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Abstract
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accomplishes two tasks above, by evaluating the specification model of SpecC language.
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Abstract

To start design from higher levels of abstraction and
to make an architecture exploration decision at the
early stage of design, designers must achieve the
characteristics of specification on the higher levels of
abstraction. Designers should also estimate the system
performance at the higher levels of abstraction to
ensure that the implemented system meets design
constraints. In this report, SpecC profiler, a design-
oriented profiler, accomplishes two tasks above, by
evaluating the specification model of SpecC language.

1 Introduction

With the decrease of time to market and the increase
of the complexity of design, the design industry has
tried to start design from higher levels of abstraction.
Using SpecC methodology [1][2], the design process
will be smooth and efficient.

However, in the past, our design experiences on
JPEG[5][6], GSM vocoder[7], and JBIG[8] projects
show the difficulties of getting the satisfactory
profiling results for the specification model of SpecC
language, from existing profiling tools. The reason for
the difficulties is that the existing profiling tools are
code-oriented; the purpose of these tools is to find the
bottleneck of the executed algorithm, thus to optimize
the specification of algorithms. The characteristics of
these profiling tools are listed below:

a) They are machine-dependent. For example, DSP
56600 instruction set simulator [9] only provides
the cycle timing result of instructions for DSP
56600 processor. Similarly, the hierarchical
profilers of Codewarrior[10] only analyzes the
performance for Intel Pentium/486/AMD
K6/AMD K7 processors.

b) They only analyze the performance of designs as a
whole. They cannot provide characteristics of

communication and computation independently,
therefore limiting the usage for partitioning.

c) They only consider the sequential execution of
functions, without considering the parallel
execution.

Code_oriented profilers work well when  evaluating
the specification executed on the processor supported
by profiling tools. However, because SoC design
incorporates at least a programmable processor, an on-
chip memory, and an accelerating function unit
implemented in hardware [11], the code-oriented
profilers cannot generate all the information required
by SoC design. For example, functions of specification
can be implemented in any selected processing
elements (PEs). If the system components are not Intel
Pentium/486/AMD K6/AMD K7 processors, then
Codewarrior cannot be used. Furthermore, the traffic
throughput between different PEs should be evaluated.
The traffic influences not only the performance of
system, but also the protocol selecting process.
Finally, since PEs can be executed in parallel in SoC,
the parallel execution between different functions
should be specified.

Since existing profilers cannot provide enough
information for SoC design, in the JBIG project, a
manual approach of profiling was implemented[8]. It
took 2 months for one person to generate the
acceptable profiling results.

To  speed up the design process, SpecC profiler,
which is a design-oriented profiler, is developed.
Compared with the code-oriented profiler, the design-
oriented profiler provides sufficient profiling results
for SoC design. Unlike code-oriented profiler, the
purpose of design-oriented profiler is to help
designers to find a good architecture exploration
solution by evaluating the performance of
specification and design system thus. For example, it
can tell designers which function should be
implemented in faster PE to achieve better system
performance. Also, it can identify which two functions
should be implemented in the same PE, to reduce the
performance overhead for communication. Thus, with
the help of SpecC profiler, designers can make
architecture exploration decision more easily.
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Figure 1: Design flow of SpecC methodology of refining from specification model to architecture model

a) SpecC profiler is a retargetable profiler: it
evaluates the characteristics of behaviors executed
on any selected PEs. Moreover, it provides
profiling results for the cases that different
functions of specification are executed on
different PEs.

b) SpecC profiler not only evaluates the
characteristics of computation, but also evaluates
the characteristics of traffic and the characteristics
of memory for each function.

c) SpecC profiler evaluates the parallel execution
among functions as well as evaluates the
sequential execution.

SpecC profiler belongs to a set of tools refining the
specification model into the architecture model of
SpecC methodology [2].

Currently, SpecC profiler works on the specification
model. SpecC profiler computes the profiling results
based on the number of operations in specification.
Therefore it is not really cycle-accurate. However, it is
a good start of system design.

This report describes SpecC profiler. In section 2,
the overview of SpecC profiler and the design flow of
refining the specification model into the architecture
model are introduced. Input and output models of
SpecC profiler are introduced in section 3. Two main
parts of SpecC profiler, behavior profiler and
retargetable profiler, are described in section 4 and 5
respectively. Finally, Section 6 gives a conclusion.

2 SpecC Profiler

SpecC profiler works on the specification model of
SpecC language [1][2]. The specification model is the
model having the highest level of abstraction. It is an
accurate model of the system in terms of pure
functionality but does not reflect system structure or
timing.

SpecC Profiler consists of two parts: behavior
profiler and retargetable profiler. Figure 1 displays
these two parts under SpecC methodology of refining
the specification model to the architecture model.
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At the beginning, designers specify an original
specification model of SpecC and select executable
testbenches. Then behavior profiler inserts statements
into the original specification model to collect
execution numbers of basic blocks in specification
during simulation-time. After simulating selected
testbenches, behavior profiler analyzes the
specification based on generated execution numbers of
basic blocks. Behavior profiler creates two sets of
results: behavior statistics, and behavior dependency
(In SpecC language, behavior is a class that
encapsulates related functions and connects to other
behaviors by its ports). For each behavior, behavior
statistics contains the execution number of behavior,
average execution number of operations per behavior
execution, the size of needed memory, and the average
traffic per behavior execution. Behavior dependency
contains calling/called relations and
sequence/parallel/parallel executing relations among
behaviors. Since behavior statistics and behavior
dependency are not related to the system architecture,
they are implementation independent statistics.

Behavior profiler annotates behavior statistics and
behavior dependency into the original specification
model thus produces the profiling-annotated
specification, which is then sent to GUI.  GUI is a
graphical user interface that helps designers to
comprehend the profiling results by providing graphs
of profiling results and to annotate design decisions
into the specification automatically [4].

By comprehending behavior statistics and behavior
dependency, designers then make architecture
exploration decisions based on their design
experiences. The architecture exploration decision
making consists of following three steps:

a) Allocation. Designers select PEs from a PE library
to assemble the system architecture.

b) Partitioning. Designers map behaviors in
specification to the selected PEs.

c) Scheduling. Designers determine the executing
relations (parallel/sequential/pipeline) among
behaviors.

