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Abstract

The introduction of constraints in multivariate curve resolution methods, such as the Alternating Least Squares (ALS), is
commonly used to limit the span of possible solutions, guiding the iterative process to a final result as close as possible to the
true situation. In the present work, two modifications of the unimodality constraint and a new constraint for chromatographic
concentration profiles related to the prevention of fronting have been checked. Simulated data sets as well as real data have
been used to evaluate the effect of these new constraints in the resolution results. The parameters measured to assess the
goodness of the constraints are related to the recovery of the concentration profiles and to the quality of the data fit.
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1. Introduction

The application of constraints is a common opera-
tion employed in iterative curve resolution methods,
such as the Alternating Least Squares (ALS) [1-3], to
narrow the span of feasible solutions to those chemi-
cally meaningful [4-6].

In a wide sense, the concept of constraint would
include any general feature of the data sets translated
into mathematical language. However, a careful atti-
tude has to be adopted in order to avoid false general-
izations (e.g. not all the chromatographic peaks have a
Gaussian shape) and the researcher has to be aware
that the effectiveness of a constraint can be strongly
affected by the way it has been implemented.
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Within the family of constraints, selectivity is the
most important to resolve any kind of data sets [1]. If
this feature exists for all the compounds, the ambiguity
associated with the factor analysis decomposition of
bilinear matrices disappears and unique solutions can
be attained [1,8]. However, having partial or null
selectivity is the most frequent situation in real data
sets. When the latter occurs, the role of some other
kind of constraints related to the chemical features of
concentration profiles and to the instrumental
responses acquires relevance and helps to decrease
significantly the domain of possible solutions. The
development of new constraints belonging to this last
group becomes then specially interesting for the reso-
lution of the most complex data sets.

Numerous works have reported the usefulness of
constraints for curve resolution methods like non-
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negativity (applied to both concentration profiles and
instrumental responses) [1-7,9-14], unimodality (i.e.
presence of an only maximum in each concentration
profile) [1-3.5-7,10-14] and closure (i.e. the total
amount of the reactive constituents is forced to be
the same in all the stages of a process) [1,2,10~
13,15,16]. In the present work, two modifications of
the unimodality constraint are examined, as well as a
new constraint for chromatographic concentration
profiles (called hereafter symmetry) related to the
prevention of front-tailed peaks.

A two-level full factorial design has been used to
generate simulated data sets which could yield a
reliable picture of the effect of these new constraints
in the resolution procedure. The responses measured
to assess the goodness of the constraints are related to
the recovery of the qualitative information and to the
quality of the data fit. All conclusions inferred from
this basic study have been afterwards confirmed work-
ing with a real example.

2. Theory
2.1. Brief description of the ALS method

The ALS belongs to the family of iterative
curve resolution methods. All these techniques
share a general working procedure consisting of the
refining of some initial estimates (either chromato-
graphic or spectral) by using constraints related
to the intrinsic features of the data (i.e. selectivity,
zero-concentration regions,...) or to the chemical
characteristics of the experimental system (i.e. non-
negative concentration profiles or spectra, unim-
odality,. . .). In the present work, the initial estimates
to be input in the ALS method are always built in
the chromatographic direction applying the results
obtained in the needle algorithm [17]; then, a con-
strained  alternating least-squares  optimization
procedure runs till the convergence criterion is
reached. The matrices of the concentration profiles
and spectra obtained in the last iterative cycle are
the definitive solutions of the resolution method
when convergence is achieved. A more detailed expla-
nation of the ALS method is out of the scope of this
paper and can be found in previous works of the
authors [1-3,10-14].

2.2. Presentation of the new constraints

2.2.1. Horizontal unimodality

Equal in concept to the classical unimodal con-
straint (i.e. no more than one maximum is allowed),
this variety differs from the original version in the way
it is implemented.

The common steps in both implementations can be
summarized as follows:

1. Location of the largest maximum in the concen-
tration profile (m).

2. Suppression of the left local maxima.

3. Suppression of the right local maxima.

The difference lies in the elimination of the secondary
maxima: the classical unimodality (a) sets the non-
unimodal elements equal to zero and the new imple-
mentation (b) equals these elements to the nearest
element keeping the unimodal condition. In algorith-
mic notation, steps 2 and 3 can be expressed as:

20ifcm—i) >rxclm—i+1)
(a) c(m—1i) = 0 (for classical unimodality)
(b) c(m—i)=c(m—i+1)

(for horizontal unimodality)
3.ifem+i+1)>rxc(m+i)
(a) c(m+i+1) =0 (for classical unimodality)
(b) c(m+i+1)=c(m+i)

(for horizontal unimodality)

where c(m) is the maximum value of the concentration
profile and the pairs [c(m — i), ¢(m—i+1)] and
[c(m+i+1), c(m+i)] are the consecutive concen-
tration values to be compared when looking for left
and right local maxima, respectively. The parameter r
can be optionally larger than 1; if this is the case, small
departures of the unimodality are accepted.

