in the
routing paths between many pairs of domains, and its rule
set will be the aggregate of all rules between those domains.
We want to construct the network topology and/or lay out
the routing paths to avoid creating large firewall rule sets in
the network. We assume that wild-card rules are processed
separately. For example, if a domain requires to deny all
external packets from reaching an internal subnet, a wild-
card deny rule for that subnet will be installed at all
firewalls adjacent to the domain. Since wild-card rules
typically account for a small portion of a large rule set, for
simplicity, when we compute the size of a firewall rule set,
we ignore the contribution of wild-card rules in this paper.

For any firewall f € M, let W ( f) be the set of access control
rules to be enforced by f. Let w(f) = [W(f)|. If f sits in the
routing path from domain « to domain y, then it enforces all
rules between them, and thus, R(z,y) C W(f); otherwise, it
does not enforce those rules, and thus, R(z,y) \W(f) = 0.
Let TI( f) be the set of domain pairs (z,y) with the routing
path from z to y passing through f. We have

W= |J R,

() €I1(f) (1)
wif)= Y rxy)

() €I1(f)

Some frequently used notations are listed in Table 1 for
quick reference.

2.3 Problems

As the example in Fig. 1 shows, there are many ways to
connect a set of domains via a set of firewalls. For any
network topology, there are different ways to lay out the
routing paths. In general, the rule sets to be enforced on the
firewalls will be different when we change the network
topology or the routing paths.

Definition 1. The FPP is to 1) optimally connect a set of
domains via a set of firewalls to form a network topology and
2) establish optimal interdomain routing tables on this
topology such that the maximum number of access control
rules on any firewall, i.e., maxsep{w(f)}, is minimized.

Definition 2. The partial FPP is the same as FPP except that it
works on a given partially constructed topology that allows
limited freedom in the way that the topology can be expanded.

In practice, the network topology is often fixed and
cannot be changed. By optimizing routing paths, we can
still reduce the maximum rule set.
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Fig. 1. Two topologies that connect domains, z, u, v, and y via
firewalls fi, fo, and f; whose numbers of interfaces are 2, 3, and 2,
respectively.

Definition 3. The FRP is to construct optimal interdomain
routing tables on an existing topology to minimize the
maximum number of access control rules on any firewall.

Definition 4. The partial FRP problem is to complete the
partially populated routing tables to minimize the size of the
maximum firewall rule set.

Moreover, we can introduce weights into the problem
definition. Suppose each rule is assigned a weight, propor-
tional to the expected traffic volume covered by this rule.
Note that the legitimate traffic permitted by a rule is
supposed to be routed through the firewalls where the rule
is enforced (Section 2.2). Suppose each firewall is also
assigned a weight, proportional to the firewall’s capacity
(such as processing speed). We define the weight of a firewall
rule set to be the total weight of all rules in the set divided by
the firewall’s weight. It essentially measures the firewall’s
normalized load, defined as the total expected traffic volume
(under normal conditions) divided by the firewall’s capacity.
The weighted version of the above problems is to minimize
the maximum weight of any firewall rule set in the network.
In other words, it is to minimize the maximum normalized
load on any firewall. In the solutions for the weighted FPP/
FRP problems, a firewall with a larger capacity is likely to
take more rules or those rules with heavier traffic.

We will prove that all the above problems are NP-
complete, and we will design a heuristic algorithm for
them. Instead of enumerating over all problems, our presentation
will focus on FPP for analysis and algorithm design. We will
show that the results can be trivially extended to other problems.
Focusing on FPP is only a presentation choice because it is
easier to extend the solution for FPP to other problems. This
presentation choice does not mean that our solution is only
designed for topology construction in the network design
phase. The solution can also be used for topology expansion
and routing optimization in the operation phase, which is
probably the more common scenario of application.

2.4 Rule Graph and Topology Graph

We use Fig. 2 to illustrate a few concepts. There are eight
domains with ids from 1 to 8. The rule matrix (r(z,y), z,
y € N) is shown in Fig. 2a. We construct a rule graph
(denoted as G,) in Fig. 2b, where each node is a domain and
there is an undirected edge (x,y) if r(z,y) + r(y,x) > 0. The
number of access control rules to be enforced between the
two domains, i.e., r(z,y) + r(y, ), is shown beside the link.
G, is a graphical representation of the rule matrix,
specifying the security requirement. It will be the input to
the algorithm that solves FPP and other problems (approxi-
mately, because they are NP-complete).
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rt(1,3)=f,
rt(1,5)=F
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rt(1,7)=f,

rt(2,1)=f
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FH(2,5)=f 4

rt(3,1)=f
rt(34)=f
rt(3,2)=f,
rt(3,5)=f ,
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r(1,2)+1(2,1)
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routing tables of firewalls

rt(4.3)=f , D=1 rif,2)=2
5=t =3 ri(f,3)=3
rt(s,1)=f , rtf13)=3  rtf,4)=4
r(s,)=f =3 rtf,5)=3
s HESS  oss
y— ¥ B
rt(5,4)=f | rt(f,,1)=1 ri(f : 7)=T7
=1 > -
rt(5,7)=f ri(f,,5)=5 rt(fs,8)=8
rt(5,8)=f rt(f2,6)=1
rt(6,)=f 5 rt(f,7)=7
rt(6,7)=f 5 rt(f3,1)=1
(.61, Kita=d
rt(f3,6)=6
rt(8,5)=f rt(f3,7)=1

