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Scope 
BraTS has always been focused on the evaluation of state‐of‐the‐art methods for the segmentation of brain tumors in magnetic 

resonance imaging (MRI) scans. BraTS 2017 utilizes multi‐institutional pre‐operative MRI scans and focuses on the segmentation of 

intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas. Furthermore, in order to pinpoint 

the clinical relevance of this segmentation task, BraTS’17 also focuses on the prediction of patient overall survival, via integrative 

analyses of radiomic features and machine learning algorithms. 

Clinical Relevance 
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various 

heterogeneous histological sub‐regions, i.e. peritumoral edema, necrotic core, enhancing and non‐enhancing tumor core. This 

intrinsic heterogeneity of gliomas is also portrayed in their imaging phenotype (appearance and shape), as their sub‐regions are 

described by varying intensity profiles disseminated across multimodal MRI scans, reflecting varying tumor biological properties. Due 

to this highly heterogeneous appearance and shape, segmentation of brain tumors in multimodal MRI scans is one of the most 

challenging tasks in medical image analysis. 

There is a growing body of literature on computational algorithms addressing this important task. Unfortunately, open data sets for 

designing and testing these algorithms are not currently available, and private data sets differ so widely that it is hard to compare 

the different segmentation strategies that have been reported so far. Critical factors leading to these differences include, but not 

limited to, i) the imaging modalities employed, ii) the type of the tumor (GBM or LGG, primary or secondary tumors, solid or 

infiltratively growing), and iii) the state of disease (images may not only be acquired prior to treatment, but also post‐operatively 

and therefore show radiotherapy effects and surgically‐imposed cavities).  Towards this end, BraTS is making available a large 

dataset with accompanying delineations of the relevant tumor sub‐regions. 

Tasks 
Task 1: Segmentation of gliomas in pre‐operative scans: The participants are called to address this task by using the provided 
clinically‐acquired training data to develop their method and produce segmentation labels of the different glioma sub‐regions. The 

sub‐regions considered for evaluation are: 1) the "enhancing tumor" (ET), 2) the "tumor core" (TC), and 3) the "whole tumor" 

(WT) [see figure below]. The ET is described by areas that show hyper‐intensity in T1Gd when compared to T1, but also when 

compared to “healthy” white matter in T1Gd. The TC describes the bulk of the tumor, which is what is typically resected. The TC 

entails the ET, as well as the necrotic (fluid‐filled) and the non‐enhancing (solid) parts of the tumor. The appearance of the necrotic 

(NCR) and the non‐enhancing (NET) tumor core is typically hypo‐intense in T1‐Gd when compared to T1. The WT describes the 

complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper‐intense 

signal in FLAIR. The labels in the provided data are: 1 for NCR & NET, 2 for ED, 4 for ET, and 0 for everything else. 

Task 2: Prediction of patient overall survival (OS) from pre‐operative scans: Once the participants produce their 

segmentation labels in the pre‐operative scans, they will be called to use these labels to extract imaging features from the given MRI 

data, in an attempt to predict patient OS. The participants do not need to be limited to volumetric parameters, but can also consider 

intensity, morphologic, histogram‐based, and textural features, as well as spatial information, and glioma diffusion properties 

extracted from glioma growth models. Three groups of survival are considered, i.e. long‐survivors (e.g., >15 months), short‐survivors 

(e.g., <10 months), and mid‐survivors (e.g. between 10 and 15 months). 

  

Fig.1: Glioma sub‐regions. Shown are image patches with the tumor sub‐regions that are annotated in the different modalities (top left) and the 

final labels for the whole dataset (right). The image patches show from left to right: the whole tumor (yellow) visible in T2‐FLAIR (Fig.A), the tumor 

core (red) visible in T2 (Fig.B), the enhancing tumor structures (light blue) visible in T1Gd, surrounding the cystic/necrotic components of the core 

(green) (Fig. C). The segmentations are combined to generate the final labels of the tumor sub‐regions (Fig.D): edema (yellow), non‐enhancing solid 

core (red), necrotic/cystic core (green), enhancing core (blue). (Figure taken from the BraTS IEEE TMI paper.) 



Data 
The datasets used in this year's challenge have been updated, since BraTS'16, with more routine clinically‐acquired 3T multimodal 

MRI scans and all the ground truth labels have been manually‐revised by expert board‐certified neuroradiologists. 

Ample multi‐institutional routine clinically‐acquired pre‐operative multimodal MRI scans of glioblastoma (GBM/HGG) and lower 

grade glioma (LGG), with pathologically confirmed diagnosis and available OS, will be provided as the training, validation and testing 

data for this year’s BraTS challenge. These multimodal scans describe a) native (T1) and b) post‐contrast T1‐weighted (T1Gd), c) T2‐

weighted (T2), and d) T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes, and were acquired with different clinical protocols 

and various scanners from multiple (n=19) institutions, mentioned as data contributors below. All the imaging datasets have been 

segmented manually, by one to four raters, following the same annotation protocol, and their annotations were approved by 

experienced neuro‐radiologists. Annotations comprise the GD‐enhancing tumor (ET — label 4), the peritumoral edema (ED — label 

2), and the necrotic and non‐enhancing tumor (NCR/NET — label 1), as described in the BraTS reference paper, published in IEEE 

Transactions for Medical Imaging (Fig.1). The provided data are distributed after their pre‐processing, i.e. co‐registered to the same 

anatomical template, interpolated to the same resolution (1 mm^3) and skull‐stripped. The data provided during BraTS'17 differs 

significantly from the data provided during the previous BraTS challenges. Specifically, this year, expert neuroradiologists have 

radiologically assessed the complete original TCIA glioma collections and categorized each scan as pre‐ or post‐operative. 

Subsequently, all the pre‐operative TCIA scans were annotated by experts for the various sub‐regions and included in this year's 

BraTS datasets.  Participants are not allowed to use additional private data (from their own institutions) for data augmentation, since 

our intentions are to provide a fair comparison among the participating methods. The only case that this will be considered as a valid 

contribution is if they also report results using only the BraTS'17 data and discuss any potential difference in the results. 

Validation data was released on June 30, allowing participants to obtain preliminary results in unseen data and also report it in their 

submitted papers, in addition to their cross‐validated results on the training data. The ground truth of the validation data was not 

provided to the participants. Finally, all participants were presented with the same test data, for a limited controlled time‐window 

(48h), before the participants are required to upload their final results in CBICA's IPP (ipp.cbica.upenn.edu). 
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Brain Tumor Segmentation from Multi Modal
MR images using Fully Convolutional Neural

Network

Varghese Alex, Mohammed Safwan, and Ganapathy Krishnamurthi

Indian Institute of Technology Madras, Chennai, India,
gankrish@iitm.ac.in

Abstract. This paper explains the use of a fully convolutional neural
network (FCNN) for segmentation of gliomas from Magnetic Resonance
Images (MRI). A fully automatic voxel based classification was achieved
by training a 23 layer deep FCNN on 2-D slices extracted from patient
volumes. The network was trained on slices extracted from 130 patients
and validated on 50 patients. The false positives in segmentation map
generated by the FCNN were removed by connected component analysis.
On the BraTS 2017 validation set, the proposed algorithm achieved a
mean whole tumor, tumor core & active dice score of 0.83, 0.69 & 0.69
respectively.

Keywords: Deep Learning, Gliomas, MRI, FCN

1 Introduction

In this paper, we propose a 23 layer deep FCNN for the task of segmentation
of gliomas from MR scans. In the field of medical image analysis, one of the
oft used architecture is the the U-net architecture [1]. The network used in this
work has a similar architecture as that of U-net. The network was trained on
2-D axial slices (240*240) extracted from FLAIR, T2, T1, and T1 post contrast
sequences. The FCNN architecture enables to classify all the voxels in a slice
using a single forward pass thereby reducing the time required for prediction
considerably as opposed to a patch based technique.

Convolutional neural network and its variants being deterministic approaches
tend to mis-classify voxels as lesion in regions like brain stem, cerebellum where
occurrence of gliomas is anatomically impossible. We utilize connected compo-
nent analysis to discard components below a certain threshold for false positive
reduction. For the prognosis challenge, the overall survival rate was categorized
into three groups namely short survivors (prognosis, p < 3 months), mid sur-
vivors (3 months < p < 6 months) & long survivors (p > 6 months). Features
such as age, size of the lesion, relative size of various components of the lesion,
extent of tumor, etc. were extracted from the label map generated by FCNN &
fed as input to an SVM to predict the patient as short, mid or long survivor.
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2 Materials and Methods

The proposed technique comprises of following stages:

1. Pre-processing of data
2. Training stage
3. Testing stage
4. Post-processing
5. Feature extraction for survival rate prediction.
6. Training & testing of SVM classifier for survival rate prediction.

The flowchart of the proposed the technique is given in Fig. (1).

Fig. 1: Flow chart of the proposed network

2.1 Data

The network was trained and validated on the BraTS 2017 training data [2],[3],
[4],[5]. The training data comprises of 210 HGG volumes and 75 LGG volumes
collected from multiple centers. Each patient comprises of FLAIR, T2, T1, T1
post contrast and the associated ground truth labeled by experts. Each sequence
was skull stripped and was re-sampled to 1mm*1mm*1mm (isotropic resolution).

For the overall survival challenge, age & prognosis of the patient post treat-
ment were supplied by the organizers. The training set for the challenge com-
prised of 163 High Grade Glioma patients of which 84 patients had survival rate
between 180 and 540 days (mid survivors), while 41 patients had prognosis less
than 180 days (short survivors) and 38 patients had prognosis greater than 540
days (long survivors).

2.2 Fully Convolutional Neural Network

A typical FCNN comprises of convolution operations, max pooling layers and
transpose convolution layers. The absence of fully connected layers in FCNNs
leads to reduction of number of parameters in the network & enables feeding of
inputs of arbitrary sizes. The max pooling layer helps in reduction of dimension
of the feature maps in the deeper layers and also aid in capturing translation
invariant features from the input images.

The dimensionality of the feature maps are brought back to size of the input
by either using up-sampling modules such as bilinear interpolation of feature
maps or transposed convolution. The use of transposed convolution in the net-
works makes the scaling procedure of feature maps a parameter to be learned
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during the training process. Concatenation of feature maps or skip connections
at various depths of the network leads to improvement of the network’s perfor-
mance.

FCNNs have an inherent advantage of classifying all pixels in the image by
using single forward pass of the image and thus makes FCNNs an ideal choice for
semantic segmentation related task. Similar to traditional CNNs, the parameters
of the network are learned by minimizing the cross entropy.

3 Preprocessing of Data

3.1 Z-score Normalization

Multi center data and magnetic field inhomogeneities contribute to the intensity
inhomogeneities in MR image. The volumes were normalized to have zero mean
and unit variance.

4 Training of Network

4.1 Slice Extraction

Majority of the volumes in the dataset were acquired along the axial plane and
hence had highest resolution this plane. Due to this reason, the networks were
trained on axial slice extracted from all four sequences. The data imbalance in
the dataset was addressed by training the network on slices that comprise of at
least one voxel of lesion. The network was trained and validated on 7000 & 3000
axial slices respectively.

4.2 Network Architecture

The architecture of the network is given in Fig. (2 (a)). The numbers within each
Conv block comprises of 2 sets of convolution by 3x3 kernels, batch normaliza-
tion and a non linearity (ReLU), (Fig. (2 (b))). The number of learnable filters
in each layer is depicted by the suffix in the Conv and UpConv block. The
concatenation of feature maps is presented in the architecture as blue arrows.

The stride, kernel size & padding of the transposed convolution are chosen
so as to produce feature maps of similar height and width as that of the feature
maps of the adjoining Conv block. This enables concatenation of feature maps
without the need of cropping feature maps from the Conv block. The network
makes use of convolution with 1x1 filters in the hindmost convolution block and
results in generating the segmentation map.

Training The network was trained with slices extracted from 120 HGG patients.
The weights and biases in each layer was initialized using the Xavier initialization
[6]. The network was trained for 30 epochs and the weights and biases were
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(a) (b)

Fig. 2: Architecture of the proposed network. (a) Proposed FCNN. (b) Compo-
sition of the Conv block.

learned by minimizing the cross entropy loss function with ADAM [7] as the
optimizer.

The class imbalance in the data was addressed by data augmentation and
using a weighted cross entropy as the loss function. The data augmentation
scheme comprises of horizontal flipping/ mirroring of the data & the correspond-
ing ground truth. This augmentation scheme preserves the overall structure of
brain. The weight assigned to normal:necrotic:edema:enhancing was in the order
of 1:5:2:3.

4.3 Post processing

The predictions made by the network were post processed using connected com-
ponent analysis. The components below a threshold (T=2000) were discarded.

4.4 Survival prediction

The overall survival of subjects were binned into 3 categories/classes namely
short survivors, mid survivors and long survivors. Features such as age of patient,
ratio of number of voxels of edema to number of voxels of lesion, ratio of number
of voxels of necrosis to number of voxels of lesion, ratio of number of voxels
of enhancing tumor to number of voxels of lesion, etc. were fed as input to a
Support Vector Machine with a linear kernel. The list of normalized feature to
train the SVM is given in Table (1).
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Table 1: Features used to train SVM for survival rate. # -Number of voxels.
Sl.No Feature Normalized Feature

1 Age Age/100

2 Extent of Lesion # Slices with lesion/ Total number of slices

3 Presence of Edema 0 or 1

4 Amount of edema # Edema voxels/ # Lesion voxels

5 Amount of necrosis # Necrotic voxels/ # Lesion voxels

6 Amount of enhancement # Enhancing tumor voxels/ # Lesion voxels

7 Amount of lesion # Lesion Voxels / # Voxels in the brain

5 Results

The performance of network on the entire BraTS on the local test set (n=40) is
given in Table (2). Fig.(3) shows the performance of the network on 2 different
patients from the local test data.

Table 2: Performance of the network on local test data
Whole Tumor Tumor Core Active Tumor

Mean 0.84 0.84 0.77

Std. Dev. 0.19 0.20 0.19

Median 0.90 0.90 0.83

The post processing technique improves the performance of the network. On
the local test data, the improvement in performance was in the order of 2% for
whole tumor dice score, 2 % for tumor core and 1% active tumor. Fig.(4) shows
an example were the proposed post processing technique aids in eliminating false
positives.

For the overall survival rate, using limited features, the SVM classifier was
able to predict the overall survival rate of a patient with 60% accuracy. Larger
number of mid survivors in the training data when compared to the other classes
attributes to the classifier’s better performance in predicting the mid survivors
when compared to short or long survivors.

The performance of the network on the BraTS 2017 validation set is given in
Table (3). It was observed that the network maintains similar whole tumor scores
on the local test data and on the validation data. However, a dip in performance
was observed in the tumor core & active tumor compartments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Performance of the network on local test data. (a) FLAIR. (b) T2. (c) Pre-
diction. (d) Ground Truth. (e) FLAIR. (f) T2. (g) Prediction. (h) Ground Truth.
In figures c,d,g & h, green- Edema, yellow- Enhancing Tumor, red- Necrotic Core.

(a) (b) (c) (d)

Fig. 4: Reduction of False positive using connected components. (a) FLAIR. (b)
Raw Prediction. (c) Post Processed image. (d) Ground Truth. In figures b, c, d,
green- Edema, yellow- Enhancing Tumor, red- Necrotic Core.
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Table 3: Performance of the network on BraTS 2017 validation data
Whole Tumor Tumor Core Active Tumor

Mean 0.83 0.69 0.69

Std. Dev. 0.16 0.30 0.32

Median 0.90 0.83 0.84

6 Conclusion

In this paper, we propose a fully automatic technique for segmetation of gliomas
using FCNNs.

– An FCNN was trained to predict all voxels in a slice using a single forward
pass.

– A single network was trained to segment both HGG and LGG volumes.
– Features from the segmentation map generated by the network was used to

predict the overall survival rate of the patient. SVM with linear kernel was
trained to classify the patient as short, mid or long survivor.

At present the authors plan to work on the following:

1. Improve performance of network in tumor core and active tumor regions.
2. Extract more features and & convert the prognosis task from a classification

task to a regression task.

The networks were developed using Torch framework and was trained on
Titan X. The entire pipeline (pre-processing, testing and post processing) takes
approximately 30 seconds per patient.
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3D U-Nets For Brain Tumor Segmentation in MICCAI 
2017 BraTS Challenge 
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Abstract. In this paper we present our solution for brain tumor segmentation in 
MICCAI 2017 BraTS data set. Three different convolutional neural networks 
with the same 3D U-Net architecture were trained for each of the tumor seg-
mentation targets (whole tumor, tumor core and enhancing tumor) with 3D 
patches as inputs. Preprocessing were done in each case separately, equalizing 
histogram on whole tumor and normalizing voxels on all modalities. Our solu-
tion yielded Dice coefficients of 0.9111, 0.9118 and 0.8272 on 30% of the train-
ing set (test split) and 0.8844, 0.7674 and 0.7261 on the leaderboard validation 
set (respectively for each segmentation target). 

Keywords: MICCAI, BraTS, brain tumor segmentation, 3D U-Net, 3D patches 

1. Introduction 

Gliomas are the most common primary brain malignancies, with different degrees of 
aggressiveness, variable prognosis and various heterogeneous histological sub-re-
gions, i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor 
core. Due to their highly heterogeneous appearance and shape, segmentation of brain 
tumors in multimodal MRI scans is one of the most challenging tasks in medical im-
age analysis. [1] 

Towards this end, BraTS is making available a large dataset with accompanying 
delineations of the relevant tumor sub-regions [1, 2, 3, 4]. 

In this work, we describe the methods used for the segmentation of each tumor 
region, as well as the results and future work. 

2. Methods 

To accomplish the segmentation task, we created 3 convolutional neural networks, 
each one for a target: whole tumor, tumor core, and enhancing tumor. All deep learn-
ing networks were implemented using Keras library in Python, with Theano as back-
end. 
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The dataset used to train these networks was the 2017 BraTS competition. It con-
sists of 210 high grade glioma (HGG) and 75 low grade gliomas (LGG), all of them 
annotated by experts for all gliomas sub-regions[1, 2, 3, 4]. Only the HGG images 
were used to train our models. To analyze our results a split was made by patient, 
such that 70% of the data (147 patients) was the training set and 30% the validation 
set (63 patients). 

A standard U-Net [5] was used to perform segmentation, but instead of 2D images, 
3D images were used as input of the network.  

Appropriate changes were made so that the network would be able to receive these 
kind of images. T1 and T2 weighted images had their histograms equalized in order to 
increase intensity contrast. On the other hand, post-contrast T1 and FLAIR images 
went through standard scaling and normalization before being used as inputs. 

We briefly describe below the techniques used for the segmentation of each tumor 
region. 

2.1. Whole tumor segmentation  

Whole tumor regions correspond to the union of all tumor labels (1: necrotic and non-
enhancing tumor; 2: peritumoral edema; and 4: GD-enhancing tumor), so their masks 
were built from that. 

Segmentation was performed by a 3D U-Net  convolutional neural network with 
64 X 64 X 64 patches of T2, FLAIR, T1 and post-contrast T1 modalities as inputs 
(thus, the network has 4 64 X 64 X 64 channels as inputs). 

Before being used as inputs, all images had their histograms equalized for brain 
voxels only, in order to increase contrast of brain tissues for all modalities. Only high 
grade glioma (HGG) cases were used as inputs. 

2.2. Tumor core segmentation  

Tumor core regions correspond to the union of necrotic and non-enhancing tumor 
(label 1) and GD-enhancing tumor (label 4) regions, so their masks were built from 
that. 

Segmentation was performed by a 3D U-Net convolutional neural network with 64 
X 64 X 64 patches of post-contrast T1 modality as inputs (thus, the network has 1 64 
X 64 X 64 channel as input). 

Only high grade gliomas (HGG) were used as training inputs, so the network was 
not able to find tumor core masks for low grade gliomas (LGG), yielding few labeled 
pixels as output. In those cases, the tumor core mask is replaced by the whole tumor 
mask in our pipeline to make up for that lack of a bigger segmented region. 

2.3. Enhancing tumor segmentation  

Gadolinium-enhancing tumor regions correspond to the ones labeled as number 4 on 
the dataset. 
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Segmentation was performed by a 3D U-Net convolutional neural network with 64 
X 64 X 64 patches T1 and post-contrast T1 modalities as inputs (thus, the network has 
2 64 X 64 X 64 channels as inputs). 

Only high grade gliomas (HGG) were used as training inputs, so the network did 
not perform well for low grade gliomas (LGG), yielding few labeled pixels as output 
even when there was no enhancing tumor region. In those cases, the enhancing tumor 
mask is replaced by a blank mask (i.e. all-zeros)  in our pipeline to make up for the 
network’s inability to recognize tumors with no enhancing regions. 

2.4. Overall survival estimation 

The task was divided in two parts. The first is a multi class classification of short ( > 
10 months), medium (between 10 and 15 months) and long (> 15 months) overall 
survival. The second task is a regression one to predict the overall survival in days. To 
estimate overall survival in days for each patient, a XGBoost regressor [6] was used. 
Similarly, a XGBoost classifier [6] was chosen for the classification task on overall 
survival duration groups. 

The model's input features include patient’s age as well as morphological (volume) 
and statistical features (intensity mean and standard deviation, maximum and mini-
mum intensities, entropy) of the tumor regions volumes in all modalities (T1, post-
contrast T1, T2 and FLAIR). The ground truth mask were used to extract such fea-
tures. Some dimensionality reduction algorithms were also used to increase the fea-
tures of the dataset. The algorithms included PCA, ICA, Truncated SVD, Gaussian 
Random Projections and Sparse Random Projections. Each one of these returned 15 
components, summing up to 75 more features, in a total of 120. 

The training was made using 5 fold cross-validation, repeated 10 times, in order to 
avoid bias. The results of the validation set in each case were used to calculate the 
scores, that included accuracy and macro average F1 score on the classification prob-
lem. For regression the coefficient of determination (R2) and the root mean squared 
error (RMSE) were calculated. 

3. Results 

Results for the segmentation task on the test split of the training set as well as on the 
validation leaderboard are displayed on Table 1. Predictions were made passing 
patches to the net with stride 16. The regions where more than one patch coincided 
had their predictions averaged to get the final prediction mask and evaluate the Dice 
metric. 

Results for the overall survival classification task are displayed on Table 2, and the 
scores for the overall survival regression task can be found on Table 3.  

In the overall survival classification task, class 0 corresponds to overall survival up 
to 10 months; class 1 encompasses overall survival from 10 to 15 months; and class 2 
implies overall survival above 15 months. 
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Table 1. Mean scores for each tumor segmentation target. 

Table 2.  Scores for overall survival duration group classification on cross-validation 

Table 3. Scores for overall survival estimation in days on cross-validation. 

4. Discussion 

The idea of implementing neural networks using the different types of images togeth-
er (T1, post-contrast T1, T2 and FLAIR) resulted in a promising solution for the task 
of segmentation of the brain tumor. We implemented different numbers of channels 
for each type of tumor (whole tumor, tumor core and enhanced tumor) based on the 
variations of the signal intensity of voxels. All whole tumor segmentation was de-
signed with two networks using the four channels and two distinct methods of prepro-
cessing. One of the methods used a simple standard scaler with normalization and the 
other one utilised a histogram equalization only in the brain section. The first network 
demonstrated less restriction to give high probabilities of the whole tumor in regions 
with high-intensity voxels. However, the network that used the four channels and the 
histogram equalization acquired a high degree of conservatism, because of these two 
results we used the mean probability between the two networks and acquired the val-
ues as illustrated in Table 1. 

The tumor core network used only the post-contrast T1 channel with the standard 
scaling and normalization preprocessing. We believe that this channel has enough 

Segmentation 
target

Validation on 30% of the 
training set - test split (63 cases)

Validation leaderboard scores 
(46 cases)

Dice 
coefficient

Hausdorff 
distance

Dice 
coefficient

Hausdorff 
distance

Whole tumor 0.9111 19.8746 0.8845 13.6590

Tumor core 0.9118 11.7898 0.7674 22.3667

Enhancing 
tumor

0.8272 11.000 0.7261 13.8817

Accuracy (%) F1 Score (%)

48.5 47.1

R2 Score RMSE

-196 234.818
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contrast for the network to distinguish between the brain tumor edema and the brain 
tumor core. However, this contrast is more evident in HGG cases when compared to 
LGG cases. In the latter, our network resigned to guess the series tumor core. This 
problem is intended to be solved using a secondary network trained focused only in 
the LGG cases. The enhanced tumor segmentation used a network with T1 and post-
contrast T1 channels, the idea was to use the contrast between this two channels to 
better select the voxels of enhanced tumor. Although the segmentation has a consider-
able dice in the training dataset (approximately 0.82), we confronted the same differ-
ences of voxels intensity between the HGG and LGG data which made difficulty the 
enhanced tumor segmentation in the LGG cases.  

The proposed method in this short paper showed a good solution for the segmenta-
tion of the three types of tumor. However, the effectiveness is more evident in the 
HGG types when compared with the LGG. 

The features extracted to perform overall-survival were not enough to get a good 
regression score. In future work will be analysed what features correlate to a shorter 
or longer overall-survival, and extract that features to do regression. 

5. Conclusion 

The decision of using deep learning, specifically the U-Net, was due the great results 
it had in other tasks of segmentation in biomedical images [5]. We observed that even 
in medical images that architecture has a promising performance and we focused 
more in the images pre and post-processing. 

At the beginning of the project we've tried different approaches regarding the input 
for the segmentation tasks. We observed that the 64 X 64 X 64 3D patches had the 
best results. 

Results shown in this paper are promising and we look forward to improving our 
scores on the segmentation task by training all networks with LGG cases (and not 
only HGG cases) in order to increase generalization. We are working to improve our 
performance on the overall survival tasks as well. 
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Multi-dimensional Gated Recurrent Units for
Brain Tumor Segmentation
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Abstract. Glioma segmentation is a difficult task due to strongly vary-
ing intensity and shape of the pathology. We propose to tackle it with
multi-dimensional gated recurrent units, a recently developed method
which incorporates recurrent neural networks in image segmentation. By
competing in the BraTS 2017 segmentation challenge, we hope to be able
to determine the strengths and weaknesses inherent to multi-dimensional
gated recurrent units in the case of pathology segmentation.

1 Introduction

Ranking currently on third place in MrBrainS 2013 [6], a brain segmentation
challenge which was held in conjunction with MICCAI 2013, Multi-dimensional
Gated Recurrent Units [1] (MD-GRU) have shown promising results on medical
images. However, we believe modelling anatomy to be a far easier problem than
modelling pathological structures. Shapes, extent and intensity of pathologies
can vary immensely between patients. We hence want to explore the capabilities
of MD-GRU in pathology segmentation by evaluating it on BraTS 2017 [7, 2–4]
images, using as little pre- and postprocessing on the available data as possible.
In the following, we describe our method in detail.

2 Methods

2.1 Network

We model our network close to its original publication in [1], which contains a
comprehensive overview of the method. In brief, the MD-GRU layer is the multi-
dimensional analogy to one-dimensional bi-directional gated recurrent units [5],
where the signal is processed in both directions and the sum of both states is
returned as output. For each data dimension, i.e. three dimensions in the case of
BraTS 2017, the data are processed along the selected dimension in the forward
and backward direction. To make sure that the whole available spatial context
is taken into consideration, the standard GRU formulas are adapted to include
the local neighborhood when taking the weighed sum of input and state. This
can be elegantly formulated by convolutions, which replace the previous matrix
multiplications. We use the same network setup as described in [1], with three
MD-GRU layers, followed by a voxelwise fully connected layer. The first two
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of these layers are activated with a hyberbolic tangent, while the last one is
directly fed into the softmax function, returning the probabilities for each of the
five classes – we ignored the fact that class 3 is not represented in the data.

2.2 Preprocessing

Each scan is provided to the network as the original image as well as a high-pass
filtered version. The high-pass filtered version is created by subtracting a 3d
Gauss-filtered version from the data, where we use a Gauss kernel with σ = 5
voxels. The intensities of both the original scans and their high-pass filtered
counterparts are then normalized to zero mean and a standard deviation of one.
No further preprocessing is applied.

Fig. 1. Sample results. Rows (top to bottom): Slice 70 from local validation
data Brats17 CBICA ATX 1 and slices 87 and 88 from public validation data
Brats17 TCIA 612 1 and Brats17 TCIA 613 1, respectively. Columns (left to right):
FLAIR, T1CE, T1 and T2 sequences and segmentation results.

2.3 Optimization

For each iteration, a patch of 80× 80× 80 voxels is extracted from a randomly
selected scan at a random location. The patch is deformed using a randomly
generated deformation field. On a low-resolution grid with a spacing of 75 voxels
along each dimension, centered at the middle of the patch, random deformation
vectors are drawn from N (0, 7). This grid is then interpolated to a full-resolution
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grid using cubic interpolation, producing a smooth deformation field. We train
the network for 40 000 iterations using Adadelta. For 50 000 more iterations,
we train the network with additional data augmentation consisting of random
rotations of drawn from [−10◦, 10◦] and a scaling factor along each dimension
drawn from [0.8, 1.2]. We apply DropConnect [8] on all state and input weights in
the form of multiplicative Gaussian noise from N (1, 0.5). The network has been
implemented, trained and evaluated in TensorFlow 1.1. We randomly chose three
volumes to be used as a separate validation set (called local in the following)
and excluded them from training.

2.4 Evaluation

For each subvolume, we evenly divide its voxel grid into blocks of 100×100×100,
maintaining a constant overlap of 20 voxels along all dimensions. This produces 3·
3 ·2 subvolumes, which are evaluated by the network. The individual subvolumes
are then stitched using linear blending at the overlaps, to make up for bad
predictions due to the missing information at the borders of the subvolume.
The final class for each voxel is then determined by the largest probability. No
postprocessing is applied on the network’s classification results.

3 Results

Although the testing data has not yet been made available, the validation leader-
board still gives interesting information about the performance of the different
teams’ algorithms. In Table 1, we show the average performance for each la-
bel and score for the three validation patients. Table 2 lists the final validation
scores. All in all, we were able to achieve results that are comparable to the top
performing methods on the validation leaderboard. At the time of writing, using
the average of the calculated validation leaderboard ranks in Table 2 to create
an overall ranking, we managed to achieve rank 7 out of 45.

Table 1. Local validation set. Average Dice, sensitivity, specificity and 95th percentile
Hausdorff for enhancing tumor (ET), whole tumor (WT) and tumor core (TC).

Dice Sensitivity Specificity Hausdorff95

ET 0.81589 0.81338 0.99948 3.14208
WT 0.90617 0.94959 0.99527 8.71794
TC 0.93871 0.93148 0.99924 1.66667
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Table 2. Public validation set. Rows: Mean, standard deviation, median and 25th
and 75th percentile are given for the evaluated metrics. The Leaderboard rank at the
bottom is calculated from all complete entries in the validation leaderboard, where
the values of the snapshot at Mon Jul 24 00:00:04 EDT 2017 were used for their
calculation. Columns: Dice, sensitivity, specificity and 95th percentile Hausdorff for
enhancing tumor (ET), whole tumor (WT) and tumor core (TC).