From a graphical point of view, the classical con-
straint cuts the non-unimodal part of the concentration
profile verrically, whereas the new modification does it
horizontally. Fig. 1 illustrates the effect of both vari-
eties of unimodality on a concentration profile. The
plot stresses the positive behaviour of the new imple-
mentation for noisy peaks, normally related to minor
compounds. Such peaks contain noisy spikes that are
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a)

b)

Fig. 1. Effect of the two implementations of the unimodal
consiraint on a concentration profile: (a) classical unimodality:
(b) horizontal unimodality. Dotted line: original peak. Solid line:
constrained peak.

detected as secondary maxima, this fact leading to the
wrong suppression of a big part of the concentration
profile when the classical implementation is applied.
In contrast, the horizontal elimination of these max-
ima allows to keep a constrained concentration profile
with a shape much closer to the original peak.

2.2.2. Localized unimodality

This constraint has to be considered as a more
demanding version of the normal unimodality, what-
ever implementation applied. Both the existence of an
only maximum and its position in the concentration

profile are controlled. The positions taken as reference
maxima for the different compounds are previously
determined by using methods like the needle algo-
rithm {17], OPA [18] or SIMPLISMA [9].

The application sequence of this constraint is
detailed below. The text in italics indicates the addi-
tional step, absent in the normal unimodality, for
which the algorithmic notation is also included.

1. Location of the largest maximum in the concen-
tration profile (m).

2. Comparison between the position of the reference
maximum (mt) and the position obtained from the
resolution profiles (m). Relocation of the peak
maximum if necessary

if abs(m — mt) > rpeak
m = mi.

3. Suppression of the left local maxima.
4. Suppression of the right local maxima.

The maximum shift allowed in the peak position is
represented by the parameter rpeak, whose value
is selected by the user. Analogously to the other
varieties of this constraint, small departures of the
unimodal condition can be optionally accepted. Steps
3 and 4 have been applied as in the horizontal unim-
odality.

2.2.3. Symmetry

Despite its name, the present constraint does not
transform all the concentration profiles into symme-
trical signals. Tailed peaks are accepted, provided that
this asymmetry in the profile is placed after the peak
maxima. Thus, real chromatographic situations where
column ageing or other causes produce the distortion
of the theoretical Gaussian peaks can be correctly
reproduced.

The symmetry constraint is focused on the suppres-
sion of front-tailed peaks. When such a peak shape
arises from the resolution results, the concentration
profile of the affected compound is forced to be
symmetrical. Although phenomena of band fronting
can occasionally be found in real data, their occur-
rence is far less common than the appearance of band
tailing and it is practically reduced to the domain of
ion-pair chromatography [19]. Visual evidence of
band fronting in a chromatogram would indicate the
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Fig. 2. Effect of the symmetry constraint on a concentra-
tion profile. Dotted line: original peak; solid line: constrained
peak.

need of a modification in the separation parameters
(i.e. increase of temperature, decrease of the amount
of injected sample,...). The non-adequacy of the
symmetry constraint would be limited to those rare
situations where band fronting appears and cannot be
chromatographically suppressed. Therefore, the pro-
posal of such a constraint is chemically reasonable in
by far the most cases.

The symmetry constraint reshapes the front-tailed
peaks by making the back half of the peak symme-
trical to the front (see Fig. 2). Gaussian and tailed
peaks are not modified. The mathematical formulation
of this constraint is very simple and can be explained
in two steps:

1. Location of the largest maximum in the concen-
tration profile (m).
2. Detection and suppression of band fronting:

if c(m—1i) >rxc(m+1i)
clm+i)=c(m—1i

where the pair [c(m — i), c(m+i)] represents two
concentration values equidistant to the peak maxima.
Band fronting is present when the values in the left
half of the peak are bigger than those in the right half
of the peak. The parameter r can be optionally bigger
than 1; departures of the symmetry constraint are then
accepted.

3. Data sets
3.1. Simulated data sets

Two-compounds simulated data sets have been used
to assess the constraints presented above. The choice
of this kind of systems is related to the role they play as
reference models in peak purity problems and to the
fact that many real multicompound samples can be
resolved analyzing submatrices of peak clusters which
do not contain usually more than two or three over-
lapped substances. Furthermore, the simple structure
of these systems allows a clear interpretation of the
effects of the constraints tested, in contrast to the
vague conclusions inferred when very complex simu-
lations are employed.

In all the examples the two peaks are slightly tailed
and there is a major and a minor compound. Severely
overlapped spectra have been chosen on purpose for
all the simulated data sets (see Fig. 3). Since the
constraints to be assessed affect the concentration
profiles, a better evaluation of their real effect can
be carried out when no spectral selectivity can influ-
ence the resolution procedure.