Fig. 2. Rule matrix, rule graph, and topology graph. (a) r(x,y). (b) Rule graph G,. (c) Topology graph G;.

For the output of the algorithm, we define a topology
graph (denoted as G;), which consists of a network topology
and a routing structure. A node in G, is either a domain or a
firewall. An undirected link (x,f) represents a physical
connection between a domain = and a firewall f. Note that
we use the term “link (z, f)” in Gy, in contrast to the term
“edge (z,y)” in G,. Each node has a routing table consisting
of routing entries, each specifying the next hop for a
destination domain.

Suppose there are five firewalls, each having three
network interfaces. Fig. 2c shows the topology graph
returned by the algorithm to be proposed in this paper.
The number of access control rules enforced on a firewall is
shown inside the box that represents the firewall. The
routing tables are interpreted as follows: “rt(1,2) = f3”
means that the routing table at domain 1 has an entry for
destination domain 2 with the next hop being firewall f;. In
reality, the gateway in domain 1 which connects to firewall
f3 must advertise within the domain that it can reach
domain 2. Consequently, the routing tables at the internal
routers will each have an entry for domain 2, pointing
toward that gateway. “rt(fi,1) = 1” means that the routing
table at firewall f; has an entry for domain 1 with the next
hop being domain 1. It implies that f; is directly connected
to a gateway in domain 1. Of course, the actual routing
entry uses that gateway as the next hop. “rt(fi,2) =3"
means that the routing table at firewall f; has an entry for
domain 2 with the next hop being domain 3. It implies that
fi is directly connected to a gateway in domain 3. The

actual routing entry uses that gateway as the next hop and
the address prefix of domain 2 as the destination. The other
routing entries in the figure should be interpreted similarly.

Given a rule graph G, and a set M of firewalls, for each
feasible topology graph G;, we can calculate w(f), Vf € M.
The topology graph that minimizes maxyer{w(f)} is the
solution. FPP has the largest set of feasible topology graphs;
partial FPP has a smaller set due to the restriction of a given
partial topology. FRP has only one feasible topology with
many possible routing structures, while partial FRP gives
less freedom in constructing a routing structure.

2.5 Robustness

Robustness against node failure is an important issue in
network design. While dynamic routing is used inside each
domain, we must guard against firewall failure. The most
common way to achieve high availability is to use dual
firewalls. The state-synchronization solution and the load-
balancing solution [6], [7], [8] are prevalent in practice. Fig. 3
shows one example for each approach. In both cases,
firewalls in parallel disposition have the same rule set so
that one of them can continue the service when the other
fails. Identical colocated firewalls can be logically treated as
one in our solution. Therefore, we will not explicitly discuss
the use of dual firewalls in the sequel.

3 NP-COMPLETENESS

In this section, we prove that FPP is NP-complete. The same
process can be used to prove the NP-completeness of
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Fig. 3. High-availability solutions. (a) State-synchronization solution.
(b) Load balancer solution.

partial FPP, FRP, partial FRP, and weighted FPP/FRP,
which is omitted to avoid excessive repetition.

FPP is an optimization problem. We define the corre-
sponding decision problem as follows: Given a rule graph
and a set of firewalls, the k-firewall decision problem is to
decide whether there exists a topology graph such that
w(f) <k, Vf € M, where k is an arbitrary, positive integer.
To prove the NP-completeness of FPP, it is sufficient to
prove that its decision problem is NP-complete.

The proof consists of two steps. First, we show that the
k-firewall decision problem € NP. Second, we show that it
is NP-hard by reducing the set-partition problem (known to
be NP-complete [9]) to the k-firewall decision problem in
polynomial time.

3.1 k-Firewall Decision Problem ¢ NP

To show the decision problem belongs to NP, we need to
give a verification algorithm that can verify a solution G, of
the problem in polynomial time. G, is a topology graph,
specifying the network topology and the routing paths
between domains. The verification algorithm is described as
follows: Initially, w(f) =0, Vf € M. For each edge (z,y) in
G,, we traverse the routing path between domain z and
domain y in G;. For each firewall f on the path,
w(f) = w(f) +r(z,y) + r(y,z). There are O(n?) edges in
G, and the length of a routing path is O(n + m). Therefore,
it takes O(n?(n +m)) time to calculate w(f), Vf € M. After
that, it takes O(m) time to verify w(f) <k, f € M.