Dice Sensitivity Specificity Hausdorff95
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.7112 0.8932 0.7349 0.7355 0.8925 0.6843 0.9984 0.9948 0.9988 4.1870 4.6126 8.1886
StdDev 0.3044 0.0862 0.2991 0.2882 0.1279 0.3116 0.0036 0.0040 0.0022 6.1122 5.7321 13.8129
Median 0.8481 0.9130 0.8666 0.8349 0.9389 0.8334 0.9992 0.9954 0.9994 2.0000 3.0811 4.4721
25quantile 0.7465 0.8909 0.7085 0.7643 0.8870 0.5581 0.9985 0.9918 0.9988 1.4142 2.2361 2.0443
75quantile 0.8865 0.9452 0.9326 0.9120 0.9563 0.9122 0.9997 0.9982 0.9998 3.6056 4.2128 9.8615

LB rank 10 7 16 21 16 32 13 9 5 2 4 4

4 Discussion

Inspecting our local validation dataset and the results from the public validation
set, we were able to identify two main issues with our method in the context of
brain tumor segmentation. First, other types of pathology that are not labelled
in this competition, as for instance the lesions shown in the first row of Figure
1, can lead to varying amounts of misclassification. Second, pathology classes
that are only represented in a small amount of data or not at all, especially in
the case of the enhancing tumor class, can lead to a large impact on any of
the outcome measures. If the intensity distribution of a scan additionally differs
from the distributions seen during training, classes with low voxel count can be
missed entirely or classes missing in a patient might be segmented at the wrong
location as outliers. Examples are rows two and three of Figure 1. In row two,
the small enhancing tumor is not recognized for instance, leading to a Dice of
0. On the other hand, if a class is not present at all, it is very easy to achieve a
Dice score of 1 (row three).

The difference between mean and median in Table 2 indicates, that across all
classes and measures few outliers caused a great impact on the scores. Except for
the normalization to zero mean and one standard deviation to both high-pass
filtered and original data, we did not apply preprocessing to the data. We could
implement specific counter measures, which would alleviate the influence of these
outliers. For instance, we could implement histogram matching during training
and testing, to ensure similiar intensity distributions, which should help with
the misclassifications of the either small or non-existent classes. Furthermore,
providing additional high-pass filtered versions of the input data could help
reducing the influence of noise. However, we wanted to keep our method as close
to the original implementation as possible and hence only applied the already
published preprocessing. Using the original implementation allows for a direct
comparison to other problem settings.
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Abstract. The 2017 BraTS Competition challenges participants to develop a fully automatic or
semi-automatic  multi-modality  tumor  segmentation  tool  for  enhancing,  non-enhancing,  and
edema in glioblastoma patients.Our entry to the competition is a fully automatic pipeline that
involves chaining together several unique 3D U-Net, a type of 3D patch-based convolutional
neural network. Our pipeline takes advantage of the prior knowledge that enhancing and non-
enhancing tumor are likely to be found within regions of edema and within proximity to each
other by feeding the prediction outputs of earlier networks into later networks. We achieve
greater context for our patch-based sampling method by predicting downsampled labels and
then upsampling them using a separate 3D U-Net. We use a fine-tuning network and a candi-
date evaluation network to account for tissue border discrepancies and catastrophic segmenta-
tion failure. Preliminary results for an unoptimized version of this pipeline on validation data
with unknown ground truth segmentations had mean dice coefficients of 0.78, 0.67, and 0.68
for whole tumor, enhancing, and non-enhancing tissue respectively.

Keywords: 3D CNN · U-Net · Sequential · Deep Learning · Upsampling · Patches

1 Introduction

Compared to traditional segmentation methods, deep learning does not rely on the generation of
handcrafted features to distinguish tumor from normal brain anatomy. Instead, raw image intensi -
ties are taken as input subjected to many layers of convolutions, to calculate an output signal. The
many degrees of freedom and inclusion of non-linearities allow the algorithm to learn complex pat-
terns with a high level of abstraction1. Up until this point many of the deep learning algorithms that
have been applied to brain tumor segmentation have been 2D Convolutional  Neural  Networks
(CNNs), which do not take advantage of the full breadth of volumetric information. Recently, there
has been an increase in popularity of 3D CNNs2,3, which have been shown to be effective for this
task, albeit at the expense of additional computational complexity. For example, the 3D U-Net ar-
chitecture was successfully applied for the segmentation of the Xenopus kidney, a complex and
highly variable structure4.
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The 2017 BraTS Challenge challenges participants to develop a fully automatic or semi-au-
tomatic  multi-modality  tumor  segmentation  tool  for  enhancing,  non-enhancing,  and  edema in
glioblastoma patients5,6,7,8.  The 2017 BraTs Challenge patient cohort  includes glioblastoma and
low-grade glioma pre-operative patients. Participants are provided with coregistered and skull-
stripped T2, pre-contrast T1, post-contrast-T1, and FLAIR images, and are then asked to generate
segmentations that can then be compared against ground-truth segmentations of edema, enhancing
tumor, and non-enhancing tumor. Ground-truth segmentations are manually drawn by one to four
raters and then approved by expert  neuro-radiologists. Our proposed segmentation method for
BraTS 2017 involves the training of several 3D U-Nets concatenated end-to-end combined with a
regime of hand-crafted pre- and post-processing operations on input data. The result is a fully au-
tomatic segmentation pipeline requiring no additional  data aside from four coregistered  input
modalities and a practical computation time for batch processing.

2. Methods

Our segmentation method is a pipeline of different neural networks, pre-processing, and post-pro-
cessing steps. We start by we normalizing whole brain intensities to zero mean and unit variance
within each patient and within each MR modality. For the purposes of whole tumor segmentation,
we also down-sampled a copy of each modality to isotropic 2mm resolution. All of our 3D CNNs
took as input a patch of size 16x16x16 voxels, regardless of image resolution. For the whole tu -
mor CNN, patches were sampled in the following ratio: 1% background, 29% normal brain, 70%
tumor. For the enhancing tumor, non-enhancing, and fine-tuning CNNs, patches were sampled
from only within the tumor region.

We use a slightly modified version of the U-Net laid out in Çiçek et al4. Our U-Net has a
unique and separate downsampling branch for each input modality. Downsampling branches are
concatenated for the purposes of the residual connections, such that there is only one multi-chan-
nel upsampling branch. The intention of this structure was to preserve anatomical information
from each input  modality,  rather  than let  any one modality predominate.  Each downsampling
branch has proportionately fewer filters than the original U-Net, such that when concatenated they
equal the same amount of filters for the original upsampling branch.

The start of our pipeline feeds pre-processed isotropic 2mm patches into a U-Net trained
to predict the binary whole tumor labelmap provided by the BraTS organizers. Pseudo-probability
maps outputted by this network are thresholded at an arbitrary value, and then fed into an upsam-
pling U-Net. The upsampling U-Net is trained on labelmaps downsampled to isotropic 2mm reso-
lution, and then upsampled back up to 1mm resolution using nearest-neighbor interpolation. These
modified labelmaps serve as input data, and the given task is to predict the original, non-resam-
pled labels as ground-truth. Using a trained version of this network, outputs of the whole tumor U-
Net are upsampled into isotropic 1mm space.

The next four U-Nets in the pipeline are meant to create initial estimates for non-enhancing
and enhancing segmentations by iteratively learning from the outputs of each of the previous net-
works. The first two U-Nets are trained on the original four modalities and the output of upsam-
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pled whole tumor U-Net, with the goal of predicting enhancing and non-enhancing labels respec-
tively. Probability maps output from these labelmaps and the output of the whole Tumor U-Net are
then fed into the third and fourth U-Net.  These networks are trained again to again predict the
provided binary non-enhancing and enhancing labelmaps, but this time with the added advantage
of being given an initial estimate of all of the other segmentations and probability maps produced
by the preceding U-Nets.

The final U-Net takes in all three output segmentations (whole tumor, non-enhancing, and
enhancing), and feeds them into what we refer to as a “fine-tuning” network. The fine-tuning net-
work attempts to smooth incorrect borders from the previous U-Nets, and reconcile differences be-
tween the three previous three output segmentations. 

Finally, we applied binary dilation followed by erosion to fill small gaps, and removed is-
lands of whole tumor smaller than 1000 voxels. Connected components (islands) that remain are
then identified. Representative axial slices from each island are then fed into a 2D ResNet, with
the goal of identifying whether the given candidate is a true segmentation or an erroneous segmen-
tation. ResNet is a popular 2D CNN architecture that has found success in similar medical image
segmentation tasks9.  Islands with a high pseudo-probability of being erroneous are removed. The
remaining islands are submitted as entry to the competition for consideration as a fully-automatic
segmentation method.

For consideration as a semi-automatic segmentation method, the output segmentations of
these pipelines will be corrected for obviously erroneous borders, and incorrect islands that had
escaped the proposed post-processing pipeline. A neuro-oncologist will perform the segmentation
correction.

All U-Nets were trained on NVIDIA GPUs (P100s and K80s) for at least 30 epochs, or
whenever validation accuracy stopped increasing within a certain predefined tolerance. Networks
were designed in Keras with a TensorFlow backend.

3 Preliminary Results

We have submitted preliminary results to the competition leaderboard for Training and Validation
phases. The segmentation results are based on neural networks that have yet to be optimized with
respect  their  input  parameters,  and  do  not  include  the  full  post-processing  pipeline  described
above. They are also fully automatic segmentations, with no manual corrections from neuro-on-
cologists or other readers.

For the training phase,  our whole tumor, enhancing, and nonenhancing segmentation
outputs achieved a mean dice coefficient across all cases of 0.79, 0.68, and 0.76, respectively, with
a standard deviation of 0.16, 0.29, and 0.18. For the validation phase, our whole tumor, enhancing,
and nonenhancing segmentation outputs achieved a mean dice coefficient across all cases of 0.78,
0.67, and 0.68 respectively, with a standard deviation 0.17, 0.32, and 0.28. We submitted segmen-
tations for all available cases in both training and validation.

Proceedings of the 6th MICCAI BraTS Challenge (2017) 22 of 347



4

4 Conclusion

With the advent of ever-more-powerful GPUs, a segmentation pipeline composed of multiple,
unique neural networks has become feasible. Each model in our pipeline adds value to the result-
ing segmentation, resulting in competitively accurate segmentations that, with little manual edit-
ing, can become of immediate use to the neuro-oncologist or radiologist.
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Abstract. Identification and localization of brain tumor tissues plays an impor-
tant role in diagnosis and treatment planning of gliomas. A fully automated super-
pixel wise tumor tissue segmentation algorithm using random forest is proposed
in this paper. Features for random forest classifier are extracted by constructing a
tensor from multi-parametric MRI data and applying multi-linear singular value
decomposition. The method is trained and tested on high grade glioma (HGG)
patients from BRATS 2017 training database. It achieves a performance of 83%,
76% and 78% Dice scores for whole tumor, enhancing tumor and tumor core,
respectively.

Keywords: Superpixel, Multilinear singular value decomposition, Random forest.

1 INTRODUCTION

Accurate characterisation and localization of tissue types play a key role in brain tumor
diagnosis and treatment planning. Neuro-imaging methods in particular magnetic res-
onance imaging (MRI) provide anatomical and pathophysiological information about
brain tumors and aid in diagnosis, treatment planning and follow-up of patients. Manual
segmentation of tumor tissue is a tedious and time consuming job, it also suffers from
inter and intra-rater variability. An automated brain tumor segmentation algorithm will
help to overcome those problems. However, automation of brain tumor tissue segmen-
tation is a difficult problem and often fails when applied on MRI images from different
centres/scanners.

Performing superpixel-level image segmentation offers certain advantages over pixel-
level segmentation like spatial smoothness, capturing image redundancy and reducing
computational complexity [1, 2]. It has also been used in the context of brain tumor seg-
mentation [2]. Recently, tensor decomposition has been used to extract features from
high-dimensional data to use in classification algorithms [3]. Multi-parametric MRI
consisting of T2, T1, T1+contrast and FLAIR imaging after co-registration and resam-
pling to the same resolution, can be naturally represented as 3-D tensor. In this paper
we develop a fully automatic tumor tissue segmentation algorithm using random forest
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classifier, where both superpixel-level image segmentation and tensor decompositions
methods are combined to extract features for the classifier.

2 METHOD

2.1 Preprocessing

First, each individual 3D image is scaled to the range [0-1]. Next, intensities are normal-
ized by applying histogram equalization. Reference histogram is generated by selecting
10 random images from the training set and extracting a histogram from the combined
image. Histogram equalization is applied separately to different modalities.

2.2 Feature extraction

The MR images are divided into smaller patches which are better aligned with inten-
sity edges called superpixels [4]. The tissue assignment is done on superpixel-level
instead of individual pixel, which helps to reduce computational cost and improve spa-
tial smoothness [2]. For each of the superpixels a 4D tensor is constructed, where the
first two modes are 5×5 image patches with main voxel at the centre, third mode is the
modality and the difference image (e.g.: abs(T1-T2)) of the modalities and the fourth
mode is the voxels within the superpixel. Features are extracted by applying multilin-
ear singular value decomposition (MLSVD) [5] on the 4D Tensor. The fourth mode
factor matrix is not used in the feature set. Another 3D tensor is constructed for each
superpixel, where the frontal slices are the covariance matrix of pixel-level features.
Pixel-level features consist of mean, median, standard deviation and entropy over a
5× 5 window. Again, features are extracted by applying rank-2 MLSVD. Additional
features like mean, entropy and standard deviation within each superpixel are also in-
cluded in the feature set. These features are calculated for all four modalities and six
difference image between the modalities.

2.3 Training and Tissue Segmentation

Tumor tissue segmentation was performed using a two-stage classifier. In the first stage
a binary classification was performed on the superpixels to segment tumor and non-
tumor regions. In the second-stage a multi-class classification was performed on the su-
perpixels which are inside the estimated tumor region to segment active tumor, edema,
necrosis and healthy tissue. The two stage operation is demonstrated in Fig. 1. For both
stages a random forest classifier with 100 trees was used. Random forest classifiers are
trained using a iterative method, Initially, 40 patients are randomly selected from the
high grade glioma (HGG) dataset for training and the trained model is tested on the
remaining dataset. Next, the patients which resulted in low Dice scores are included in
training set and a new model is trained. After the first stage image filling operation is
performed on the estimated whole tumor segmentation before going to the second stage.
In the first stage, superpixels are obtained from FLAIR imaging modality because the
entire tumor is brighter in this modality. Whereas, in the second stage, T1+contrast
imaging modality is used to obtain superpixels.
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Fig. 1: Demonstration of whole tumor segmentation in first stage and sub-tissue segmentation in
second stage.

3 Results

The BRATS 2017 high grade glioma database [6–9] containing 210 patients is split into
training set (70%) and test set (30%). The trained model is tested on 63 HGG patients,
boxplot of Dice score is shown in Fig. 2. Average Dice score and sensitivity obtained
from the trained model over 63 HGG patients are shown in Table 1.

Fig. 2: Boxplots of Dice score for enhancing tumor (ET), whole tumor (WT) and tumor core (TC)
on 63 BRATS 2017 training dataset

The trained model is also tested on BRATS 2017 validation dataset [6–9], the results
are shown in Fig. 3 and Table 2. The performance is worse when compared to HGG case
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Table 1: Mean, standard deviation, median 25 quantile and 75 quantile of Dice score and sensi-
tivity for enhancing tumor (ET), whole tumor (WT) and tumor core (TC) over 63 HGG patients.

Dice ET Dice WT Dice TC Sensitivity ET Sensitivity WT Sensitivity TC
Mean 0.761 0.833 0.783 0.855 0.815 0.777
Std 0.106 0.096 0.147 0.126 0.090 0.191

Median 0.783 0.867 0.824 0.886 0.837 0.826
25 quantile 0.708 0.795 0.723 0.820 0.769 0.721
75 quantile 0.833 0.895 0.898 0.941 0.884 0.908

with average Dice scores of 76%, 69% and 59% for whole tumor, enhancing tumor and
tumor core, respectively.

Fig. 3: Boxplots of Dice score for enhancing tumor (ET), whole tumor (WT) and tumor core (TC)
on 46 BRATS 2017 validation dataset.

4 Conclusion

In this paper, we developed a fully automated algorithm for brain tumor segmentation
from multi-parametric MRI data. Superpixel and tensor based feature extraction algo-
rithm is proposed to use with two stage random forest classifier for segmenting tumor
tissue in HGG patients. The performance of algorithm is comparable to the state of
art methods when applied only to HGG patients. However, its performance deterio-
rates when tested on BRATS 2017 validation database, which contains both low grade
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Table 2: Mean, standard deviation, median 25 quantile and 75 quantile of Dice score and sen-
sitivity for enhancing tumor (ET), whole tumor (WT) and tumor core (TC) over 46 validation
dataset.

Dice ET Dice WT Dice TC Sensitivity ET Sensitivity WT Sensitivity TC
Mean 0.688 0.755 0.586 0.759 0.748 0.575
Std 0.259 0.166 0.285 0.242 0.150 0.299

Median 0.767 0.815 0.710 0.829 0.777 0.631
25 quantile 0.590 0.723 0.449 0.694 0.691 0.445
75 quantile 0.852 0.860 0.778 0.896 0.860 0.797

glioma (LGG) and HGG patients. To improve the performance on BRATS 2017 valida-
tion database LGG patients needs to be included in the training phase.
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Abstract. We have witnessed the big success of 2D U-Net in biomedical
image segmentation, the effect of whose 3D extension is under explored,
especially for multimodal brain tumor segmentation. In this paper, we
examine the effectiveness of 3D convolutional network on this task using
a U-Net structure. We take data augmentation, data sampling strategy
and class-specific weighted loss into consideration, which we think is
important for a successful segmentation model. Experiment results show
the effectiveness of our proposed methods.

Keywords: 3D U-Net, convolutional network, data augmentation, class
balancing

1 Introduction

Since fully convolutional networks (FCN) on semantic segmentation [1] was pro-
posed, FCN have attracted more and more attentions on segmentation tasks. As
one of the members of this architecture, U-Net [2] has been successfully applied
to many biomedical image segmentation task. Recently, its 3D extension has
been steadily gaining more and more research interests on volumetric images,
such as 3D U-NET [3] and [4]. Although increasing attention has been paid,
only limited works focus on their effect on multimodal brain tumor segmenta-
tion task. In this paper, we will give an experimental study of the effectiveness
of 3D U-Net on multimodal brain tumor segmentation. This paper is intended
for Multimodal Brain Tumor Segmentation Challenge 2017 (Brats2017)[6–9] 3.

Since the cardinality of available dataset is low, we absorbed some useful
augmentation methods into our proposed framework, such as random crop, ro-
tation, flip and etc. As we all know, the sample number of each class is seriously
imbalanced, which push us to absorb a weighted loss to solve this problem.
Experiment results show both techniques can boost the performance of the seg-
mentation tasks.

3 https://www.med.upenn.edu/sbia/brats2017.html
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Fig. 1. The 3D u-net architecture.

2 The Method

2.1 Data augmentation

Data augmentation is important in the applications of computer vision, which
is a pillar of a successful model especially in the case where only limited data
samples are available. The augmentation method we use contains random crop,
flip, zoom and etc.

2.2 Network Architecture

The network architecture can be seen in Fig. 1. We use patch-wise input whose
central voxel point is averagely sampled across the 4 classes to eliminate the
impact of the imbalance among different classes. Just like the classic U-Net [2],
the network is composed of convolutions with downsampling and upsampling
making the network look like the shape of ’U’. Batch normalization is absorbed
to accelerate network training before nonlinear units (We use Relu[10] in this
paper). The output is fed into a softmax layer and then cross entropy loss is
added for training the network. To further eliminate the negative impact of the
class imbalance, a weighted loss is proposed as follows:

n∑
i=1

L =
1

‖Ci‖
Li

Where n is the number of classes, L is the total loss, Li is the class ith loss. ‖Ci‖
is the cardinality of the class i.
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3 Experiment Results

A preliminary result is shown in Table. 1.

Table 1. Evaluation results at BRATS2017 online judge system.

ET WT TC

Sensitivity 0.9646 0.9995 0.9993
Specificity 0.5083 0.5014 0.5013
Dice 0.0240 0.1189 0.0575
Hausdorff95 98.97 86.89 99.54
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Abstract. Brain lesion segmentation is one of the hardest tasks to be
solved in computer vision with an emphasis on the medical field. We
present a convolutional neural network that produces a semantic seg-
mentation of brain tumors, capable of processing volumetric data along
with information from multiple MRI modalities at the same time. This
results in the ability to learn from small training datasets and highly
imbalanced data. Our method is based on DeepMedic, a method in the
state of the art in brain lesion segmentation. We develop a new architec-
ture with more convolutional layers, organized in three parallel pathways
with different input resolution, and additional fully connected layers. We
tested our method over the 2017 BraTS Challenge dataset, reaching an
average dice coefficient of 87% over training dataset and 86% over vali-
dation dataset for the whole tumor segmentation task.

Keywords: Semantic segmentation, Brain tumor, Deep learning, MRI

1 Introduction

Brain tumors are abnormal formations of mass that have different shapes, sizes
and internal structures. As this formations grow, they apply pressure to the sur-
rounding tissues, causing varied problems such as unexplained nausea or vomit-
ing, seizures or personality changes [1]. The use of Magnetic Resonance Imaging
(MRI) to visualize the brain of a patient allows doctors to look for any life-
threatening abnormality. However, finding those structures in a medical image
is a complicated task, highly prone to error [2]. In spite of the fact that the
treatment selection is based directly on the diagnosis, nowadays that process
is made manually, which causes it to be observer-dependent and increases the
uncertainty of the patient’s outcome.

Automatic brain lesion segmentation has been a topic of interest for more
than a decade. Early approaches to this problem were based on the detection
of abnormalities using healthy-brain atlases and probability models [3]. Then,
results were upgraded with the use of deformable registration fields coupled
with Markov Random Fields (MRF) [4]. Subsequent approaches using machine

? Authors with equal contributions
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learning techniques, such as Random Forest [5, 6], improved the results even
more, reaching an average dice coefficient of 73% in the 2012 BraTS Challenge.

In recent years, Convolutional Neural Networks (CNN) have shown outstand-
ing results in detection, classification and segmentation tasks, being able to
match and sometimes outperform humans. Some of this success is due to the
rapid improvement of machines computational power and to CNNs ability of ab-
stracting features in different representations of an image [7]. Fully convolutional
networks (FCN) have proven to be an effective way to do pixel-by-pixel classifi-
cation, obtaining a mean IoU of 67% in the PASCAL-VOC dataset in 2012. This
method offers the advantage of combining coarse and shallow semantic informa-
tion from images with an arbitrary input size [8]. In 2015 a method called U-Net,
based on FCN and specialized in the task of segmenting medical images, was
developed. U-Net’s architecture has a contracting path to extract context and
an expanding path to locate the object within the whole image [9]. Recently, an
expansion of this method to process tridimensional images was presented. V-Net
demonstrated a remarkable behavior in the MICCAI 2012 PROMISE Challenge
dataset for prostate segmentation in MRIs, obtaining an average dice of 82% [10].
Another important method to segment volumetric medical images is DeepMedic,
a neural network implemented in Theano that takes as inputs multimodal 3D
patches extracted from MRIs. It analyzes the information using two pathways,
one for every resolution used, and combines their results with fully connected
layers to generate a semantic segmentation by category [11].

In this project, we aim at providing an efficient, accurate way of automati-
cally estimating the volume of a brain tumor. To do that, we use the 2017 BraTS
Challenge dataset, which has 210 High Grade Glioma (HGG) cases and 75 Low
Grade Glioma (LGG) cases [2, 12, 13, 14]. Each image has different modalities
and annotations made by several specialists. We developed a neural network,
based on V-Net and DeepMedic, with three contracting pathways and residual
connections that receive patches centered on the same voxel, but with differ-
ent spatial resolution. During the testing stage, the average dice coefficient was
calculated to measure the performance of the methods. BraTS challenge have
different segmentation evaluation tasks, the average dice coefficient, sensitivity,
specificity and Hausdorff distance.

2 Methodology

2.1 Multimodality Volumetric Neural Network

As mentioned before, we used as starting points the methods V-Net and DeepMedic,
given the good previous performance that these had in tasks of segmentation in
MRIs. Figure 1 shows an overview of our approach, our neural network has three
identical parallel pathways, each one with six convolutional layers and two resid-
ual connections, to extract features on specific resolution levels. All the paths
receive patches centered at the same voxel, but extracted from different ver-
sions of the image (original and downsampled by factors of three and five). The
patches have input sizes of 273, 173 and 153 for the normal, medium and low
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resolution pathways, respectively. After those last two pathways, an upsample
layer is used to make the three outputs of the same size. Finally, the results are
concatenated and introduced in the fully connected layers to be combined and
then classified. The classification layer is a convolution with kernel size of 13 and
the final output is made using a softmax classifier.

Fig. 1. Proposed Architecture. The kernels of the convolutions in the three pathways
are 33 and no padding was made in those operations. The input of the 3 paths are
centered in the same voxel, but the medium resolution and low patches are obtained
from downsampled versions of the image by factors of 3 and 5, respectively

2.2 Data

The BraTS challenge (2017) training dataset includes 210 different MRI files
from high grade glioma (HGG) cases and 75 MRIs from low grade glioma (LGG),
and the BraTS challenge (2017) validation dataset includes 46 different MRI files.
The images have four modalities (T1, T1 contrast-enhanced, T2 and FLAIR).
The groundtruth annotations in this dataset contain five different categories,
representing the internal structures of the tumor [2, 12, 13, 14]:

0. Everything Else.
1. Necrosis and Non-Enhancing tumor.
2. Edema.
4. Enhancing tumor.

Training The architecture was trained using the 285 cases from the training
dataset (HGG and LGG). Our method input are patches of size 273 that are
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extracted randomly, making sure that 50% of them are centered at a voxel labeled
as tumor. The data is normalized individually by setting the mean to 0 and the
variance to 1. Data augmentation is made to avoid overfitting of the model due
to the small size of the training dataset, and it is performed on the fly to prevent
memory issues. The process is made by reflecting randomly chosen volumes along
the sagittal axis.

Validation To test the model, the 46 volumes from the validation dataset were
evaluated with the network. In the testing stage, the patches are extracted at
uniform intervals in the validation volumes.

2.3 Evaluation Metrics

Dice Coefficient The Dice-Coefficient (Equation 1) is calculated as perfor-
mance metric. This measure states the similarity between clinical Ground Truth
annotations and the output segmentation of the model. Afterwards, we calculate
the average of those results to obtain the overall dice coefficient of the models.

DC =
2|A ∩B|
|A|+ |B|

(1)

Hausdorff Distance The Hausdorff Distance (Equation 2) is mathematically
defined as the maximum distance of a set to the nearest point in the other set
[15], in other words how close are the segmentation and the expected output.

H(A,B) = max{min{d(A,B)}} (2)

Sensitivity and Specificity Are statistical measures used to evaluate the
behavior of the predictions and the proportions of True Positives (TP ), False
Negatives (FN), False Positives (FP ) and True Negatives (TN). The Sensitivity
(Equation 3), also known as True Positive Rate, gives the proportion of true
positives predicted correctly. The specificity (Equation 4), also known as True
Negative Rate measures, how well the true negatives are predicted.

Sensitivity = TPR =
TP

TP + FN
(3)

Specificity = TNR =
TN

TN + FP
(4)

3 Experimental Results

As mentioned before, in our method (figure 1) we propose a three-pathway ar-
chitecture, with different resolutions, in order to get information of the location
of the tumor and, at the same time, acquire local data that helps to differentiate
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the parts of the lesions, avoiding false positives. It was trained in the BraTS
2017 training dataset with a learning rate of 5 ∗ 10−4 for 35 epochs. In Table 1
we present the results on the training and validation datasets:

Table 1. Dice coefficient, sensitivity, specificity and Hausdorff distance of our neural
network for Enhanced Tumor, Whole Tumor and Core Tumor; evaluated over the
training and validation datasets from BraTS 2017

Dice Sensitivity Specificity Hausdorff95
Enh. Whole Core Enh. Whole Core Enh. Whole Core Enh. Whole Core

Train 0.74 0.87 0.78 0.78 0.87 0.74 0.99 0.99 0.99 7.52 21.32 9.18

Val 0.69 0.86 0.69 0.74 0.87 0.64 0.99 0.99 0.99 10.1 25.0 17.5

Overall, our approach, as shown on Table 1 reached a superior result in the
whole tumor segmentation task with an average dice coefficient of 87% over
training dataset and 86% over validation dataset and a sensitivity of 87% in
both. Additionally, our neural network reached obtains a specificity of 99% in
all the evaluated tasks. The usage of different level resolution and more fully
connected layers helped improve the assemble of all feature maps in the trained
data. In figure 2 we present some examples of the predictions against the ground
truth where we can see the capability of our method to predict the exact area
where the patient’s tumor occurs with minimal noisy activations in other areas.

4 Conclusions

Based on V-Net and DeepMedic, we proposed a volumetric multimodality neural
network. Our method receives as input 3D patches extracted from the dataset
volumes and its architecture consist of three identical parallel pathways, each
one with six convolutional layers and two residual connections (to extract fea-
tures on three specific resolution levels), afterwards there are upsample layers (to
make the three outputs of the same size) and finally, the results are concatenated
and introduced in the fully connected layers to be combined and then classified.
In this paper, we have presented preliminary results in the 2017 BraTS Chal-
lenge dataset (Training and Validation) reaching an average dice coefficient of
87% over training dataset and 86% over validation dataset for the whole tumor
segmentation task (Table 1).
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Fig. 2. Comparison between some results obtained by our neural network against the
ground truth
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Abstract. This paper introduces Masked V-Net architecture, a variant
of the recently introduced V-Net[13] that reformulates the residual con-
nections and uses a ROI mask to constrain the network to train only
on relevant voxels. This architecture allows dense training on problems
with highly skewed class distributions by performing data sampling on
the output instead of in the input. We use Masked V-Net in the con-
text of brain tumor segmentation and report results on the BraTS2017
Training and Validation sets.

1 Introduction

Glioma is the most common type of primary brain tumor arising from glial cells.
Gliomas may have different degrees of aggressiveness, variable prognosis and
several heterogeneous histological sub-regions that are described by varying in-
tensity profiles across different Magnetic Resonance Imaging (MRI) modalities,
which reflect diverse tumor biological properties [1]. Accurate segmentation and
measurement of the different tumor sub-regions is critical for monitoring pro-
gression, surgery or radiotherapy planning and follow-up studies. However, the
distinction between tumor and normal tissue is difficult as tumor borders are
often fuzzy and there is a high variability in shape, location and extent across
patients. Despite recent advances in automated algorithms for brain tumor seg-
mentation in multimodal MRI scans, the problem is still a challenging task in
medical imaging analysis.