The general validity of the conclusions related to
the quality of the new constraints has been ensured
through the non-arbitrary selection of the simulations
employed in the testing procedure. A two-level fac-
torial design has been used to determine the features of
the generated data sets [20]. Table 1 shows the rele-
vant information concerning the factors and their
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Fig. 3. Spectra used in the simulated data sets.
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Table 1
Two-level full factorial design used to generate the simulated data
sets. List of the coded properties related to each simulation

Factors levels
(=) (+)

Constraint (A) Absence Presence
Resolution (B) 0.2 0.8
Ratio minor/major 1:100 1:10
compound (C)
Noise pattern (D) Homoscedastic Heteroscedastic
S/N ratio minor 20 50
compound
Simulation Factors

A B C D E
1 _ — - _ _
2 + - - - -
3 - + - - -
4 + + - - -
5 - - + - -
6 + - + - -
7 - + + - -
8 + + + - -
9 - - - + -
10 + - +
11 - + - + -
12 + + - + -
13 - - + + B
14 + - + -+ =
15 - + + + -
16 + + + +
17 - - - - +
18 + - - - +
19 - + - - +
20 +4 + - - +
21 - - + - +
22 + - + - +
23 - + + -
24 + + + - +
25 - - - + +
26 + - - + +
27 - + - + 4
28 + + - + +
29 - - + + +
30 + - + + +
31 - + + + +
32 4 + + + +

levels, the selected design and the coded properties of
all the simulated data sets.

The factors included in the design are parameters
whose influence on the results of a resolution method
is either proven or at least potential and the two levels

set for each of the factors have been chosen trying to
cover a wide span of real situations. Thus, the con-
straint to be checked is introduced as a factor, whose
qualitative levels are absence (—) and presence (+).
The negative level of this factor has been differently
defined according to the constraint to be checked
(detailed explanations in Section 4.1.2 and next).
The remaining factors are features of the chromato-
graphic system, namely the resolution between peaks,
the concentration ratio between major and minor
compound, the noise pattern and the signal-to-noise
ratio for the minor compound. The heteroscedastic
noise has been simulated by adding to a homoscedas-
tic background a scaled contribution of this base noise
proportional to the square root of the intensity of the
signal, i.e. for each ijth point of the data matrix, the
noise added can be described as follows:

total noise; = (homosc. noise);

+ \/noise-free signal,;
x (homosc. noise);;. (1)

The concept of noise level has been represented
through the signal-to-noise ratio for the minor com-
pound instead of using the common measurement %
of noise with respect to the largest absorbance. In
systems containing major and minor compounds, the
SIN ratio for the small species has been considered
more informative than a general parameter to evaluate
the distortion of the minor signals, strongly tied to the
possibility of resolving these compounds. For both
homoscedastic and heteroscedastic systems, the sig-
nal-to-noise ratio for the minor compound follows the
expression below:

S/N = max (noise-free signal minor compound)
Zi_(homosc noise); '
Xy

2

where the noise-free signal for the minor compound
comes from the outer product ¢,, X s,, where ¢, and
sy, are the simulated concentration profile and spec-
trum associated with this constituent, respectively.
Please note that the apparently large S/N values used
in the present work are actually the maxima allowed
for this parameter in the data sets, since far from the
position of the signal maximum the ratio between
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signal and noise becomes considerably lower. Varia-
tions of the minor/major concentration ratios have
been simulated keeping fixed the signal related to
the minor compound and modifying the signal of
the major compound appropriately. Thus, all the
simulations having the same S/N ratio for the minor
compound have the same amount of added noise as
well, since the noise-free signal for the minor com-
pound remains invariant. This strategy simplifies the
simulation process and the further interpretation of the
results.

3.2. Real data sets

Two-compound data sets, reported as reference
systems for peak purity studies [21], are used to
confirm the conclusions inferred from the simulated
data about the goodness of the checked constraints.
These real systems contain hydrocortisone as major
compound and prednisone as minor constituent. The
spectra of these species are the same used in the
simulated data sets, shown in Fig. 3.

4. Results and discussion
4.]. General remarks

To test each of the constraints, the ALS method has
been applied to the series of 32 experiments designed
according to the information in Table 1. ALS has
always been run forcing non-negative concentration
profiles and spectra. Even though the use of selectivity
is essential in this resolution method, the information
regarding this point has not been taken into account in
any of the systems analyzed. In the spectral direction,
no selectivity can be found as pointed out above,
whereas in the chromatographic direction the detec-
tion of this feature is only evident in some systems
where the resolution between peaks is large (Rs=0.8)
and the signal-to-noise ratio for the minor compound
quite favourable. The application of selectivity in
these last cases would be unquestionable in a normal
analysis; no explicit use of this constraint has been
done in the present study because in the cases where it
is present its strong effect would mask the influence in
the ALS solution coming from the constraints to be
checked.