3.2 NP-Hardness

We show that the set-partition problem can be reduced to
the k-firewall decision problem in polynomial time. In that
case, because the set-partition problem is NP-hard [9], the
k-firewall decision problem is also NP-hard. Our proof is to
transform the set-partition problem into a specially con-
structed instance of the k-firewall decision problem in
polynomial time such that a solution to the latter will be a
solution to the former and all other NP problems.

Given a finite set A of positive integers, the set-partition
problem is to determine whether there exists a subset A’ C A
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suchthat) .. a =>4 4 a Wereduce it to the k-firewall
decision problem as follows:

First, for each member a € A, we associate it with a pair of
two domains (x,,y,), and let the number of access control
rules from z, to y, be a. In total, there are 2|A| domains.
N ={z,,y, | a € A}. For domain pairs (z,,v,), Va € 4,
7(Zq,Ya) = a, and for all other domain pairs (z, y), r(z,y) = 0.

Second, we use two firewalls, denoted as f; and f,. The
number of network interfaces of each firewall is 2 x |A|. k is
set to be

ZHEA a
—2 .

The reduction from the set-partition problem to the
above k-firewall decision problem can be done in poly-
nomial time since we only need to convert |A| integers into
|A| domain pairs with the rule matrix (r(z,y),z,y € N)
appropriately set.

Next, we prove that the set-partition problem is satisfi-
able if and only if the corresponding k-firewall decision
problem is satisfiable.

First, suppose the set-partition problem is satisfiable, i.e.,
there exists a subset A’ C A such that

Za: Z aziz";‘la.

acA’ acA-A’

We construct a topology graph as follows: For each member
a in A’, we connect both z, and y, to fi, insert a routing path
Zo — fi = Yo, and add r(z,,y,), which equals a, to w(f;).
For each member a € A — A’, we connect both z, and y, to
fa, insert a routing path z, — fo — y,, and add r(z,,ya),
which equals a, to w(f>). Finally, we use the remaining free
interfaces to make the graph connected. The constructed
topology graph has the following property:

w(f) =Y reay) =Y a= “64 Yok,
acA’ acA’
.
w(f?): Z r(xa’ya): Z a:%:k
acA—A’ acA—A’

Therefore, the k-firewall decision problem is also satisfiable.

Second, suppose the k-firewall decision problem is
satisfiable, i.e., there exists a topology graph such that
w(f1) < kand w(fy) < k. Recall that

o Z(IE a
k= TA
We have
w(fi) +w(f) 2= a. (3)

acA
Each rule has to be enforced by fi, f, or both. Therefore,
w(fi) +w(fa) =Y r(za,y.) = Y a. (4)
acA acA

By (3) and (4), we have
w(f1) +w(fo)

=> a (5)

acA
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HAF(G,, G, M)

3. return G,

1. for each (z,y) of G, in descending order of (r(z,y) + r(y,x)) do
2. Insert_Optimal_Path(Gy, z, y)

Fig. 4. The pseudocode of HAF.

Consider an arbitrary member a € A. The routing path from
z, to y, must only pass either f; or f> but not both because,
otherwise, the above equation could not hold. Let II(f) be
the set of domain pairs (z,, y,) whose routing path passes a
firewall f. TI(fi) NI(f2) = 0. Because w(fi) <k and
w(fy) <k, by (5), we have

Z[LEA a )

w(fi) =w(fo) = 9

Consider w(f;) and we have the following equation:

>

<Tu ,Z/,,)EH(f] )

_ ZaGAa. (6)

7(Za, Ya) 5

Let A" ={a | (z4,ya) € II(f1)}. The above equation can be
rewritten as follows:

Z -Taaya

acA’

Z a= ae/l G (7)

acA’

Therefore, the set-partition problem is also satisfiable.

4 HAF: A HEURISTIC ALGORITHM FOR FPP,
PARTIAL FPP, FRP, PARTIAL FRP, AND
WEIGHTED FPP/FRP

We propose HAF—a Heuristic Algorithm to approxi-
mately solve the Firewall problems defined in Section 2.3.
Our description of the algorithm centers around FPP. In
Section 4.7, we show that the algorithm can be used to
solve other problems.

4.1 Overview

The input of HAF is a rule graph G,, a set M of firewalls,
and an initial topology graph G}, which has no link for FPP,
but is a partial or full topology for other problems. The
output of HAF is a completed topology graph G;, which
consists of domains and firewalls as nodes, links connecting
domains and firewalls, and routing tables.