After designers make architecture exploration
decisions, they use GUI to annotate the decisions into
profiled-annotated specification model. After the
annotation, the decision-annotated specification model
is created.

Retargetable profiler reads the decision-annotated
specification model as input and produces re-profiling
statistics. The re-profiling statistics are
implementation-dependent statistics based on
designers’ architecture exploration decisions. The re-
profiling statistics include performances of behaviors,
and memory sizes of behaviors. Retargetable profiler
produces the evaluation-annotation specification
model by annotating re-profiling statistics into the
decision-annotated specification model.

GUI reads the evaluation-annotation specification
model and displays the re-profiling statistics to
designers. Designers then evaluate whether the
performance of design based on the previous design
decisions meets design constraints. If it does not meet
the constraints, designers will make new architecture
exploration decisions and reuse retargetable profiler
to produce new re-profiling statistics. The processes of
designers’ decision making and re-profiling are
continued until design constraints are met. This
process is shown as the shaded part in Figure 1. As
long as the final architecture exploration decisions are
made, the evaluation-annotation specification model
will be sent to the architecture-refining tool, which
will refines the specification model into the
corresponding architecture model automatically.

In general, with the help of SpecC profiler,
designers control the design process and make the
architecture exploration decisions based on their
design experience. [14] describes  guidelines of the
design process using SpecC profiler and describes
design examples of JPEG, JBIG, and Vocoder
projects.

Besides the characteristics of SpecC profilers
described in Section 1, SpecC profiler has two more
advantages.

a) SpecC profiler analyzes the behavior dependency,
which provides designers more flexibility of
scheduling. This part will be illustrated in Section 4.

b) Behavior profiler and retargetable profiler are
independent to each other. During the design process,
behavior profiler and the design simulation are only
executed once. On the other hand, retargetable
profiler can be executed as many times as needed for
different sets of architecture exploration decisions.
Since the process of profiling  and the specification
simulation are slow, and the process of re-profiling is
fast, this advantage enables more system alternatives
explored during the architecture exploration than
traditional methodologies.
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3 Input and Output Models of
SpecC Profiler

As shown in Figure 1, there are four specification
models: original specification model, profiling-
annotated specification model, decision-annotated
specification model, and evaluation-annotated
specification model. All the specification models are
modeled in the format of.SIR file, which is the internal
representation of SpecC model. Designers can
transform SIR files to and from .SC files by using
SpecC compiler [3].

Among these models, original specification model
and decision-annotated specification model are input
models of SpecC profiler. Profiling-annotated model
and evaluation-annotated specification model are
output models of SpecC profiler. The only differences
among these models are annotations. Original
specification model has no annotation; profiling-
annotated specification model has annotations of
behavior dependency and behavior statistic; decision-
annotated specification model has annotations of
architecture exploration decisions; evaluation-
annotated specification model has annotations of re-
profiling statistics.

As shown in Figure 1, GUI is a graphical user
interface that helps designers to comprehend the
profiling results by providing graphs of profiling
results and to annotate design decisions into the
specification automatically [4]. Besides using GUI,
designers can also use SpecC profiler’s command-line
tools to produce textural files containing profiling
statistics and to annotate architecture exploration
decisions into specification.

4 Behavior Profiler

4.1  Design Flow of Behavior Profiler

Figure 2 shows the design flow of behavior profiler.

First of all, the task instrument for profiling
analyzes original specification model and inserts
statements into original specification model to
compute execution numbers of basic blocks during

simulation. It produces an internal model instrumented
specification model, as shown in Figure 2.

By using SpecC compiler, instrumented
specification model is compiled to an executable file.
After designers simulate the executable file with
selected testbenches, the instrument result is
generated. The instrument result consists of two files,
_basicblock_counter.dpr and _funcmem_counter.dpr.
File _basicblock_counter.dpr contains the execution
numbers of basic blocks. File _funcmem_counter.dpr
contains the heap size of functions. Based on the
instrument result, the task “behavior statistics
analysis” and the task “behavior dependency analysis”
analyze original specification model and produce
behavior statistics and behavior dependency. Finally,
the task “behavior statistics annotation” annotates the
behavior statistics and behavior dependency into
original specification model. This process will
produce profiling-annotated specification model.

Org. specification
modle

Instrument for
profiling

Instrumented–
specification model

Simulator

Instrument
result

Behavior statistics
annotation

Profiling-annotated
specification model

Behavior statistics analysis

Behavior
statistics

Behavior
dependency

Behavior dependency analysis

Testbenches

Figure 2: Design flow of behavior profiler.



5

Execution number of
behavior instance nodes

(N_N)

Execution number of
operations per

behavior execution
(Op)

Traffic throughput per
behavior execution (T)

Behavior storage
(S)

Total port
width (T_S)

Total port
access

(T_R, T_W)

Static storage per data type
(S_Static_DataType)

Sub-Sub storage per data
type per behavior

(S_Sub_DataType_Beh)

Execution number of
operations

per operation type
(Op_OpType)

Execution number of
operations per operation

type per data type
(OP_OpType_DataType)

Execution number of
behavior (N_B)

Execution number of
behavior

instance(N_I)

Port width per
data type

(T_S_DataType)

Port  access per
data type

(T_R_DataType,
T_W_DataType)

Port width of port
(T_S_Porti,j)

Port  access of
port(T_R_Porti,j,,
T_W_Porti,j )

Static
storage (S_Static)

Sub-Sub storage per
sub_behavior
 (S_Sub_Beh)

Heap storage per data type
 (S_heap_DataType)

Heap storage
(S_heap)

Stock storage per data type
per called function

(S_Stack_DataType_Fun)

Stock
storage (S_Stack)

Stock storage
per called function

(S_Stack_Fun)
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Figure 3: Behavior statistics

4.2 Behavior Statistics Description

For each behavior, behavior profiler produces four
types of behavior statistics.

a) The execution number of the behavior.
b) The average execution number of operations per

behavior execution
c) Average traffic throughput per behavior execution
d) Behavior storage.