Many different computational methods have been proposed to solve the task.
Here we will only review some of the most recent approaches based on deep
learning, which are the top-performing methods in BraTS challenge since 2014.
Representative works based on other machine learning models include [2–6] and
methods reviewed in [1].
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43935-R and MALEGRA TEC2016-75976-R financed by the Spanish Ministerio
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Masked V-Net: an approach to brain tumor segmentation 3

As opposed to classical discriminative models based on pre-defined features,
deep learning models learn a hierarchy of increasingly complex task specific
features directly from data, which results in more robust features.

Some methods do not completely exploit the available volumetric information
and use two-dimensional Convolutional Neural Networks (CNN), processing 2D
slices independently or using three orthogonal 2D patches to incorporate contex-
tual information [7, 8]. The model in [8] consists of two pathways, a local path-
way that concentrates on pixel neighborhood information, and a global pathway,
which captures global context of the slice. This two-path structure is adopted in
a fully 3D approach named DeepMedic [9], consisting of two parallel 3D CNN
pathways producing soft segmentation maps, followed by a fully connected 3D
CRF that imposes generalization constraints and obtains the final labels. The
network is extended in [10] by adding residual connections between the outputs
of every two layers. They empirically show that the residual connections give
modest but consistent improvement in sensitivity over all tumor classes. In [14]
we compare the performances of three 3D CNN architectures inspired in two
well known 2D models used for image segmentation [11, 12] and a variant of [9]
showing the importance of the multi-resolution connections to obtain fine details
in the segmentation of tumor sub-regions.

In the context of BraTS Challenge 2017, in this paper we propose a system for
segmenting gliomas in multi-institutional, multi-modal pre-operative MRI scans.
It involves two steps: a first CNN that performs tumor localization, concentrat-
ing on the simpler tumor vs non-tumor problem, and a second CNN which is
dedicated to segmenting the different tumor sub-regions. Both networks use the
same architecture, named Masked V-Net. Figure 1 shows the complete pipeline.

Fig. 1: The pipeline used for brain tumor segmentation

2 Method

2.1 Masked V-Net

In this work, we introduce a variant of the V-Net architecture [13], called Masked
V-Net. Inspired by results in [18], we reformulate the residual connections such
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4 Masked V-Net: an approach to brain tumor segmentation

that the propagation of the input signal through the network is minimally mod-
ified. To account for different dimensions in the shortcut connections, max-
pooling operations are used for spatial correspondence, and 1x1x1 convolutions
are used to match the number of channels. The final architecture is shown in
Figure 2.

In order to constrain the network to train only on relevant, informative voxels,
we use a ROI mask at the output. This ROI mask can be used, for example,
to discard non-informative, background voxels present in MRI modalities, or
to focus on specific brain regions. The ROI mask force all voxels outside the
mask to belong to the background class with 100% confidence after the softmax
activation.

2.2 Data sampling and training

One of the main problems in brain lesions is that they affect a small portion
of the brain, making naive training strategies biased towards the trivial deci-
sion of null detection. Brain tumors normally correspond to 5% to 10% of the
overall brain tissue, being each tumor region an even smaller region. Besides, a
great portion of the image is non informative background masked out by skull-
stripping algorithms. Hence, sampling strategies should be adopted to overcome
this limitation. The approach adopted in this paper is shown in Figure 1 and
uses a concatenation of two Masked V-Nets trained separately.

The first network outputs a raw segmentation of the whole tumor region. It
uses the ROI mask of the brain in order to consider only brain tissue for training.
To overcome the biased decision towards background class and avoid the use of
weights to give importance to whole tumor class, the strategy adopted is based
on using a modified dice coefficient as loss function that can be written as:

D =

∑N
i=1 pi · li∑N

i=1 pi +
∑N

i=1 li
(1)

where N is the total number of voxels, pi is the softmax output of the i-th
voxel, and li is the i-th voxel label (li = 0, 1).

The second network is trained separately using as ROI mask a prism-like
mask build from the ground-truth labels, used to simulate non-perfect whole
tumor predictions from the first network. Here, we use a combination of cross
entropy (XE) and the dice coefficient for each tumor sub-region (whole tumor
(DWT ), enhancing tumor (DET ) and tumor core (DTC)) for the loss function.
We empirically choose the values for the weights in both parts of the function:

L = XE + 0.5 ∗ (DWT + DET + DTC) (2)

During inference time, we concatenate the two networks and place in between
a morphological filter to get rid of small spurious detections made by the first
network.
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Fig. 2: Masked VNet
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6 Masked V-Net: an approach to brain tumor segmentation

3 Results and discussion

3.1 Data

We use BraTS2017 training data [15–17], consisting of 210 pre-operative MRI
scans of subjects with glioblastoma (GBM/HGG) and 75 scans of subjects with
lower grade glioma (LGG), corresponding to the following modalities: native
T1, post-contrast T1-weighted, T2-weighted and FLAIR, acquired from multi-
ple institutions. Ground truth annotations comprise GD-enhancing tumor (ET,
label 4), peritumoral edema (ED, label 2), necrotic and non-enhancing tumor
(CNR/NET, label 1) as described in [1]. The data is distributed co-registered to
the same anatomical template, interpolated to the same resolution (1mm3) and
skull-stripped. For the prediction of patient overall survival, the overall survival
data (OS) defined in days is also included for the subjects in the training set.
The validation set consists of 46 scans with no distinction between GBM/HGG
and LGG, with OS data.

Each scan is individually normalized in mean and standard deviation. For
training, we use data augmentation by adding scan reflections with respect to
the sagittal plane.

3.2 Performance on BraTS2017 training and validation sets

Evaluation of the results is performed merging the predicted labels into three
classes: enhancing tumor ET (label 1), whole tumor WT (labels 1, 2, 4), and
tumor core TC (labels 1, 4), using Dice score, Hausdorff distance, Sensitivity
and Specificity.

Preliminary results for the BraTS 2017 Training dataset have been obtained
by hold-out using 70% of the data for training and the remaining 30% for valida-
tion purposes. In addition to that, the performance on the BraTS 2017 Validation
set, reported on the challenge’s leaderboard 1, is also presented in Table 1 and
Table 2.

Dice Hausdorff

ET WT TC ET WT TC

Validation (Train) 0.671 0.869 0.685 7.145 6.410 9.584
Validation set 0.714 0.877 0.637 5.434 8.343 11.173

Table 1: Results for BraTS 2017 data. Dice and Hausdorff metrics are reported.

Results presented in Table 1 show high performance on the Dice metric for the
whole tumor (WT) region, but low values for enhancing tumor (ET) and tumor
core (TC) regions, compared to state-of-the-art. Using the BraTS Validation
set, we are able to compare to other participants in the challenge. In the case of

1 https://www.cbica.upenn.edu/BraTS17/lboardValidation.html
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Sensitivity Specificity

ET WT TC ET WT TC

Validation (Train) 0.735 0.851 0.664 0.998 0.994 0.997
Validation set 0.723 0.879 0.619 0.998 0.994 0.998

Table 2: Results for BraTS 2017 data. Sensitivity and specificity are reported.

Dice-WT, our method is very close to the results obtained by the top performing
methods while, again, our method achieves rather low Dice-ET and Dice-TC
metrics. Hausdorff distances are higher than the best performing algorithms,
being specially inflated the whole-tumor region, probably indicating some outlier
predictions that increase the metric.

Even though specificity is not very informative for imbalanced classes, results
from Table 2 show that we are able to properly represent background, probably
due to the use of masks in the predictions. More interestingly, sensitivity shows
that ET and TC regions might be underrepresented in our predicted segmen-
tations. This results guide us to future improvements trying to overcome that
behavior.

3.3 Visual analysis

Figure 3 shows two subjects among the quantitatively better (first row) and
poorer (second row) results. In both cases, it can be visually appreciated that
our method correctly segments the whole tumor region. For the subject shown
in Figure 3(a), the system is able to properly capture all tumor regions, meaning
that the first network is able to correctly localize the tumor and the second net-
work is able to capture differences between tumor regions. On the other hand, in
Figure 3(b), we show a case where even though the tumor is correctly localized
by the first network, the second isn’t able to properly detect different tumor
subregions. We see that edema (ED - label 2) is overrepresented in our segmen-
tation to the detriment of smaller classes: GD-enhancing tumor (ET - label 4)
and the necrotic and non-enhancing tumor (NCR/NET - label 1). This effect
can also be inferred from lower values in ET and TC dice coefficients.

4 Conclusions

In this paper we introduce the Masked V-Net architecture that uses masks to
focus training on relevant parts of the brain. We use it to solve the class im-
balance problematic of the brain tumor segmentation task. We use a two-step
process that (i) localizes brain tumor area and (ii) distinguishes between dif-
ferent tumor regions, ignoring all other background voxels. This scheme allows
us to perfom dense-training on MR images. We finally show results on BraTS
2017 Training and Validation sets, showing that while the results obtained for
the WT segmentation are competitive with other participants’ algorithms, we
aren’t able to properly capture the less common regions (TC or ET).
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(a)

(b)

Fig. 3: Segmentation results of two subjects: a) TCIA 479 b) TCIA 109. From left
to right we show the FLAIR sequence, followed by Prediction and GT tumor
segmentation. We distinguish intra-tumoral regions by color-code: enhancing
tumor (white), peritumoral edema (orange) and necrotic and non-enhancing
tumor (red).
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Brain Tumor Segmentation with Label Distribution Learning and 

Multi-Level Feature Representation 

Shengcong Chen, Changxing Ding, and Chenhong Zhou 
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Abstract. Convolutional neural networks have been widely adopted for brain tumor segmentation. 

Patches-wise networks predict the label of central pixel, which is insufficient to represent the whole patch. 

Therefore, label distribution is introduced into the network to improve training. In addition, to distinguish 

subtle difference, multi-level feature maps are utilized to predict labels of central pixels. We participate in 

BRATS 2017 and Dice of complete tumor, tumor core and enhancing tumor in validation dataset is around 

0.87, 0.74 and 0.65. 

 

1 Introduction 

To our knowledge, CNN-based methods for BRATS challenge are either global-based or patch-wise. 

Networks yield segmentation results of whole images directly, like fully-convolutional neural 

networks(FCN) [7] and SegNet [8], belong to global-based networks, while patch-wise networks 

predict labels of central pixels. 

In this article, we study patch-wise convolutional neural networks. Patch-wise segmentation methods 

[5][6] predict labels of central pixels or voxels. But labels of central pixels cannot represent all the 

content within patches. We introduce label distribution and multi-feature networks into brain tumor 

segmentation. 

 

2 Method 

2.1 Overview 

Figure 1 shows the proposed 13-layer patch-wise neural network, which includes two branch. The first 

branch predicts label distribution of the whole patch, which enables the network to extract global 

features. The other branch utilizes features cropped from multi layers, and predicts the label of central 

pixel in the patch. Features from higher layers include more abstract information, while those from 

lower layers include more detailed information. 
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Fig. 1. proposed architecture 

2.2 Label Distribution 

Traditional patch-wise networks are designed for predicting labels of central pixels, which is not 

continuous in boundary, i.e., labels of central pixels cannot describe all the information included within 

patches. Therefore, we construct label distribution to describe content within patches. It is constructed 

through weighted sum of the label map in the whole patch, which can describe the patch better. To 

focus on information in central region, we employ Gaussian distribution to construct the weights of 

voxels, therefor the pixel closer to center has better weight, and is more important for the patch. 

To optimize the network, we take symmetrical KL divergence as the loss function. 

𝑠𝑦𝑚𝐾𝐿(�̂�𝑖 , 𝑑𝑐) = ∑ (𝑑𝑐 − �̂�𝑐)𝑐 𝑙𝑜𝑔(
𝑑𝑐

𝑝�̂�
)                        (1) 

 

2.3 Multi-level feature architecture 

Generally, convolutional neural networks take features yielded from the last layer to make prediction, 

which is more abstract and represent global information within the patch. There are subtle differences 

within different tumor categories, which requires more detailed information. And features yielded from 

lower layers involve more detail information e.g. edges, corners. 

Therefore, low-level information is also employed to make prediction. Considering that detail features 

far from the central pixels may be helpless for predicting task, we crop central regions from low-level 

feature maps and cascading them with feature maps yielded in the last convolutional layer. 

 

3 Experiments 

3.1 Preprocessing and Training 

In BRATS 2017, there are four kinds of labels, e.g. GD-enhancing tumor, peritumoral edema, necrotic 

and non-enhancing tumor, and there are four different modalities for MRI data, e.g. native (T1), 

post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery 

(FLAIR). [1] There are 274 training objects provided in BRATS 2017 and we normalize pixels in brain 

region of each object using average and standard deviation compute from the region of each object for 
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pre-processing.  

Similar to [6], we train the proposed network with class-balance training dataset and then finetune with 

randomly sampled dataset. At the first training stage, label distribution is required for optimizing the 

network, which help the network to extract features. And at the second stage, it is omitted because we 

optimize the last FC layer only, which transform the distribution of output to its original distribution. 

 

3.2 Result 

Table 1 shows the results of our proposed model evaluated in BRATS 2017 validation dataset. 

Complete region(WT) includes all labels 1,2,4. Core region includes labels 1,4. And enhancing tumor 

region includes only labels 4. There are three kinds of evaluation criteria, Dice, Sensitivity and 

Specificity.  

𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                                (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (3) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (4) 

Table 1. Evaluation result of our proposed method in BRATS 2017 validation dataset 

 Dice Sensitivity Specificity 

WT 0.86771 0.88816 0.99208 

TC 0.73782 0.75746 0.99615 

ET 0.64958 0.76636 0.99716 

 

4 Conclusion 

In this paper, label distribution is introduced to help patch-wise neural networks extract features, and 

multi-level features are utilized to distinguish subtle differences. For the future work, we may extend 

our proposed method to 3D networks. Our Dice of complete tumor, tumor core and enhancing tumor in 

BRATS 2017 validation dataset is around 0.87, 0.74 and 0.65. 
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Abstract. We propose separate 3D-SegNet by applying combination 2D-SegNet 

with 1D-SegNet for brain tumor segmentation challenge.  First, 2D-SegNet 

which has 4 encoding layers and 4 decoding layers is adopted to gain the 2D-

features in a slice. Second, the features in the same position of each slice are 

integrated into 1D features. Third, to use context along the z-axis, the 1D-features 

are fed into 1D-SegNet which has 4 encoding and 4 decoding layers and then are 

classified feature-wise. Experimental results show that the separate 3D-SegNet 

can obtain higher  

Keywords: SegNet, Deep Learning, Semantic Segmentation. 

1 Introduction  

Segmentation and the subsequent quantitative assessment of brain tumor provide valu-

able information for the analysis of neuropathologies and are important for planning of 

treatment strategies, monitoring of disease progression and prediction of patient out-

come [1]. In the last decade, many automatic tumor segmentation methods have been 

proposed. many of them use hand-designed features method whose features such as 

local histograms, Gabor and region shape difference are extracted firstly, and then given 

to the classifier such as SVM and Random decision forest whose training procedure 

does not affect the nature of those features [2]. Many methods also utilize conditional 

random field (CRF) as post processing to improve automatic segmentation results [3].  

In recent years, Deep convolution neural networks which have been shown to excel 

learning a hierarchy task-adapted complex feature from in-domain data has been seen 

huge success in image Classification[4,5,6], object detection and image semantic seg-

mentation[7,8,9].Some of the brain tumor segmentation based on Deep convolution 

neural networks are also proposed. To gain more global contextual features in a slice, 

two paths and cascade CNN architectures are proposed [2], however, the context fea-

tures among slices have not been employed. To incorporate 3D contextual, a dual path-

way, 11-layers deep, three-dimensional Convolutional Neural Network are presented 

[1]. Due to being based on patch-wise, only limited space context features are explored, 

and many redundant convolution calculations are contained.  FCN with deconvolution 

layers and Segnet with a symmetric encoder-decoder architecture train an end-to-end 

and pixel-to-pixel convolutional neural network for pixel-wise prediction with the 

whole image as inputting, to avoid to use patch [7]. 
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Due to the huge volume of data of 3D brain scan images and limited GPU memory, 

it is impossible to extend directly FCN and SegNet to 3D to explore the 3D context for 

brain tumor segmentation challenge. We propose separate 3D-SegNet for brain tumor 

segmentation. The 2D SegNet is utilized to capture the 2d context features and 1D Se-

gNet is adopted to get the context features among the slices along the z-axis. Without 

local patch-wise training and testing, our method can obtain more 3D context infor-

mation with broader receive field and can avoid redundant convolutional calculate. 

2 Architecture 

Brain MRI images for Brats 2017 Challenge has 155 slices, 240×240 resolution, and 4 

channels, i.e. FLAIR, T1, T1-contrast, and T2. As being illustrated in Fig. 1, our sepa-

rate 3D-SegNet contains 2D-SegNet and 1D-SegNet parts. First, MRI images are nor-

malized firstly, and then each slice of them are fed into 2D-SegNet to gain  240 ×
240 × 64 features. Second, the features in the same position of 155 slices are integrated 

into 1D features which contain 64 channels and then they are inputted to the 1D-SegNet 

to be classified into labels.  

 
Fig. 1 An illustration of the separate 3D-SegNet architecture 

 

Unlike [9], in this paper, the 2D-SegNet only adopts 4 encoding and decoding 

layers as being depicted in Fig.2, due to 240×240 resolution of brain MRI image. Each 

Encoder has 2 or 3  2-dimension convolution layers, whose kernel size are 3×3, and a 
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maxpooling layer with 2×2 window and stride 2, whose outputs contain features sub-

sampled by a factor 2 and maxpooling indices (MaxInd for short) implying the location 

of the maximum feature value in each pooling window[2] (see Fig.2 B). Sub-sampling 

results in a large input image context (spatial window) for each pixel in the feature maps 

and maxpooling indices are to capture the edge information [2]. Each Decoder has an 

up-sample layer and 2 or 3 convolution layers (see Fig. 2 C). Upsample takes the out-

puts of the previous layer and the maxpooling indices of the corresponding encoding 

layer as input and its output is sparse feature map(s) up-sampled by a factor 2 (see Fig. 

2 D [9]). 240×240×64 features of each slice outputted by the last Decoder are fed to the 

next stage, i.e. 1D-SegNet, and the softmax layer to be classified into labels which can 

be used in training. 

 
Fig.2 A. An illustration of the 2D-SegNet, B. Encoder 1, C Decoder 3 

 

In order to capture the contexts among slices, we proposed 1D-SegNet to process 

the output of 2D-SegNet. As being illustrated in Fig. 3, the 1D-SegNet contains 3 en-

coder and decoder layers. Each Encoder has 2-3 1D convolution layers and a 1D max-

pooling which can figure out the features sub-sampled by a factor 2 and maxpooling 

indices which denote the location of the maximum feature value in each pooling win-

dow by the following equation (see Fig.3 B),  
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𝑝𝑖 
𝑙 = 𝑚𝑎𝑥(𝑓2𝑖

𝑙 , 𝑓𝑚𝑖𝑛(2𝑖+1,𝐿𝑙)
𝑙 )

𝑀𝑎𝑥𝐼𝑛𝑑𝑙
𝑖 = {

2𝑖 𝑝𝑖
𝑙 = 𝑓2𝑖

𝑙

2𝑖 + 1 𝑝𝑖
𝑙 ≠ 𝑓2𝑖

𝑙  
    𝑖 ∈ [0, ⌈𝐿𝑙

2
⌉)，                           (1) 

where p denotes the upsamped feature, and i, l denotes ith position and lth encoder 

layer. Each Decoder has an upsample layer, and 2-3 1D convolution layers (see Fig.3 

C). With the following equation, upsample layer can restore the feature of position 

stored in MaxInd. 

𝑓
𝑀𝑎𝑥𝐼𝑛𝑑𝑖

𝑙
𝑙 = 𝑝𝑖

𝑙 ,      𝑖 ∈ [0, ⌈𝐿𝑙
2

⌉)                                               (2) 

Training procedures are divided into 2 stages. First, like [9], 2D-SegNet is trained 

end-to-end with 2D images and their corresponding labels. And then, features of 155 

slice of a patient image in training set extracted by the trained 2D-SegNet are reor-

ganized into 240×240 1D features. Second, 1D-SegNet is trained with the reorganized 

feature and their corresponding label.  

 
Fig.3 A. An illustration of the 1D-SegNet, B. Encoder 1, C Decoder 3 

 

Brain tumor segmentation image exhibits highly-skewed class distribution. In train-

ing set, the background and health region (label 0) have 1637 times more pixels than 

the necrotic and non-enhancing tumor (label 1). To cope with this problem, we use the 

weighted cross-entropy loss [9] as the objective function for training the network, 

which assigns higher misclassification costs to the minority class than to the majority 

[12] as depicted in Tabel 1. 
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Tabel 1. The misclassification costs 

Label weight 

0 0.00247 

1 3.94 

2 0.302 

4 1.0 

3 Experiments and Results 

We use the real patient data from 2017 brain tumor segmentation challenge to test 

the performance of 2D-SetNet and 3D-SegNet [10, 11, 12]. Since only labels for the 

training set for Brats 2017 Challenge are available, we pick up the 10 percent of images 

as the testing set. As a result, only the 90 percent of training-set are utilized to train our 

network.  

Table 2 shows the average dice distance of 2D-SegNet and separate 3D-SegNet us-

ing the HGG testing set images picked up from the training set. The second column is 

the result of 2D-SegNet with 4 Encoders and 4 Decoders as illustrated in Fig.2. The last 

column is the result of 3D-SegNet.  From the table, we can see that 3D-SegNet obtain 

higher accurate than 2D-SegNet.  

Table 3 shows the Performance of 2D-SegNet and Separate 3D-Segnet on validation 

set on the official web. From the table, we can see 3D-Segnet is better almost on all the 

evaluation metrics.  

 
Table 2. Mean Dice Distance of 2D-SegNet and Separate 3D-Segnet 

Label 2D-SegNet 3D-Segnet 

1 0.47 0.54 

2 0.54 0.69 

4 0.69 0.71 

 
Table 3. Performance of 2D-SegNet and Separate 3D-Segnet on validation set 

 2D-SegNet 3D-Segnet 

Dice_ET 0.58276 0.60036 

Dice_WT 0.65568 0.79767 

Dice_TC 0.63289 0.69021 

Sensitivity_ET 0.72381 0.71095 

Sensitivity_WT 0.95877 0.91027 

Sensitivity_TC 0.79379 0.81491 

Specificity_ET 0.99616 0.99695 

Specificity_WT 0.94817 0.97916 

Specificity_TC 0.98731 0.99049 

Hausdorff95_ET 41.35682 21.0903 

Hausdorff95_WT 56.62996 23.64621 

Hausdorff95_TC 59.78678 26.39409 
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4 Conclusion 

We presented the separate 3D-SegNet which apply combination the 2D-SegNet and 

1D-SegNet to capture 3D-space context.  The experimental results shows that the 3D-

SegNet can obtain higher accurate than 2D-SegNet. 
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Abstract. Convolutional neural nets have become popular for a variety
of applications in medical imaging, including image segmentation, image
regression, super-resolution and volume-level classification.
Training neural nets is computationally expensive and labour-intensive.
Although some nets are available, pre-trained, with open-source code,
they still employ a variety of deep-learning platforms. This makes it
burdensome to compare nets, and difficult to use them together (for
example, to ensemble the results).
NiftyNet is an open-source medical imaging software package that imple-
ments state-of-the-art nets in TensorFlow. In this submission, we train
a variety of neural nets for segmentation of the BRATS data. We then
ensemble these independently-trained nets to improve the overall perfor-
mance. This highlights the versatility of the NiftyNet platform.

1 Introduction

The BRATS challenge [1][2][3][4] consists of two parts. One is the long-running
segmentation challenge for high- and low-grade gliomas. The aim of the challenge
is to match expert segmentations as closely as possible.

The second part of the challenge is to predict survival time from MR images
and the subject’s age.

2 Methods

In this paper, we train several different convolutional neural nets independently
on the provided data. These nets are available on the NiftyNet platform. The
nets we used are detailed in Table 1.

The training data is preprocessed using histogram normalisation and whitened.
The Adam optimiser [5] is used for all training cases, because of its robustness
to the chosen learning rate parameter.

To ensemble the methods, we propose three different approaches:
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Table 1. For training, data was augmented with a left-right flip with p = 0.5.
We adopted a selective sampling strategy: 90% of the image patches examined
have at least two labels (of the possible 4) by specification. The learning rate lr
was determined through trial and error.

Net Name Notes Parameters Reference

DeepMedic lr = 0.01, optimiser=Adam [6]

Dense VNet lr = 0.0001, optimiser=Adam [7]

High-Res net Fit three variants lr = 0.01, optimiser=Adam [8]

– M1 — Majority voting: The modal value of the label prediction is used across
all nets.

– M2 —Shallow ensembling: The predictions from each model are put through
a neural network with one hidden layer to allow different weightings to the
different nets.

– M3 —Deep ensembling: the input images are fed into a CNN, along with
each net’s predicted output, and trained to best mimic the ground truth.

M1 is the case of M2 with equal weights, with M2 being a special case of M3
in turn.

3 Results

Table 2. A summary of the individual net results and the results of majority
voting.

Method Dice ET Dice WT Dice TC
Sensitivity
ET

Sensitivity
WT

Sensitivity
TC

Deepmedic 0.6822 0.83658 0.71912 0.75992 0.88855 0.78894

Dense Vnet 0.65226 0.836 0.70668 0.69923 0.85884 0.73753

HR (small) 0.6755 0.80537 0.67083 0.72231 0.76896 0.68916

HR (default) 0.67521 0.81748 0.6585 0.68578 0.77202 0.69939

HR (large) 0.71195 0.87083 0.66603 0.77353 0.8749 0.6324

Majority Vote 0.70288 0.83321 0.73451 0.72845 0.77727 0.69404

Specificity
ET

Specificity
WT

Specificity
TC

Haussdorf 95
ET

Haussdorf 95
WT

Haussdorf 95
TC

Deepmedic 0.99796 0.9905 0.99414 17.35533 27.49044 31.34963

Dense Vnet 0.99806 0.9908 0.99511 8.4005 24.90084 29.17855

HR (small) 0.99835 0.996 0.99693 6.89773 34.20315 57.31446

HR (default) 0.99881 0.99575 0.99486 6.047 8.25249 12.01527

HR (large) 0.9976 0.99459 0.99859 7.6967 10.61978 15.42364

Majority Vote 0.9986 0.99773 0.9989 5.17102 7.35433 8.93822
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Fig. 1. Majority voting is effective at reducing spurious segmentation labels (four
arbitrarily-chosen subjects).
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In Figure 1 we can see some of the estimated tumour segmentations from
the various models, and the result of ‘majority voting’. In Table 2 we have the
results on the validation data, assessed via the CBICA portal.

This is only the reults for ‘M1’: Precise architectural details of M2/M3 will
be added after the challenge data is released, as they are not finalised.

4 Prediction Challenge

In this part of the BRATS Challenge, the object is to predict the post-scan
survival time. The data provided is the MRI scans and the patient age, with
survival time available for the test data. In this task, we try to use imaging
features to predict survival time.

To generate imaging features, we used the images after histogram normali-
sation, as above. For each segmentation label, we first computed its volume (3
features). We also calculated the mean, standard deviation, and kurtosis of each
modality for each tumour region (3 parameters × 3 labels × 4 modalities = 36
features). The location of the tumour will also be informative as to its effects.
For the ‘whole tumour’ label, we computed the fraction of the tumour in each
of 27 regions. Including subject age yields (3 + 36 + 27 + 1) = 67 features, with
163 labeled subjects.

This problem is especially prone to overfitting, because of the small number
of available subjects and the lack of pertinent clinical features (for example, we
do not have patient sex, blood type, etc.). We chose to use a Bayesian Ridge
Regression to estimate the survival age.

Our best result was an R2 score of 0.17 on train data, using 3-fold cross-
validation (Figure 2).

5 Discussion

In this work, we have shown that ensembling models improves their performance
on the Hausdorff metric. We have remaining work to do on how best to combine
the predictions.

Majority voting does badly on the ’whole tumour’ label, so probably is pe-
nalising discrepancies between estimations too much.

The code used to produce this paper will be released fully upon completion
of the challenge.

Acknowledgements: We gratefully acknowledge the support of NVIDIA Corpo-
ration for the donation of a Titan X Pascal GPU used in this work.
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Fig. 2. This figure shows the 3-fold cross-validation result for predicted vs mea-
sured survival. The dashed line is unity.
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Abstract. Accurate segmentation of different sub-regions of gliomas including 
peritumoral edema, necrotic core, enhancing and non-enhancing tumor core us-
ing multimodal MRI scans has important clinical relevance in diagnosis and treat-
ment. However, due to the highly heterogeneous appearance and shape, segmen-
tation of brain tumors is very challenging. Recent development using deep learn-
ing models has proved its effectiveness in the past few brain segmentation chal-
lenges as well as other semantic and medical image segmentation problems. Most 
models in brain tumor segmentation use a 2D/3D patch to predict the class label 
for the center pixel. Variant patch sizes and scales are used to improve the model 
performance. U-Net is a popular network structure for end-to-end full-image seg-
mentation. However, the heterogeneous appearance, shape and locations of brain 
tumors and large image size make the application of U-Net on the whole image 
ineffective and impractical. We propose to use a 3D U-Net structure on extracted 
patches to predict the class labels for all pixels in the patch. In this paper we will 
describe the patch extraction, network structure, training and deploy methods and 
pre and post processing algorithms. Preliminary results showed effectiveness of 
this model. 

Keywords: Brain Tumor Segmentation, 3D U-Net, Deep Learning. 

1 Introduction 

Gliomas are the most common primary brain malignancies, with different degrees of 
aggressiveness, variable prognosis and various heterogeneous histological sub-regions, 
i.e. peritumoral edema, necrotic core, enhancing and non-enhancing tumor core. The 
Multimodal Brain Tumor Segmentation Challenge (BraTS) 2017 utilizes multi-institu-
tional pre-operative MRI scans and focuses on the segmentation of intrinsically heter-
ogeneous brain tumors [1-2]. The dataset used in this challenge includes multiple-insti-
tutional clinically-acquired pre-operative multimodal MRI scans of glioblastoma 
(GBM/HGG) and low grade glioma (LGG) containing a) native (T1) and b) post-con-
trast T1-weighted (T1Gd), c) T2-weighted (T2), and d) Fluid Attenuated Inversion Re-
covery (FLAIR) volumes [3-4]. 285 training volumes with annotated GD-enhancing 
tumor, pertumoral edema and necrotic and non-enhancing tumor and the overall sur-
vival data defined in days are provided. 46 volumes are used for validation with the 
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following two goals: 1) provide pixel-by-pixel label maps for the three sub-regions and 
background; 2) estimate the survival days. 