We have shown that the global optimization problem of
FPP, which is to find the optimal topology and routing paths
that minimize the maximum firewall rule set in the network,
is NP-complete. However, constructing an optimal routing
path between one pair of domains is a polynomial problem.
The basic idea behind HAF is to process the domain pairs
one at time and iteratively insert the optimal routing path
for each domain pair into a topology graph G,. After the
paths for all domain pairs are inserted, G, is an approximate
solution to the FPP problem. HAF is particularly useful
when the physical network is gradually expanding. After
the algorithm produces a topology G, for the current
domains, when a new domain is added to the network,
the algorithm can be naturally invoked to process the new
domain pairs on top of the existing topology.

The pseudocode of the HAF algorithm is given in Fig. 4.
For FPP, G; is initially a topology graph of n domain nodes
and m firewall nodes with no link. For each edge (z,y) in
G,, the subroutine Insert_Optimal_Path(G,, z,y) is called to
perform the following three tasks:

1. Define the set of feasible routing paths between
domain z and domain y.

2. Find the optimal routing path between z and y that
minimizes the maximum rule set among all feasible
routing paths.

3. Insert the optimal routing path to G,.

The loop of Lines 2-3 processes the set of edges (x,y)
in G, in the descending order of (r(x,y) + r(y,x)), which
is the total number of rules between domain z and
domain y. The topology graph G; keeps growing as the
loop inserts one routing path to G; in each iteration. In
the following, we show how to implement the above
three tasks of Insert_Optimal_Path.

4.2 Augmented Graph G<‘”’”> and MinMax Path

To define the set of feasible paths between domain « and
domain y, we first construct an augmented graph G
from G; as follows: The links already in G; are called
physical links. For each firewall f with one or more free
interfaces, we add a new link between f and =z if they are
not already connected. Similarly, we add a new link
between f and y if they are not already connected. These
new links are called virtual links. A virtual link may be
turned into a physical one if needed. G and the virtual links
together form the augmented graph G . A routing path
between z and y in the augmented graph is feasible if the
following three conditions are satisfied:

e  Routing condition: The routing path must be consistent
with the routing tables at nodes on the path. For an
arbitrary link (v,u) on the path, if v already has a
routing entry for destination y but the next hop is not
u, then the path is not feasible.

o Interface condition: When all virtual links on the path are
turned into physical ones, no firewall uses more network
interfaces than it has. Suppose a firewall f has only
one free mterface and both (f,z) and (f,y) are
virtual links in G\". A path (z, f,y) is not feasible
because we cannot turn both (z,f) and (f,y) into
physical links.

e  Connectivity condition: After the path is turned physical,
G should still have enough free interfaces to turn itself
into a connected graph. Initially, G, is not a connected
graph. In the end, it has to be a connected graph.
During the execution of HAF, there should always
be enough free interfaces to make new links that are
able to connect all separated topological components
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in G;. Therefore, if a routing path uses too many free
interfaces that makes G; no longer connectable, then
the path is not feasible.

In other words, a path is feasible if we can turn it into a
physical path without violating the current routing struc-
ture in G, exceeding the interface limitation of any firewall,
or rendering G; not connectable.

Definition 5. The MinMax path in G\"* is the optimal feasible
path between x and y that minimizes the maximum rule set on
the path.

Based on the construction of Gt@‘y}, all virtual links either
connect to x or connect to y. Therefore, only the first and last
links on the MinMax path may be virtual links.

4.3 Find the MinMax Path in G\"

We transform the problem of finding the MinMax path to a
variant of the shortest path problem. We define a cost metric
on nodes. The cost of a firewall is the size of its rule set, i.e.,
w(f) as defined in (1). The cost of a domain is zero. The cost
of a path is the maximum cost (instead of the sum of the
costs) of all nodes on the path. One path is shorter than
another path if the cost of the former is smaller or the costs
of the two paths are the same but the former has a fewer
number of hops. By this definition, the shortest path
between = and y must also be the MinMax path.

We design an algorithm, called HAF Dz]kstm to find the
shortest path between z and y in G . It is an all-source
single-destination variant of Dl]kstra s algorithm, designed
for a graph with:

1. wirtual links (subject to the interface condition stated
in the previous section);

2. routing restrictions;

3. node costs instead of link costs;

4. path length defined as the maximum node cost instead
of the sum of the node costs on the path.

Satisfying that the connectivity condition is a rather
complex task, which will be ignored for now and addressed
in the next section, where we will modify the construction
of G "9 to include only those virtual links that do not make
G, unconnectable.