The responses collected to analyze the effects of the
proposed constraints in the quality of the resolution
results are related to the recovery of the qualitative
information (i.e. dissimilarities between actual and
recovered concentration profiles) and to the error
associated with the definitive solution (i.e. standard
deviation of the residuals, o, and the lack of fit). The
mathematical expressions associated with the
responses are shown below:

dissimilarity = \/ 1 — (correlation coefficient)?,

Zij(dij - d_;;_i
ixj

b

Zij(dij - d?j)z
] )
Zij dtj

where d;; are the experimental data and d,.*j the repro-
duced data by using the ALS optimization. Subscripts
i and j are referred to rows and columns of the data
matrix, respectively.

Tables 2-4 list the numerical responses obtained in
the study of each of the constraints tested. These data
have been used to calculate the main effects of the
factors and the 2, 3 and 4-factor interactions [20]. The
information associated with the latter calculations is
graphically presented in the normal probability plots
shown in Figs. 4-6 [20]. These graphs represent the
value of each of the calculated effects vs. the expected
probability it should have if all the effects were
normally distributed. The vertical scale in the plots
has been transformed, so that the plotted effects could
be fitted with a straight line when changes in the levels
of all the factors considered do not cause any notice-
able variation in the responses or, if they do, this
variation is random and does not follow any definite
tendency. Positive or negative points falling far from
this line indicate either factors or interactions having
an important influence on the responses. The graphical
conclusions concerning the significance of the effects
have been statistically confirmed through the applica-
tion of a r-test in which it is investigated whether or not
an effect is significantly different from zero [20]. To
do so, the numerical value of each potentially sig-
nificant effect is compared with a critical effect value,
calculated as the product between the averaged value

lack of fit =
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Table 2
Responses obtained from the ALS runs used to test the horizontal
unimodality

Table 3
Responses obtained from the ALS runs used to test the localized
unimodality

Simulations Responses

Simulations Responses

Dis(c1)? Dis(c2)® o Lack of Dis(c1)? Dis(c2)® o Lack of
fit (%) fit (%)
1 1.60E-01 5.26E-01 0.005 6.31 1 2.09E-01 1.49E-01 0.0023 3.06
2 1.49E-01 2.09E-01 0.0023 3.06 2 2.09E-01 1.49E-01 0.0023 3.06
3 251E-03  4.35E-01 0.0004 0.6 3 1.38E-01 2.18E-03 0.00027 0.37
4 2.18E-03 1.38E-01 0.00027 0.37 4 1.38E-01 2.18E-03 0.00028 0.37
5 2.31E-01 4.07E-01 0.0007 8.6 5 1.72E-01 1.10E-01 0.00034 42
6 1.10E-01 1.72E-01 0.00034 42 6 1.72E-01 1.10E-01 0.00034 422
7 323E-02  4.15E-01 0.00037 49 7 1.55E-01 3.52E-02 0.00026 3.45
8 3.52E-02 1.55E-01 0.00026 3.45 8 1.55E-01 3.52E-02 0.00026 3.45
9 2.21E-01 7.78E-01 0.0098 13 9 3.09E-01 2.21E-01 0.0055 7.31
10 2.21E-01 3.09E-01 0.0055 7.31 10 4.28E-01 2.13E-01 0.0056 7.51
11 3.76E-03 3.25E-01 0.00047 0.62 11 1.52E-01 3.31E-03 0.00035 0.48
12 3.31E-03 1.52E-01 0.00035 0.48 12 1.52E-01 3.31E-03 0.00035 0.48
13 6.91E-01 6.55E-01 0.0042 52.1 13 4.61E-01 3.44E-01 0.0016 19.86
14 3.44E-01 4.61E-01 0. 0016 19.86 14 3.22E-01 3.44E-01 0.0017 21.18
15 6.77E-02  7.78E-0i 0.00082 10.8 15 3.14E-01 7.16E-02  0.00057 7.57
16 7.16E-02 3.14E-01 0.00057 7.57 16 3.14E-01 7.16E-02  0.00057 7.57
17 1.12E-01 2.47E-01 0.0012 1.63 17 7.96E-02 1.06E-01 0.0006 0.79
18 1.06E-01 7.96E-02 0.0006 0.79 18 7.96E-02 1.06E-01 0.00059 0.79
19 1.17E-03 8.02E-02 0.00012 0.16 19 6.72E-02 1.19E-03 0.0001 0.16
20 1.19E-03  6.72E-02 0.0001 0.16 20 6.72E-02 1.19E-03 0.00012 0.16
21 1.55E-01 7.05E-02 0.00028 3.5 21 1.65E-01 1.29E-01 0.00014 1.71
22 1.29E-01 1.65E-01 0.00014 1.71 22 1.65E-01 1.29E-01 0.00014 1.71
23 1.04E-02 8.91E-02 0.00013 1.7 23 6.68E-02 1.01E-02 0.00011 1.54
24 1.01E-02  6.68E-02  0.00011 1.54 24 6.68E-02 1.01E-02 0.00011 1.54
25 1.31E-01 1.97E-01 0.0018 24 25 1.30E-01 1.49E-01 0.0012 1.56
26 1.49E-01 1.30E-01 0.0012 1.56 26 1.30E-01 1.49E-01 0.0012 1.56
27 2.36E-03 8.04E-02 0.00019 0.26 27 7.82E-02 1.82E-03 0.00016 0.21
28 1.82E-03 7.82E-02 0.00016 0.21 z8 7.82E-02 1.82E-03 0.00016 0.21
29 7.35E-01 6.47E-01 0.0027 33 2 1.82E-01 2.78E-01 0.00044 5.41
30 2.78E-01 1.82E-01 0.00044 5.41 30 1.85E-01 2.61E-01 0.00044 55
31 2.28E-02 1.34E-01 0.00025 3.37 31 9.11E-02 2.34E-02 0.00022 29
32 234E-02  9.11E-02 0.00022 29 ky) 1.34E-01 2.28E-02 0.00022 29