Convolutional neural network (CNN) based models have proved their effectiveness 
and superiority over traditional medical image segmentation algorithms and are quickly 
becoming the mainstream in BraTS challenges. Due to the highly heterogeneous ap-
pearance and shape of brain tumors, small patches are usually extracted to predict the 
class for the center pixel. To improve model performance, multi-scale patches with dif-
ferent receptive field sizes are often used in the model [5]. U-Net is a very popular 
convolutional network structure that consists of a contracting path to capture context 
and a symmetric expanding path that enables precise localization with 3D extension [6-
7]. In this paper we propose to apply the 3D U-Net structure on extracted patches to 
perform a full-patch segmentation. During test, a sliding window approach is used to 
predict class labels with adjustable overlap to improve accuracy. Since the CNN model 
only performs pixel level prediction, post processing methods are often used to refine 
the final label maps. As our proposed method is prone to false positives, a post pro-
cessing method to compensate for that is also developed. 

2 Methods 

The steps in our proposed method for brain tumor segmentation include pre-processing 
of the images, patch extraction, training using a 3D U-Net structure, usage of the model 
for full volume prediction, post processing to refine label maps, as described below. 

2.1 Image Pre-processing 

To compensate for the MR inhomogeneity, the bias correction algorithm based on 
N4ITK is first applied to the T1 and T1Gd images [8]. To reduce the effect of the ab-
solute pixel intensities to the model, an intensity normalization step is applied to each 
volume of all subjects by subtracting the mean and dividing by the standard deviation 
so that each MR volume will have a zero mean and unit variance. In practice, as the 
original uncropped volume is used in which the brain only takes the central region, the 
mean and standard deviation are estimated using the central region (0.25 - 0.75 on each 
dimension) of the volume. 

2.2 Patch Extraction 

For simplicity, we will use foreground to denote all tumor pixels and background to 
denote the rest. To increase the predicting power of the model, the extracted patches 
should cover all possible cases including all background, mostly background, mostly 
foreground and equally distributed. However, as the foreground labels contain much 
more variability and are difficult to segment, the patches should favor those with more 
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foreground pixels to learn a wide range of tumor characteristics and those with equally 
distributed foreground and background pixels to improve the boundary accuracy. 

A total of 400 patches with size 64 * 64 * 64 are extracted per volume. To avoid 
clustering on a small region for patch extraction, a total of 3200 possible patch center 
positions are calculated by applying a small random perturbation to the equally dis-
tanced 3D grids. Different perturbations are applied to different subjects. The relative 
probability 𝑝 that a patch center position is selected is given as: 
                                                𝑝 = (1 − 𝑎𝑏𝑠(𝑟 − 0.5) ∗ 𝑟                                            [1] 
in which 𝑟 is the ratio of foreground pixels in the patch. It can be easily proven that 𝑟 =
0.75 corresponds to the maximum chance of being selected. To be able to select all 
background patches, 𝑝 is adjusted to the minimum non-zero value when 𝑟 = 0. The 
probabilities of all 3200 positions are normalized to have a sum of 1 before drawing 
400 from them. 

2.3 Network Structure and Training 

A 3D U-Net based structure containing 3 encoding and 3 decoding layers is used in our 
model. Intensity normalized images with all MR protocols are concatenated as the 4-
channel input for the model. The corresponding segmentation map of the input patch is 
given as the ground truth labels. The number of features in each encoding layers are 48, 
96, 192, respectively. A VGG like network with two consecutive 3D convolutional lay-
ers with kernel size 3 followed by the rectified linear and batch norm layers is used in 
the encoding path. A major difference with the original U-Net structure is the handling 
of edges. Zero padding is used in our model to maintain the sizes of the decoding paths 
without cropping. The output of the model is 64 * 64 *64 * 4 matrix containing the 
probability of each input voxel belonging to each category (3 foreground classes and 
the background). 

4 epochs are used on all extracted patches, which takes about 60 hours to train on a 
Titan X GPU. No data augmentation such as rotation and mirroring is used due to the 
concern of longer training time, although we hypothesize that it can further improve the 
model performance. 

2.4 Volume Prediction Using the Model 

To make a prediction for the full volume, a sliding window approach is used with stride 
size 16. Therefore, each voxel will be predicted by 4 models and the mean output is 
used as the final probability. For the given image size, it takes 5 minutes to generate the 
output for the entire volume on the same GPU. 

2.5 Post Processing 

Since more foreground pixels are used in the training steps than the background pixels, 
this model tends to have more false positives, causing low specificity and high 
Hausdorff distance. To remove false positives, we hypothesize that the tumors are most 
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likely to occur in one or multiple connected regions with a relatively large weighted 
area and thus the isolated regions with small weighted areas are false positives. The 
following steps are used in the removal process: 1) predict the label map by taking the 
maximum probability and binarize it to background (0) and foreground (1) pixels; 2) 
apply binary dilation to the label map with iterations 10; 3) perform the connection 
analysis to get all connected foreground regions; 4) for each foreground region, calcu-
late the weighted area as the sum of the pixel probabilities belonging to foreground of 
all pixels in this region; 5) apply a thresholding so that the regions with weighted area 
smaller than ½ of the maximum weighted area are re-classified as background. 

3 Results 

All 285 training dataset are used in the model training process. With multiple submis-
sions to the CBICA’s Image Processing Portal, we are able to compare the perfor-
mances of our models and show the logic of part of our methods, although many other 
choices are unverified. The results are based on all 46 validation dataset. The final mean 
dice indexes of the enhanced tumor (ET), whole tumor (WT) and tumor core (TC) are 
0.751, 0.896 and 0.799. 

The intensity normalization plays a major role in the success of the model. Using the 
original images with the lowest 1% and highest 99% percent pixels removed, the mean 
dice indexes using the same model with prediction stride size of 32 are 0.663, 0.841 
and 0.748. A scrutiny of the dataset showed that the mean intensities of those with low 
scores often differ a lot with those in the training dataset, meaning that the variation in 
the mean intensities pose a challenge for the model. As in MR images, the contrast is 
much more important than the absolute pixel intensities, we want to normalize them 
without changing the contrast. Besides the intensity normalization, we also reduced the 
prediction stride size to 16 at the cost of increased prediction time. The mean dice in-
dexes are 0.729, 0.887 and 0.796 without post processing. Although the dice indexes 
are pretty good, the Hausdorff distances are very large at 4.794, 24.124 and 10.120, 
meaning there are many false positives, which are verified with visual checking of the 
results. Therefore, we performed the connected region analysis on all training dataset 
and developed a post processing method to reduce false positives based on the hypoth-
esis that all tumors are connected into relatively large regions with multiple dilation 
steps. This step reduced the Hausdorff distances to 4.755, 12.525 and 8.685, respec-
tively and improved the dice index to the final result. 

4 Discussion and Conclusions 

In this paper we developed a patch-based 3D U-Net for brain tumor segmentation with 
intensity normalization in pre-processing and false positive reduction in post-pro-
cessing. The preliminary results showed promises of this model as we are among the 
top performing teams in most evaluation metrics. However, there are some interesting 
findings and problems that need further investigation. 

Proceedings of the 6th MICCAI BraTS Challenge (2017) 70 of 347



5 

It is noted that the median metrics are significantly higher than the mean metrics. 
For example, the median dice indexes are 0.865, 0.925 and 0.880. It makes sense in that 
the theoretical maximum dice index is 1 and minimum dice index is 0. However, we 
noted that in several cases, the dice indexes are as low as 0 for ET and TC and 0.6 for 
WT. It is mostly due to the low sensitivity meaning that the model is not able to recog-
nize the tumor regions. The possible reason for these failed regions is that their charac-
teristics deviate a lot from the training dataset. 

In the 3D U-Net model, we found that the batch norm layer was helpful in improving 
the model stability and performance. However, different with the canonical application 
of the batch norm layer, in which the batch statistics is used in training and the global 
statistics is used in deployment, it performed much better with batch statistics in de-
ployment than global statistics. Since the batch size is 1, a per-channel normalization is 
actually performed by subtracting its own mean. One possible explanation could be that 
by doing such normalization, the model focuses on the differences of neighboring pix-
els in one channel and ignores the absolute values, which may help the segmentation 
process. However, a further investigation is needed to figure out the exact reason. 

Compared with the patch-based model that only predicts the center pixel, when pre-
dicting the segmentation label maps for the full patch, different pixels are very likely 
to have different effective receptive field sizes due to the zero padding in the edge. We 
argue that a pixel should still be able to be predicted even based on partial receptive 
field, which, for the very edge pixel, corresponds to only half of the receptive field. 
Furthermore, the U-Net structure learns an optimized receptive field with multiple en-
coding and decoding paths and the connections in between and thus is superior than the 
multi-scale model. Furthermore, the significant overlap in prediction sliding windows 
can improve the prediction accuracy with more averages. 

For post processing methods, we initially applied the conditional random forest 
(CRF) method but it often provided poor results unless the parameters in the model are 
very carefully chosen. It could also fail completely by predicting all background pixels 
with certain parameters. It is not surprising because the differences in intensities are 
often subtle and highly depend on the MR protocol. Therefore, we gave up this method 
and aimed to just reduce false positives in the post-processing step. However, one draw-
back of our method is that it may suffer from overfitting since the parameter selection 
is based on the feedback from the validation dataset. 

In conclusion, we developed a patch-based 3D U-Net model for brain tumor seg-
mentation by adapting the patch-based network structure which only predicts the center 
pixel to the 3D U-Net structure which predicts the full patch. Novel pre-processing and 
post-processing algorithms are also developed to improve the model performance. The 
code is available at https://github.com/xf4j/brats17. 
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Abstract. In this project, I investigate the potential Convolutional Neural net-

work(CNN) to learn and mark a brain tumor voxel on an MRI modality scan. 

Gliomas which is type of brain tumors, can be deadly. Accurate and fast tumor 

segmentation can improve medical treatment by reducing the lag between diag-

nosis and treatment, speed up surgery planning and follow up. Deep Convolu-

tional Neural Network (CNN) has been proven lately to be efficient tool in ob-

ject recognition, and they fit well medical imaging. The approach to the seg-

mentation problem is to classify each pixel in the 2D plane along the z axis, by 

its nearby pixels. This classification is done with 4 layers convolutional layers 

and a hidden fully connected layer. I report preliminary, results obtained using 

BraTS 2017 Training dataset [8-11]. The conclusion of this work is that CNN’s 

have potential to perform well on the segmentation task. More complex archi-

tecture, with combinations of few models, is needed to improve the results even 

further. 

Keywords: Segmentation, BraTS challenge, Classification, Convolutional neu-

ral networks, Deep learning 

1 Introduction 

In this project, I investigate the potential CNN’s to mark the Glioma tumor on an MRI 

modality scan. Gliomas are a type of brain tumor that can be deadly, and accurate 

segmentation of the tumor and its sub regions, is needed for treatment planning and 

surgery.  The large amount of data of one MRI scan, meaning 4 models of 155 images 

of 240x240 pixels. To analyze and annotate this amount is time consuming task for 

human expert. Automatic tumor segmentation can improve medical treatment by 

providing an efficient and annotation of tumor and its sub-region location. The large 

amount of data of one MRI scan, meaning 4 models of 155 2D images of 240x240 

pixels. To analyze and annotate this amount is time consuming task for human expert. 

Deep learning neural network, has proven lately as efficient tool for many tasks in 

image processing and analyzing.  CNNs especially has become the state of the art 

methodology for object recognition. The nature of most medical images, that have 

high correlation among near voxel, make them good candidate for convolution sliding 

window. 
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2 Methods and Materials 

2.1 MRI Dataset  

The Training dataset of BraTS 2017 [7,8,9,10] comprises multimodal MRI scans of 

glioblastoma (GBM/HGG, 135) and lower grade glioma (LGG, 108). For each pa-

tient, there are four MRI scans as described: T1-, contrast enhanced T1- (T1c), T2- 

and T2-weighted FLAIR.   The multimodal MRI scans, were acquired with different 

clinical protocols and various scanners from multiple (n=19) institutions, all images 

were pre-processes, meaning: co-registered to the same anatomical template, interpo-

lated to the same resolution and skull-stripped. 

All Images have been segmented and approved manually by experts. Annotations 

comprise the GD-enhancing tumor (ET - label 4), the peritumoral edema (ED -  label 

2), necrotic (NCR/NET -  label 1) and non-enhancing tumor (label 3). 

2.2 MRI Pre-processing  

MRI data often contain artifacts produced by inhomogeneity in the magnetic field or 

small movements made by the patient during scan time, this often creates a bias 

across the resulting scans, which can affect the segmentation results particularly made 

by computer-based models. To correct that, I employed SimpleITK [5] N4 bias field 

correction filter [6] on all T1 and T1C images in the dataset. Since MRI intensities are 

expressed in arbitrary units and may vary between different machines, additional 

image pre-processing was made to standardize the voxel intensities, so each sequence 

was transformed to have zero mean and unit standard deviation. 

2.3 Convolutional neural networks  

Convolutional neural networks (CNN) proven to do well in image classification and 

segmentation tasks [3], especially when features are fully viable and not hidden one 

behind the other. Medical MRI images feature a high similarity and correlation in the 

intensities among neighboring voxels, so a local approach of patch classification, was 

chosen. It sims natural to select a 3D area around the classified voxel, but 3D convo-

lutional networks need huge resources, so the approach of solving it slice by slice, is 

practical. 

2.4 Model Architecture 

I used sliding window convolution network with small kernel. The model has four- 

Convolutional layers, using. Pooling and dropout to improve accuracy and prevent 

over-fitting. 
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Fig. 1. Model architecture scheme. 3 Convolutional network models with different patch sizes: 

33, 25, 17. Result is calculated as simple mean of all 3 outputs, or output of simple dense model 

on the 3 results. 

2.5 Model training  

Train data was split to train and test group. Each model was trained on 50,000 patch-

es, selected randomly, evenly distributed according to voxel labels. Every few epochs, 

a new train group was created. Three models of different patch sizes (33,25 and 17), 

were trained, to result probabilities for each class. Mean of those probabilities, was 

the result. Model was created with Keras [11] and Theano [4]. 
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3 Results 

Preliminary results on train group, where promising Presented an example of a result of a 

model with Patch Size - 33 Train data 50,000 patches, 10,000 per class. First results, Fig3. 

Fig. 4. were calculated on Test data, which is relevant due to small and sparse data used to 

train the model. The second result shown, Fig 4. And Fig. 5. was produced on test data 

kept a side from the train set. 

 

     
Fig. 2. Example of prediction on 3 randomly selected planes from train group. 

 

  
Fig. 3. ROC curve on 50,000 randomly selected. voxels, 10,000 per each class. 

 

 

CONFUSION MATRIX: 

[[9455   32     436      59        18] 

 [  27     8748  198     745     282] 

 [ 755    185    7717   1096   247] 

 [ 242    1705   1847  4298   1908] 

 [  69     336    415      1228  7952]] 
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Fig. 4. Example of prediction on 3 randomly selected planes from test group. 

 

 
Fig. 5. ROC curve on 50,000 randomly selected voxels from test group, that was 

not part of the training data.  

4 Discussion 

CNN models yield good result in image classification and segmentation tasks, and 

while the model presented, yields promising results, in the medical context, there is 

no room for errors or false positives. To improve the model, we need to explore three 

main paths:  one is in pre-processing the data and resampling techniques, the other is 

optional architecture. 

An upsampling techniques should be applied and tested, it has the potential of im-

proving the non-sufficient segmentation results on non-enhancing tumor (lable – 3). 

An architecture based on the one built by Havaei et al [2] which uses a two-pathway 

model to capture local and global features, can improve results as well. 

('ERROR RATE: ', 0.2677) 

CONFUSION MATRIX: 

[[9385   84      417   72       42] 

 [ 632    8432  151    698    87] 

 [1124   95      7486  788    507] 

 [ 495    1965  1262 3368   2910] 

 [ 297     184   326   1249   7944]] 
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5 Conclusion 

Combining different technique, improves the result. In my model, results where 

improved when I mean results of different patch size models.  

Sizes of tumors varies a lot. Large tumors are segmented better than small tumors. 

Segmentation results on small tumors, should be checked with different resampling 

methods. 
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Abstract. Volume segmentation is one of the most time consuming and
therefore error prone tasks in the field of medicine. The construction of a
good segmentation requires cross-validation from highly trained profes-
sionals. In this context the creation of a method capable of automatically
segment volumes is one of the most compelling challenges in the field of
medical imaging. In order to address this problem we propose the use of
deep convolutional networks. Using a 2 step procedure we first segment
whole the tumor from a low resolution volume and then feed a second
step which makes the fine tissue segmentation. The advantages of using
DCN is that no interaction with the user is required, all parameters are
self-learned and its accuracy can improve by feeding new examples to
the trained network. The training dice-loss value surpass 0.8 and 0.7 for
the coarse and fine segmentation networks respectively.

Keywords: Deep convolution network, medical image segmentation, volumetric
semantic segmentation

1 Introduction

The manual segmentation of medical images is an exhausting and error prone
procedure which is known to have a low inter-professional agreement [1]. The
development of a fully automated and reliable segmentation procedure is one of
the most challenging tasks in the field of medical imaging.
In the last years the deep convolutional networks (DCN) have been applied to
image recognition tasks pushing the state of the art[2]. More recently DCN have
been applied to semantic segmentation in 2-D images and 3-D volumes, achieving
once more state of the art performances[3][4][5][6]. From the networks mentioned
before the U-Net[7] is one of the most successful topologies and it was tested
on several medical image segmentation tasks. As an extension to the the U-net
topology the 3-D U-Net topology was derived[8]. This 3-D adaptation of the
original topology replaces all 2-D convolutional layers with 3-D convolutional
ones. Other types of nets, like the V-Net[9], where inspired in the U-Net and
used in medical imaging segmentation problems.
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It is straight forward to apply this 3-D segmentation topology in several med-
ical imaging cases such as PET, TC, MRI and other voxelized medical image
data. The BRATS challenge offers an unique opportunity to test this technique
against other state of the art automatic segmentation methods [10][11][12].
In the following sections we describe the implementation of the 3-D U-Net for
this particular task, starting with the data preprocessing, the objective seg-
mented volume construction and full segmentation procedure description. Then
we present the preliminary results from the first validation test followed by the
discussion of this results. Finally the preliminary conclusions are drawn.

2 Methods

This section describes the operations of the automated segmentation process,
starting with the description of the full segmentation process, followed by the
input data and objective data treatment and construction of the coarse and fine
segmentation networks and finally the training procedure.

2.1 Segmentation process

The segmentation was performed using a 2 step process. Both steps consists of a
3-D U-net which accomplish a different task. The whole process is described in
figure 1, the process start with the input preprocessing which prepares the input
volumes for the Coarse Segmentation Network (CSN), its task is to detect the
whole tumor within the brain volume, then by making use of the CSNs output
the input volume is masked and cropped, obtaining a volume which consist of
only tumorous tissue, this masked input is finally feed to the Fine Segmenta-
tion Network (FSN) wich is responsible of generating the desired output labels;
enhancing tumor (ET), tumor core (TC) and whole tumor (WT) .

2.2 Data preprocessing

The input data consist of a set of 3D images acquired from 4 different MRI
modalities; flair, t1, t1ec and t2. They where treated as different channels of
the same volume. Each volume of 250x250x155 voxels was processed as a single
volume with 4 channels, just as the RGB channels of a photograph. Voxels values
were also normalized between 0 and 1 and coded with a 32 bit floating point
number.
The objective data, which consists of a single volume with labels from 1 to 4,
was decomposed into several objective volumes. For the CSN all labels where
fussed in a single volume with value 1, which represented the whole tumor, in
the case of the FSN all labels with different values where converted to different
objective volumes, creating 4 binary objective volumes. In each case two new
objective classes where added, one which consisted of non-tumorous brain tissue
and an other which was background, their function was to help the convergence
of the CNN.
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Fig. 1. Block diagram of the full segmentation process.

2.3 Deep Convolutional Network

The topology selected for the segmentation task was a 3-D version of the U-Net.
This topology can be explained following figure 2. The topology consists of two
parts.

The first one, follows the shape of a typical image recognition network, which
performs convolutions over the input image then applies a non lineal function (a
ReLU neuron in this case) and finally performs a pooling operation.

In this implementation the common max-pooling operation was replaced by
a 2-voxel stride convolution operation as suggested in [9].

This first part decomposes the input volume in lower resolution volumes, di-
viding by two its dimensions in each step but duplicating the number of channels
therefore maintaining the information.

The second part starts at the lower level (referred as base level) and is where
the semantic segmentation starts. In the base level where instead of a 2-voxel
stride convolution the network applies a 2-voxel stride up-convolution, which
duplicates the image size and infers the values of the new voxels.

The following levels of this part not only receive information of the lower
levels but also high-detailed information which is broadcasted from the levels
of first part of the network which operate at their own precision (volume size)
making possible detail rich segmentation of the input volume (see figure 2).

The broadcasted detail rich volume is concatenated at channel level with the
volume coming from the lower level, i.e. if the volume at the current level has a
size of 64x64x16 voxels and 16 channels, then the concatenated volume will have
a size of 64x64x16 voxels and 32 channels.

The final segmentation is done by a convolutional layer followed by a softmax
operation among the objective classes.
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Both networks where constructed with the same number of levels, 4 levels in
the downward path, 4 levels in the upward path and a base level.

Each level consists of a convolution part, for feature extraction and a down or
up sampling procedure. The feature extraction part consists of two layers with
a 3-D convolution followed by a ReLU neuron.

The network input has four channels (oner per input volume type) which is
decomposed into 8 channels in the fist level, and ending in 64 channels at base
level. The convolutional filters had a size of 3x3x3 voxels and the final segmen-
tation filters had a size of 2x2x2 voxels.
In the following sub-sections some particularities of each net are explained.

Fig. 2. 3-D U-Net topology.

Coarse Segmentation Network This network takes as input a volume of
size 128x128x64 voxels with 4 channels , this volume is generated by down-
sampling the input. This down-sampling was necessary due to the limited GPU
memory (the calculations where done using a NVIDIA Kepler K20 GPU using
the TensorFlow framework[13]). The output of the network is also a volume of
size 128x128x64 voxels.

Fine Segmentation Network This network receives a 4 channel 96x96x96
voxel volume. When the network is in production its input is built using the
output of the CSN and the original input. The output of the CSN is up-sampled
to the original volume size and then used as a binary mask for the original input.
Once the input volume is masked it is cropped to a 96x96x96 voxel volume. When
the network is being trained, instead of the CSN output, the ground truth is used
to mask the volume.
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2.4 Training

As objective function the dice loss running over all outputs was chosen. The
objective function can be seen in equation 1, where Nc is the number of objective
classes, Nv the number of voxels in the volume, gi are the voxels of the ground
truth and pi the values of the softmaxed output of the network.
The training of both networks was done separately using the ADAM optimizer
[14] and with learning rate decay following α = αini√

nstep
, where nstep is the step

number. Batch normalization[15] was applied at each convolutional layer.

D =

Nc∑
c=0

2
∑Nv

i pigi∑Nv

i p2i +
∑Nv

i g2i
(1)

2.5 Data Enhancement

Since the training of DNN requires tenths of thousands of samples to converge,
new input samples where generated from the original data. This new samples
where created by applying two transformations: rotation and conform deforma-
tion.
Both transformation where performed by operating on an uniform mesh which
extends over the whole input volume. The first operation applied to it is a ran-
dom rotation in an interval of −π

4 to π
4 in the direction of a random versor.

Then the deformation procedure is applied to the rotated mesh. The deforma-
tion consists of a sinusoidal distortion in every axis, this sinusoidal distortion has
a random period between 10 and 25 pixels and a peak between 2 and 4 pixels.
After the fully transformed mesh is created, it is used to map the coordinates
of all voxels in the input volumes and segmentation labels to their new position
in the transformed sample. The transformed sample mapping is created using a
trilinear interpolation.

3 Results

This section summarises the results of the validation set. The CSN was trained
with 58000 examples achieving a dice loss over Dc = 0.82 while the FSN was
trained with 67000 examples and achieved a dice loss over Df = 0.7.
The table 1 shows the results of the segmentation performed over the BRATS17
validation set. The global score is shown as mean and the detail by institution
is depicted in the first three rows.

4 Discussion

The validation results of this first approach showed a good correlation between
the training accuracy and the validation. The segmentation procedure was able
to perform as expected in the all of the dataset sources even when no samples
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Table 1. Validation Results

Dice ET Dice WT Dice TC Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC

CBICA 0.514 0.797 0.521 10.5 10.3 13.4
TCIA 0.412 0.827 0.611 9.47 6.56 11.0
UAB 0.545 0.869 0.508 11.9 6.13 12.4
Mean 0.469 0.822 0.566 13.8 9.56 14.7

of the UAB dataset where present in the training batch.
The lower performance in the tumor core and enhancing tumor was expected
since the FOV of the FSN was smaller than the larger tumor, this can be easily
solved with more GPU memory. Also the fine segmentation was more sensible
to changes in the normalization of the input data.
The normalization of the imput samples showed to be critical during the val-
idation phase. All samples from the new source where normalized to the best
performing sample of the validation dataset. This normalization was performed
by matching histograms.
The fact that the network was able to perform segmentation on unknown sam-
ples showed that the data enhancement procedure was effective and successfully
expanded the original dataset more than 100 times. Due to the long training
times of both networks (more than 5 days) only the described topology was
tested.

5 Conclusions

The proposed automatic segmentation procedure based on a 3-D U-net topol-
ogy showed to be effective when applied to the BRATS17 dataset. The networks
where able to perform segmentation without any other information than the
given examples and no specific knowledge of the problem was used to create the
topology.
Even when the data enhancement techniques where simple and not problem
specific they where capable of produce new valid data. Generating a problem
specific data enhancement technique which focuses on the transformation of the
tumor areas might speed up the process and help generalization.
The data normalization probed to be one of the critical points in the network
validation. The normalization used during the training phase (only data scal-
ing) was not accurate when samples from other sources where tested, like the
ones from UAB. To fix this a more complex normalization procedure was used
in the validation dataset which matches histogram of every volume to those
of a correctly segmented sample. By making use of this new normalization the
segmentation procedure was able to improve its score by a 50% without hav-
ing to retrain any of the networks. Nevertheless a new training procedure with
histogram-matched samples is being trained and is expected to achieve better
results.
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Also further refinement of the topology can be done, more problem-specific con-
figuration and fine tuning of level and layer sizes might lead to networks that
converge faster and better.
Given that the networks topology applied is more or less a default configura-
tion, the results are not state of the art but encouraging to further study this
segmentation technique which showed great potential and is applicable within
the field of medical imaging as well as other computer vision problems.
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Abstract. In this study, to support the detection of brain tumors clinically, an 

automated method is proposed for the segmentation labels of Glioma sub-

regions, which includes the steps of the calculation of the average values of 

image sub-region colors, the labeled image sub-regions mapped into color 

spaces and segmentation of labeled sub-regions. In the validation, the proposed 

method is implemented in the samples of image scans from the real-time data of 

the BraTS'17.  

Keywords: Labels of Glioma sub-regions, Glioma sub-region segmentation, 

brain tumors, image mapping into colors, clinical decision support, radiologic 

imaging. 

1   Introduction 

An automatic method for the segmentation labels of the various Glioma sub-regions 

with a biomarker model for predicting disease patterns of brain tumors in radiologic 

imaging is important in the brain tumor diagnosis clinically (Bakas, et al., 2017A; 

Guo, 2017A; Bakas, et al., 2017B; Bakas, et al., 2017C; Menze, et al., 2015; Bauer, et 

al., 2013; Jack et al., 2010). This study seeks to address the challenge for the 

segmentation labels of the Glioma sub-regions and the Glioma sub-region 

segmentation in the samples of radiologic imaging on supporting the detection of 

brain tumors in clinical.  

2   Method  

In this study, the proposed method mainly includes the steps of the calculation of the 

average values of the sub-region colors, the output of labeled image sub-regions, the 

labeled image sub-regions mapped into color spaces, and segmentation of labeled 

sub-regions with colors. In the proposed approach, based on the average values of the 

sub-region colors, the minimum distance classifier is employed to measure an image 
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pixel between that image pixel and each image sub-region. Then the shortest distance 

would indicate that the pixel most closely matches that color of the sub-region in the 

classification.   

3   Results  

In the validation, the proposed method is implemented in the samples of  image scans 

on the real-time data of the 2017 brain tumor segmentation challenge (BraTS'17). In 

the challenge of the BraTS'17, the image sub-regions need to be evaluated are the 

"enhancing tumor" (ET), the "tumor core" (TC) and the "whole tumor" (WT).  

Fig. 1 shows the preliminary results from an example of experiments in the 

samples of  image scans on the real-time data of the BraTS'17. The top row of Fig. 1 

are the image patches, from the left to the right: the WT visible in FLAIR (A), the TC 

visible in T2 (B), the ET structures visible in T1c, surrounding the cystic/necrotic 

components of the core (C). The second row of Fig. 1 is the output of  labeled image 

sub-regions, while the third row of Fig. 1 shows the labeled sub-regions when mapped 

into the color space.  The output of segmentation labels of the different Glioma sub-

regions are illustrated in the last row of Fig. 1, which shows three different sub-

regions involving, from the left to the right, the WT, TC and ET.  

After going through the recursive computation, Fig. 2 further shows the resulting 

segmented Glioma sub-region labels for the two different sub-regions,  the TC (upper 

row) and ET (lower row), where Fig. 2(a) is the output of  segmentation labels of the 

sub-regions (see the last row of Fig. 1); Fig. 2(b) is the output of labeled image sub-

regions of the TC and ET, and Fig. 2(d) present the results of the sub-region 

segmentation involving the TC and ET. 

On the data of the BraTS'17, the ground truth labels was annotated by experts for 

the various glioma sub-regions.  Figs 3-4 illustrate an example of the experiments for 

the segmentation of the ground truth labels on the data of the BraTS'17. Figs 3-4 (a) 

are the ground truth labels which have been manually-revised by expert board-

certified neuroradiologists. Figs. 3-4 (b) display the output of labeled images of the 

ground truth labels (with the edema (yellow), the non-enhancing solid core (red), the 

necrotic/cystic core (green) and enhancing core (blue)). Fig. 3 (c) is the outline of the 

ground truth labels. Fig. 3(d)-(e) and Fig. 4(c)-(g) show individually the segmented  

ground truth labels of the edema (yellow), the non-enhancing solid core (red), the 

necrotic/cystic core (green) and enhancing core(blue)). 
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Fig. 1. The implementation results from an example of experiments on the real-time data of the 

BraTS'17. 
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(b) (a)  (c) (d) 

 
Fig. 2. Results of segmented sub-region labels, the TC (upper row) and ET (lower row) after 

the recursive computation, from an example of experiments on the real-time data of the 

BraTS'17.  

  

(b) (a)  (c) (d) (e) 

 Fig. 3. An example of the experiments for the segmentation of the ground truth labels on the 

BraTS'17.   
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(b) (a)  (c) (d) (e) (f) (g) 

 Fig. 4. An example of the experiments for the segmentation of the final labels of the tumor 

structures (the ground truth labels) on the BraTS'17.   