Before giving the pseudocode of the algorithm, we define
the following variables. rt[v, d] is the routing table entry at
node v for destination d. Its value is inherited from G;. If G,
does not have such a routing entry, the value of rt[v, d] is NIL.
c[v] is the cost of node v. cost[v, d] is the estimated cost of the
shortest path from v to d. hops|v, d] is the estimated number of
hops on the shortest path from v to d. These two variables are
initialized to oo, and then, improved by the algorithm until
reaching the optimal values. next[v,d] stores the next hop
after v on the shortest path to d. @ is the set of nodes whose
shortest paths to d have been found. Extract_Min(Q) and
Relax(v, u) are two standard subroutines in Dijkstra’s
algorithm. Extract_Min(Q) finds the node « in @ that has
the smallest cost[u, d] value and, when there is a tie, has the
smallest hops|u, d] value. After the shortest path from u to d is
found, Relax(v, u) propagates this information to all adjacent
nodes v. The pseudocode of the HAF_Dijkstra algorithm is
given in Fig. 5. “:= " is the assignment sign, s is the source
node, and d is the destination node.
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Routing_Condition(v, u, d) and Interface_Condition(v, w,
s, d) make sure that the Relax subroutine is performed on
link (v, w) only when both the routing condition and the
interface Condltlon are satisfied. By the construction of
Shortest_Path(G\"", s, d), the Routing_Condition and Inter-
face_Condition subroutmes are executed iteratively for all
links of the shortest path, and therefore, the returned
shortest path must be feasible.

HAF_Dijkstra first uses x as the source node and y as the
destination node to find the shortest path by calling
Shortest_Path(G\"?, z,y). Then it uses y as the source node
and z as the destmatlon node to find the shortest path by
calling Shortest Path(G >, y,z). Finally, it returns the
shorter one between these two paths. The reason for calling
the Shortest_Path subroutine twice is due to the asymmetry
caused by virtual links, which is illustrated in Fig. 6,
assuming that each node only has routing entries for directly
connected nodes. The clouds, blocks, solid lines, dashed
lines, and bold lines represent domains, firewalls, physical
links, virtual links, and the shortest paths, respectively. If f;
has two free interfaces, the shortest path is shown in Fig. 7.
Another more complicated example is shown in Fig. 8,
where f5 and f; each have one free interface.

4.4 Insert the MinMax Path to G,

After finding the MinMax path for (z,y), we insert the path
to G;. The following operations are performed:

e Convert each virtual link on the MinMax path to a
physical link.

e  For each firewall f on the MinMax path, increase the
size of its rule set by r(z,y) + r(y, z).

e Let the path be (vi,v9,...,v;), where v; =z and
u =y. For 1 <i<, add a routing entry at v, for
each destination, v;11, ..., v;, with the next hop being
vit1. For 1 <4 <[, add a routing entry at v; for each
destination, vy, ..., v;—1, with the next hop being v;_;.
This will keep the routing symmetry during the
execution of the HAF algorithm.

4.5 Ensuring Connectivity

G; may not be a connected graph. A component of G; is a
connected subgraph that is not contained by a larger
connected subgraph. Let ¢ be the number of components
in G!. Let ¢ be the total number of free interfaces of all
firewalls. Note that a physical link can be inserted into the
graph for each free network interface.

Property 2. G; can be turned into a connected graph if and only if
¢p>c—1.

Proof. We first prove that ¢ >c—1 is a necessary
condition for G; to be turned into a connected graph.
G; has ¢ components. For G; to be turned into a
connected graph, we must reduce ¢ to 1 by adding at
least ¢ — 1 new links, which means that there must be at
least ¢ — 1 free interfaces.

Next, we prove ¢ > c—1 is a sufficient condition.
First, we consider a simple case where all domains
belong to one component. The remaining components
must be single firewalls, each having at least two free
interfaces. To form a connected graph, we can simply
connect these firewalls to any domains.
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Routing_Condition(v, u, d)
1. if rt[v,d] = N or rt[v,d] = u then

2. return true
3. else
4. return false

Interface_Condition(v, u, s, d)

2. return false
3. else
4. return true

Relax(v, u, d)

2. costlv, d] := max{c[v], cost[u, d]}
3. hops[v, d] := hops[u,d] + 1
4. next[v,d] == u

Shortest_Path(Gﬁm"‘y> ,8,d)

HAF_Dijkstra(G\"") 2, 1)
1. pp:= Shortest_Path(Gim’w,a:, Y)
2. pyi= Shortest_Path(Géw’w, Y, )

1. if v = s A nextlu,d] = d and both (s,
links but » has only one free interface then

1. if max{c[v], cost[u,d]} < cost]v,d] or max{c[v], cost|u,d]}
= cost[v,d] A hops[u,d] + 1 < hops[v, d] then

if Routing_Condition(v, u, d) and Interface_Condition(v, u, s, d) then

1. for each node v € N|JM do

2. costlv,d] := oo, hops[v,d] == 0o, next[v,d] = NIL
3. cost[d,d] :=0, hops[d,d] =0

4. Q=NUM

5. while Q # 0 do

6. u := Extract_Min(Q)

7. if u = s then

8. break out of the while loop

9. Q:=Q — {u}

10. for every adjacent node v of u in G§$’y> do
11.