* Dissimilarity between the actual and the recovered profile for the
minor compound.
® Dissimilarity between the actual and the recovered profile for the
major compound.

corresponding to the 3-factor interaction effects (such
higher-order interactions are assumed to measure
differences arising from experimental error [20])
and the r-value corresponding to a 95% significance
level and a number of degrees of freedom equal
to the number of 3-factor interactions in the design.
When the value of an effect is larger than the critical
reference value, the tested effect is found to be sig-
nificant.

“ Dissimilarity between the actual and the recovered profile for the
minor compound.
® Dissimilarity between the actual and the recovered profile for the
raajor compound.

In all normal probability plots, the main effect
caused by the constraint is identified with the letter
A. Effects found to be significant through both visual
inspection and statistical diagnostic are also labelled
with their corresponding capital letters (see Table 1).

The improvement of the ALS results is always
connected with a decrease in the numerical value of
the responses. Indeed, better recoveries of the quali-
tative information are reached when the dissimilarities
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Table 4
Responses obtained from the ALS runs used to test the symmetry
constraint

Simulations Responses

Dis(c1)? Dis(c2)® o Lack of
fit (%)
1 2.09E-01 1.49E-01 0.0023 3.06
2 1.41E-01 3.39E-01 0.0069 9.2
3 1.38E-01 2.18E-03 0.00027 0.37
4 1.38E-01 2.18E-03 0.00027 0.37
5 1.72E-01 1.10E-01 0.00034 42
6 1.72E-01 1.10E-01 0.00034 42
7 1.55E-01 3.52E-02 0.00026 345
8 1.46E-01 4.00E-02 0.0003 4.02
9 3.09E-01 2.21E-01 0.0055 731
10 2.94E-01 2.53B-01 0.0066 8.72
11 1.52E-01 3.31E-03 0.00035 0.48
2 2.59E-01 3.34E-03 0.0004 0.53
13 4.61E-01 3.44E-01 0.0016 19.86
14 4.72E-01 3.24E-01 0.0029 13.9
15 3.14E-01 7.16E-02 0.00057 7.57
16 2,50 E-01  8.15E-02 0.00086 8.69
17 7.96E-02 1.06E-01 0.0006 0.79
18 741E-02  2.02E-01 0.0023 3.04
19 6.72E-02 1.19E-03 0.0001 0.16
20 1.97E-01 1.27E-03 0.00014 0.19
2] 1.65E-01 1.29E-01 0.00014 1.71
22 1.55E-01 1.29E-01 0.00014 1.7
23 6.68E-02 1.01E-02 0.00011 1.54
24 6.88E-02 1.13E-02 0.00011 1.53
25 1.30E-01 1.49E-01 0.0012 1.56
26 1.14E-01 3.58E-01 0.0065 8.59
27 7.82E-02 1.82E-03 0.00016 0.21
28 7.22E-02 1.82E-03 0.00016 0.21
29 6.47E-01 7.35E-01 0.0027 33
30 2.38E-01 3.47E-01 0.00055 6.75
31 1.34E-01 2.28E-02 0.00025 3.37
32 1.34E-01 3.94E-02 0.00032 422

? Dissimilarity between the actual and the recovered profile for the
minor compound.
® Dissimilarity between the actual ard the recovered profile for the
major compound.

between the actual and the calculated concen-
tration profiles become lower and achievements of
more accurate fits occur when the error parameters
diminish.

Factors or interactions showing significant negative
effects indicate an improvement of the ALS results
when going from the negative level to the positive
level in the simulations. On the contrary, significant
positive effects are associated with factors or interac-
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localized unimodality constraint. Significant effects are labelled
with capital letters (see Table 1 for identification) and the
constraint effect is always identified with the letter A. The
responses analyzed are the dissimilarity between the actual and the
recovered concentration profile for the minor compound, dis(c1),
and the major compound, dis(c2), ¢ and the lack of fit.

tions causing improvements in the ALS results when
going from the positive to the negative level. There-
fore, the interpretation of the results have to be
performed according to the chemical meaning of
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Fig. 6. Normal probability plots related to the assessment of the
symmetry constraint. Significant effects are labelled with capital
Jetters (see Table 1 for identification) and the constraint effect is
always identified with the letter A. The responses analyzed are the
dissimilarity between the actual and the recovered concentration
profile for the minor compound, dis(c1), and the major compound,
dis(c2), o and the lack of fit.

the factors and the definition of their levels in the
experimental design.