The detailed information about statistics of above
four types is displayed in Figure 3.

4.2.1 The Execution Number of the Behavior

Behavior profiler computes three types of execution
numbers of behavior: the execution number of
behavior, the execution number of behavior instance,
and the execution number of behavior instance node.

First, behavior profiler computes the execution
number of behavior, which refers to how many times a
behavior is executed during simulation. It is used to
compute the total execution number of operations of
behaviors representing behavior complexity.

Second, behavior profiler computes the execution
number of behavior instance. Each behavior can
contain a number of behavior instances. Different
behavior instances of a behavior can be mapped to
different PEs during the architecture exploration.
Therefore, designers can use the execution number of
behavior instance  to compute the total execution
number of operations of each behavior instance on
each PE.

Third, behavior profiler computes the execution
number of behavior instance nodes. Behavior instance
node can be defined in Figure 4. There are three
behaviors in Figure 4(a): behavior X, A, and B.
Behavior X contains behavior instance A1 and  A2,
both of which are the instantiations of behavior A.
Similarly, behavior A contains behavior instance B1
and B2, both of which are the instantiations of
behavior B. We use a hierarchical calling tree, called
behavior calling tree, to illustrate these instantiations,
as displayed in Figure 4(b).  The tree contains seven
nodes: X, A1(X), A2(X), B1(X_A1), B2(X_A1),
B1(X_A2), B2(X_A2). For example, B1(X_A1)
represents the behavior instance B1 of behavior
instance A1 of behavior instance X. We call nodes in
the behavior calling tree as  behavior instance nodes.
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The execution number of behavior instance node is
useful for the architecture exploration. As shown in
Figure 4(c), designers map four behavior instance
nodes to different PEs. If we want to compute the total
execution number of operations of behavior instance
nodes based on this partitioning, the execution number
of the behavior instance node B1(X_A1), B2(X_A1),
B1(X_A2), B2(X_A2) is needed.

(b)(a)

A X
A1

A2

B1

B2

X

A1 (X)

A2 (X)

B1 (X_A1)

B2 (X_A1)

B1 (X_A2)

B2 (X_A2)

PE0

PE1

PE3

PE4

(c)

Figure 4: An example of behavior instance nodes

Behavior profiler computes three types of execution
numbers of behavior by using execution numbers of
combinatorial /basic blocks in the specification, which
is generated by instrument for profiling.

a) The execution number of behavior (N_B).

For behavior i, N_Bi equals to the execution number
of the combinatorial block in the specification
representing behavior i’s main function.

b) The execution number of behavior
instance(N_Ii,j:).  

If behavior instance j is instantiated in behavior i,
N_Ii,j represents the average execution number of
behavior instance j per execution of behavior i.

If N_Bi is not equal to zero, and if the basic block
containing the calling statement of behavior instance j
has executed X times, then

N_Ii,j  = X / N_Bi ;

    If N_Bi is equal to zero, N_Ii,j = 0;

c) The execution number of behavior instance node
i(N_Ni)

N_Ni represents the total execution number of
behavior instance node i.

N_Ni  can be computed as below:

 i. For the behavior instance node representing
Main behavior, N_N Main = 1;

 ii. If the parent of behavior instance node A is
behavior instance node B, then

        N_NA = N_N B * N_IB,A.          

4.2.2 Average Execution Number of Operations

The average execution number of operations per
behavior execution is another essential behavior
statistic. In SpecC language, there are 56 operation
types and 29 data types. Therefore, the execution
number of operations can be calculated hierarchically
in three levels. If we use OpType to represent a chosen
operation type and use DataType to represent a chosen
data type, these three levels can be defined as:

a) OP_OpType_DataTypei:

It represents the average execution number of
operations for the selected operation type  OpType and
for the selected data type DataType, per behavior i's
execution.

Behavior profiler computes OP_OpType_DataTypei
according to the number of operations in each basic
block and the total execution number of each basic
block. The number of operations in each basic block
per block execution can be directly derived from
original specification model. It is denoted as
BB_OpType_DataTypeK,, for the operation type
OpType and the data type DataType in the basic block
k. The OP_OpType_DataTypei can be computed by

OP_OpType_DataTypei

= ΣK(BB_OpType_DataTypek *
   (The execution number of basic block k))

b) OP_OpTypei:

It represents the average execution number of
operations for selected operation type OpType and for
all the data types, per behavior i's execution.

OP_OpTypei  =
ΣDataTypeOP_OpType_DataTypei.

c) OP  i:

It represents the average execution number of
operations for all operation types and all data types,
per behavior i's execution.
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  OP i  = ΣOpType OP_OpTypei.

Above equations are correct under the assumption
that there are no behavior instances and function calls
in behaviors. If a behavior contains behavior instances
or function calls, then the execution numbers of
operations of its behavior instances or called functions
should be added to the execution number of operations
of this behavior. The algorithm for this case is
described in 4.4.1.

4.2.3 Average Traffic Throughput

The traffic (T) represents the statistics of behavior
communication. SpecC profiler provides two types of
traffic: port width and port access:

4.2.3.1 Port Width

For a behavior, the port width refers to the bit width
of all the behavior ports. It consists of three level
statistics:

a) T_S_Porti,j represents the bit width of port j of
behavior i.

b) T_S_DataTypei:  represents the bit width of all
the ports of data type DataType, of behavior i.

c) T_Si represents the bit width of all the ports of
behavior i.

        T_Si  = Σ  DataType T_S_DataTypei

               = Σ j T_S_Porti,j

Behavior profiler computes port width by directly
analyzing original specification model.

4.2.3.2 Port Access.

Port access refers to the average access number of
behavior ports per behavior execution. The port
accesses consist of read access and write access.  For
example, if x is a port of behavior, executing "x = x
+x" once includes two read accesses and one write
access.

Similar to port width, port access consists of three
levels:

a) T_R_Porti,j represents the average number of read
access for port j of behavior i, per behavior i’s
execution.

T_W_Porti,j represents the average number of
write access for port j of behavior i, per behavior
i’s execution.

b) T_R_DataTypei represents the read access of all
the ports whose data type is DataType,, of
behavior i, per behavior i’s execution.