4   Conclusion and Future Work 

The future work will be dedicated on the analysis of the Glioma sub-regions 

qualitatively, using the techniques of iterative contour refinement and morphological 

reconstruction from the previous work (Guo, 2017B), for example, to remove the non-

TC and non-ET (see Fig. 3(d)) with the ground truth labels (as the image masks). In 

addition, the histogram-based techniques from the previous work (Guo et al., 2014) 

would be useful to compute image intensities of the Glioma sub-regions 

quantitatively, as compared with the ground truth provided from the BraTS'17.  

References 

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, 

Davatzikos C. "Advancing The Cancer Genome Atlas glioma MRI collections with expert 

segmentation labels and radiomic features", Nature Scientific Data, (2017A) [In Press] 

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, 

Davatzikos C. "Segmentation Labels and Radiomic Features for the Pre-operative Scans of 

the TCGA-GBM collection", The Cancer Imaging Archive, 2017B. DOI: 

10.7937/K9/TCIA.2017.KLXWJJ1Q 

Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, 

Davatzikos C. "Segmentation Labels and Radiomic Features for the Pre-operative Scans of 

the TCGA-LGG collection", The Cancer Imaging Archive, 2017C. DOI: 

10.7937/K9/TCIA.2017.GJQ7R0EF 

Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M. “A survey of MRI-based medical image analysis 

for brain tumor studies,” Phys. Med. Biol., vol. 58, pp. R97–R129, 2013. 

Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, 

Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, 

Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Ç, 

Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, 

Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, 

Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SM, Ryan M, Sarikaya D, Schwartz 

L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas 

OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, 

Prastawa M, Reyes M, Van Leemput K. The nultimodal brain tumor image segmentation 

benchmark (BRATS). IEEE Trans. Med. Imaging 34, pp. 1993–2024, 2015. 

Guo, P. A tissue-based biomarker model for predicting disease patterns,” J. Knowledge-Based 

Sys., vol. 276, pp. 160-169, 2017A.   

Proceedings of the 6th MICCAI BraTS Challenge (2017) 92 of 347



Guo, P. Brain tissue classification method for clinical decision-support systems. J. Eng. Appli. 

Artific. Intell., vol. 64, pp. 232-241, 2017B. 

Guo, P. and Bhattacharya, P. An evolutionary framework for detecting protein conformation 

defects,” J. Information Sciences, vol. 276, pp. 332-342, 2014 

Jack Jr., C. R., Knopman, D. S., Jagust, W.J ., Shaw, L. M., Aisen, P. S., Weiner, M.W., 

Petersen, R. C., Trojanowski, J. Q. Hypothetical model of dynamic biomarkers of the 

Alzheimer's pathological cascade. Lancet Neurol. vol. 9, pp. 119–128, 2010.  

Proceedings of the 6th MICCAI BraTS Challenge (2017) 93 of 347



Automated Brain Tumor Segmentation Using A 3D Deep 

Detection-Classification Model 

Yan Hu 1 and Yong Xia 1, 2* 

1 Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer 

Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, PR China  
2 Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science 

and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China  

Abstract. Brain tumor segmentation plays a pivotal role in clinical practice and 

research settings. In this paper, we propose a 3D deep detection-classification 

model for automated segmentation of brain tumor and intra-tumor structures, 

including necrosis, edema, non-enhancing and enhancing tumor. This algorithm 

has two planks: a cascaded two-level U-Net for detecting the outline of tumors 

and a patch-based deep convolutional network for classifying tumor voxels to 

one of those four structures. We have evaluated the proposed algorithm on the 

training dataset provided by the Brain Tumor Segmentation 2017 (BraTS 2017) 

Challenge[1-4] and achieved a Dice similarity index of 0.72, 0.77 and 0.79 for 

the segmentation of active tumor volume, core tumor volume and entire tumor 

volume, respectively. Our pilot results show that the proposed algorithm has 

competitive performance in automated tumor segmentation. 

Keywords: Brain tumor segmentation, deep learning, fully convolutional net-

work (FCN), U-Nets, magnetic resonance imaging (MRI) 

1  Introduction 

Gliomas are the most common primary brain malignancies. At present, over 130 dif-

ferent types of ‘high grade’ and ‘low grade’ brain tumors are known, and it is reported 

about 560 teenagers under age 19 are diagnosed as brain tumor patients every year 

only in UK. Despite considerable advances in gliomas research, diagnosis, treatment 

plan and follow-up evaluation of brain tumors, in which accurate delineation of tumor 

volumes is an essential step, remain major challenges in related clinical practices. 

Magnetic resonance imaging (MRI) can provide high spatial resolution of anatomical 

details and unique contrast between soft tissues, and hence is suitable for this task. 

Currently, brain tumors are usually delineated manually by medical professionals, 

which requires a high degree of skill and concentration, and is time-consuming, ex-

pensive, and prone to operator bias. Computer-aided brain tumor segmentation using 

MRI would overcome these issues and provide medical professionals an unprecedent-

ed tool for efficient and reliable diagnosis, treatment and prognosis of brain tumors. 

Therefore, there has been considerable research directed to automated brain tumor 

segmentation in MRI images.  
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A number of brain tumor segmentation methods have been proposed in the litera-

ture. These methods can be roughly grouped into two categories: generative models 

utilizing detailed prior information about the appearance and spatial distribution of the 

different types of tissue regions and discriminative models directly learning the char-

acteristic of different tissue regions from manually annotated training images. Recent-

ly, deep learning techniques, such as the convolutional neural network (CNN) and 

fully convolutional network (FCN), have been adopted to solve this medical image 

segmentation problem. Zhao et al.[5] jointly used a FCN and the conditional random 

fields (CRF). Konstantinos et al.[6] designed a dual pathway 3D CNN called Deep-

Medic, which contains 11 learnable layers. Pereira et al.[7] used two different CNNs 

for the segmentation of high grade gliomas (HGG) and low grade gliomas (LGG), 

respectively. 

In this paper, we propose a 3D deep detection-classification model for automated 

segmentation of brain tumor and intra-tumor structures, including necrosis, edema, 

non-enhancing and enhancing tumor. At the detection stage, we designed a cascaded 

U-Nets to identify the entire tumor volume; and at the classification stage, we used a 

patch-based CNN to assign each tumor voxel to an intra-tumor structures. We have 

evaluated the proposed algorithm on the training dataset provided by the Brain Tumor 

Segmentation 2017 (BraTS 2017) Challenge and achieved a Dice similarity index of 

0.72, 0.77 and 0.79 for the segmentation of active tumor volume, core tumor volume 

and entire tumor volume, respectively. 

2  Dataset 

This study was performed on the BraTS 2017 training dataset, which includes multi-

mode brain MRI scans of 285 subjects. For each subject, there are four MRI sequenc-

es, including the T1-weighted (T1), T1 with gadolinium enhancing contrast (T1c), 

T2-weighted (T2) and FLAIR. All studies have been segmented manually, by one to 

four raters, and their annotations were approved by experienced neuro-radiologists. 

The segmentation ground truth identifies four types of intra-tumoral structures: necro-

sis, edema, non-enhancing and enhancing tumor. 

3  Method 

The brain tumor segmentation algorithm consists of two main procedures, i.e. tumor 

detection and tumor voxel classification. Tumor detection aims to locate the entire 

tumor volume and extract global spatial features, and tumor voxel classification tar-

gets at accurately delineating the tumor into four intra-tumor structures. 

3.1  Tumor Detection 

As shown in Fig. 1, tumor detection consists of three major steps. First, since there are 

four 3D MRI sequences for each subject, we take them as four independent input.  
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Fig 1.  Architecture of the Tumor Detection Module 
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Fig 2. Architecture of the Cascaded U-Net 

When processing the 𝑖𝑡ℎ slice, we consider the 𝑖 − 1𝑡ℎ, 𝑖𝑡ℎ and 𝑖 + 1𝑡ℎ slices together 

to make fully use of the 3D information. Hence, we regard three adjacent slices of one 

modality as the three color channels of an image. Second, each modality of the MRI 

data is used to train a cascade two-level U-Nets[8] for feature extraction in an “end-

to-end” way, whose architecture is displayed in Fig. 2. Third, four groups of feature 

maps are concatenated together as the input of a CNN with two convolutional layers 

for tumor volume detection.  
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Finally, the output of this model is a label map, which indicates the volume of 

brain tumor, and a group of feature maps with rich spatial information. 

3.2 Classification 

Based on the detected tumor boundary, we further classify each brain voxel to one of 

four intra-tumor structures. For each tumor voxel, we let a 45×45 window center on it. 

The image patch inside this window is combined with the feature maps obtained in 

the detection step to form an input to a pre-trained VGG-16 network[9]. The output of 

this CNN gives the class label of the corresponding tumor voxel. The architecture of 

this voxel classification module is shown in Fig. 3. 

 

Fig.3 Architecture of Tumor Voxel Classification Module 

4 Experiments and Results 

We evaluated the proposed brain tumor segmentation algorithm on the BRATS 2017 

training database with five-fold cross validation. Following the request of the chal-

lenge[10], four intra-tumor structures have been grouped into three mutually inclusive 

tumor regions: the active (enhancing tumor), core (necrosis + non-enhancing tumor + 

enhancing tumor) and the whole tumor (all four structures combined) for evaluation. 

The performance of segmenting each type of tumor regions was evaluated quantita-

tively by using the sensitivity and Dice similarity coefficient (DSC), which is defined 

as the ratio between the intersection and union of the obtained volume 1S  and ground 

truth volume 2S  

   212121 2),( SSSSSSDC                                (1) 

The value of DSC ranges from 0 to 1, with a higher value representing a more ac-

curate segmentation result. The segmentation performance measured in terms of sen-

sitivity and DSC was given in Table 1. It reveals that the proposed algorithm is able to 

produce relatively accurate brain tumor segmentation. 
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Table 1. Result of the proposed algorithm on Brats 2017 Training Database 

DSC Sensitivity 

Whole Core Active Whole Core Active 

0.79  0.77 0.72 0.79 0.76 0.77 

5 Discussion on Using Multi-Mode MRI Scans 

To demonstrate the contribution of each imaging modality to solving this problem, we 

performed empirical evaluation and concluded that the proposed algorithm perform 

best when T1, T1c, T2 and Flair are used in detection and T1, T1c and T2 are used in 

classification. 

6 Conclusion 

In this paper, we propose a 3D deep detection-classification model for automated 

segmentation of brain tumor and intra-tumor structures using four modalities of MRI 

scans. The evaluation results on the BRATS 2017 training database indicate that the 

proposed algorithm is able to produce relatively accurate brain tumor segmentation. 
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Abstract. Quantitative analysis of brain tumors is critical for clinical
decision making. While manual segmentation is tedious, time consuming
and subjective, this task is at the same time very challenging to solve
for automatic segmentation methods. In this paper we present our most
recent effort on developing a robust segmentation algorithm in the form
of a convolutional neural network. Our network architecture was inspired
by the U-Net and has been carefully modified to maximize brain tumor
segmentation performance. We use a dice loss function to cope with class
imbalances and use extensive data augmentation to successfully prevent
overfitting. Our method beats the current state of the art on BraTS 2015
and shows promising results on the BraTS 2017 validation set (dice scores
of 0.896, 0.797 and 0.732 for whole tumor, tumor core and enhancing tu-
mor, respectively). We furthermore take part in the survival prediction
subchallenge by training an ensemble of a random forest regressor and
a multilayer perceptron ensemble on shape features describing the tu-
mor subregions. Our ensemble achieves 335.08 root mean squared error
(232.76 mean absolute error) in a five fold cross-validation over the 163
training cases.

Keywords: CNN, Brain Tumor, Glioblastoma, Deep Learning

1 Introduction

Quantitative assessment of brain tumors provides valuable information and there-
fore constitutes an essential part of diagnostic procedures. Automatic segmen-
tation is attractive in this context, as it allows for faster, more objective and
potentially more accurate description of relevant tumor parameters, such as the
volume of its subregions. Due to the irregular nature of tumors, however, the
development of algorithms capable of automatic segmentation remains challeng-
ing.
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The brain tumor segmentation challenge (BraTS) [1] aims at encouraging the
development of state of the art methods for tumor segmentation by providing a
large dataset of annotated low grade gliomas (LGG) and high grade glioblas-
tomas (HGG). Unlike the previous years, the BraTS 2017 training dataset,
which consists of 210 HGG and 75 LGG cases, was annotated manually by
one to four raters and all segmentations were approved by expert raters [2–4].
For each patient a T1 weighted, a post-contrast T1-weighted, a T2-weighted
and a FLAIR MRI was provided. The MRI originate from 19 institutions and
were acquired with different protocols, magnetic field strengths and MRI scan-
ners. Each tumor was segmented into edema, necrosis and non-enhancing tumor
and active/enhancing tumor. The segmentation performance of participating al-
gorithms is measured based on the DICE coefficient, sensitivity, specificity and
Hausdorff distance. Additionally to the segmentation challenge, BraTS 2017 also
required participants to develop an algorithm for survival prediction. For this
purpose the survival (in days) of 163 training cases was provided as well.

Inspired by the recent success of convolutional neural networks, an increasing
number of deep learning based automatic segmentation algorithms have been
proposed. Havaei et al. [5] use a multi-scale architecture by combining features
from pathways with different filter sizes. They furthermore improve their results
by cascading their models. Kamnitsas et al. [6] proposed a fully connected multi-
scale CNN that was among the first to employ 3D convolutions. It comprises a
high resolution and a low resolution pathway that are recombined to form the
final segmentation output. For their submission to the brain tumor segmentation
challenge in 2016 [7], they enhanced their architecture through the addition of
residual connections for improved segmentation performance. They addressed
the class imbalance problem through a sophisticated training data sampling
strategy. Kayalibay et al. [8] developed very successful adaptation of the popular
U-Net architecture [9] and achieved state of the art results for the BraTS 2015
dataset. Notably, they employed a Jaccard loss function that intrinsically handles
class imbalances. They make use of the large receptive field of their architecture
to process entire patients at once, at the cost of being able to train with only
one patient per batch. Here we propose our contribution to the BraTS 2017
challenge that is also based on the popular U-Net architecture [9]. Our network
possesses twice as many filters than [8] while being trained with a slightly smaller
input patch size and a larger batch size. We furthermore employ a multiclass
adaptation of the dice loss [10] and make extensive use of data augmentation.

Image based tumor phenotyping and derived clinically relevant parameters
such as predicted survival is typically done by means of radiomics. Intensity,
shape and texture features are thereby computed from segmentation masks of the
tumor subregions and subsequently used to train a machine learning algorithm.
These features may also be complemented by other measures handcrafted to
the problem at hand, such as the distance of the tumor to the ventricles [11].
Although our main focus was put on the segmentation part of the challenge, we
developed a simple radiomics based approach combined with a random forest
regressor and a multilayer perceptron ensemble for survival prediction.
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Fig. 1. Network architecture. Our architecture is inspired by the UNet [9]. The context
pathway (left) aggregates high level information that is subsequently localized precisely
in the localization pathway (right). Inspired by [8] we inject gradient signals deep into
the network through deep supervision.

2 Methods

2.1 Segmentation

Data preprocessing With MRI intensity values being non standardized, nor-
malization is critical to allow for data from different institutes, scanners and
acquired with varying protocols to be processed by one single algorithm. This
is particularly true for neural networks where imaging modalities are typically
treated as color channels. Here we need to ensure that the value ranges match
not only between patients but between the modalities as well in order to avoid
initial biases of the network. We found the following simple workflow to work
surprisingly well. First, we normalize each modality of each patient indepen-
dently by subtracting the mean and dividing by the standard deviation of the
brain region. We then clip the resulting images at [−5, 5] to remove outliers and
subsequently rescale to [0, 1], with the non-brain region being set to 0.

Network architecture Our network is inspired by the U-Net architecture [9].
We designed the network to process large 3D input blocks of 128x128x128 voxels.
In contrast to many previous approaches who manually combined different input
resolutions or pathways with varying filter sizes, the U-Net based approach al-
lows the network to intrinsically recombine different scales throughout the entire
network. Just like the U-Net, our architecture comprises a context aggregation
pathway that encodes increasingly abstract representations of the input as we
progress deeper into the network, followed by a localization pathway that re-
combines these representations with shallower features to precisely localize the
structures of interest. We refer to the vertical depth (the depth in the U shape)
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as level, with higher levels being lower spatial resolution, but higher dimensional
feature representations. The activations in the context pathway are computed by
context modules. Likewise, we call the processing blocks in the localization path-
way localization modules. Each context module is in fact a pre-activation residual
block [12] with two 3x3x3 convolutional layers and a dropout layer (pdrop = 0.3)
in between. Context modules are connected by stride 2 3x3x3 convolutions. We
increase the feature map resolution in the localization pathway by means of up-
scaling (size 2, stride 2) followed by a 3x3x3 convolution that halves the number
of feature maps (upsampling module). Following the upsampling, feature maps
from the localization pathway are concatenated with feature maps from the con-
text pathway and subsequently passed to a localization module. A localization
module consists of a 3x3x3 convolution followed by a 1x1x1 convolution and
halves the number of feature maps. Inspired by [8] we employ deep supervision
in the localization pathway by integrating segmentation layers at different levels
of the network and combining them via elementwise summation to form the final
network output. Throughout the network we use leaky ReLu nonlinearities for
all feature map computing convolutions. We furthermore replace the traditional
batch with instance normalization [13] since we found that the stochasticity
induced by small batch sizes destabilizes batch normalization.

Training Procedure Our network architecture is trained with randomly sam-
pled patches of size 128x128x128 voxels and batch size 2. We refer to an epoch
as an iteration over 100 batches and train for a total of 300 epochs. Training is
done using the ADAM optimizer with an initial learning rate lrinit = 5 · 10−4,
the following learning rate schedule: lrinit · 0.985epoch and a l2 weight decay of
10−5.

One challenge in medical image segmentation is the class imbalance in the
data that hampers the training when using the conventional categorical crossen-
tropy loss. In the BraTS 2017 training data for example, there is 166 times as
much background (label 0) as there is enhancing tumor (label 4). We approach
this issue by formulating a multiclass Dice loss function that is differentiable and
can be easily integrated into deep learning frameworks:

Ldc = − 2

|K|
∑
k∈K

∑
i u

k
i v

k
i∑

i u
k
i +

∑
i v

k
i

(1)

where u is the softmax output of the network and v is a one hot encoding
of the ground truth segmentation map. Both u and v have shape i by c with i
being the number of pixels in the training patch and k ∈ K being the classes.

When training large neural networks from limited training data, special care
has to be taken to prevent overfitting. We address this problem by utilizing a
large variety of data augmentation techniques. Whenever possible, we initialize
these techniques using aggressive parameters that we subsequently attenuate
over the course of the training. The following augmentation techniques were
applied on the fly during training: random rotations, random scaling, random
elastic deformations, gamma correction augmentation and mirroring.
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The fully convolutional nature of our network allows to process arbitrarily
sized inputs. At test time we therefore segment an entire patient at once, alle-
viating problems that may arise when computing the segmentation in tiles with
a network that has padded convolutions. We furthermore use test time data
augmentation by mirroring the images and averaging the softmax outputs.

2.2 Survival Prediction

The task of survival prediction underpins the clinical relevance of the BraTS chal-
lenge, but at the same time is very challenging, particularly due to the absence
of treatment information. For this subchallenge, only the image information and
the age of the patients was provided. Our approach to survival prediction is based
on radiomics. We characterize the tumors using image based features that are
computed on the segmentation masks. We compute shape features (13 features),
first order statistics (19 features) and gray level co-occurence matrix features
(28 features) with the pyradiomics package [14]. The tumor regions for which we
computed the features were the edema (ede), enhancing tumor (enh), necrosis
(nec), tumor core (core) and whole tumor (whole). We computed only shape
features for edema and the whole tumor, shape and first order features for core
and the entire feature set for necrosis and enhancing. With the image features
being computed for all modalities, we extracted a total of 517 features.

These features are then used for training a regression ensemble for survival
prediction. Random forests are well established in the radiomics community for
performing well, especially when many features but only few training data are
available. These properties make random forest regressors the prime choice for
the scenario at hand (518 features, 163 training cases). We train a random forest
regressor (RFR) with 1000 trees and the mean squared error as split criterion.
Additionally, we designed an ensemble of multilayer perceptrons (MLP) to com-
plement the output of the regression forest. The ensemble consists of 15 MLPs,
each with 3 hidden layers, 64 units per layer and trained with a mean squared
error loss function. We use batch normalization, dropout (pdrop = 0.5) and add
gaussian noise (µ = 0, σ = 0.1) in each hidden layer. The outputs of the RFR
and the MLP ensemble are averaged to obtain our final prediction.

3 Results

Segmentation We trained and evaluated our network on the BraTS 2017 and
2015 training datasets via five fold cross-validation. No external data was used
and the network was trained from scratch. Furthermore, we used the five net-
works obtained by the corresponding cross-validation as an ensemble to predict
the respective validation(BraTS 2017) and test (BraTS 2015) set. Both the train-
ing set and validation/test set results were evaluated using the online evaluation
platforms to ensure comparability with other participants.

Table 1 compares the performance of our algorithm to other state of the art
methods on the BraTS 2015 test set. Our method compares favorably to other
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Fig. 2. Qualitative segmentation result. Our approach is capable of segmenting large
as well as fine grained regions accurately.

Dice Sensitivity PPV
whole core enh. whole core enh. whole core enh.

Kamnitsas et al. [6] 0.85 0.67 0.63 0.88 0.60 0.67 0.85 0.86 0.63
Kayalibay et al. [8] 0.85 0.72 0.61 0.91 0.73 0.67 0.82 0.77 0.61
ours 0.85 0.74 0.64 0.91 0.73 0.72 0.83 0.80 0.63

Table 1. BraTS 2015 test set results.

state of the art neural networks and is currently ranked first in the BraTS 2015
test set online leaderboard. In Table 2 we show an overview over the segmentation
performance of our model on the BraTS 2017 dataset. A qualitative segmentation
result (Brats17 TCIA 469 1) is shown in Figure 2. Notably, we achieve dice
scores of 0.896, 0.797 and 0.732 for whole, core and enhancing, respectively, on
the BraTS 2017 validation set. This result places us among the best performing
methods according to the online validation leaderboard.

Survival Prediction We extensively evaluated the components of our regres-
sion ensemble as well as different feature sets with the aim of minimizing the
mean squared error by running 5-fold cross-validations on the 163 provided train-
ing cases. A summary of our findings for both the ground truth and our seg-
mentations is shown in Table 3. We observed that the random forest regressor
performs very well across all feature sets while the MLP ensemble is much less
stable. The overall best results were obtained by averaging the MLP ensem-
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Dataset
Dice Sensitivity Specificity Hausdorff Dist.

whole core enh. whole core enh. whole core enh. whole core enh.

BraTS 2017 Train 0.895 0.828 0.707 0.890 0.831 0.800 0.995 0.997 0.998 6.04 6.95 6.24
BraTS 2017 Val 0.896 0.797 0.732 0.896 0.781 0.790 0.996 0.999 0.998 6.97 9.48 4.55

Table 2. Results for the BraTS 2017 dataset. Train: 5 fold cross-validation on the
training data (285 cases). Val: Result on the validation dataset (46 cases).

Features
Ground Truth Segmentation Our Segmentation
RFR MLP ens combined RFR MLP ens combined

shape, age (66) 334.89 352.00 339.61 353.12 343.19 335.08
glcm, age (225) 348.14 462.16 381.25 350.78 388.99 357.41
first order, age (229) 358.69 388.44 362.20 354.66 381.42 355.89
shape, glcm, age (290) 344.86 431.96 367.14 346.40 378.73 349.13
shape, first order, age (294) 352.64 372.59 350.62 351.56 360.24 342.46
glcm, first order, age (453) 353.18 443.64 378.83 354.30 383.82 356.25
all (518) 350.40 385.66 354.86 352.95 372.04 348.55

Table 3. Survival prediction experiments. We trained a random forest regressor (RFR)
and a MLP ensemble (MLP ens). Averaging RFR and MLP ensemble yields the com-
bined result. The best root mean squared error is achieved when using RFR and MLP
ensemble together with only shape features and the patients age.

ble output with the one from the random forest regressor (column combined)
and using only shape features and the age of a patient. Interestingly, while the
random forest performance is almost identical between ground truth and our
segmentations, the MLP ensemble performs better on our segmentations for all
feature sets, which is also reflected by the combined results. The best root mean
squared error we achieved was 335.08 (mean absolute error 232.76).

4 Discussion

In this paper we presented contribution to the BraTS 2017 challenge. For the
segmentation part of the challenge we developed a deep convolutional neural
network architecture which was trained using extensive data augmentation and
a dice loss formulation. We achieve state of the art results on BraTS 2015 and
presented promising scores on the BraTS 2017 validation set. Training time was
of about five days per network. Due to time restrictions we were limited in the
number of architectural variants and data augmentation methods we could ex-
plore, yet we expect to find even better performing constellations for our final
test set submission in the near future. Careful architecture optimizations already
allowed us to train with large 128x128x128 patches and a batch size of 2 with 16
filters in the highest level, which is significantly more than in [8]. Training with
larger batch sizes and more convolutional filters in a multi-GPU setup should
yield further improvements, especially provided that we did not observe signifi-
cant overfitting in our experiments. While most of our effort was concentrated
on the segmentation part of the challenge, we also proposed an ensemble of a
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random forest regressor and a multilayer perceptron ensemble for the survival
prediction subchallenge. By using only shape based features, we achieved a root
mean squared error of 335.08 and a mean absolute error of 232.76 in a five fold
cross-validation on the training data and using our segmentations.
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Abstract. Brain tumor segmentation using multi-modal MRI data sets is im-
portant for diagnosis, surgery and follow up evaluation. In this paper, a fully con-
volutional network (FCN) with hypercolumns features (e.g. PixelNet) utilizes for 
automatic brain tumor segmentation containing low and high-grade glioblasto-
mas. Though pixel level convolutional predictors like fully-convolutional net-
works (FCN), are computationally efficient, such approaches are not statistically 
efficient during learning precisely because spatial redundancy limits the infor-
mation learned from neighboring pixels. PixelNet extracts features from multiple 
layers that correspond to the same pixel and samples a modest number of pixels 
across a small number of images for each SGD (Stochastic gradient descent) 
batch update. PixelNet has achieved whole tumor dice accuracy 90% and 87% 
for training and validation respectively. 

Keywords: Brain tumor segmentation, Gliomas, BRATS, Deep Learning, Con-
volutional Neural Network, Pixel level segmentation, Hypercolumn. 

1 Introduction 

It is very important to segment the gliomas and its intra-tumoral structures as well as 
estimate relative volume to monitor the progression, assessment, treatment planning 
and follow-up studies. Generally, the segmentation of gliomas observes in various re-
gions such as active tumorous tissue, necrotic tissue, and the peritumoral edematous 
which defined through intensity changes relative to the surrounding normal tissue. 
However, gliomas or glioblastomas are usually spread out, poorly contrasted and inten-
sity information being disseminated across various modalities that make them difficult 
to segment [1]. The tumor intensity also differs across the patients like HGG patients 
the tumor consists of enhancing, non-enhancing and necrotic parts, while in the LGG 
patients it is not necessarily to include an enhancing part [2]. Due to inconsistency and 
diversity of MRI acquisition parameters [3] and hardware variations, there are large 
difference in appearance, shape and intensity ranges among the same sequences and 
acquisition scanners [5], which make the segmentation more challenging. Thus, physi-
cians conventionally use rough evaluation or manual segmentation; however, manual 
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segmentation is time-consuming and laborious task that is inclined to misinterpretation 
and observer bias [4]. 

In recent years, Deep Learning (DL) have drawn increasing attention medical appli-
cations such as in object detection [6, 7], semantic segmentation [8] and classification 
[9]. DL models like convolutional neural networks (CNN) are capable of learning high 
level and task adaptive hierarchical features from training data and take part as an ef-
fective approach. Havae et al. [10] build a CNN based two-pathway cascade network 
which performs a two-phase training using both local and global contextual features 
and tackle difficulties related to the imbalance of tumor labels in data. Another similar 
approach DeepMedic [11] uses two convolutional parallel pathways and 3D CNN ar-
chitecture with 11-layers for brain lesion segmentation. Later, modified version of 
DeepMedic with residual connection utilize for brain tumor segmentation [12]. On the 
other hand, Pandian et al. [13] and Casamitjana et al. [14] use 3D volumetric CNN to 
train sub- volume of multi-modal MRIs and show that 3D CNN performs well for seg-
mentation as MRI acquires 3D information. The benefit of these architectures is that 
they performed well with a comparatively smaller dataset. However, they are compu-
tationally expensive as it needs 3D kernels and a large number of trainable parameters. 
Alex et al. [15] uses 5 layers deep Stacked Denoising Auto-Encoder (SDAE) and 
Randhawa et al [16] uses 8 layers CNN and Pereira et al. [17] uses deeper CNN archi-
tecture with small kernel for segmenting gliomas from MRI.  

In spatially-invariant label prediction problem like semantic segmentation, every 
separate label per pixel predicts using a convolutional architecture. As a result, gradient 
based learning like Stochastic gradient descent (SGD) treats training data as sampled 
independently and form an identical distribution [18]. Hyvärinen et al. [19] demonstrate 
that pixel in a given image is highly correlated and neighbouring pixels are not inde-
pendent. To capture the high-level global context and minimize the loss of the contex-
tual information in higher convolutional layers, there have built many predictors based 
on multiscale feature extraction from multiple layers of a CNN [20]. Hariharan et al. 
[21] extracted features of the same pixels from multiple layers and accumulate in a 
feature vector called “Hypercolumns”. To extract feature, FCNs [22] efficiently imple-
mented linear prediction in a coarse to fine manner. To reduce memory footprint 
DeepLab [23] incorporate filter dilation and linear-weighted fusion in fully connected 
layers. ParseNet [24] averages the pooling feature by normalization and concatenation 
to add spatial context for a layer response. PixelNet [25] adopt both Hariharan et al. 
[21] and ParseNet [24] to build hypercolumn and concatenate spatial context in the 
layer where the tradeoff between statistical and computational efficiency for convolu-
tional learning. PixelNet shows state of art performance for in BRATS 2017 
[27,28,29,30] training and validation dataset. 

2 Methodology 

PixelNet extract multi-scale convolution and feature and concatenate them as hypercol-
umn to ensure all local and global contextual information in the learning phase (Fig. 1). 
A hyper descriptor can be written as:  
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Fig. 1. Three modalitities (Flair, T1, T1c) input in a CNN and extract hypercolumn descriptor for 
a sample pixel from multiple convolutional layers. The hypercolumn descriptor is then fed to a 
multi-layer perception for non-linear optimization. 

 hp = [c1(p), c2(p), ..., cM(p)] (1) 

where hp denote the multiscale hypercolumn features for the pixel p, and ci(p) denote 
the feature vector from layer i. PixelNet considers pixel wise prediction as operating 
over hypercolumn features. For example, the final prediction for pixel p, 

 fq,p(X) = g(hp(X)) (2) 

where q represent both hypercolumn features h and pixel wise predictor g. q updates 
by using SGD training. We use a series of fully connected layers followed by ReLU 
activation function similar to VGG-16 [26] to implement non-linear predictor. We 
adopt sparse pixel prediction at training time for efficient mini-batch generation. In 
sparse prediction, hypercolumn features hp choose from dense convolutional responses 
at all layers by computing the 4 discrete locations in the feature map ci (for ith layer) 
closest to sampled pixel p∈P and finally apply bilinear interpolation to get ith layer 
response in hypercolumn. 