12. Relax (v, u,d)

13. return the shortest path from s to d stored in the next variable

3. return the better one between p; and po

u) and (u,d) are virtual

Fig. 5. The pseudocode of HAF_Dijkstra.

Second, consider the case where the domains belong to
at least two components. ¢ > ¢ — 1 > 1. There must be a
firewall with a free interface. The firewall belongs to a
component. There must be another component that has a
domain. Connect the firewall and the domain, which uses
one free interface and reduces the number of components
by one. Therefore, the condition ¢ > ¢ — 1 remains true.
Repeat the above process until all domains belong to one
component. For this case, we have already proved that
the graph can be made connected.

Therefore, ¢ > c¢—1 is a necessary and sufficient
condition for G, to be turned into a connected graph. O
Only the first and last links on the MinMax path may be

virtual links. By inserting the MinMax path to G;, we
consume at most two free network interfaces. However, if
the number of free interfaces is limited, the MinMax may be

restricted to consume less than two free interfaces in order
to leave enough free interfaces to ensure the connectivity of
the graph. Assume that the condition ¢ > ¢ — 1 holds in G;
before the insertion of the MinMax path. We want to keep
the condition true after the insertion. There are three cases.

o Case1: ¢ > c+ 1 before insertion. The MinMax path is
allowed to consume two free interfaces.

Case 2: ¢ = c before insertion. The MinMax path is
allowed to consume one free interface or two free
interfaces if the path connects two components
into one.

Case 3: ¢ = c — 1 before insertion. The MinMax path is
allowed to consume one free interface if the path
connects two components into one, or consume two
free interfaces if the path connects three components
into one.
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w(f) =20 w(f) =10

QIQ

w(f;) =40

(a)

w(f)) =20 w(f) =10 w(fs) =40

w(fi) =20 w(f) =10 w(f;) = 40

--------

©

Fig. 6. (a) The augmented graph G ", where f2 has one free interface
and two virtual links. (b) The shortest path returned by Short-
est_| Path(G’” x,y), where the relaxation is performed from y along
the path to z. (c) The shortest path returned by Short-
est_Path(Gf"w,y, x), where the relaxation is performed from z along
the path to y. The best path is (z, f1,v1, f2,9)-

In order to enforce the above restrictions, we have to
carefully redesign the subroutine of Insert_Optimal_Path,
which is Line 3 of the HAF algorithm. Let Com/(z) be the
component in G; that contains z. The pseudocode of
Insert_Optimal Path is given in Fig. 9. We give a brief
explanation below.

Lines 1-5 implement Case 1. There are plenty of free
interfaces. For each firewall f with a free interface, the
algorithm adds a virtual link between f and z (or y) if they
are not already connected. It then runs the HAF_Dijkstra
algorithm on the augmented graph to find the shortest path.

Lines 6-21 implement Case 2. Lines 7-12 add virtual
links that connect different components. More specifically,
for each firewall f with a free interface, if f and z (or y)
belong to different components in G;, add a virtual link
between f and z (or y). When any one of these links is
turned into a physical one, it consumes one free interface
and also reduces the number of components by one.

Because ¢ = c in Gy, we are allowed to consume one free
interface without reducing the number of components. In
other words, the MinMax path is allowed to use a virtual
link within the component that contains z, or a virtual link
within the component that contains y, but not both. Lines
13-16 find the shortest path that may use a virtual link
within the component of xzs. Lines 17-20 find the shortest
path that may use a virtual link within the component of ys.
Line 21 returns the better of the two paths.

Lines 22-29 implement Case 3. Because ¢ = c— 1 in G,
we can use a virtual link only when it reduces the number of
components by one. It means that the augmented graph can
only have virtual links that connect different components.

wi(f) =20 w(f) =10 w(fs) =40

-----------------

Fig. 7. The shortest path when f, has two free interfaces.
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w(f,) =30 w(f,) =10 w(f;) =10 w(f,) =40

-------------

Fig. 8. The shortest path when f, and f; each have one free interface.

4.6 Complexity Analysis

The time complexity of the Shortest_Path subroutine is the
same as the complexity of Dijkstra’s algorithm, which is
O(e+ (n+ m)log(n +m)). The complexities of the HAF_
Dijkstra and Insert_Optimal_Path subroutines are the same
as that of Shortest Path. HAF executes the Insert Opti-
mal_Path subroutine for at most O(n?) times. Therefore, the
total time complexity is O(n?e + n?(n + m) log(n + m)).