T_W_DataTypei represents the write access of
all the ports whose data type is DataType,, of
behavior i, per behavior i’s execution.

c) T_Ri represents the read access of all the ports of
behavior i, per behavior i’s execution.

T_Wi represents the write access of all the ports
of behavior i, per behavior i’s execution.

The approach of getting port access will be
illustrated in 4.4.2.

Besides communicating through ports, behaviors
also can communicate through their channels. The
concept of channel is defined in [1]. A behavior uses a
channel in terms of function calls. For example, if a
behavior reads data from channel A and saves it into
local variable b, then the behavior constains the
statement b = A.receive(). On the other hand, if a
behavior writes a value of variable b into the channel
A, then the behavior includes the statement A.send(b).

Behavior profiler computes the total number of
argument access of channel functions as the read
access. Behavior profiler computes the total execution
number of channel functions having return value as the
write access.

A limitation of traffic throughput computation is
that traffic through ports of pointer types cannot be
evaluated accurately.

4.2.4 Size of Behavior Storage

There are four types of storage: static storage, stack
storage, heap storage, and sub_behavior storage.

4.2.4.1 Static Storage

For a behavior, the static storage consists of
variables defined in the behavior but outside any
functions, variables defined in the main function of
behavior, and behavior's ports. When a behavior is
executed, the static storage must be allocated and the
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size of static storage will not be changed during
behavior execution.

Static storage consists of two levels:

a) S_Static_DataTypei  represents the total amount of
the static storage for data type DataType of
behavior i.

b)   S_Statici  represents the total amount of the static
storage of all the data types of behavior i.

  S_Statici = Σ  DataType S_Static_DataTypei

For examples in Figure 5,

S_StaticParent =sizeof(A) +sizeof(B) + sizeof(C)
+sizeof(*D).

Behavior profiler computes static storage by directly
analyzing original specification model.

4.2.4.2 Heap Storage

The heap storage refers to storage allocated by
"malloc" statements and freed by “free” statements.

In this project, heap storage contains two levels:

a) S_Heap_DataTypei  represents the total
amount of the heap storage for data type
DataType of behavior i.

b) S_Heapi  represents the total amount of the
heap storage of all the data types of behavior
i.

S_Heapi = Σ  DataType S_Heap_DataTypei

For the example in Figure 5, S_HeapParent =
sizeof(D).

Unlike static storage, Behavior profiler computes
heap storage based on instrument result
_funcmem_counter.dpr described in 4.1.

4.2.4.3 Stack Storage

The stack storage is the first hierarchical storage
concerned. It refers to the storage used in called
functions of behaviors. The storage of function
contains function’s local variables, function’s stack
storage and function’s parameters. Since all the
functions are called sequentially in behavior, only
currently called function storage is needed at a time

during simulation. Therefore, we use the maximum
storage of called functions as the behavior stack
storage.

void F0(){
int X;
X=0;

}
void F1(int L){

int E;
F0();
E=L++;

}
void F2(){

int X;
X=0;

}

void main(){
int C, *D;
F1(C);
F2();
Inst1.main();
Inst2.main();
D = (int*) malloc (5);

}
};

Behavior Sub_1( int K, int K2){
void main(){

int M;
K = K2;

}
};

Behavior Sub_2(int K3, int K4){
void main(){

k4 = k3+1;
}

};

Behavior Parent(int A){
int B;
Sub_1 Inst1(B, A);
Sub_2 Inst2(A, B);
Sub_3 Inst2(A, B);

Figure 5: An example of specification model

The stack storage of behavior contains three levels:

a) S_Stack_DataType_Funi,j  represents the total
amount of storage for data type DataType of called
function j of behavior i.

b) S_Stack_Funi,j  represents the total amount of the
storage of called function j of behavior i.

S_Stack_Funi,j  =
 Σ  DataType S_Stack_DataType_Funci,j

c)  S_Stack represents the largest S_Stack_Funi of all
the called functions, of behavior i.

S_Stacki = Maxj(S_Stack_Funi,j)

 In the example in  Figure 5,

S_Stackparent
= Max ( S_Stack_Fun parent, F1 , S_Stack_Fun
parent, F2 )
= S_Stack_Fun parent, F1
= sizeof(E) + sizeof(L) + S_Stack_Fun parent,

F0
= sizeof(E) + sizeof(L) + sizeof(X).

Behavior profiler computes stack storage by
hierarchically analyzing original specification model.
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4.2.4.4 Sub_Behavior Storage

Sub_behavior storage is the second hierarchical
storage concerned. Unlike stack storage, two behavior
instances can be executed in parallel. Thus
sub_behavior storage is defined as the sum of the
storage of its sub_behavior instances. The storage of
sub_behavior instance contains instance’s static, stack,
heap, and sub_behavior storage.

Sub_behavior storage contains three levels:

a) S_Sub_DataType_Behi,j  represents the total
amount of the sub-behavior storage for data type
DataType of sub_behavior instantiation j of
behavior i.

b) S_Sub_Behi  represents the total amount of the
sub-behavior storage of sub_behavior instantiation
j of behavior i.

S_Sub_Behi,j  =
Σ  DataType S_Sub_DataType_Behi,j

c) S_Subi represents the total amount of the sub-
behavior storage  of behavior i.

S_Subi = Sumj(S_Sub_Behi,j)

For the example in Figure 5,

S_SubParent = S_Sub_BehSub_1 + S_Sub_BehSub_2
                  = sizeof (K) + sizeof(K2) +sizeof (K3)
+sizeof (K4).

Similar to stack storage, behavior profiler computes
sub_behavior storage by hierarchically analyzing
original specification model.

4.3 Behavior Dependency Analysis

Besides the behavior statistics, relations of
behaviors are also very useful for making design
decisions. For example, if there is no traffic between
behavior D and E as shown in Figure 6(a), then the
behavior D and E can be executed in parallel instead
of in sequential, as shown in Figure 6(b). It will
improve the performance.