3 Experiment 

3.1 Dataset 

BRATS 2017 (Brain Tumor Image Segmentation Benchmark) [27, 28, 29, 30] training 
database consists in total 285 cases of patients. It is a multi-modal MRI scans of 210 
high-grade glioma (HGG) and 75 low-grade glioma (LGG) and 4 different modalities 
including T1 (spin- lattice relaxation), T1c (T1-contrasted), T2 (spin-spin relaxation) 
and FLAIR (fluid attenuation inversion recovery). Each scan is a continuous 3D volume 
of 155 2D slices of size 240x240. The volume of the various modalities is already skull-
stripped, aligned with T1c and interpolated to 1 mm voxel resolution. The provided 
ground truth with manual segmentation includes three labels: GD-enhancing tumor (ET 
— label 4), the peritumoral edema (ED — label 2), and the necrotic and non-enhancing 
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tumor (NCR/NET — label 1). The predicted labels are evaluated by merging three re-
gions: whole tumor (WT: all four labels), tumor core (TC: 1,2) and enhancing tumor 
(ET: 4). 

3.2 Training and Evaluation for Segmentation Task 

We use depth slicing images on axial orientation on the mixed HGG and LGG data 
(285 MRI cases in total). However, this dataset is highly imbalance where ground-truth 
contains 98% pixel are healthy tissue (label 0) and remaining are also unequal ratios of 
four ROI labels such as edema, enhancing, necrotic and non-enhancing. We deal this 
issue by ignoring all the blank slices in groundtruth (both background and healthy issue) 
and train PixelNet with corresponding 3 modalities such as flair, T1C and T2. So we 
ignore T1 scan to see the performance of the PixelNet. Though BRATS 2017 has in 
total 44175 (285x155) slices, we utilize only 18924 (43% data) slices corresponding to 
ground-truth with non-zero class (contains at least one class 1 or 2 or 4) in our first 
observation. We use Caffe deep learning platform to perform all of our experiments. 

Table 1. Dice and Sensitivity for BRATS 2017 training dataset 

Level Dice Sensitivity 
ET WT TC ET WT TC 

Mean 0.711 0.909 0.866 0.771 0.897 0.831 

StdDev 0.293 0.070 0.115 0.231 0.091 0.139 

Median 0.830 0.929 0.902 0.849 0.924 0.872 

25quantile 0.706 0.896 0.837 0.727 0.872 0.786 

75quantile 0.882 0.946 0.930 0.916 0.951 0.916 

Table 2. Specificity and Hausdorff95 for BRATS 2017 training dataset 

Level Specificity Hausdorff95 
ET WT TC ET WT TC 

Mean 0.998 0.995 0.998 6.946 7.275 6.103 

StdDev 0.002 0.005 0.002 15.362 13.494 11.546 

Median 0.999 0.996 0.999 2.000 3.000 3.162 

25quantile 0.998 0.994 0.998 1.414 2.236 2.236 

75quantile 1.000 0.998 0.999 3.606 4.899 4.583 

After PixelNet prediction, we evaluate all the cases for training set (285 cases) and 
validation (46 cases) using online evaluation portal for BRATS 2017 challenge. Table 
1 and 2 represent the training set evaluation results where whole tumor average Dice 
accuracy is 90% and Hausdorff distance is 7.3 which is quite promising. Table 3 and 4 
shows the evaluation results of validation set where average 87% dice accuracy and 9.8 
Hausdorff distance. Though enhance tumor and tumor core region have lower accuracy 
than whole tumor, the individual accuracy can be considered as state of art performance. 
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Fig. 2 shows some visualized examples of PixelNet prediction with comparing ground-
truth. 

Table 3. Dice and Sensitivity for BRATS 2017 validation dataset 

Level Dice Sensitivity 
ET WT TC ET WT TC 

Mean 0.689 0.876 0.761 0.720 0.861 0.710 

StdDev 0.304 0.086 0.221 0.287 0.136 0.253 

Median 0.829 0.902 0.849 0.840 0.906 0.795 

25quantile 0.625 0.877 0.708 0.657 0.849 0.562 

75quantile 0.881 0.929 0.912 0.883 0.949 0.910 

Table 4. Specificity and Hausdorff95 for BRATS 2017 validation dataset 

Level Specificity Hausdorff95 
ET WT TC ET WT TC 

Mean 0.998 0.995 0.998 12.938 9.820 12.361 

StdDev 0.002 0.005 0.003 26.453 13.516 20.826 

Median 0.999 0.996 0.999 2.449 4.581 5.050 

25quantile 0.998 0.993 0.998 1.799 2.828 3.041 

75quantile 1.000 0.998 1.000 8.569 8.093 11.176 

 

 

 

 

MRI 
 

Ground-Truth 

PixelNet  
prediction 

Fig. 2. PixelNet prediction for BRATS 2017 Training Dataset. 
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Table 5. Dice, Sensitivity and Hausdorff95 for BRATS 2017 validation dataset with reduced 
training data.  

 
Dice Sensitivity Hausdorff95 

ET WT TC ET WT TC ET WT TC 
PixelNet (43% data) 0.689 0.876 0.761 0.720 0.861 0.710 12.938 9.820 12.361 

PixelNet (29% data) 0.677 0.861 0.775 0.722 0.818 0.776 14.675 11.808 23.726 

    To see the small dataset effect to PixelNet we train our model with only 12930 (29% 
data) slices corresponding to ground-truth consisting all three classes (1, 2, 4) and com-
pare the performance with trained model of all non-zero slices or at least one class slices 
(43% data: 18924 slices). Table 5 shows the Dice and Hausdorff95 evaluation for val-
idation dataset by varying amount of training data. PixelNet achieves almost same per-
formance for less dataset.  

4 Conclusion 

We presented an automatic brain tumor segmentation method based on pixel level se-
mantic segmentation. We choose PixelNet which extracts multi layers convolutional 
feature and form hypercolumn. Hypercolumn contains useful contextual information 
and use sparse pixel prediction to generate efficient mini-batch which produces prom-
ising results for Brain tumor segmentation. Though the preliminary results of the ET 
and TC are not good as WT however we are still working on this model to achieve 
better accuracy in all the regions of the tumor.  

Acknowledgments: I would like to thank Aayush Bansal, the author of PixelNet [25], 
for the assistance to implement PixelNet for this project. 
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Abstract. In this work, we present a multi-task, 3D Fully Connected
Network (FCN) architecture for brain tumor segmentation. Our method
includes a multi-scale loss function on predictions given at each reso-
lution of the FCN. Using this approach, the higher resolution features
can be combined with the initial segmentation at a lower resolution so
that the FCN models context in both the image and label domains. The
model is trained using a multi-scale loss function and a curriculum on
sample weights is employed to address class imbalance, showing compet-
itive results for brain tumor segmentation. Prediction results are not yet
available.

1 Introduction

In this paper, we present a 3D fully connected network with multi-scale loss
for the segmentation of brain tumours. Our framework was submitted to the
2017 MICCAI Brain Tumor Segmentation (BraTS) Challenge [1–3, 9]. The 2017
BraTS Challenge is comprised of two tasks: segmentation of high and low grade
glioma in multi-channel MRI, and the prediction of patient survival time.

Brain tumor segmentation is a challenging task due, primarily, to three
sources of variability across patient images: (1) Variability across size, shape,
and texture of gliomas and surrounding edema, (2) variability in normal brain
anatomy, and (3) variability in intensity range and contrast in qualitative MR
imaging modalities. Additionally, the proportion of positive tumor classes to nor-
mal brain anatomy is very low, resulting in extreme class imbalance. Successful
methods tackling this problem must then model local and global context in the
raw imaging data, account for local and global interactions between classes, and
address the difficulties arising from class imbalance.

Popular approaches to brain tumour segmentation include probabilistic graph-
ical models [9, 11], classical machine learning [9], and deep learning [5, 6]. Prob-
abilistic graphical models address the challenges by modelling the statistical
distributions of image intensities and textures over the tumor classes, while
potentially also incorporating atlas derived spatial prior probability maps for
normal brain structures [11]. Incorporation of pixel and structure level Markov
Random Field (MRF) modelling has also been used to capture local and global
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interactions between classes [11]. Machine learning techniques capture local and
global context using features derived from hand crafted filters, which are then
used as input to Random Forrest or Support Vector Machine models for pixel
wise classification [9].

Deep learning approaches to brain tumor segmentation have been explored,
through the use of Fully Convolutional Networks (FCNs) [8] or UNets [10]. Fully
Convolutional Networks have shown to be effective solutions for semantic seg-
mentation in both natural [8] and medical images [5, 6, 10]. This is due to their
ability to learn and combine meaningful multi-scale features for pixel classifi-
cation. Furthermore, these models do not generally require extensive data pre-
processing to give state of the art results [6]. In this manner, FCNs address
the problem of modelling context in the imaging domain as well as, indirectly,
the problems arising from image intensity and contrast variability in MRI. One
limitation of FCNs is that they do not explicitly model context in the label do-
main. This limitation has been addressed by cascading an FCN with a graphical
model such as a CRF [6]. This approach has been shown to improve the results
of FCNs applied to the problem of stroke lesion segmentation [6], but generally
requires a two stage model. Incorporating both an FCN and a CRF into a single,
end-to-end model is still an open research area.

In this work, we present a multi-task 3D FCN architecture for brain tumor
segmentation. Our method includes a multi-scale loss function on predictions
given at each resolution of the FCN. In this way, the higher resolution features
can be combined with the initial segmentation at a lower resolution so that
the FCN models context in both the image and label domains. The model is
trained using a multi-scale loss function and a curriculum on sample weights
is employed to address class imbalance, showing competitive results for brain
tumor segmentation.

The BRaTs challenge also involves a task for the prediction of patient sur-
vival. Prediction of clinical outcome in medical imaging present similar chal-
lenges in this context, compounded by the relatively small amount of training
data available. Prediction tasks are usually carried out using anatomical imaging
biomarkers (such as volume, shape, and texture of various structures), and clin-
ical data as features for statistical, or machine learning models [1, 4]. We are in
the process of incorporating patient survival prediction into the FCN network.
Results for patient survival prediction have not yet been completed at the time
of this submission.

2 Method

We now describe the FCN framework for brain tumour segmentation. The choice
of method is informed by its capacity to address the four major challenges in
brain tumor segmentation, namely: modelling context in the image domain, mod-
elling context in the label domain, addressing the qualitative nature of MRI, and
addressing the class imbalance persistent in medical imaging tasks.
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Fully Convolutional Networks are are trained ”online,” which allows for the
employment of a learning curriculum to address the class imbalance problem.
Here we use pixel-wise sample weighting so that each training example will
contribute to the loss based on the frequency of occurrence for its class. This
forces the model to learn features for under represented classes that otherwise
would have little influence on the objective function. The class weights are then
decayed at each training iteration until all samples are equally weighted.

2.1 Model Architecture

The model architecture is shown in Figure 1. White boxes indicate model in-
puts, here a multi-channel MR image. Red boxes indicate model outputs. In
this case confidence maps for each class to be segmented. Blue boxes indicate
feature maps. Feature maps are extracted using learned 3D convolution opera-
tions. Green boxes indicate feature vectors. The feature vectors are produced by
a global average pooling operation on each feature map. This results in feature
vectors to be used for prediction. Each box contains the number of features and
size of feature map if applicable. Arrows indicate operations. The color code for
each operation is shown in the figure.

2.2 Loss Function

Here we describe the objective functions that are optimized during training.
Let a given training data set have N pixels, truth segmentation distributions
p = {p1...pM} for K classes, and a survival time t. Further, let the model pro-
duce segmentation maps q = {q1...qM} at M resolutions, and a survival time
prediction t̂. Finally to each segmentation class corresponds a weight wk and
the regression target has a corresponding weight wt The objective function for
segmentation when using categorical cross entropy is then:

LS = −
M∑
i=1

N∑
j=1

K∑
l=1

wk × pi,j,k × ln (qi,j,k). (1)

The objective function for survival time regression or classification is given by:

LT = wt × L?
t

(
t, t̂
)
, (2)

where, L?
t is an appropriate objective function, for example, squared error for

regression. The model can be jointly optimized for segmentation and outcome
prediction by taking a weighted sum of these two losses:

L = λSLS + λTLT . (3)
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Fig. 1. Architecture of model.

2.3 Curriculum Sample Weighting

The sample weights, w = {w1...wK} and wt are decayed over each epoch n
according to the following curriculum:

w?(n) =
1

f?
× rn + 1, (4)

where f? is the frequency of occurrence of a given target over the training set
and r is a rate parameter on (0, 1). Notice that the weights converge to 1 as the
number of epochs grows large ensuring that all samples receive an equal weight
at the later training stages.

3 Experiments and Results

3.1 Data

BraTS 2017 Training Set. The BraTS 2017 training data set is comprised
of 210 high-grade and 75 low-grade glioma patient data sets. Each data set
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contains a T1, T1 post contrast (T1c), T2, and FLAIR MR image, along with
an expert tumor segmentation. Each brain tumor is segmented into 3 classes:
edema, necrotic/non-enhancing core, and enhancing tumor core. Survival time
in days and age in years is provided for 164 of the high-grade data sets [1–3, 9].

BraTS 2017 Validation Set. The BraTS 2017 validation data set is comprised
of 46 patient data sets. Each data set contains a T1, T1 post contrast (T1c),
T2, and FLAIR MR image. No expert tumor segmentation masks are provided
and the grade of each glioma is not specified [1–3, 9].

3.2 Preprocessing

The challenge MRI data have been skull stripped and co-registered by the or-
ganizers [1–3, 9]. We have done minimal additional preprocessing. Namely, we
standardize the intensities of each image using the mean and standard deviation
over the masked region of a given MR image, and the images are cropped to
184x200x152.

3.3 5-Fold Cross Validation

We employ 5-fold cross validation on the training set for hyper-parameter op-
timization. The BraTS 2017 training set is randomly split into five folds with
57 patient data sets each. For each test fold a model is trained on three and
validated on one of the remaining folds.

Parameters We optimize the loss function in equation 3 using Adam [7] with
a learning rate of 0.0002 and batch size of 1. The decay rate r in equation 4 is
set to 0.95. The initial weights in equation 4 are set to [1, 210, 90, 280] for back-
ground, tumor core, edema, and enhancing tumor, respectively. We regularize
the model using data augmentation, where at each training iteration a random
affine transformation is applied to the image, segmentation mask, and sample
weights. Random rotation and shear angles in degrees are drawn independently
from a unit normal distribution. Random scales for each spatial dimension are
drawn independently from N (1,

(
1
15 )2

)
. Images are also randomly flipped left to

right.

Learning Curves Figure 2 shows an example of the evolution of the dice scores
for tumor core, enhancing tumor, and whole tumor for one of the 5-fold cross
validation experiments. We see that the curriculum results in stable training and
that the model does not over fit.
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(a) (b)

Fig. 2. Tracking dice scores during training. In these two plots we show the training
curves for one of the five cross-validation experiments. Figure 2a shows the dice scores
for training. Figure 2b shows the dice scores for validation.

3.4 Quantitative Results

Tables 1 and 2 show the results for the challenge metrics on the training and
validation data sets, respectively. A visual comparison of these results between
the training and validation sets is shown in Figure 3. We can see consistent
performance on both the training and validation data, which indicates that this
model generalizes well to unseen examples.

Dice Sensitivity Specificity Hausdorf-95
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.682 0.886 0.789 0.750 0.878 0.782 0.997 0.994 0.996 6.58 7.11 8.11
StdDev 0.285 0.077 0.213 0.248 0.114 0.222 0.003 0.006 0.007 10.3 10.5 10.4
Median 0.789 0.909 0.877 0.847 0.916 0.868 0.998 0.996 0.998 2.83 3.61 4.12
25quantile 0.638 0.865 0.734 0.678 0.845 0.710 0.997 0.993 0.997 2.00 2.24 2.24
75quantile 0.863 0.937 0.923 0.915 0.953 0.924 0.999 0.998 0.999 5.66 6.71 9.38

Table 1. Challenge Metric Statistics: 5-Fold Cross-Validation on BraTS 2017 Training
Set. Results are specified for enhancing tumor (ET), whole tumor (WT), and tumor
core (TC)

3.5 Qualitative Results

Figure 4 shows example segmentation masks on predicted high-grade test cases
from the 5-fold cross validation experiment. Figure 5 shows example segmen-
tation masks on predicted low-grade test cases from the 5-fold cross validation
experiment. In both cases we see segmentation results consistent with the pro-
vided ground truth images. Furthermore, we see that the model has learned to
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Dice Sensitivity Specificity Hausdorf-95
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.713 0.899 0.751 0.732 0.904 0.720 0.998 0.995 0.998 6.98 4.16 8.65
StdDev 0.291 0.070 0.240 0.288 0.102 0.259 0.003 0.004 0.003 12.1 3.37 9.35
Median 0.844 0.908 0.820 0.834 0.939 0.839 0.999 0.996 0.999 3.00 3.08 5.65
25quantile 0.650 0.891 0.685 0.676 0.902 0.558 0.998 0.992 0.998 2.00 2.24 2.24
75quantile 0.891 0.947 0.935 0.905 0.962 0.924 0.999 0.998 0.999 4.24 5.26 11.7

Table 2. Challenge Metric Statistics: BraTS 2017 Validation Set. Results are specified
for enhancing tumor (ET), whole tumor (WT), and tumor core (TC)

model context well by noticing that normal enhancements in the T1c images are
not predicted as enhancing tumor. This holds even when those enhancements
are adjacent to the predicted tumor.

Figure 6 shows example segmentation masks on predicted cases from the
BraTS 2017 validation data. No ground truth masks are provided with this
data. It appears as though each prediction is reasonable.

4 Conclusion

In this work, we showed how a multi-task, 3D FCN architecture can be success-
fully developed for the context of brain tumor segmentation. Our multi-scale
network combines higher resolution features with the lower level segmentation
results, permitting the FCN to model context in both the image and label do-
mains. This architecture includes a multi-scale loss function on predictions given
at each resolution of the segmentation FCN. The model is trained using a curricu-
lum on sample weights to address class imbalance, showing competitive results
for brain tumor segmentation. Prediction results are not yet available.
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Fig. 4. Examples of high-grade glioma segmentation results for BraTS 2017 Training
Data [1–3, 9] 5-fold cross-validation experiment. Segmentation images are overlaid on
preprocessed T1c image. Each row is an axial slice taken from a different patient. The
green label is edema, the red label is non-enhancing or necrotic tumor core, and the
yellow label is enhancing tumor core.
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Fig. 5. Examples of low-grade glioma segmentation results for BraTS 2017 Training
Data [1–3, 9] 5-fold cross-validation experiment. Segmentation images are overlaid on
preprocessed T1c images. Each row is an axial slice taken from different patients. The
green label is edema, the red label is non-enhancing or necrotic tumor core, and the
yellow label is enhancing tumor core.
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Fig. 6. Examples of segmentation results from BraTS 2017 Validation Data [1–3, 9].
Segmentation images are overlaid on unprocessed T1c images. Each image is an axial
slice taken from different patients. The green label is edema, the red label is non-
enhancing or necrotic tumor core, and the yellow label is enhancing tumor core.
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Abstract. Uncertainty measures of medical image analysis technolo-
gies, such as deep learning, are expected to facilitate their clinical ac-
ceptance and synergies with human expertise. Therefore, we propose a
full-resolution residual convolutional neural network (FRRN) for brain
tumor segmentation that quantifies the uncertainty by the principle of
Bayesian Dropout. We further employ uncertainty information to per-
form uncertainty-assisted correction of segmentation results. The pro-
posed Bayesian Dropout FRRN architecture achieves similar segmenta-
tion performance compared to a standard FRRN and a superior result
compared to a clinically-validated state-of-the-art approach. A qualita-
tive evaluation further suggests that uncertainty-assisted corrections can
improve segmentation results.

Keywords: Deep Learning, Brain Tumor Segmentation, Uncertainty es-
timation

1 Introduction

Over the past years, large improvements could be observed in brain tumor seg-
mentation. This is partly due to the adoption of the fast-evolving deep learning
approaches from the field of computer vision. An even more important reason for
the recent advances is the availability of public datasets and online benchmarks
[10]. This progress has later guided research to focus on optimizing model archi-
tectures for achieving high segmentation performance. However, as the accuracy
of these systems still requires expert monitoring of results, clinical applications
such as radiological and high-throughput data analysis would benefit greatly
from additional uncertainty information along with a good segmentation per-
formance. Information on the segmentation uncertainty could be used to e.g.
guide an operator in making manual corrections to the automatic segmentation
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results. In this work, we thus focus on the largely unexplored aspect of quan-
tifying model uncertainty in the context of brain tumor segmentation. Existing
work of uncertainty in brain tumor segmentation include a perturbation-based
approach for conditional random fields [1, 8] and a level set-based method defined
via a Gaussian Process [7]. The limitations of these techniques are their lack of
transferability to neural networks and their restriction to quantify predictive
uncertainty of a given model only.

The aim of this work is to explore uncertainty estimation in deep learning-
based methods for brain tumor segmentation. Therefore, as a baseline we adopt
the methodology of the state-of-the-art full-resolution residual network (FRRN)
[11] architecture. Then, we incorporate the idea of Bayesian Dropouts based on
Gal et al. [5] to obtain model uncertainty. In a first experiment, we compare the
Bayesian FRRN version (B-FRRN) performance to the standard FRRN and to
the existing and clinically-validated brain tumor segmentation approach BraTu-
mIA [9]. The impact of uncertainty-assisted corrections on the final segmentation
result is studied in a second experiment.

2 Methods

In this section, the adopted CNN architecture and the incorporated Bayesian
Dropout are presented.

2.1 FRRN Architecture

The adopted full-resolution residual network (FRRN) [11] is based on two streams;
a residual stream and a pooling stream. The first one is responsible for main-
taining a residual path between the network input and output. This improves
the gradient flow and thus the training. Moreover, the residual stream allows the
network to carry information at full image resolution required for precise seg-
mentation of the image details [11]. The second stream reduces the resolution by
pooling operations before returning to original resolution by upsampling. Due to
the reduced resolution, the filters on the pooling stream can capture contextual
information. An important aspect of the architecture are the connections be-
tween pooling and residual streams. This enables the network to simultaneously
combine both global and local image information [11].

We propose a full-resolution residual network architecture with four max-
pooling/upsampling steps (Figure 1) which takes axial slices of all four sequences
(T1-weighted, T1-weighted post-contrast, T2-weighted, FLAIR) as input. A de-
tailed view of the residual units (RU) and full-resolution residual units (FRRU)
is shown in Figure 2.

2.2 Bayesian Uncertainty Estimation

As presented in [5], the Dropout regularization can be interpreted as an approx-
imation for Bayesian inference over the weights of the network. A fully Bayesian
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Fig. 1: Full-resolution residual network with four pooling steps. Dashed lines
represent the exchange connections between the residual and pooling streams.

(a) (b)

Fig. 2: Detailed view of the units of the architecture in Figure 1. (a) The residual
unit (RU) including its residual connection. (b) The full-resolution residual unit
(FRRU) where pool and up adapt to the pooling and residual stream, respec-
tively. The 1 × 1 convolution aligns the number of feature channels among the
streams. Unless specified differently, the convolution kernels are of size 3 × 3.

network would require applying Dropout after each convolution layer. Following
Kendall et al. [6], we omit the strongly regularizing fully Bayesian network, in
favor of more computationally efficient training times. As depicted in Figure 3,
the Dropout layers of the Bayesian Dropout FRRN (B-FRRN) are placed after
each pooling and before each upsampling operation.

Fig. 3: Positions of the Dropout layers in the B-FRRN network. Residual path
is omitted for the sake of clarity.
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The Dropouts are applied during training and test time. At test time, the
Dropouts produce randomly sampled networks, which can be viewed as Monte
Carlo samples over the posterior distribution of the models. K network samples
are used to produce one prediction with uncertainty estimation. The classifi-
cation of one voxel is determined by the average of class probabilities over K
predictions. As described in [6], the class uncertainty can be computed from the
variance in the softmax probabilities of the K predictions. In order to correct a
prediction with the help of the uncertainty, we compute the largest and most un-
certain regions. These regions can efficiently guide the clinician to the locations
to be revised.

3 Experiments & Results

In this section, we first focus on the performance of B-FRRN in comparison to
BraTumIA [9] and a FRRN [11]. In a second experiment, we perform a qualitative
evaluation of the uncertainty-assisted corrections.

3.1 Comparison between B-FRRN, FRRN & BraTumIA

According to Kendall et al. [6] a minimum of approximately K = 6 Dropout
Monte Carlo samples are required to improve segmentation performance (on the
CamVid dataset) compared to an architecture where the Dropout weights are
averaged during testing. For the B-FRRN model we use a rather large K = 20.
The reason is that, compared to [6], we are not only interested in the segmenta-
tion performance but also in the uncertainty comprised in the K predictions.

(a) (b)

Fig. 4: Boxplots for the Dice coefficient (a) and Hausdorff (95th percentile) dis-
tance (b).

The comparison of the approaches was performed on the BraTS17 validation
dataset [10, 2–4]. While the FRRN and B-FRRN models are trained on 100
randomly selected subjects of the BraTS17 training dataset [10, 2–4], we used a
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Table 1: Quantitative results of the comparison between BraTumIA, FRRN and
Bayesian FRRN. Bold numbers highlight the best result for a given metric and
tumor region (ET=enhancing tumor, WT=whole tumor, TC=tumor core).

Model ET WT TC

Dice
BraTumIA 0.606 (±0.316) 0.827 (±0.094) 0.635 (±0.299)

FRRN 0.678 (±0.304) 0.876 (±0.095) 0.701 (±0.262)

B-FRRN 0.674 (±0.316) 0.884 (±0.080) 0.726 (±0.251)

Sensitivity
BraTumIA 0.705 (±0.293) 0.882 (±0.102) 0.640 (±0.319)

FRRN 0.732 (±0.272) 0.848 (±0.138) 0.712 (±0.283)

B-FRRN 0.759 (±0.271) 0.879 (±0.117) 0.705 (±0.266)

Specificity
BraTumIA 0.998 (±0.003) 0.988 (±0.008) 0.997 (±0.003)

FRRN 0.998 (±0.003) 0.996 (±0.003) 0.996 (±0.005)

B-FRRN 0.998 (±0.003) 0.994 (±0.005) 0.997 (±0.005)

Hausdorff95[mm]

BraTumIA 14.92 (±25.94) 24.27 (±27.49) 24.85 (±26.01)

FRRN 9.00 (±17.09) 7.24 (±10.62) 13.34 (±16.86)

B-FRRN 6.63 (±10.80) 7.93 (±11.20) 10.91 (±9.22)

BraTumIA version that was trained on a independent dataset consisting of 54
MRI examinations (described in more detail in [9]). Table 1 lists a summary of
the achieved results for the three methods. Additionally, the distribution of the
obtained Dice coefficients and Hausdorff (95th percentile) distances are presented
in Figure 4.

3.2 Uncertainty-assisted Correction

The uncertainty obtained from the B-FRRN model was used to perform the cor-
rections with a brushing tool [13]. To guide the uncertainty-assisted corrections
on the segmentation, the largest and most uncertain regions were visualized in
form of a colored overlay, see Figure 5 (left).

Two qualitative results of segmentation errors that could be detected due
to the uncertainty-guidance, are shown in Figure 5. Table 2 presents the Dice
coefficients before and after uncertainty-assisted correction for the same two
subjects.

4 Survival Prediction

The survival prediction for the Brats 2017 database was carried out in two
phases:

1. Feature selection: filtering with extensive cross-validation processes on the
training set based on several information measurements (e.g. Gini impurity,
variance reduction with respect to target attribute)

Proceedings of the 6th MICCAI BraTS Challenge (2017) 131 of 347



6 Uncertainty-assisted Brain Tumor Segmentation

Fig. 5: Uncertainty-assisted correction for two subjects. (left) Uncertain regions
that are used to locate erroneously segmented tissues (middle, right). The arrows
point at the areas of interest.

Table 2: Comparison between the original B-FRRN segmentation and the
uncertainty-assisted correction of two subjects with rather large uncertain areas
(ET=enhancing tumor, WT=whole tumor, TC=tumor core).

Subject Description ET WT TC

TCIA 290 1
B-FRRN 0.899 0.905 0.846
Corrected 0.899 0.905 0.925

2013 17 1
B-FRRN 0.939 0.929 0.916
Corrected 0.939 0.929 0.937

2. Construction of prediction models: standard machine learning predic-
tion models were trained, together with extensive cross-validation, using with
subsets of the most informative features. The models used were:

- SVM with RBF Kernel.
- Neural Network with linear activation function.
- Sparse Grids.

5 Discussion & Conclusion

The evaluation results (Table 1) reveal that the proposed B-FRRN architecture
achieves results comparable to the standard FRRN and an overall improved seg-
mentation performance compared to BraTumIA. Particularly the Dice coefficient
and Hausdorff distance (95th percentile) results are superior for the the B-FRRN
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approach. Further, Figure 4 shows that the variation in the aforementioned met-
rics is unfailingly higher for BraTumIA compared to the FRRN and B-FRRN
method. The similarity between the results of FRRN and B-FRRN demonstrate
that the Bayesian Dropout approach is equivalent or slightly more performant
then the standard approach.

The quantitative results of the second experiment show that a uncertainty-
assisted correction can enhance the segmentation results. We could primarily
observe large uncertain areas where edema is erroneously classified as non-
enhancing tumor (shown in Figure 5). Correcting these errors led to an improved
segmentation of the tumor core (Table 2). In the case where many small uncertain
areas are detected, the correction is more time-consuming and the measurable
gain marginal. In conclusion, the results showed good segmentation performance
of the proposed network and first evidence suggests that uncertainty-assisted cor-
rections can further improve the segmentation results. For survival prediction,
the following observations were made

– Age was identified as the parameter containing more information regarding
survival.

– Several image-based parameters were also significant features for survival
prediction.

– Subsets of attributes containing age, surface and distance measurements pro-
vided the outstanding prediction results for the mentioned models.

Acknowledgments. This work was supported by the Swiss National Founda-
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Abstract. Deep learning approaches such as convolutional neural nets
have consistently demonstrated to outperform previous methods on chal-
lenging tasks such as dense, semantic segmentation. However, different
models perform differently, with behaviour largely influenced by archi-
tectural choices and training settings. This paper explores ensembles
of multiple models and architectures (EMMA) for robust performance
through aggregation of predictions from a wide range of methods, and
thus reducing the influence of the meta-parameters of individual mod-
els and the risk of overfitting the configuration to a particular database.
EMMA can be seen as an unbiased, generic deep learning model which
is shown to yield excellent performance on the BRATS 2017 challenge.