4.1.1. Comments about the data features effects on
the ALS results

Figs. 4-6 show some general trends concerning the
effects of the factors related to the data features on the
quality of the ALS results. As pointed out above, these
factors ar¢ e resolution between peaks, the minor/
major concentration ratio, the noise pattern and the S/
N ratio for the minor compound and they are identified
with the capital letters B, C, D and E (see Table 1),
respectively.

As it is shown in the lately mentioned figures, the
recovery of the qualitative information is positively
influenced by increases in the resolution between
peaks and in the signal-to-noise ratio for the min~
compound (the first factor being clearly the most
important in the shape modelling of the major com-
pound and the second in the modelling of the minor).
Bigger dissimilarities between actual and recovered
concentration profiles appear when the noise pattern is
heteroscedastic and when the minor/major concentra-
tion ratio in the binary system increases. The negative

action of the latter factor is linked with the decrease of
the major compound signal in the simulated data sets.
The consequent diminution of the signal-to-noise ratio
for this constituent and the comparable contribution of
both minor and major signals lead globally to a more
merged and noisy binary system, where the distinction
and correct modelling of the compounds becomes
more difficult.

Most of the normal probability plots related to
dissimilarities can be interpreted taking into account
only the main effects of the factors. However, a
comment related to the interactions resolution-noise
pattern (BD) and minor/major ratio-noise pattern (CD)
is included, since the effects of these combinations
have been found significant in the dissimilarity of the
major compound in Fig. 5. Both interactions show that
variations in the chromatographic resolution (B) and
in the minor/major concentration ratio (C) affect
differently the quality of the ALS results when occur-
ring in systems with homoscedastic or with hetero-
scedastic noise pattern. Thus, the BD interaction
implies that a decrease in the resolution between peaks
is more critical in the recovery of the concentration
profile of the main compound when the noise is
heteroscedastic, whereas the CD interaction tells that
decreases in the proportion of the major compound in
the system affect more strongly the modelling of the
concentration profile of this compound in the presence
of heteroscedasticity. In both cases the explanation is
directly related to the stronger diminution of the S/N
ratio for the major compound induced by the presence
of heteroscedasticity when the resolution decreases
(BD) and when the proportion of major compound
decreases (CD). An examination of Eq. (1) allows to
understand the intense effect of the heteroscedastic
pattern in both kind of interactions. This expression
consists of two terms, the first one including a homo-
scedastic background (added to all systems, whatever
noise pattern they have) and the second involving
properly the heteroscedastic contribution. In data sets
with equal peaks and different resolutions, the term
referred to the homoscedastic contribution remains
invariant, whereas the second term, scaled according
to the square root of the signal, increases locally in
systems with low resolution because the global signal
becomes larger due to the big overlap between com-
pounds. The comparison between systems with dif-
ferent minor/major concentration ratios shows that the
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variation of the total noise added to the data sets when
going from the low level to the high level of this factor
is also larger in systems with heteroscedastic noise
pattern because of the contribution of the second term
in Eq. (1).

A fast examination of the normal probability plots
related to the error parameters (and lack of fit) shows
that the significant effects are less pronounced in these
responses. The smaller variability of the error para-
meters in the different ALS runs analyzed is simply
explained because of the rotational ambiguity asso-
ciated with the decomposition of the bilinear matrices
when selective information is not available (i.e. many
products between matrices of concentration profiles,
whose columns are linear combinations of the actual
profiles, and spectra matrices, whose rows are linear
combinations of the actual spectra, can reproduce the
original data matrix with a similar fit) [1]. The latter
statement reveals the dissimilarities as a more sensi-
tive indicator of changes in the ALS results and
therefore, simulated studies for which actual and
recovered profiles are available constitute an advisable
starting point to assess the influence of any modifica-
tion in a resolution technique onto the final solutions.
In spite of this, the error parameters are the only ones
that can be determined when studying real systems
and this is the reason why the knowledge of the effects
caused by the different factors on them is necessary. In
agreement with the dissimilarity studies, the resolu-
tion between peaks is the factor having the clearest
negative effect (i.e. an increase in the chromatographic
resolution reduces the error parameters in the final
results); the S/N ratio for the minor compound affects
in the same sense as well, whereas the existence of a
heteroscedastic pattern yields to a worsening of the
results. Variations in the minor/major concentration
ratio influence differently the ¢ and the lack of fit. The
more merged and noisy binary system arisen from the
decrease in the major signal causes an expected
worsening in the lack of fit. The apparently incon-
sistent improvement of the residual standard deviation
(o) is a consequence of the absolute character of this
parameter. The values of the residuals, as such, are
taken to be averaged. This causes that small residuals
associated with small values of the original data
matrix appear to be better than slightly bigger resi-
duals associated with much larger numerical values of
the original data matrix. This fact proofs the danger of

analyzing the residuals without taking into account the
magnitude of the elements of the original data matrix
they are associated with. The rest of statistically
significant effects are less important than those men-
tioned above and do not deserve an exhaustive expla-
nation.