Behavior profiler computes two types of behavior
dependencies: calling dependency and data
dependency. Calling dependency analyzes the
called/calling relations of behaviors; data dependency
analyzes the traffic between behaviors.

Behavior profiler computes behavior dependency by
hierarchically analyzing original specification model
and by analyzing port access statistics.

A

(b)

B C

A

B C

D

E

(a)

D E

Figure 6: An example of behavior dependency

4.3.1 Calling Dependency Analysis.

Calling dependency contains two parts:

(a) Parent behavior.
(b) Children behaviors and their execution

relations.

For example, in Figure 6(a), Behavior A does not
have any parent behavior. The children behaviors and
their execution relations  of behavior A can be
described as ( B || C ) -> D -> E, while "B || C"
represents parallel execution between behavior B and
behavior C.  "D -> E " represents D and E are
executed sequentially and E is executed after D.

4.3.2 Data Dependency Analysis.

Data dependency represents the traffic between
behavior instances. In the example in Figure 6, traffic
between behavior instance B and C represents the data
dependency of B and C.

The behavior instances are communicated through
their ports. There are two ways to connect ports of
behavior instances. First, the ports are connected
through the global variables/channels defined in their
parent behavior. For example, in Figure 5, variable B
of behavior Parent connects behavior instance Inst1
and behavior instance Inst2. We call these variables of
parent behavior as connected variables. Second, the
ports of behavior instances are connected through
ports of their parent behavior. For example, in Figure
5, port A of behavior Parent connects behavior
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instance Inst1 and behavior instance Inst2. We called
these ports of parent behaviors as connected ports.

The port-to-port traffic is called based on following
equations.

a) T_CVk,i,j/T_CPk,i,j

T_CVk,i,j  = Max(T_R_Porti, Map(i,k) ,
T_W_Portj, Map(j,k) ) + Max(T_W_Porti,

Map(i,k) , T_R_Portj, Map(j,k) );

T_CPk,i,j  = Max(T_R_Porti, Map(i,k) ,
T_W_Porti, Map(j,k) ) + Max(T_W_Porti,

Map(i,k) , T_R_Porti, Map(j,k) )

T_CVk,i,j/T_CPk,i,j represents the total amount
of traffic through connected variable/port k,
between behavior instance i and j. Map(i, k)
represents the port of behavior i that is mapped to
connected variable/port k.  For example, in Figure
5, for connected port A of behavior Parent,
Map(Inst2, A) is port K3. T_R_Port and
T_W_Port is the read and write access of port
described in 4.2.3.2. For the traffic between
behavior instance i and j through connected
variable/ports, the read access of mapped port in i
may not equal to the write access of mapped port
in j. Therefore, the maximum of the read access of
the mapped port in i and the write access of the
mapped port in j  is added with the maximum of
the write access of the mapped port in j and the
write access of the mapped port in i, to generate   
T_CVk/T_CPk.

For example, in behavior Parent of Figure 5,

T_CVA,Inst1,Inst2 = Max(T_R_Port Inst1, K2 ,
T_W_PortInst2, K3 ) + Max(T_W_PortInst, K2,
T_R_PortInst2, K3 ).

b) T_CP i,j/T_CV i,j

     T_CP i,j = ΣkT_CPk,i,j            
     T_CV i,j = ΣkT_CVk,i,j             

T_CP i,j/T_CV i,j represents the total amount of
traffic for all the connected variables/ports
between behavior instance i and behavior instance
j.

c) T_BBi,j  

    T_BBi,j   = T_CP + T_CV

T_BBi,j represents the total amount of traffic
between behavior instance i and j.

T_BBi,j represents the data dependency between
behavior instance i and j. If T_BBi,j  equals to 0, then
the behavior instance i and j are  data independent.
Otherwise, they are data dependent. Furthermore, the
closeness of two behavior instances is represented by
the value of T_BBi,j

4.4 Two Algorithms in Behavior Profiler

In behavior profiler, several algorithms are applied
to achieve behavior statistics. The complexity of
implementing behavior profiler comes from the
hierarchical analysis of specification. In this section,
two algorithms are described. The first algorithm is for
recursive function calls. The second one is for port
access.

4.4.1 Algorithm for Recursive Function Calls

In 4.2.2, we introduce the computing equations for
the average execution number of operations without
considering function calls. In this section, the
algorithm for computing the average execution number
of operations considering function calls is described.

There are three types of functions in SpecC
language. Local functions are the functions defined
inside behaviors; global functions are the functions
defined outside behaviors but in specification; library
functions are the functions defined in libraries. The
local functions of each behavior and can be called
recursively. The global functions also can be called
recursively.

The average execution number of operations of
behavior equals to the average execution number of
operations of the main function of behavior.
Therefore, after the execution number of the main
function of behavior is computed, we get the execution
number of operations of behaviors.

We use local functions as our example to illustrate
the method of solving recursive-calling problem. In
this stage, we ignore library functions and assume the
execution numbers of operations of global functions
are already computed.

We computed each OP_OpType_DataType by using
following algorithm. To add the execution number of
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operations of called functions into the execution
number of operations of calling functions, the
following equation is adopted [12]

A = C * A + O                    *

A is n-dimensional vector, while its item Ai is the
average number of operations executed by the function
i and n is the number of local functions in the
behavior, including the main function.  C is a square
matrix, while Ci,j denotes how many times function i
calls function j. Ci,j equals to the execution number of
the basic block which contains calling statement of
function j in function i divided by the execution
number of function j. O is n-dimensional vector.

Oj =  Σk( (Op_Bk +
Σ iOp_Global_Function_i
+ Σ lOp_Subl) * BBk) / N_Fj      

Op_Bk is the number of operations specified in basic
block k of function j.  Op_Global_Function is the
average execution number of operations of called
global functions in basic block k.  Op_Sub is the
average execution number of operations in behavior
instances in basic block k.  BBk is execution number
of basic block k of function j. N_Fj is the execution
number of function j, which equals to the execution
number of the combinatorial block that represents
function j.

The only unknown variable in the system of liner
equation * is the matrix A. Therefore, by solving the
equation *, we achieves the average number of
operations for all functions.