1 Introduction

Brain tumours are among the most fatal types of cancer [1]. Among the tu-
mours that originally develop in the brain, gliomas are the most frequent [2].
They arise from glioma cells and, depending on their aggressiveness, they can be
broadly categorized into high and low grade gliomas [3,4]. High grade gliomas
(HGG) develop rapidly and aggressively, forming abnormal vessels and often
a necrotic core, accompanied by surrounding oedema and swelling [5,2]. They
are highly malignant, commonly leading to patient death in less than two years
even after treatment [4]. Low-grade gliomas can be benign or malignant, grow
slower, but they may recur and evolve to high grade gliomas, thus their treatment
is also warranted. For treatment of brain tumours, patient undergo radiation,
chemotherapy and surgery [1].

Firstly for diagnosis and monitoring the tumour’s progression, then for treat-
ment planning, and further for assessing the effect of treatment strategy, various
neuro-imaging protocols are employed. Magnetic Resonance imaging (MRI) is
widely employed in both clinical routine and research studies, as it facilitates
tumour analysis by allowing estimation of its extent, its location and investiga-
tion of its subcomponents [2]. This however requires accurate delineation of the
tumour in the images, which proves challenging due to its complex structure and
appearance, the 3D nature of the MR images and the multiple MR sequences
that need to be consulted in parallel for informed judgement. These factors not
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only make manual delineation time-consuming, but also subject to significant
inter- and intra-rater variability [6].

Automatic segmentation systems aim to provide an efficient, objective and
scalable solution. Representative early works are the atlas-based outlier detection
method of [7] and the joint segmentation-registration framework, often guided
by a tumour growth model [8,9,10]. The past few years saw rapid developments
of machine learning methods, with Random Forests being among the most suc-
cessful [11,12,13]. Individual decision trees exhibits low classification bias but
high variance. By averaging over the predictions of multiple trees, de-correlated
by training them with different subsets of the input features, random forests ”av-
erage away” the variance without increasing the bias, which results to their good
generalization. More recently, deep learning based methods, mostly represented
by convolutional neural networks (CNN), have shown very promising results for
segmentation of brain tumour [14,15,16]. Their power is commonly attributed
to the automatic learning of data-driven, task-specific feature detectors during
the optimization.

A large variety of CNN architectures has been proposed in the recent lit-
erature. At the same time, these models typically have a vast number of meta
parameters that need configuration and which greatly influence performance.
When one tries to study the behaviour of CNNs on a given task with respect
to a certain factor, such a pre- or post-processing technique, the results can be
biased by the choice of the architecture and the rest configuration. Additionally,
a configuration highly optimized on a given database may have over-fitted it
and not generalize well to other data or tasks. In this work we push towards
constructing a more generic deep learning model. Inspired by the paradigm of
random forests, we bring together a multitude of different CNN architectures,
configured and trained in different ways in order to achieve high variance be-
tween their results. By bagging together all models, we construct an Ensemble
of Multiple Models and Architectures (EMMA), with the aim of averaging away
model- and configuration-specific behaviours, which then allows studying the be-
haviour of this unbiased generic deep learning model. This is in contrast to the
commonly used ensembles of the same architecture, trained with small variations
such as initial seeds, which results in highly correlated outputs, largely defined
by the main architectural choices. In this preliminary work, we evaluate EMMA
on the validation data of Brain Tumour Segmentation (BRATS) challenge 2017
[28,29,30,31], where we achieve top performance among 45+ competing teams.
This indicates the quality of the model and paves the way for its use in further
analysis.

2 Ensembles of Multiple Models and Architectures

A large number of CNN architectures have been proposed in the literature and
shown promising for the segmentation task. Regarding the architectures, models
commonly differ in depth, number of filters and the way they process multi-scale
context among others. Such architectural choices influence not only the overall
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(a) (b) (c) (d)

Fig. 1: (a) FLAIR and (b) manual annotation of subject 2013 10 1 in training
database of BRATS 2017, depicting oedema (yellow), enhancing (red), non en-
chancing/necrotic core (light blue). (c) Confidence map for the oedema class of
a network trained to minimize cross-entropy or (d) maximize Intersection over
Union (IoU) loss. The choice of loss influences the model’s behaviour. IoU and
Dice (not depicted) losses tend to binarize the decision boundaries. The models
were not trained on the depicted subject.

performance of the model, but also its behaviour. For instance, models with large
receptive fields tend to be influenced less by small details in the image, and can
present improved localisation capabilities. However they may be less precise in
following image details than models emphasizing only local information.

Another key aspect that heavily influences a model’s performance as anal-
ysed in [16] is the class imbalance in a task, appropriate handling of which can
make the difference between low or state of the art performance. This issue
is commonly tackled by employing class-weighted sampling during training or
using a loss function that weights samples appropriately. However weighted sam-
pling or class-weighted loss influences the bias and sensitivity of the model to
each class, defining its behaviour. Other loss functions change the model’s be-
haviour in different manners. For example, it was observed (Fig. 1) that networks
trained with cross-entropy, an information-theoretic loss, tend to present softer
class-confidence maps, in comparison to networks that optimize Intersection over
Union (IoU), Dice or similar losses [17]. This can lead to highly confident but
wrong predictions.

Finally, the choice of different hyper-parameters for the optimization and
regularization can heavily affect the performance of a model. It is often observed
by practitioners that the choice of optimizer and its configuration, for instance its
learning rate, may make the difference between bad and good segmentation. The
sensitivity to all these meta-parameters is a great practical problem, magnified
by the fact that the same meta-parameter setting is not guaranteed to be well
behaved among different network architectures, or even on different tasks and
data. As a result, it is often difficult to draw generic and confident conclusions
without spending a considerable amount of time in optimizing the experimental
settings.
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We build a model that is less biased by such architectural choices and more
robust to suboptimal configuration by ensembling different state-of-the-art ar-
chitectures, configured and trained under widely different settings. We introduce
vast difference between models, with the aim of bagging singletons that are not
strongly correlated. For example, sensitive models may synergize well with spe-
cific models, correcting or supporting each others predictions, with such an en-
semble behaving better than a fusion of sensitive-only models. This way EMMA,
the resulting Ensemble of Multiple Models and Architectures is a collection of
models with low bias but high variance. By averaging over the outputs of all
models, the variance is reduced, random unbiased errors from individual models
are smoothed out, and the final output is more representative of a generic CNN
model.

In the following we describe the individual models used to construct EMMA.

2.1 DeepMedic

Model description: The first network architecture we employ is deepMedic, orig-
inally presented in [18,16]. It is a fully 3D, multi-scale convolutional network,
designed with a focus on efficient processing of 3D images. To achieve this, it
utilizes parallel convolutional pathways that take as input context of the image
at different scales. Pathways operating at lower scales avoid convolving large
volumes at full resolution and thus remain computationally cheap, while they
process information from large spatial extent. Although originally developed for
segmentation of brain lesions, deepMedic was found promising on diverse tasks,
such as segmentation of the placenta from motion corrupted MR ([19]), which
makes it a good candidate for an ensemble that aims to be generic and robust.
We train two different deepMedic models to construct EMMA. The first is the
residual version of the model, as previously employed in BRATS 2016 [20] and
depicted in Fig. 2. The second model is a wider variant, where the number of
feature maps at each layer were doubled.

Training details: The models were trained by extracting multi-scale segments of
the image with a 50% probability centred on healthy tissue and 50% probability
centred on tumour. As previously analysed in [16], this strategy allows the class-
balance to be implicitly regulated by the size of the sampled lesion and the size
of input, which was found to behave well in various tasks. The networks are
trained with cross-entropy, with all meta-parameters adopted from the original
configuration.

2.2 FCN

Model description: We employ 3D fully convolutional networks (FCN) [21] as
components of the ensemble. In its encoding part, FCN performs a number of
convolutions to extract image features and down-samples the feature maps after
every few convolutions to increase the receptive field and learn features at a more
global scale. However, in order for the segmentation to be at high resolution,
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Fig. 2: We used two DeepMedics [16] in our experiments. The smaller of the two
is depicted, where the number of feature maps and their dimension at every
layer are depicted in the format (Number × Size). The second model used in
the ensemble is wider, with double the number of feature maps at every layer.
All kernels and feature maps are 3D, even though not depicted for simplicity.

down-sampling has to be reversed, which is done in the decoder of the network.
FCN performs this by creating multiple segmentation maps from features of
different scales. Segmentation maps from lower scales are up-sampled and then
fused with the segmentations from higher resolutions. In our implementations
down-sampling is performed via convolution with stride 2 and up-sampling via
bilinear interpolation.

We experiment with two FCN architectures. FCN-VGG, depicted in Fig. 3,
uses an adaptation of the VGG network [22] as its encoder. The segmentation
maps from each scale are up-sampled straight to high resolution, are concate-
nated and finally fused into the final classification. The second one, FCN-ResNet,
was constructed by doubling the number of feature maps at every convolutional
layer and adding residual connections [23]. Additionally, the decoder of this ar-
chitecture follows the original FCN [21], with segmentations from lower scales
getting gradually upsampled, first to the resolution of the previous scale, get
fused via element-wise addition with the segmentations from that scale, and then
are up-sampled further. In both architectures, all kernels in the down-sampling
part of the network are of size 3×3×3 and followed by batch normalization and
ReLUs. Zero-padding is used at every layer to equalize input and output dimen-
sions.

Training details: We randomly draw 64×64×64 patches for training, with an
equal probability from each label. We train 3 FCNs for EMMA. First, an FCN-
VGG is trained via maximizing the mean Dice coefficient across label classes as
the loss. Two similar FCN-ResNets are trained, one optimized by maximizing
the Dice loss and one by maximizing the IoU loss. Optimization is performed
using Adam [24] with a learning rate of 0.001.

2.3 U-Net

Model description: We employ a modified 3D version of the original U-Net [25]
architecture as another component of the ensemble. Our U-Net model consists
of a contractive path formed by max-pooling and convolutional layers, followed
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Fig. 3: Our implementation of FCN-VGG, one of the two FCN architectures used
in EMMA. Depicted are the number of feature maps at every layer. All kernels
and feature maps are 3D, even though not depicted for simplicity.

by an expansive phase where the original resolution is achieved through up-
convolutions (up-sampling of the feature maps with repetition, followed by con-
volutional layers) (Fig. 4). Similarly to [25], we employ skip-connections to incor-
porate information from the corresponding feature maps (from the contracting
path) into the expansive phase. However, instead of concatenating these features
as proposed by [25], we follow the strategy suggested in [26] replacing concate-
nations with summations to reduce model complexity. Batch normalization was
used after every hidden convolutional layer. Dropout, at a rate of 50% was used
after the last convolution layer of the contracting path, and after the second and
fourth convolution of the expansive path. Appropriate padding is used at every
layer to equalize input and output dimensions.

Training Details: The U-Net was trained with patches of size 64×64×64. The
patches were sampled with an equal probability being centred around a voxel
from each label, with background as an extra class. Only voxels within the
brain mask were considered. We used stochastic gradient descent for optimization
with AdaDelta [27] as strategy to adapt the learning rate. The initial learning
rate was set to 0.1 while the AdaDelta decay rate was set to 0.95. We used
mini-batches of size 8, categorical cross-entropy for the loss function and weight
decay (L2 weighting factor = 0.00001) for regularization. We considered two data
augmentation strategies: (1) patches where randomly flipped along the left-right
axis in the axial plane and (2) Gaussian noise (µ=0, σ=0.01) was added to the
patches while training.

2.4 Ensembling

The two DeepMedics, the three FCN models and the Unet are trained completely
separately. At testing time, each model segments individually an unseen image
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Fig. 4: Schematic of the adapted Unet used in our experiments. Depicted are the
number of feature maps at every layer. All kernels and feature maps are 3D,
even though not depicted for simplicity.

and outputs its normalized class-confidence maps. The models are then ensem-
bled into EMMA. The ensemble’s confidence maps for each class are created by
calculating for each voxel the average confidence of the individual models for
the voxel to belong to this class. The final segmentation made by the EMMA is
performed by assigning to each voxel the class with the highest confidence.

2.5 Implementation details

The original implementation of DeepMedic was used for the corresponding two
models, along with the default meta-parameters, publicly available on https:

//biomedia.doc.ic.ac.uk/software/deepmedic/. The FCN-ResNet models
were implemented using DLTK, a deep learning library with a focus on medical
imaging applications that allowed quick implementation and experimentation
(https://github.com/DLTK/DLTK). Finally, our adaptation of the Unet will be
released on https://gitlab.com/eferrante.

3 Evaluation

3.1 Material

Our system was evaluated on the data from the 2017 Brain Tumour Segmenta-
tion Challenge (BRATS) [28,29,30,31]. The training set consists of 210 cases with
high grade glioma (HGG) and 75 cases with low grade glioma (LGG), for which
corresponding manual segmentations are provided. The segmentations include
the following tumour tissue labels: 1) necrotic core and non enhancing tumour,
2) oedema, 4) enhancing core. Label 3 is not used. The validation set consists
of 46 cases of both HGG and LGG but the grade is not revealed. Reference
segmentations for the validation set are hidden and evaluation is carried out via
an online system. For evaluation, the 3 predicted labels are merged into different
sets of whole tumour (all labels), the core (labels 1,4) and the enhancing tumour
(label 4). For each subject, four MRI sequences are available, FLAIR, T1, T1
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contrast enhanced (T1ce) and T2. The datasets are pre-processed by the orgaz-
ers and provided as skull-stripped, registered to a common space and resampled
to isotropic 1mm3 resolution. Dimensions of each volume are 240 × 240 × 155.

3.2 Pre-processing

We apply only minimal pre-processing. Each MR sequence and separately for
each subject, is individually normalized by subtracting from each voxel the mean
intensity of brain tissue in that image. We then divide each voxel with the
standard deviation of the intensities within the brain area of the image.

3.3 Results

The six individual models described in Sec. 2 were trained on the whole train-
ing database individually. They were then applied on the blinded validation
database and their predicted class-confidence maps were fused into EMMA pre-
dictions. EMMA’s segmentations were submitted for online evaluation. Despite
that the individual models were not highly optimized, EMMA achieved highest
scores among multiple competing entries. We account this on the wide varia-
tion between the ensembled models, which present significantly different types
of mistakes and behaviours, but when fused, they correct each other to form a
low variance, unbiased system (Fig. 5). Table 1 shows the achieved performance,
along with the next two top performing entries at the time of manuscript sub-
mission.

Table 1: Average performance of EMMA on the blinded validation data of
BRATS 2017 as computed on the online evaluation platform and comparison
to the two highest performing teams out of the 45 entries visible at the time of
manuscript submission. Numbers in bold indicate best performance.

DSC Sensitivity Specificity Hausdorff 95

Enh. Whole Core Enh. Whole Core Enh Whole Core Enh. Whole Core

biomedia1 (EMMA) 75.7 90.2 82.0 79.0 90.9 78.3 99.8 99.5 99.9 4.22 4.56 6.11
UCL-TIG 75.2 89.7 82.5 77.1 91.2 83.9 99.8 99.4 99.7 4.78 3.97 7.60
MIC DKFZ 73.2 89.6 79.7 79.0 89.6 78.1 99.8 99.6 99.9 4.55 6.97 9.48

4 Conclusion

This paper has introduced EMMA, an ensemble of widely varying CNN archi-
tectures, configured and trained under very different settings. By bagging such
heterogeneous collection of networks we aim at constructing a deep-learning
model that is less influenced by individual architectural choices as well as robust
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Fig. 5: FLAIR, T1ce and manual annotation for subject CBICA ABO 1 of the
training database. Also depicted are predictions of individual models, obtained in
preliminary experiments with two-fold validation on the training database, and
their ensembling into EMMA. Green arrows point inconsistent mistakes that are
corrected by the ensembling, while red arrow shows a consistent mistake.

to suboptimal configuration, in order to enable more representative and unbi-
ased analysis. Even though the individual networks were not highly optimized
for the tumour segmentation task, EMMA achieved top performance in the val-
idation stage of the BRATS 2017 challenge, indicating its robustness, which will
be further evaluated in the testing stage of the challenge. This also indicates that
diverse ensembles such as EMMA may also offer strong performance on different
problems without extensive meta-parameter search, which we aim to explore in
the future, and which would enable more straightforward and confident analysis.

Such generic ensemble models could be useful to explore effect of various
factors, such as different data pre-processing techniques or sufficient number
of training data, less biased by individual network choices. A particularly im-
portant practical issue to investigate is whether EMMA is more robust to the
domain shift between the training and testing data, which is strongly affecting
large scale multi-center studies and commonly reduces performance of individual
networks when no domain adaptation methods are employed [32]. Finally, one
could investigate the uncertainty of the ensemble, represented by the entropy
in the predictions of the individual models, which could serve as a better con-
fidence indication than the normalized scores of the individual models [33], the
behaviour of which is highly influenced by training settings (Fig. 1). Consid-
ering uncertainty measures that are not model-specific could reveal what type
of patients or tumours are most challenging for deep-learning based systems to
learn.
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Abstract. Accurate segmentation of gliomas on routine magnetic resonance image (MRI)
scans plays an important role in disease diagnosis, prognosis, and patient treatment planning.
In this paper, we present a fully automated approach, radiomics-based convolutional neural
network (RadCNN), for segmenting both high and low grade gliomas using multi-modal MRI
volumes (T1c, T2w, FLAIR). RadCNN incorporates radiomic texture features (i.e. Haralick,
Gabor, Laws) within DeepMedic (a deep 3D CNN framework; a top performing method in the
BraTS 2016 challenge) to further augment the performance of brain tumor sub-compartment
segmentation. We first identify textural radiomic representations that best separate the dif-
ferent compartments (enhancing tumor, whole tumor, and tumor core) and then feed these
representations as inputs to the CNN classifier for prediction of different sub-comartments.
We hypothesize that textural radiomic representations of lesion sub-compartments will en-
hance the seperation of sub-compartment boundaries, and hence providing these features as
inputs to the deep CNN, over and above raw intensity values alone, will improve the sub-
compartment segmentation. Using a training set of N=241 patients, validation set of N=44,
and test set of N=46 patients, RadCNN method achieved Dice Similarity Coefficient scores
(DSC) of 0.71, 0.89, 0.73 for enhancing tumor, whole tumor, and tumor core, respectively.
Compared to the DeepMedic model, RadCNN showed improvement in DSC scores for both
the enhancing and whole tumors, and demonstrated comparable results in segmenting the
tumor core. Similarly, smaller Hausdroff distance measures were obtained with RadCNN as
compared to the DeepMedic model, across all the sub-compartments. 1

Keywords: Gliomas, Segmentation, Radiomics, Feature selection, CNN

1 Introduction

Gliomas, one of the most common types of primary brain tumors, exhibit phenotypically hetero-
geneous sub-regions comprising of the enhancing and non-enhancing lesion, necrotic core, and the
surrounding edema, each of which contains relevant diagnostic and prognostic information [1]. As
such, accurate estimation of the information (i.e. volume/position) contained within these regions
is critical for diagnosis, treatment planning, and long-term survival assessment. Towards that end,
accurate delineation of the tumor and its sub-regions is required, which, due to their variable shape
and size, poses a significant challenge. In particular, manual segmentation of the region boundaries
is both time-consuming and prone to misinterpretation and human error, often resulting in high
inter-rater variability [2].

Accurate, automatic segmentation frameworks aim to solve this problem, while providing a
more efficient and scalable solution for clinical applicability. In recent years, convolutional neural
networks (CNN) have drawn increasing attention for problems involving classification and semantic
segmentation, especially in the field of image recognition. In fact, leading methods from previous
years of the brain tumor segmentation (BRATS) challenge [3,4,5] have consistently employed CNN-
based architectures. However, ability of hand-crafted radiomic features in conjunction with deep
CNN networks have been largely unexplored. Radiomic textural features allow for capture of higher

? Research was supported by 1U24CA199374-01, R01CA202752-01A1, R01CA208236-01A1,
R21CA179327-01, R21CA195152-01, R01DK098503-02, 1C06-RR12463-01, PC120857, LC130463,
the DOD Prostate Cancer Idea Development Award, W81XWH-16-1-0329, the Case Comprehensive
Cancer Center Pilot Grant, VelaSano Grant from the Cleveland Clinic, I-Corps program, Ohio Third
Frontier Program, and the Wallace H. Coulter Foundation Program in the Department of Biomedical
Engineering at Case Western Reserve University. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institutes of Health.

1 *Equal contribution
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order quantitative measurements (e.g. co-occurrence matrix homogeneity, neighboring gray-level
dependence matrix, multi-scale Gaussian derivatives), for modeling macro and micro-scale mor-
phologic attributes within and around the lesion area from across different MRI protocols. Texture
analysis has previously shown promise in distinguishing different grades of brain tumors [6] as well
as identifying brain tumors from treatment confounders [7]. In fact, texture features have previ-
ously been used in conjunction with Random Forests [8] to segment brain tumor lesions. In this
work, we hypothesize that textural radiomic representations of lesion sub-compartments will en-
hance the seperation of sub-compartment boundaries, and hence providing these features as inputs
to the deep CNN, over and above raw intensity values alone, will improve the sub-compartment
segmentation.(Figure 1).

In this paper, we present radiomics-based CNN (RadCNN), a multi-scale convolutional neural
network architecture that incorporates optimized radiomic texture features as an input to a deep
CNN model, for improved estimation of tumor sub-compartments: enhancing tumor, non-enhancing
tumor, necrosis, and edema. In the following sections, we illustrate our approach and describe, in
detail, the features of our architecture followed by its application to the segmentation of gliomas
in brain tumors.

Fig. 1. Box plots showing distribution of (a) Haralick Entropy features and (b) FLAIR intensities in ran-
domly chosen voxels across cases with poor DSC using an intensity-only CNN. The separation in radiomic
texture representation across different sub-compartments serves as the motivation for using radiomic fea-
tures as input channels to the CNN model.

2 Methodology

Figure 2 below shows the workflow of our presented RadCNN model. Briefly, testural radiomic
features are first extracted from the multi-parametric MRI scans. This is followed by selection
of the most relevant features for differentiating the various sub-compartments. Finally, the best
features, in addition to the raw intensity channels, are provided as input to a multi-resolution CNN
for multi-class classification.

2.1 Feature Extraction

For each 3D MRI volume, we choose to primarily extract textural radiomic features including
Gabor, Haralick, and Laws due to their ability to capture micro, and macro-level morphologic
attributes relating to intensity, edges, and gradient-specific differences across different compart-
ments on routine MRI scans (T1c, T2w, FLAIR) (Figure 1). A Gabor filter can be defined as the
modulation of a complex sinusoidal by a Gaussian function and is controlled by scale λ and orien-
tation θ parameters. Gabor features, which are modeled according to human visual perception, are
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Fig. 2. RadCNN pipeline: Workflow of our proposed framework, which comprises two stages. First, we ex-
tract and select the top features. We then use the selected texture map volumes, along with the normalized
multi-parametric MRI (T1c, T2w, FLAIR) scans as channel inputs to a 3D CNN for classification.

extracted as a response to convolution of an image with distinct Gabor filters obtained by varying
each of the associated parameters across the filter bank. Haralick features capture gray-level co-
occurrence patterns, where a matrix of co-occurring gray-level pairs in the image is constructed,
from which second-order statistical texture features can be derived. Second order intensity statistics
such as angular second moment, contrast, and difference entropy are used to characterize the MRI
images. Laws features use 5×5 separable masks that are symmetric or anti-symmetric to extract
level (L), edge (E), spot (S), wave (W), and ripple (R) patterns on an image. The convolution of
these masks with every image yields distinct Laws features. In particular, we computed 40 Gabor
filter responses with varying λ = 2, 4, 8, 16, 32 and θ = 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, 157.5◦

values, 13 Haralick features, and 25 Laws features. In total, we extracted 78 radiomic features for
each sequence (T1w, T2, FLAIR), resulting in a total of 234 texture features per study.

2.2 Feature Selection

In order to create a well-defined discriminative model, our goal was to select only the features
that would improve the segmentation of the sub-compartments that were getting over, or under-
segmented using intensity-based CNN (i.e. DeepMedic model). Hence, our feature selection exper-
iments were driven by the output of the DeepMedic model during the training stage. We observed
the following consistent trends while training the cases with the DeepMedic model, (a) overseg-
mentation of edema regions, and (b) undersegmentation of necrosis+non-enhancing regions. We
hence designed two separate feature selection experiments to address the aforementioned problems,
where our primary goal was to identify the best texture features to (a) distinguish edema from
background (non brain tissue) voxels, and (b) distinguish necrosis+non-enhancing regions from
the rest. We used a minimum redundancy maximum relevance (mRMR) algorithm in conjunction
with a Random Forest classifier, and evaluated the importance of each of the 234 feature vectors
in a 3-fold cross-validation setting on a random subset of texture voxels from the training dataset.

In each of the 100 iterations, we assigned weights to the selected features based on their rank
of occurrence. The cumulative weights over 100 runs are then used to select the best features.
The most unimportant features were then eliminated, and the top 2 features for each classification
experiment were retained. The top features included Haralick entropy, energy, inverse difference
moment, and correlation co-occurrence statistics.

2.3 3D Convolutional Neural Network (CNN)

The CNN portion of our pipeline is based on the DeepMedic framework by Kamnitsask et al.
[3], which has been shown to provide the best-performing automated brain sub-compartment seg-
mentations in BRATS’16 challenge benchmark datasets. The network consists of an 11-layer deep
multi-scale 3D CNN consisting of two parallel convolutional pathways that processes the input at
both a normal resolution and one at a lower scale to achieve a large receptive field for classification
and segmentation [3].

The CNN architecture, as seen in Figure 2, comprises 11 layers: eight consecutive convolutional-
pooling layers followed by two fully connected layers and one classification layer along two pathways.
Each convolutional-pooling layer uses the same fixed 3 × 3 × 3 convolutional kernel and 2 × 2 × 2
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DSC Sensitivity Specificity Hausdroff

DeepMedic (0.703, 0.880, 0.732) (0.747, 0.891, 0.712) (0.998, 0.994, 0.997) (5.689, 11.993, 11.776)
RadCNN (0.710, 0.890, 0.732) (0.749, 0.891, 0.697) (0.998, 0.995, 0.998) (5.244, 6.533, 10.065)

Table 1. Performance of RadCNN model (trained on intensities + radiomics features as inputs) compared
with DeepMedic (trained on intensities alone). Each 3-tuple represents the respective average scores for
(enhancing tumor (ET), whole tumor (WT), and tumor core (TC)) across the test cohort (N =46).

pooling kernel with 30, 30, 40, 40, 40, 40, 50, and 50 neurons, respectively. Both fully connected
layers have 150 neurons which are connected to the four final neurons to determine each voxel’s
region subtype. We utilized the Adam optimizer which has been shown to work well in practice
and compares favorably to other adaptive learning-method algorithms [10]. Most importantly, our
network includes additional input channels in the form of selected textural radiomic maps extracted
from the original multi-parametric MRI scans.

To measure the value of preselecting certain low-level handcrafted features as input to a deep
3D CNN framework, we quantitatively compared the performance of our model against a standard
DeepMedic model trained on multi-parametric intensities by modifying the number of input chan-
nels into the network. The validation metric used is the Dice similarity coefficient (DSC), a spatial
overlap index.

3 Experiments and Results

3.1 Data and preprocessing

The training dataset provided by BraTS ’17 challenge [1,11,12,13], consists of 210 multi-modal
MRI (T1, T1c, T2w, FLAIR) scans of patients with high- (HGGs) and 75 patients with low-grade
gliomas (LGGs). The images were skull-stripped, co-registered to a common space, and re-sampled
to a 1 mm3 voxel resolution, with the final dimensions of each volume being 240×240×155 voxels.
Each volume was normalized by subtracting the mean and dividing by the standard deviation of
the intensities. These were also affine-aligned to the same space to ensure consistency between the
data. The ground truth provided for each voxel consisted of four sub-regions: non-tumor, necrosis
+ non-enhancing tumor (NCR + NET), edema (ED), and enhancing tumor (ET).

Similarly, the images within the validation dataset, which included about 46 total cases were
also pre-processed using the same pipeline. The ground-truth was not included for evaluation.
Instead, the evaluation was performed on the online CBICA portal provided by the University of
Pennsylvania [14] with the official results being obtained by combining the predicted segmentation
into three labels: Whole Tumor, WT (NCR + NET + ED + ET), Tumor Core, TC (NCR + NET
+ ET), and just the ET.

3.2 Preliminary Results

To evaluate the impact of using textural radiomic maps in conjunction with intensity-only scans
as inputs to a CNN model (RadCNN versus DeepMedic), we first trained, validated, and tested
the DeepMedic CNN on a subset of the HGG and LGG cases from the BraTS ’17 training and
validation dataset, using the T1c, T2w, FLAIR protocols. We then evaluated RadCNN on the
same data (i.e using the same cases and parameters for training, validation, and testing). Table
1 shows the results gathered from the online evaluation platform [14] for both models. We also
compared the DSC values of the RadCNN model with those obtained from the other models in
the BRATS 2016 challenge using the corresponding 2016 dataset. It may be observed from Table 2
that inclusion of radiomic features resulted in an increase in the performance across most of the
top-performing measures.

Compared to the intensity-based DeepMedic model, the proposed pipeline showed an improve-
ment to both the enhancing and whole tumor DSC and comparable results in segmenting the
tumor core. Although the specificity of the TC does decrease slightly when texture features are
incorporated, the Hausdorff distance, a measure of how far two topographical objects are from
each other, between the prediction and the ground truth decreases quite substantially (about 50%
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Whole Tumor Tumor Core Enhancing

Chang 0.87 0.81 0.72
Dera 0.91 0.91 0.84
Krishnamurthi 0.84 0.71 0.81
Randhawa 0.87 0.75 0.81
Song 0.86 0.70 0.73
Vilaplana 0.89 0.76 0.37
Zeng 0.85 0.82 0.80
Zhao 0.87 0.82 0.76
DeepMedic 0.90 0.75 0.72
RadCNN 0.90 0.82 0.80

Table 2. Comparison of top performing methods from BraTS 2016 challenge with RadCNN using the
BraTS ’16 Training Dataset (highlighted in bold).

for the whole tumor, and 14% for the tumor core). This suggests that the addition of pre-selected
textural radiomic maps results in an overall improvement in the predicted segmentations. Figure
3 shows an example of the improvement in sub-compartment segmentations using RadCNN, when
compared to using just DeepMedic.

To compare the effects of selecting texture features on each individual label, we also calculated
the percentage of under- and over-segmentation of each label on a per-patient basis. With the
addition of texture features, the under-segmentation percentages of the each label tend to decrease
overall. On average, for the cross-validation cases, this error rate decreases by 1% (20% vs. 19%)
for the ED label, and shows comparable results with respect to the NCR + NET, and ET labels.