4.1.2. Comments on the assessment of the tested
constraints

4.1.2.1. Horizontal unimodality. The ALS method has
been run forcing classical unimodality for the
concentration profiles in the experiments with
negative constraint level. Horizontal unimodality
has been applied instead when the constraint level
is positive. Small departures of the unimodal
constraint have been allowed in both implemen-
tations (tolerance parameter, r=1.1).

Fig. 4 shows the normal probability plots related to
the assessment of the horizontal unimodality con-
straint. The letter A marks the point associated with
the effect of this constraint in the analyzed responses.
Negative values of the constraint effect in all the plots
indicate the improvement of the resolution results with
the inclusion of the horizontal unimodality constraint
compared with the classical implementation. Such a
positive influence is specially noticeable in the shape
modelling of the minor compound, where the con-
straint effect is found to be statistically significant.
This confirms what was already commented in the
theory section about the effect of both implementa-
tions of the unimodal constraint in minor peaks. The
noisy signals associated with these minor constituents
are often reduced to narrow peaks when the classical
unimodal constraint is applied, whereas the horizontal
unimodality preserves much better the shape of the
original signal. The constraint effect is not so essential
in the shape recovery of major compounds, since their
signals detach clearly from the noise and can be more
easily modelled. A remarkable positive influence of
the constraint is also detected in the normal probability
plot associated with the lack of fit. The value of the
constraint effect for this response is not statistically
significant, but it is clearly negative (i.e. the use of the
horizontal unimodality produces a decrease in the lack
of fit). This last conclusion is specially important to
confirm the goodness of the analyzed constraint in real
data sets, where the lack of fit can be determined in
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Table 5
Comparison of the lack of fit for several real data sets after ALS
application using different constraints

Data sets Lack of fit (%)
Resolution % Minor comp. 1 2°
0.1 5 0.93 2.39
0.1 10 0.58 0.86
0.2 1 0.51 1.72
0.3 1 0.21 0.55
0.4 1 0.79 0.80
0.5 0s 0.23 0.37
0.8 05 0.20 0.33
1.0 05 0.30 1.91

“ Constraints applied in the ALS method: non-negativity in
concentration profiles and spectra + horizontal unimodality.

® Constraints applied in the ALS method: non-negativity in
concentration profiles and spectra + classical unimodality.

contrast to the dissimilarities between actual and
recovered concentration profiles.

Table S includes the lack of fit related to the resolu-
tion of several real data sets, already described in a
previous section. The lower values obtained for this
parameter when the unimodal condition is applied
according to the horizontal modality confirm the
usefulness of this new implementation. Some apparent
inconsistencies can be observed when the values in the
table are examined from top to bottom (i.e. comparing
systems with the same amount of minor compound,
lower lack of fit can be occasionally observed in
systems with less chromatographic resolution). These
unexpected reversals often occur when experimental
data with low concentration of minor compound are
used, since the noise patterns and levels in the different
samples are not reproducible. Despite this fact, the
validity of the comparison between the ALS results
obtained using the classical unimodality and the hor-
izontal unimodality is not questionable because the
pairs of values compared (i.e. lack of fit applying ALS
using both implementations) are referred to pairs of
runs of the ALS method on the same data matrix.

4.1.2.2. Localized unimodality. The ALS method has
been run forcing horizontal unimodality for the
concentration profiles in the experiments with
negative constraint level. Localized unimodality has
been applied instead when the constraint level is

positive. Small departures of the unimodal
constraint have been allowed in both varieties
(tolerance parameter, r=1.1).

Fig. 5 shows the normal probability plots related to
the assessment of the localized unimodality constraint.
None of the plots shows a significant effect of this
constraint in the resolution results, not even a notice-
able positive or negative effect. Hence, in its current
implementation and for the conditions spanned by the
designed experiments, the localized unimodality does
not seem to affect the quality of the resolution results.
Additional studies revealed that no improvements
were obtained when the constraint was only applied
to the minor compound.

4.1.2.3. Symmetry. The experiments with a negative
constraint level have been resolved applying the
horizontal unimodality with a tolerance parameter,
r==1.1. When the constraint level is positive, ALS is
run by using the horizontal unimodality and the
symmetry constraint. Small departures from both
constraints are allowed (tolerance parameter, r=:1.1).

Fig. 6 shows the normal probability plots connected
with the symmetry constraint. None of the responses is
affected significantly by the introduction of the sym-
metry constraint; so that, no clear modifications can be
noticed in the resolution results. The effect of this
constraint changes its sign according to the response
observed (positive for sigma and negative for the rest
of responses); however, this opposed behaviour is not
relevant because of the small magnitude of the con-
straint effect in all the plots examined.