The same algorithm can solve the problems of
recursive calling for traffic and memories.

4.4.2 Algorithm of Analyzing Port Access

When considering hierarchical calls, the port access
of behavior consists of two parts: direct access from
calling functions of behaviors, and indirect access
from called functions and behavior instances.

As shown in Figure 7(a), the main function of
behavior Main_B calls function B and D, while D calls
function B and B calls function C. For argument cx1
of function C, there are two read accesses, per C’s
execution. For argument cx2 of function C, there is
one read access, per C's execution. As shown in Figure
7(c), behavior Main_B’s port x, y, and z are bound to
argument cx1 and cx2 of called function C. Therefore,
the argument access of cx1 and cx2 should be added to

the port access of x, y, z. We call this types of port
access indirect port access. On the other hand, the
statement “x = y” in function C is called direct port
access.

Behavior Main_B(int x,
int y,
int z){

void C(cx1, cx2){
int i;
i =( cx1+ cx2) * cx1;
y = x;

}

void B(b) {
int i, j;

   for(i=0; i<6; i++)
C (b, i ); // Called C1

   for(i=0; i<10; i++)
C (j, b ); // Called C2

}

void D(d) {
   int i;
  for(i=0; i<2; i++)

B (d); // Called B_3

}
void main{

int i;
   for(i=0; i<5; i++)

B( x); // Called B_1
  for(i=0; i<3; i++)

B( y); // Called B_2
  for(i=0; i<2; i++)

D(z); // Called D

}

(a) Specification

......

main

B1 (main)

B2 (main)

D (main)

C1 (main_B1)

C2 (main_B1)

B3 (main_D)

C1 (main_B2)

C2 (main_B2)

C1 (main_D_B3)

C2 (main_D_B3)

zyMain: x

D:

B:

dD_main

bB1 b B2 b B3

C: cx1C1(main_B1) cx2 C2(main_B1)

(b) Function calling structure (c) Port-argument binding graph

Figure 7: An example for algorithm of port access.

Behavior profiler calculates the port access by
following steps shown in Figure 8:

a) Build function-calling tree: similar to
behavior calling tree in 4.2.1, behavior
profiler builds the function-calling tree, as
shown in Figure 7(b). The function-calling
tree reflects the called and calling relation
between function instance nodes.
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Build function-calling tree

Calculate execution number of function instance nodes

Build port-argument binding tree

Calculate average argument access for functions

Calculate average direct port access for functions

Calculate average indirect port access for function instance
d

Calculate port access from global function calls/sub-behavior  instance

Calculate total port access for function instance nodes

Calculate total port access for functions

Calculate avg port access for functions

Calculate port access for recursive function call

Figure 8: Design flow of analyzing port access

b) Calculate the execution number of function
instance nodes in function-calling tree.
Similar to behavior instance nodes in 4.2.1, if
we define F_I (i,j) as the execution number of
called function j per execution of calling
function i, and if we define F_N(i) as the total
execution number of function instance node i,

        F_N(i) = F_N(j) * F_I (i,j)

For the main function, F_N(main) = 1.
F_I(i,j) equals to the execution number of the
basic block that contains calling statement of
function j divided by the execution number of
function i.

For example, in Figure 9,  the F_I(main, B1)
= 5, F_I(B1, C1) = 6. Therefore, F_N(
B1(main) ) = F_N(main)  * F_I(main, B1) = 5,
F_N( C1(main_B1) ) = F_N( B1(main) ) *
F_I(B1, C1 ) = 30.

c) Build port-argument binding tree for function
instance nodes. The binding information is
recorded in the tree if the argument of
function instance node is bound to the port of
behavior. For example, the port-argument
binding tree of specification in Figure 7(a) is

displayed in Figure 7(c). In this binding tree,
the argument cx1 of function instance node
C1(main_B1) is bound to port x of behavior.

d) Calculate average argument access for each
function. In Figure 7, the average access for
argument cx1 of function C is 2 read accesses.

e) Calculate the direct port access D_P(i,j), while
i refers to function instance node i and j refers
to port j.

D_P(i,j) = port access(j) per function
execution * F_N(i)

In Figure 7, D_P( C1(Main_B1) ,x) =
1(read) * 30 = 30(read).

f) Calculate the indirect port access, based on
port-argument binding tree and function-
calling tree, for each port of behavior.

First, the total amount of argument accesses
of function instance node D_A(i,k) is
calculated. I refers to function instance node i
and k refers to argument k.

D_A(i,k) = argument access(k) per function
execution* F_N(i)

The indirect port access is:

     I_P(i, j) = Σk D_A(i,k)

for all the argument k bound to port j.  For
example, I_P( C1(main_B1) , x) = D_A(
C1(main_B1), cx1) = 2(read) * 30 = 60 (read),
since argument cx1 of Main_B1_C1 is bound
to port x.

g) Calculate the port access from its global
function calls and behavior instances, for each
port of behavior. Since the SpecC profiler
computes the port accesses of child behaviors
before computes the port accesses of parent
behaviors, the port accesses of behavior
instances are already known when computing
the port accesses of parent behavior. The
argument accesses of global function call are
also computed before behavior port access
calculation. After binding the ports of
behavior to the ports of behavior instances or
arguments of global functions, the port access
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from its global function calls and
sub_behavior instances can be derived. We
define it as G_P(i,j), for function instance
node i and port j.

h) Calculate the total port j’s accesses for
function instance node i FIN_P(i,j)

FIN_P(i,j) = D_P(i,j) + I_P(i,j) + G_P(i,j).

i) Calculate the port accesses for each function,
without considering local function calls.

    F_P(i,j) = Σk FIN_P(k,j)

While k is the function instance node that
have function type i. For example, in Figure 7,

 F_P(C) = FIN_P( C1(main_B1) ) + FIN_P(
C2(main_B1) ) + FIN_P( C1(main_B2) ) +
FIN_P( C2(main_B2) ) + FIN_P(
C1(main_D_B3) ) + FIN_P( C2(main_D_B3)
).

j) Calculate the average port accesses for each
function, AF_P(i, j), without considering local
function call.