4.7 Modifying HAF for FRP, Partial FRP, and
Weighted FPP/FRP

To solve partial FPP, we simply initialize G; as the
existing partial network topology. To solve FRP, we
initialize G; as the existing network topology and set the
number of free interfaces to be zero for all firewalls. For
partial FRP, we further initialize the route entries rt[v,d]
whose values are known. The rest of HAF remains the
same. To solve weighted FPP/FRP, we only need to
change the definition of r(z,y) and w(f), while leaving the
algorithm intact. Instead of r(x,y) = |R(z,y)| as defined in
Section 2.2, r(z,y) should now be the sum of the weights
of all rules in R(z,y). Instead of w(f) =3, cn(y) (=)
as in (1), w(f) should now be interpreted as the weight of
the rule set at f and defined as

2ipgjeny) (@ y)

w(f) = the weight of firewall f

5 SIMULATION

In this section, we evaluate the performance of the HAF
algorithm for FPP. The results for FRP and weighted FPP/
FRP are omitted due to space limitation. To the best of our
knowledge, this is the first paper that studies the FPP
problem. We do not have existing algorithms to compare
with. In our simulations, we implement two simple algo-
rithms, called the tree topology algorithm (TTA for brevity)
and the full topology algorithm (FTA for brevity), respectively.

For a given FPP problem, the TTA first constructs a tree
topology, which defines unique routing paths between any
two domains. To construct a tree, the algorithm begins with
one domain as the root. A number of firewalls are selected
to be the children of the root at the second level of the tree.
We select firewalls in the descending order of their numbers
of interfaces. For each second-level firewall, a number of
domains are selected to be the children at the third level.
We repeat this until the tree includes all domains or
firewalls. The even levels of the tree are firewalls, while the
odd levels are domains. The number of children of a
firewall is limited by its number of network interfaces. We
also restrict the average number of children per domain to
be the same as the average number of children per firewall.
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Insert_Optimal_Path(Gy, x, y)
1. if¢>ct1inG, then

22. else if  =c— 1 in G, then

23.  initialize G{**' to be G,
24, if Com(x) # Com(y) then

30. Insert p to G}

2. initialize G{"* to be G,
3. for each firewall f with a free interface do
4. add a virtual link in Gﬁz’m between f and z (or y)
if they are not already connected
5. p := HAF_Dijkstra(G{*"", 2, y)
6. else if ¢ = ¢ in G, then
7. initialize G to be G,
8. if Com(x) # Com(y) then
9. for each firewall f with a free interface, Com(f) # Com(z) do
10. add a virtual link in G} between f and z
11. for each firewall f with a free interface, Com(f) # Com(y) do
12. add a virtual link in G} between f and y
13.  initialize G" to be G
14. for each firewall f with a free interface, Com(f) = Com(z) do
15. add a virtual link in Gﬁz"w between f and z
16.  pi := HAF_Dijkstra(G{"" , z, )
17. initialize Giz"w to be G
18. for each firewall f with a free interface, Com(f) = Com(y) do
19. add a virtual link in G§r7y> between f and y
20.  ps := HAF Dijkstra(G\"" 2, 1)
21. p := the better one between p; and po

25. for each firewall f with a free interface, Com(f) # Com(x) do
26. add a virtual link in G{***) between f and =
27. for each firewall f with a free interface, Com(f) # Com(y) do
28. add a virtual link in Gﬁm’w between f and y

29.  p:= HAF_Dijkstra(G\"", z,y)

Fig. 9. The pseudocode of Insert_Optimal_Path.

The FTA first constructs a tree topology in the same way
as the TTA does. It then fully utilizes all remaining free
interfaces on the firewalls by making a link from each free
interface to an arbitrary domain selected uniformly at
random.! After that we run a shortest path algorithm to find
the least-hops routing path between each pair of domains.

The default simulation parameters are shown in Table 2.
The simulations will change the default values of the
parameters one at a time. Here, n is the number of domains
and m is the number of firewalls. Let e( f) be the number of
network interfaces on firewall f and e(f) is the average
number of network interfaces per firewall. The value of
e(f), Vf € M, is generated from [2..2¢(f) — 2] uniformly at
random. r(x,y) is the average value of r(zr,y) among
domain pairs (z,y) with r(z,y) > 0. p is the probability of
r(z,y) + r(y,z) >0 for an arbitrary domain pair (z,y).
When r(z,y) >0, its actual value is generated from
[1..2r(z,y) — 1] uniformly at random.

1. The tree topology with cross links is often seen in organizations with
hierarchical administrative structures.

Figs. 10, 11, 12, 13, 14, and 15 show the simulation
results. In all figures, the y-axis is the size of the maximum
rule set (max sepr{w(f)}) at any firewall. We abbreviate “the
size of the maximum firewall rule set” as “the MFRS size.”
The z-axis is one of the parameters. The figures compare the
MERS sizes achieved by the three algorithms under
different parameter values.