5, Conclusions

The proposal of new constraints related to the
experimental features of the data sets has been used
as a strategy to improve the solutions coming from the
resolution methods. All the constraints presented are
related to the modelling of the concentration profiles.
Among the constraints, the horizontal unimodality has
a more general application and the localized unim-
odality and symmetry constraint are more focused on
the resolution of hyphenated chromatographic sys-
tems.

An exhaustive study on a wide span of simulated
data sets showed the goodness of the horizontal unim-
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Fig. 7. Comparison of the recovered normalized concentration
profiles related to a binary chromatographic system (Rs=0.2, ratio
minor : major compound 1 : 100 and S/N for the minor compound
equal to 20) by using different implementations of the unimodat
constraint. True concentration profiles (single lines), profiles
recovered using horizontal unimodality (thick lines) and profiles
recovered using vertical unimodality (dashed lines). The minor
compound is the first eluting.

odality in both the recovery of the shape of the
concentration profiles and the error associated with
the final solutions. The better quality of the profiles
recovered using this kind of unimodality is shown in
Fig. 7, where profiles obtained using this new imple-
mentation are compared with those obtained using the
classical vertical unimodality. The clear decrease of
the lack of fit detected in the study performed with
simulated data sets allowed the confirmation of the
usefulness of this constraint with real data.

Since the horizontal unimodality is exactly equal in
concept to the classical unimodality, this better imple-
mentation has been applied in the test of the more
demanding localized unimodality and symmetry con-
straints.

Neither the localized unimodality nor the symmetry
constraint offered any kind of visible improvement on
the resolution results according to the study performed
in the present work. Since the real information
included in these constraints can be potentially helpful
in the modelling of concentration profiles, future
research could be oriented to find more effective
implementations for these latter constraints. The pos-

tulation of new constraints based on different proper-
ties of the experimental data could also be explored.

Despite the theoretical validity of the constraints
proposed for most of the real chromatographic data
sets, the introduction of these constraints in the reso-
lution procedure is always optional and must be
supported on the chemical knowledge of the
researcher about his data. Evidence of weird beha-
viours (e.g., fronting phenomena) justify completely
the non-application of any of the constraints proposed.

References

R. Tauler, A.K. Smilde and B.R. Kowalski, J. Chemometrics,
9 (1995) 31.
{2] R. Tauler, Chemom. Intell. Lab. Sys., 30 (1995) 133.
3] R. Tauler and D. Barceld, TrAC, 12 (1993) 319.
[4] W.H. Lawton and E.A. Sylvestre, Technometrics, 13 (1971)
617.
[5] B.G.M. Vandeginste, W. Derks and G. Kateman, Anal. Chim.
Acta, 173 (1985) 253.
[6] PJ. Gemperline, Anal. Chem., 58 (1986) 2656.
|7] J. Craig Hamilton and P.J. Gemperline, J. Chemometrics. 4
(19905 1.

[8] O.M. Kvalheim and Y.Z. Liang, Anal. Chem., 64 (1992) 936.
[9] W. Windig and J. Guilment, Anal. Chem., 63 (1991) 1425.
[10] R. Tauler, A. Izquierdo-Ridorsa, R. Gargallo and E. Casassas,

Chemom. Inteil. Lab. Sys.. 27 (1995) 163.

[11] A.de Juan, G. Fonrodona, R. Gargallo, A. Izquierdo-Ridorsa,
R. Tauler and E. Casassas, J. Inorg. Biochem., 63 (1996) 155.

[12] J. Saurina, S. Hernandez-Cassou and R. Tauler, Anal. Chem.,
67 (1995) 3722.

[13] E. Casassas, R. Tauler and [. Marqués, Macromolecules, 27
(1994) 1729.

[14] S. Lacorte, D. Barcel6 and R. Tauler, J. Chrom A, 697 (1995)
345.

[15] H. Gampp, M. Maeder, C. Meyer and A.D. Zuberbiihler,
Talanta, 32 (1985) 1133.

[16] H. Gampp, M. Maeder, C. Meyer and A.D. Zuberbiihler,

Anal. Chim. Acta, 193 (1987) 287.

A. de Juan, B. van den Bogaert, F. Cuesta Sanches and D.L.

Massart, Chemom. Intell. Lab. Sys., 33 (1996) 133.

[18] F. Cuesta Sanchez, J. Toft, B. van den Bogaert and D.L.
Massart, Anal. Chem., 68 (1996) 79.

[19] J.W. Dolan and L.R. Snyder, Troubleshooting LC Systems: A
comprehensive approach to troubleshooting LC cquipment
and separation, Humana Press, US, 1989.

[20] G.E.P. Box, W.G. Hunter and J.S. Hunter, Statistics for
Experimenters: An introduction to Design, Data Analysis and
Model Building, John Wiley and Sons, US, 1978.

[21] H.R. Keller and D.L. Massart, Anal. Chem., 58 (1993) 471.

[1

[}

[17