     AF_P(i, j) = F_P(i,j) / F_F(i)

 while F_F(i) is the execution number of
function i.

k) Calculate the average port accesses for each
function, AF_P(i, j), considering local
function calls.  Algorithm in 4.4.1 is used to
solve this recursive problem.

In the C program, the arguments of data types such
as “int” can only be read but not be written. On the
other hand, arguments with pointer types can be read
and written through pointer access. In behavior
profiler, we have computed the argument accesses
based on this fact.

5 Retargetable Profiler

5.1 Design Flow of Retargetable Profiler

The statistics generated by behavior profiler are
architecture-independent. Allowing designers to
estimate the system performance that reflects

architecture exploration decisions, we designed the
retargetable profiler.

Retargetable profiler performs the following tasks

a) After designers map behaviors to PEs,
retargetable profiler produces the system
performance of behaviors.

b) A number of behaviors will be mapped to one
PE. All of the behaviors in each PE are
executed sequentially. Retargetable profiler
produces the system performance of PEs
based on the statistics of behaviors.

c) The system architecture contains a set PEs.
Retargetable profiler produces the statistics of
the entire system based on the statistics of
PEs.

SpecC profiler completely separates behavior
profiler and retargetable profiler. Retargetable
profiler only uses the output of behavior profiler
including behavior statistics and behavior dependency
as its input. It does not directly depend on the
simulation. Therefore, the execution time of executing
retargetable profiler is very fast. For example, the
execution time of behavior profiler for the vocoder
project [7] on Sun Ultra 5 workstation is 68 seconds;
the testbench simulation time is 22 seconds; the
execution time of retargetable profiler is 5 seconds.
Since executing retargetable profiler computes the
system performance, designers can completely change
architecture exploration decisions and re-profile the
design using retargetable profiler in very short time.
Thus, more system architectures can be explored.

Figure 9 shows the design flow of retargetable
profiler, which has been explained in section 1.
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Figure 9: Design flow of retargetable profiler

5.2 Weight Table Generation

Each weight table represents a PE. The items in
weight table can be classified to three types: weight
for operation, weight for traffic, and weight for
memory. The weight for operation is an operation
weight for certain operation type and certain data type
representing the execution time of that type’s
operation on the PE. The weight for traffic is a traffic
weight for certain data type representing the
communication time of that type’s data on the PE. The
weight for memory is a memory weight for certain
data type used representing the required memory size
on the PE.

PE can be a custom ASIC, a programmable
processor, or an IP. If a PE refers to IP, the IP
provider should provide its weight table. If PE refers
to custom ASIC, the weight table should be generated
by analyzing the ASIC architecture.

If PE refers to a programmable processor, we can
develop the weight table by referencing processor
manuals and analyzing performance of sample codes
[12].

For example, if the SpecC sample code is

{int c, a; c = a + 123;}.

After compiling on a selected PE, the target machine
code is:

{MOVE a, R2;
MOVE #123, R1;
 ADD R1, R2;
Move R2, c}

Then we concluded that each integer identifier or
constant contributes one MOVE instruction to the
target code, each integer addition contributes one
ADD instruction. There is no contribution from
assignment.

The data in weight tables can be interpreted in terms
of execution time, clock-cycles, number of bits/bytes,
or other performance.

5.3 Output Statistics of Retargetable
Profiler

The statistics of retargetable profiler contains
computation performance for behavior instance nodes,
communication performance for behavior instance
nodes, and memory performance for behaviors.

5.3.1 Computation Performance

Retargetable-profiler computes average
computation performance of behavior. The
performance can be computed in terms of execution
time, clock cycles of execution, or the number of
instructions, depending on the meaning of PE weight
table. The average computation performance of the
behavior can be computed by adding up all of the
weighted execution numbers of operations.  

There are two types of behaviors, leaf behaviors and
combinational behaviors. Leaf behaviors are the
behaviors that do not have any behavior instances.
Combinatorial behaviors are the behaviors that
contains at least one behavior  instance.

Retargetable profiler computes computation
performance of these two types of behaviors
separately according to different methods.

5.3.1.1 Leaf Behavior

The performance of each leaf behavior contains four
levels:

a) P_OpType_DataTypei =
Op_OpType_DataTypei *
Weight_OpType_DataTypei

b) P_OpTypei = ΣDatatype P_OpType_DataTypei

c) Avg_Pi = ΣOpTypeP_OpTypei

d) Total_Pi = Avg_Pi * N_Ni

Op_OpType_DataTypei is the average execution
number for operation type OpType and data type
DataType, for behavior i, which is described in 4.2.2.
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The Weight_OpType_DataTypei is the weight for
operation type OpType and data type DataType, for the
PE that behavior i is mapped to. N_Ni is the execution
number of the behavior instance node i described in
4.2.1.

The four levels of performance counted are:
P_OpType_DataTypei  represents the average
computation performance for operation type OpType
and data type DataType of the behavior i. P_OpTypei
represents the average computation performance for
operation type OpType and all data types of behavior i.
Avg_Pi represents the average computation
performance for all operation  types and all data types
of behavior i. Total_Pi represents the total
computation performance of behavior instance node i.

5.3.1.2 Combinatorial Behavior

The performance of combinatorial behavior i can be
calculated as follows:

if  execution relations (sub_behavior) == sequential
then

Total_Pi = ΣS u b _ b e h(Total_PS u b _ b e h  );
else if   execution relations(sub_behavior) == parallel
then

Total_Pi = Max S u b _ b e h(Total_PS u b _ b e h);
else if   execution relations(sub_behavior) == pipeline
then

Total_Pi = Pipeline(Total_PS u b _ b e h  )
else if   execution relations(sub_behavior) == FSM
then

Total_Pi = ΣS u b _ b e h(Total_PS u b _ b e h  );
endif

Total_PSub_beh represents the computation
performance of sub_behavior instances, which has
been calculated before calculating the computation
performance of behavior i.  Pipeline() is the function
to calculate the computation performance when
behavior instances are executed in a pipeline style.

SpecC profiler also supports the case when the
execution relation of behavior instances of behaviors
are a mix of sequential, parallel, pipeline, and FSM
styles.