In Fig. 10, we vary the number n of domains in the
simulation. When n is very small, the numbers of firewalls
and interfaces are relatively plentiful such that most
domain pairs are one firewall away from each other and
the rules are well spread on the firewalls. The MERS size is
small for all three algorithms. As n increases, HAF performs
far better than others. When n = 120, the MFRS size

TABLE 2
Default Simulation Parameters
n m ﬁ 7"(:177 y) p
100 40 4 10 0.7
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Fig. 10. Size of maximum rule set with respect to number n of domains.
10 < n <120, m =40, e(f) =4, r(i,7) = 10, p=0.7.
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Fig. 11. Size of maximum rule set with respect to number m of firewalls.
n =100, 35 <m <59, e(f) =4, r(i,j) =10, p=0.7.
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Fig. 12. Size of maximum rule set with respect to average number ¢( f)

of network interfaces per firewall. n =100, m =40, 3.5 <e(f) <6,
r(i,7) =10, p=0.7.

achieved by HAF is just 35.06 percent of that achieved by
FTA, and 24.78 percent of that achieved by TTA.

In Fig. 11, we vary the number m of firewalls in the
simulation. TTA is insensitive to the value of m because the
tree topology cannot take full advantage of the increased
number of firewalls. HAF performs much better than TTA
and FTA. When m = 35, the MFRS size achieved by HAF is
35.31 percent of that achieved by FTA, and 24.90 percent of
that achieved by TTA.
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Fig. 15. Size of maximum rule set in sparse network. 10 < n < 120,
m=(n—1)/(e(f) — 1), e(f) =4, r(i,j) = 50, p=1.0.

In Fig. 12, we vary the average number e(f) of network
interfaces per firewall. HAF performs the best among the
three. When e(f) = 3.5, the MFRS size achieved by HAF is
43.02 percent of that achieved by FTA, and 31.34 percent of
that achieved by TTA.

In Fig. 13, we vary the average number r(z,y) of rules
per domain pair. As r(z,y) increases, the MFRS size
increases proportionally for all three algorithms. When

r(z,y) =100, the MFRS size achieved by HAF is
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37.05 percent of that achieved by FTA, and 18.74 percent
of that achieved by TTA.

In Fig. 14, we vary the probability p for a domain pair
(z,y) to have one or more rules. The value of p determines
the density of the rule graph G,. As p increases, the MFRS
size increases for all three algorithms. HAF performs better
than the other two algorithms for all p values used in the
simulation. When p = 1, the MFRS size achieved by HAF is
37.37 percent of that achieved by FTA, and 18.19 percent of
that achieved by TTA.

In Fig. 15, we study sparse network topologies with
m = (n—1)/(e(f) — 1), which means that the number of
firewalls is just enough to keep the topology connected.
During the simulation, we discard the runs that have too
few firewalls to form a connected topology. The figure
shows that HAF works far better than others as n increases.
When n =120, the MFRS size achieved by HAF is
34.98 percent of that achieved by FTA, and 24.57 percent
of that achieved by TTA.

6 RELATED WORKS

Gouda and Liu developed a sequence of five algorithms
that can be applied to generate a compact rule set while
maintaining the consistency and completeness of the
original rule set [10]. They proposed a method for diverse
firewall design and presented algorithms to detect dis-
crepancies between two rule sets [11]. They also presented
the first model of stateful firewalls [12]. Liu et al. studied
the language and algorithm for firewall queries [13]. In [14],
Liu investigated the theory and algorithms for firewall
policy change impact analysis, and in [15], he developed a
firewall verification tool. Recently, Liu et al. proposed a
novel algorithm for minimizing security policies of a
firewall [16].

Wool investigated the direction-based filtering in fire-
walls [17]. Fulp studied the problem of reducing the
average number of rules that must be examined for each
packet [18]. Al-Shaer and Hamed identified anomalies that
exist in a single or multifirewall environment, and pre-
sented a set of techniques to discover configuration
anomalies in centralized and distributed legacy firewalls
[19]. Smith et al. studied the problem of how to place a set of
firewalls in a complex network to minimize cost and delay
[20] and the problem of how to increase comprehensiveness
and level of confidence in protection [21]. El-Atawy et al.
proposed to optimize packet filtering performance by traffic
statistical matching [23]. Hamed et al. designed algorithms
that maximize early rejection of unwanted packets and
utilize traffic characteristics to minimize the average packet
matching time [22].

Packet filtering can be viewed as a special case of packet
classification [24], which is to determine the first matching
rule for each incoming packet at a router. Much work has
focused on solving the problem of how to find matching
rules as quickly as possible by using sophisticated data
structures or hardware-driven approaches [25], [26], [27],
[28]. Other work proposed algorithms for removing
redundancy in packet classifiers [29], [30], [31], [32].

7 CONCLUSION

This paper studies the firewall placement problem and its
variations. The problem is to optimally place the firewalls in
a network topology and find the routing structure such that
the maximum size of the firewall rule sets in the network is
minimized. We prove that the problem is NP-complete and
propose a heuristic algorithm, called HAF, to solve the
problem approximately. The algorithm can also be used to
solve the firewall routing problem as well as weighted
firewall placement/routing problems.
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