Although the computation performance of each PE
is not explicitly displayed by behaviors, it is already
considered by using weight tables for behaviors. The

total computation performance of design can be
represented by the performance of Main behavior.

5.3.2  Communication Performance

Retargetable profiler computes the communication
performance for behaviors. The performance is
computed in terms of the execution time, clock cycles
of execution, or the number of instruction, depending
on the meaning of PE weight table. Compared with
port width and port access, the amount of traffic is
weighted result and it is PE dependent. Based on port
width and port access, retargetable profiler computes
two types of statistics, static communication
performance and dynamic communication
performance.

5.3.2.1 Static Communication Performance

In some cases, when a behavior is executed, the data
communication only happens twice: before the start of
execution and after the end of execution. During the
execution, the communicated data will be saved in the
local memories. In these cases, the total amount of
communication per behavior execution is called
average static communication performance. If C_S
represents average static computation performance, it
can be calculated by equation

C_Si = 2 * Σ  DataType (T_S_DataTypei *
Weight_Traffic_DataType)

        
T_S_DataTypei is the port width defined in 4.2.3.1 and
Weight_Traffic_DataType is the weight of
computation for data type DataType.

5.3.2.2 Dynamic Communication Performance

If the data communication happens whenever ports
are accessed, the average communication performance
for each execution of behavior i is called average
dynamic communication performance, which is
represented by C_D_Wi and C_D_Ri

 C_D_Wi = Σ  DataType (T_W_DataTypei *
Weight_Traffic_DataType)

       

C_D_Ri = Σ  DataType (T_R_DataTypei *
Weight_Traffic_DataType)       

while T_W_DataTypei and T_R_DataTypei are write
access and read access defined in 4.2.3.2.
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5.3.2.3 Total Communication Performance

Designers can computes the total communication
performance of behavior instance node i using average
static communication performance and average
dynamic communication performance. For example, if
the data communication only happens twice during
behavior execution as discussed in 5.3.2.1, then the
total communication performance is:

Ci = C_Si * N_Ni.

While N_Ni is the total execution number of behavior
instance node i in 4.2.1

On the other hand, if the data communication
happens whenever ports are access for each behavior,
such as in 5.3.2.2, then the  total communication
performance is:

Ci = (C_D_Wi + C_D_Ri) * N_Ni.

5.3.2.4 Communication Performance between
Behaviors and PEs

Besides the communication performance for
behavior, retargetable profiler also computes the
average communication performance between two
behaviors based on behavior dependency and traffic of
each behavior.

For example, if behavior D and E are executed
sequentially as shown in Figure 6(a), and D and E
communicate through connected ports, then the traffic
will exist only when writing D and reading E.  The
communication performance CD, E is,

If D, E share a PE, there is no traffic.
If D, E communicate through a global memory:

   CD,,E, =N_ND*T_SD, +N_NE *T_RE,    

If D, E communicate through a local memory and
The local memory is in D:

  CD,,E, =N_NE*T_RE

If the local memory is in E:

  CD,,E, = N_ND*T_SD               

Retargetable profiler only provides the statics and
dynamic communication performance between
behaviors. Designers need to compute communication
performance between behaviors in case by case.

Designers can compute the communication
performance between PEs. The communication
performance between PE1 and PE2 is equal to the sum
of communication performance between any behavior
instance node in PE1 and any behavior instance node
in PE2.

5.3.3 Memory Performance

Memory performance refers to the required memory
size of selected PE.

 a) Static memory (M_Statici)

M_Statici =  Σ  DataType (S_Static_DataTypei

* Weight_Memory_DataType)

S_Static_DataTypei is described in 4.2.4.1 and
Weight_Memory_DataType is the weight of memory
for data type DataType based on selected PE.

b) Heap memory (M_Heap i )

M_Heap i =  Σ  DataType (S_Heap_DataTypei *
Weight_Memory_DataType)

S_Heap_DataTypei is described in 4.2.4.2.

c) Stack memory (M_Stack i )

M_Stack i =  Σ  DataType (S_Stack_DataTypei

* Weight_Memory_DataType)

S_Stack_DataTypei is described in 4.2.4.3

d) Sub_behavior memory (M_Sub i)

M_Sub i =  Σ  DataType (S_Sub_DataTypei *
Weight_Memory_DataType)

S_Sub_DataTypei is described in 4.2.4.4.

e) The total memory of behavior (M i)

M i = M_Statici +M_Heap i + M_Stack i +
M_Sub i                        

f) The total memory of PE (M_Pk )

M_Pk = Max(M i)
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The required memory size of selected PE is equal to
the maximum of memory size of behaviors mapped to
it. Designers can compute it manually.

6 Conclusion

In this report, SpecC profiler is introduced. SpecC
profilers contain two parts: behavior profiler and
retargetable profiler. Behavior profiler produces the
statistics of specification that is independent of design
implementation. Retargetable profiler produces the
statistics of design depending on the selected target
architecture and designers’ architecture exploration
decisions.

SpecC profiler has following advantages.

a) SpecC profiler is retargetable profiler: it
evaluates the characteristics of behavior
executed on any selected PEs. Moreover, it
provides the profiling result for the case that
different functions of specification are
executed on different PEs.

b) SpecC profiler evaluates not only computation
performance, but also communication
performance, and needed memory size for the
specification.

c) SpecC profiler evaluates sequential execution
among functions as well as parallel and
pipeline execution.

d) SpecC profiler analyzes the behavior
dependency, which provides designers more
flexibility of scheduling.

e) Two parts of SpecC profiler, behavior profiler
and the retargetable profiler, are independent.
Therefore, design simulation is only executed
once. It makes the process of executing
retargetable profiler fast and makes the large
range of architecture exploration possible.

This report concentrates on introducing SpecC
profiler and the statistics that SpecC profiler produce.
In report [14], how to use SpecC profiler to perform
system level design as well as design examples is
introduced.

The SpecC profiler works on the specification
model of SpecC language. The evaluation result is not

really cycle-accurate. However, it is first step to limit
the range of architecture exploration and it outlines the
profiling process on higher levels of abstraction in
SoC design.
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