4 Discussion and Conclusion

In this paper, we presented RadCNN, a radiomics-based convolutional neural network approach
to improve brain sub-comartment segmention, by providing optimized radiomic representations of
the multi-parametric MRI scans as inputs to a 3D-CNN classifier. Our results suggest that ra-
diomic features, owing to their ability to provide complementary phenotypic information [15], in
conjunction with 3D CNN can augment lesion segmentation performance. We are working on fur-
ther optimization of input channels that will incorporate additional low-level hand-crafted features
to help improve segmentation predictions. These newer features will be evaluated and compared
to our current results to create a more optimized feature set. Furthermore, we will apply post-
processing techniques that combine segmentations from different models to create more robust
segmentation predictions. As a part of the challenge, we will subsequently use an optimized set of
radiomic measurements from the tumor sub-compartments to build a prognostic model, which will
be evaluated on the test set.
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Fig. 3. Examples of segmentation results. From left to right: Ground-truth, RadCNN segmentation pre-
diction, and an intensity-only DeepMedic CNN segmentation prediction. Blue, green, and yellow labels
denote the necrosis + non-enhancing tumor (NCR + NET), enhancing tumor (ET), and edema (ED),
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Brain Tumor Segmentation using Deep U-Net
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Abstract. In this study, various modifications are made to a U-Net to
segment brain tumor substructures. A simple mini U-Net model trained
on a subset of BRATS 17 training data yields Dice scores of 0.8 (ET),
0.84 (WT), and 0.81 (TC) for HGG and 0.64 (ET), 0.83 (WT) and
0.68 (TC) for HGG+LGG BRATS 17 validation set. Modifications such
as double convolution layers and inception modules are added to take
advantage of deeper layers. Without any data augmentation, those mod-
ifications improved the Dice score to 0.68/0.86/0.70 (ET/WT/TC) and
0.66/0.87/0.72 (ET/WT/TC) on the BRATS 17 validation dataset.

Keywords: Brain Tumor Segmentation, Fully Convolutional Neural Net-
works, Deep Convolutional Neural Networks

1 Introduction

Convolutional neural network (CNN) has become the most popular approach in
the field of computer vision since the AlexNet won by a large margin in the Large
Scale Visual Recognition Challenge (LSVRC), a computer vision challenge with
a task of classifying objects in natural images [6] in 2012. Various CNN models
such as VGGNet, GoogLeNet (also called InceptionNet) and ResNet showed that
CNNs with a deep-layer architecture can learn more complicated features from
images [7–9]. Since then, the CNN approach has improved the accuracy beyond
the human-level [10].

A deep CNN model has typically millions of parameters, thus requires a large
amount of training images. The success of CNNs in recognizing natural images
was largely due to the large public data repositories such as the ImageNet, a
massive dataset with 14 million images which annotation was crowd-sourced via
Amazon Mechanical Turk [5].

Analyzing medical images is more challenging than natural images by na-
ture and it is also costly to obtain annotated data. Recent efforts organizing
automated medical image analysis challenges and creating annotated datasets
such as the Brain Tumor Segmentation (BRATS) challenge and its image col-
lections [1–4] have been immensely helpful for the improvement of automated
medical image analysis algorithms. Thanks to the considerable size and quality
of the annotated data in BRATS, a number of deep CNN architectures have
been implemented and showed top performances [16–20]. With performances
comparable to the top-performing non-neural network algorithms [11–15], the
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CNN-based algorithms have been steadily increasing their population in the
challenge leaderboard, yet there are still rooms to improve.

Different from image classification tasks, the final output is 2D (or higher)
in image segmentation tasks. Therefore, in segmentation, the classification of
one pixel is highly correlated with that of adjacent pixels. One popular method
to classify a pixel based on the neighboring pixels is the patch-based approach,
which a model classifies the center pixel based on the information from sur-
rounding pixels (patch) [23]. Many CNN architectures previously implemented
in BRATS use the patch-based approach which has an added benefit that it
can help mitigating severe class imbalance by selecting more patches from the
tumor region. Recently, the fully convolutional neural network (FCN) approach
has shown that it is more efficient than the patch-based approach [24], and has
been implemented also in BRATS [18, 20]. Certain FCN-based models such as
U-Net and V-Net tested on other medical images have symmetric contracting
and expanding paths and merge the feature maps from contracting path to the
feature maps in expanding path to preserve local features [25,26].

In this paper, with an assumption that the modules from deep CNN models
such as VGGNet, InceptionNet and ResNet developed for recognizing natural
images are also useful in medical images, we add double convolutions and incep-
tion modules to the U-Net architecture ro segment brain tumor substructures.

2 Method

2.1 Preprocessing

The BRATS 17 Training data is normalized per patient scan using the median
pixel value from the histogram of brain pixel values. Then the training data is
split into training, validation, and test subsets based on the tumor location and
size calculated from the segmentation labels such that cases in each location-size
combined class are well distributed among training, validation and test sets. The
2D image slices are then shuffled within each set. Though it may be useful, N4
biasfield correction was omitted in the preprocessing as it is time consuming.
Also, no data augmentation was used during training data preparation.

2.2 Architecture

Model A. Mini U-Net. Fig. 1 shows the base model (mini U-Net). It has total
11 2d-convolution layers. Except the last convolution layer for output which has
1×1 convolution, all other convolution layer has 3×3 filters. After every convolu-
tion, a batch normalization and ReLU activation is applied. Maxpooling is used
to contract and upsampling is used to expand spatially. An upsampling layer
uses simple resizing by nearest neighbor interpolation. As shown in the diagram,
a feature map from the last layer of each downsampling step is concatenated
depth-wise with the upsampled layer.
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Fig. 1: Model A: mini U-Net architecture.

Model B. Mini U-Net with double convolution layers. This model has
the same structure with the model A except that there are two 3 × 3 convolu-
tion layers before the activation to increase the receptive field (field of view).
Having two successive 3 × 3 convolution layers is equivalent to having one 5 × 5
convolution but is computationally less expensive by factor of 25/9.

Model C. Mini U-Net with inception modules. Another variant of U-
Net tested in this work uses modified inception modules. Typically, an incep-
tion module consists of 1×1, 1×1-3×3, 1×1-5×5 and 3×3 maxpool-1×1 paths
running in parallel then merging depth-wise. In the InceptionNet, 1×1 convolu-
tions before multiple convolution paths make it computationally less expensive,
thus help constructing a deep layer architecture with less number of parameters.
Inception-like modules which replace 5×5 convolutions with two 3×3 convolu-
tions as mentioned above are added to the mini U-Net. Fig. 2 shows the overall
architecture of the model C. A module A has 1×1, 1×1-3×3, and 1×1-3×3-
3×3 convolution paths with stride = 1 and padding. A module B has a 3×3
max pooling layer with stride 2 (denoted as /2 by convention), 1×1-3×3/2, and
1×1-3×3-3×3/2 convolution layers. A module C is a reverse of a module B and
consists of an upsampling layer, 1×1-3×3/2, and 1×1-3×3-3×3/2 deconvolution
(transpose convolution) layers.

2.3 Training

The models are trained using Keras and TensorFlow python libraries and a
NVIDIA TitanX GPU. Models A, B, and C have roughly 0.5 M, 1 M and 0.5 M
parameters and the training takes 0.5-2 days on 20k 2D images. All models use an
Adam optimizer with a learning rate between 0.001 to 0.01. Batch normalization
is applied before every ReLU activation to reduce overfitting and use a higher
learning rate.
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Fig. 2: Model C: mini U-Net architecture with inception-like modules. In the diagrams
of Module A and B- orange squares represent the input layers to the modules, green
squares represent 1×1 convolution layers, blue squares represent 3×3 convolution lay-
ers, and yellow squares represent depth-wise concatenation.

Table 1: Model performance: Mean 3D Dice score. In the Val17 column, the † symbol
means that the Dice scores are obtained using a subset (HGG) of Val17 dataset.

Dice score (ET/WT/TC)
Experiment Model Trained on Test data

TR15HGG TR17HGG TR17LGG TR17ALL Val17

1 A TR15HGG 83/89/82 77/80/78 26/77/40 63/80/68

2 A TR17HGG 79/84/83 20/66/32 64/81/72 80/83.5/81†

3 A TR17ALL 79/83/81 63/83/75 64/83/68
4 A TR17HGG 79/84/85 22/72/32 64/82/71
5 B TR17HGG 80/85/86 32/76/31 65/83/71
6 A TR17LGG 62/72/50 24/82/66 52/75/54
7 B TR17LGG 67/76/52 20/82/63 54/78/56
8 C TR17LGG 66/77/49 24/82/66 55/79/54
9 B TR17ALL 79/85/82 22/83/65 64/85/77 68/86/70
10 C TR17ALL 80/87/82 25/83/60 65/86/77 66/87/72

3 Result and Discussion

A summary of model performances is shown in Table 1. The performance of
the model A (mini U-Net with a single convolution per layer) trained on the
BRATS 15 training dataset versus on the BRATS 17 training dataset is shown
in the experiments 1 and 2. The performance of the model A on the BRATS
17 validation dataset is similar to that of the BRATS 17 training dataset. The
model A gives Dice scores of 0.84 (whole tumor), 0.80 (enhancing tumor), and
0.81 (tumor core) in HGG cases. Since the LGG data contains rare and confusing
cases where there is zero to little enhancing tumor region while whole tumor
region is large, a performance a model on the LGG data is generally poorer than
one on the HGG data. On the HGG + LGG mixed dataset, the model A gave
the Dice scores of 0.64, 0.83, and 0.68 for enhancing tumor, whole tumor and
tumor core.

Experiments 1-3 and 4-10 use different normalization methods for prepro-
cessing the images. The method used in experiments 4-10 uses the median pixel
value in the brain pixels histogram instead of the 1-99 percentile pixel values to
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normalize. The previous method (1-99) used in experiments 1-3 was considered
mainly to mitigate an effect of outlier pixel values. However, it has a drawback of
pushing the brightest 1% pixels to the same larger pixel values regardless of its
original brightness, which makes more false positives for enhancing tumor. The
second method (normalized by median) performs slightly better on the LGG
data but shows little difference on the HGG+LGG data. Experiments 6-8 show
performances of models trained on LGG data. Deeper layers seem to increase
the overall performance, but it is not clear whether it improves segmentation of
difficult cases in LGG data. Experiments 9-10 with the models B and C show
improved results for the HGG+LGG data by implementing deeper layer archi-
tectures. The model C did not seem performing better than the model B within
above experiments. However, further model optimization is needed to better test
the effect of inception modules.

Since the number of model parameters are bigger in deeper layers, it is easier
to overfit. Also, the class imbalance is severe when segmenting tumor substruc-
tures. The percentage of 2D slices with at least one pixel from tumor substructure
is less than 50%, and even worse, the percentage of 2D slices with pixels from
enhanced tumor is much smaller. As shown above, the model performances on
the LGG data is not as good as on the HGG or mixed cases. In the LGG data,
there are certain cases with a large whole tumor region without any enhancing
tumor pixels. Also, there are rare cases both in HGG and LGG such as tumors
occurring top and bottom parts of the brain. The difficulty from a large number
of parameters in the model and the high class imbalance can be alleviated by
aggressive data augmentation and resampling, which we aim to do as the next
step.
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Abstract

DeepMedic architecture is the state-of-the-art solution for 3d medical image segmentation.
In this paper, we try to improve it by using residual connections with linear projection, bot-
tleneck blocks and direct connections from U-Net.
Keywords: CNN, Segmentation, MRI, BraTS

1 Introduction
Over the last few years, deep learning (DL) has become the state-of-the-art solution for image
analysis. DL was originally successfully applied to two-dimensional images in such competition as
Imagenet [1] and COCO [2]. Usually, top-performing solutions for these competitions turn into
templates for DL applications in similar areas.

We try to use a similar approach here and apply bottleneck blocks [3], residual connections
with linear projection and U-Net connections to improve one of the best solutions for BraTS 2016,
DeepMedic architecture [4].

2 Method

2.1 Original DeepMedic
DeepMedic architecture (Figure 1) has proven to be one of the best solutions for medical image
segmentation. It is based on volumetric convolutional layers 3-dimensional which allows us to use
information for all three directions. The network also has context pathways, which extract context
information about image region. Finally, it is a fully convolutional network, allowing fast and
effective evaluation on large images.

2.2 Direct connection from U-Net
U-Net [5] uses direct connections from the detailed input image to the final layers of segmentation,
improving object boundary detection. We try to apply the same scheme to DeepMedic, by directly
connecting detailed input to the block that concatenates detailed and contextual information.

Figure 1: Original DeepMedic architecture from [4]
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Architecture WT TC ET
original DeepMedic 0.842 (0.163) 0.765 (0.244) 0.658 (0.321)
with direct connection 0.848 (0.149) 0.736 (0.264) 0.650 (0.322)
with linear projection connection 0.848 (0.146) 0.763 (0.253) 0.663 (0.324)
with bottleneck block 0.844 (0.158) 0.759 (0.250) 0.643 (0.320)

Table 1: Dice scores and std across patients for whole tumor (WT) tumor core (TC) and enhancing
tumor (ET)

2.3 Residual connections with linear projections
To our knowledge, the latest version of DeepMedic uses residual connections that simply add
features for available channels, meaning that if the number of input channels for a residual block is
less than the number of output channels, some channels will not get any residual connection. This
problem can be solved by using linear projections, which are implemented as 1×1×1 convolution,
linking input and output of the residual block [3]. We change all simple residual connections in
DeepMedic with residual connections via linear projections.

2.4 Bottleneck block
The bottleneck block from [3] is used as a residual connection which compresses the input before
performing convolution, therefore, decreasing the number of required parameters, which was ben-
eficial for the winning solution of 2015 Imagenet competition. We replace all residual blocks with
bottleneck blocks.

Since bottleneck blocks have only one convolution with kernel size more than zero, we use kernel
size of 5, instead of 3 (as in original DeepMedic) to get the same output shape. Number of output
channels for the bottleneck block is the same as in original DeepMedic, while the number of inner
channels is four times smaller, following [3] approach.

3 Experiments and results
To evaluate suggested improvements, we have implemented DeepMedic and suggested improve-
ments with tensorflow [6]. As a dataset we used BraTS 2017 [7] [8] [9] [10]. We have randomly
split the dataset (285 scans) into three parts: training ( 78%), validation (6 scans) and testing
(20%). We minimized logarithmic loss function on the training set using stochastic gradient de-
scent with Nesterov momentum. We started with learning rate equal to 0.1 and deceased it twice
each time validation loss plateaus. Patches are equally sampled from healthy and cancerous tissues.
Batch size was equal to 64, batches per epoch to 100. Number of epochs was equal to 80, because
after that point both training and validation loss plateaus completely. The whole training process
takes about 4command hours on Nvidia GTX980Ti per architecture.

We were predicting three masks: whole tumor (WT), tumor core (TC) and enhancing tumor
(ET). To transform probability predictions to discrete predictions on test dataset, we picked three
thresholds by maximizing dice scores on the validation set.

Results are presented in table 1. It is worth mentioning, that our results are lower than usual
for DeepMedic.

4 Conclusion
In this work we have tried to improve DeepMedic with simple modifications. Although ideas were
reasonable, it didn’t really improve or change dice scores. It is signaling that this architecture is
quite robust to changes.
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Abstract. Recently, the convolutional neural network (CNN) has been success-

fully applied to the task of brain tumor segmentation. However, the effective-

ness of a CNN-based method is limited by the small receptive field, and the 

segmentation results don’t perform well in the spatial contiguity. Therefore, 

many attempts have been made to strengthen the spatial contiguity of the net-

work output. In this paper, we proposed an adversarial training approach to 

train the CNN network. A discriminator network is trained along with a genera-

tor network which produces the synthetic segmentation results. The discrimina-

tor network is encouraged to discriminate the synthetic labels from the ground 

truth labels. Adversarial adjustments provided by the discriminator network are 

fed back to the generator network to help reduce the differences between the 

synthetic labels and the ground truth labels and reinforce the spatial contiguity 

with high-order loss terms. The presented method is evaluated on the Brats2017 

training dataset. The experiment results demonstrate that the presented method 

could enhance the spatial contiguity of the segmentation results and improve the 

segmentation accuracy. 

Keywords: Brain Tumor Segmentation, Adversarial Network, Deep Learning 

1 Introduction 

Automatic segmentation of brain tumors in magnetic resonance imaging (MRI) imag-

es is of great clinical value. Multimodal brain tumor segmentation challenge (Brats) 

provides a great platform for the evaluation of different segmentation methods 

[1][2][3][4]. Among the existing segmentation methods, the convolutional neural 

network (CNN) provides very outstanding results and attracts increasing attentions 

[5]. However, one defect of a CNN-based segmentation method is that the receptive 

field is always limited by the size of convolutional kernels. This problem could be-

come more apparent in brain tumor segmentation because the appearance of brain 

tumors is unpredictable and MRI images are inhomogeneous in the intensity. There-

fore, the segmentation results of CNN-based methods always have rough boundaries 

and perform poorly on details of tumor sub-regions. Instead of adding the context 

information or conditional markov random field (CRF), we want to strength the spa-

tial contiguity by using an auxiliary high-order loss term, which can make the net-
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work more perceptive towards spatial-connected tumor regions. This idea is inspired 

by the generative adversarial network (GAN) [6]. The GAN, through the use of ad-

versarial loss, has successfully been applied to the generation of real-life images in an 

unsupervised way [7]. 

In this paper, we present a novel CNN-based brain tumor segmentation method by 

using an adversarial network. The presented method was evaluated on the Brats2017 

training dataset.  

2 Method 

The proposed method consists of two CNN networks, named the generator network 

and the discriminator network. These two networks are tightly connected. The de-

tailed structure is described in Fig. 1.  

 

Fig. 1. Schematic diagram of the proposed framework. Forward propagations are depicted 

using blue lines and backward propagations are depicted using black dotted lines. 

2.1 Generator Network 

Generator network is designed to produce segmentation results. The lost function of 

the generator network consists of two parts, called the content loss and the adversarial 

loss. Specifically, the loss function is calculated as: 

𝐿𝐺 = 𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺(𝐼), 𝑙𝑎𝑏𝑒𝑙𝐺𝑇) + 𝐿𝐴𝑑
𝐺                                     (1) 

 The first term 𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥, namely the content loss, is the pixel-wise derivatives. 𝐼 

represent the patches of four modalities MRI images. 𝑙𝑎𝑏𝑒𝑙𝐺𝑇  represent the given 

ground truth labels which are corresponding to 𝐼. The second term 𝐿𝐴𝑑
𝐺 , namely the 

adversarial loss, is produced simultaneously by the adversarial network and is dis-

cussed in the next section.  
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2.2 Discriminator network 

Adversarial Training. The discriminator network is a core of the presented method. 

The synthetic labels and the ground truth labels, with the form of the one-hot coding, 

are input to the discriminator network. The original MRI images are also input to the 

network as references. Leaky relu layers are utilized but no pooling layers are includ-

ed in the discriminator network, as suggested by a previous GAN study [7]. Images 

are down sampled to the same size of the labels using convolutional layers with stride 

2. The discriminator network is trained to distinguish two kinds of labels obtained 

from different places. The loss function is calculated as: 

𝐿𝐷 =
1

2
[𝐿𝑏𝑐𝑒(𝐼, 𝐷(𝑙𝑎𝑏𝑒𝑙𝐺𝑇), 0) + 𝐿𝑏𝑐𝑒(𝐼, 𝐷(𝐺(𝐼)), 1)]                  (2) 

 As usual, the binary cross entropy (bce) loss is calculated to differ two types of 

inputs.  

Adversarial Loss. The discriminator network provides the adversarial loss by mini-

mizing the probability that the adversarial predicts 𝐷(𝑙𝑎𝑏𝑒𝑙𝐺𝑇) are similar to the one 

of synthetic labels. The adversarial loss is calculated as: 

𝐿𝐴𝑑
𝐺 = 𝐿𝑏𝑐𝑒(𝐼, 𝐷(𝐺(𝐼)), 0)                                             (3) 

 The adversarial loss contains high order derivatives and are fed back to the genera-

tor network in (1). The effectiveness of pretrain of the model is evaluated in this 

study. During the pretrain procedure, the generator network is firstly trained for a 

while separately, and the discriminator is trained with settled generator network until 

the network is stable.  

2.3 Post-processing 

The largest three-dimensional (3D) connection region of the segmentation results is 

firstly chosen as the tumor candidate. 3D bounding box slightly larger than the tumor 

candidate is built, and then recognition results inside the bounding box are finally 

identified as the tumor region. 

3 Experimental Results 

It is interesting for us to observe the effect of the addition of the discriminator net-

work. Thus, two experiments were carried out with exactly the same condition except 

for the existence of the adversarial network. Qualitative results could be found in Fig. 

2. To better illustrate the effectiveness of the adversarial loss, the segmentation results 

were extracted directly from the generator network without any post-processing. With 

the help of adversarial loss, the amount of over segmentation is reduced. False posi-

tive segmentation results are also decreased. Moreover, the spatial contiguity of seg-

mentation of all tumor sub-regions is enhanced. The segmentation results become 
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smoother in the sub-regions and preserve good boundaries. It is hard to achieve by the 

post-processing of CRF with certain parameters. 

 

Fig. 2. Visual segmentation results of two examples using the direct outputs of CNN network. 

 To quantitative exhibit the effectiveness of the adversarial loss, the segmentation 

results of all 285 training data are summarized in Table 1. The effectiveness of pre-

train of the model is also evaluated. 

Table 1. Quantitative segmentation results of 285 training data using the direct outputs of a 

CNN network. CNNadver. corresponds to the network trained with the adversarial loss. Results 

with post-processing is marked followed by *. 

Method Whole Core Enhancing 

 DSC PPV Sen. DSC PPV Sen. DSC PPV Sen. 

CNN 86.1 82.2 90.0 86.3 85.5 87.2 77.1 74.2 80.1 
CNNadver. 87.9 86.8 89.0 86.8 86.6 87.0 77.5 77.1 77.9 
CNNadver,* 89.5 90.6 88.4 88.0 89.0 87.0 78.4 79.1 77.8 
CNNadver.-pretrain* 89.7 89.8 88.5 88.4 89.7 87.2 79.1 78.1 80.0 

4 Discussion 

The discriminator network is trained by discriminating the synthetic labels from the 

ground truth labels with the use of plenty of training patches. An adversarial network 

can discover the mutual characteristics of mistakes by learning from the training data, 

and deliver the information to the generator network in a high-order form. This kind 

of high-order loss has a stronger adaptability, contains more global information, and 

can’t be provided by per-pixel loss. Thus, this kind of loss is more meaningful. 

The pretrain of the model seems to be useful. Understandably, the better the dis-

criminator is trained, the more effective the adversarial loss is. The experiment results 

illustrate this point. Segmentation results of the pretrained model show more accurate 

recognition ability, especially in details. 
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5 Conclusion 

In this study, a novel CNN-based tumor segmentation method with adversarial net-

work is presented. A high-order adversarial loss provided simultaneously by the dis-

criminator network is added to encourage the generator network to produce more 

precise results. It should be mentioned that the presented method is also efficient and 

energy-saving since the complexity is not added to the network at test time. In the 

future, we will extent the presented method into 3D to better make use of the 3D in-

formation of MRI images. Further, we will exploit the best way to take advantage of 

the adversarial loss. 
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Abstract. Brain tumor segmentation plays an important role in the disease di-

agnosis. In this paper, we proposed a multi-view deep learning framework to 

address the challenge of multimodal brain tumor segmentation. The proposed 

deep learning framework uses three U-net based sub-networks to segment mul-

timodal brain images from different view-point, i.e. slices along x, y, z axis.  

The three sub-networks produce independent segmentation results and vote for 

the final outcome. The proposed multi-view deep learning framework was eval-

uated on BraTS 17 validation set and achieved a competing result, i.e. Dice 

scores of 0.84, 0.66, 0.54 for whole tumor, enhancing tumor and tumor core, re-

spectively. 

Keywords: Deep Learning, Multi-view, Tumor Segmentation 

1 Introduction 

Brain tumor is a severe disease threating the health of human-being. An accurate au-

tomatic tumor segmentation framework can significantly improve the efficiency of 

disease diagnosis and help design appropriate treatment strategy. In recent years, we 

witnessed the development of deep learning algorithm and were impressed by its 

powerful performance. Increasing numbers of studies tried to employ deep learning 

algorithm to process medical images. In previous challenges, i.e. BraTS 15-16 [1-3], 

various 2D and 3D deep learning networks have been proposed for the segmentation 

of multimodal brain tumor. For example, Lun et al. evaluated three types of 2-D con-

volutional networks, i.e. Patch-Wise, FCN [4] and SegNet [5] for BraTS 15 dataset. 

Kamnitsas et al. extended a 3-D CNN architecture, i.e. DeepMedic [6], with residual 

connections for brain lesion segmentation. However, most of the proposed 2D net-

works only use the slices along z-axis, which do not fully explore the spatial infor-

mation compared to the 3D approaches. As the 3D convolutional network is not com-

putational-efficient, in this paper, we proposed a 2.5D deep learning framework, with 

three sub-networks for different view-points, to take advantages of both 2D and 3D 

approaches. Henceforth, our proposed 2.5D framework is named as Multi-view net 

(MvNet). 
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2 Multi-view Deep Learning Network 

2.1 Network Architecture 

The proposed MvNet framework consists of three sub-networks and processes multi-

modal brain images along different axis, as illustrated in Fig. 1. FLAIR voxel data is 

taken for example, though four brain image models, i.e. T1, T1Gd, T2 and FLAIR, 

are available. The slices from different modal were concatenated as input for each U-

net [7]. 

 

Fig. 1. Architecture of MvNet framework 

2.2 Implementation 

The proposed MvNet is established using PyTorch toolbox. The network is trained on 

two K80 with a mini-batch size of 30. Adam is used as the optimizer [8]. The start 

learning-rate is set to 0.0002. The BraTS 17 training dataset [9, 10] is separated to 

training and validation sets according to the ratio of 80:20. The three sub-networks 

are separately trained on training set and validated on validation set. Fig. 2 presents 

the loss curves for U-net along different axis. From Fig. 2, the three sub-networks are 

found to produce the best performances on validation set after about 10 epochs of 

training. 
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Fig. 2.  Loss curves on validation set. (a) is for x-axis U-net. (b) is for y-axis U-net 

and (c) is for z-axis U-net. 

2.3 Results 

Fig. 3 presents the segmentation results from different U-net branches. The labels in 

the mask represent different parts of brain tumor, i.e. label 4 is for GD-enhancing 

tumor, label 2 is for peritumoral edema and label 1 is for necrotic and non-enhancing 

tumor. It can be observed from Fig. 3 that the final result (Fig. 3 (d)) removes the 

segmentation errors by fusing results from different U-nets (Fig. 3 (a-c)). We com-

pared the Dice coefficient of z-axis only framework and our MvNet on the BraTS 17 

validation set. In Table 1, ET represents enhancing tumor. WT represents whole tu-

mor and TC represents tumor core. Although a drop of Dice_TC, i.e. 0.08, is found by 

adding x and y axis U-nets, the proposed MvNet significantly improves the segmenta-

tion performances for ET and WT, i.e. 0.17 and 0.07. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Segmentation results (view from z-axis). (a) Result from x-axis U-net. (b) Result from 

y-axis U-net. (c) Result from z-axis U-net. (d) Final result after voting. 
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Table 1. Dice coefficient on validation set 

 Dice_ET Dice_WT Dice_TC 

z-axis U-net 0.49 0.77 0.62 

MvNet 0.66 0.84 0.54 

3 Survival Prediction 

Survival prediction is another task introduced in BraTS 17. We developed a convolu-

tional network to predict the survival periods of patients. The convolutional network 

(CNN) includes the four brain image modals and the tumor segmentation result from 

MvNet as input and finally predicts the survival days. In the train-validation process, 

the CNN achieves an error of ±40 days on our validation set. 

 

Fig. 4. Flowchart for survival prediction 

4 Conclusion 

In this paper, we proposed a novel deep learning framework, so-called MvNet, for 

multi-modal brain tumor segmentation. The proposed MvNet employs three sub-

networks to process the brain images along different axis. The results on BraTS 17 

validation set show the competing performance of MvNet, i.e. Dice scores of 0.84, 

0.66 and 0.54 were achieved for whole tumor, enhancing tumor and tumor core, re-

spectively. 
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Appendix 

Table 2. Detailed information of U-net used in MvNet. The pipeline consists of Input layer (I), 

Convolutional layer (C), Batch Normalization layer (BN), LeakyReLU (L), Max-pooling layer 

(M), Convolution Transpose layer (CT), Concatenation layer (CON) (the number in this layer 

tells it concatenates the output from which layer) and loss layer, i.e. LogSoftmax. 

Layer Input Size Type Kernel size & amount 

1 224x224x4 I-C-BN-L-C-BN-L-M 3x3, 32 

2 112x112 C-BN-L-C-BN-L-M 3x3, 64 

3 56x56 C-BN-L-C-BN-L-M 3x3, 128 

4 28x28 C-BN-L-C-BN-L-M 3x3, 256 

5 14x14 C-BN-L-C-BN-L 3x3, 512 

6 14x14 CT-CON(4) 4x4, 256 

7 28x28 C-BN-L-C-BN-L 3x3, 256 

8 28x28 CT-CON(3) 4x4, 128 

9 56x56 C-BN-L-C-BN-L 3x3, 128 

10 56x56 CT-CON(2) 4x4, 64 

11 114x114 C-BN-L-C-BN-L 3x3, 64 

12 114x114 CT-CON(1) 4x4, 32 

13 224x224 C-BN-L-C-BN-L 3x3, 32 

14 224x224 C-LogSoftmax 3x3, 4 
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Abstract. In this paper we propose a novel two-pathways 3D fully
convolutional networks (3DFCN) architectures for brain tumor segmen-
tation task. By using dilated convolutions, we can effectively increase
the size of receptive field without additional layers, which enable the
networks efficiently capture large-scale semantic contextual. The two-
pathways networks with different dilated factors aggregate multi-scale
contextual and enhance the space consistence of the segmentation re-
sults, which dramatically decreases the false positive in our experiments.

Keywords: FCN, Dilated Convolutions, Multi-Scale

1 Introduction

Gliomas are the most common brain tumors that occur in adults [6,10]. Due to
the gliomas have significantly varies size, shape, and location, it is difficult to
extract the exact region of brain tumor from the MRI volumes, which is impor-
tant for clinical diagnosis and treatment. In this case, high accuracy automatic
segmentation methods play an important role in practice. As the benchmark
of this area, the BRATS challenges provide a uniform criteria for evaluating
brain tumor segmentation algorithms [6]. There are two tasks in BRATS 2017.
In this short paper we only focus on the first one: segmentation of gliomas in
pre-operative scans [8, 9].

The deep learning methods based on [5] have reached the start of art per-
formance in image semantic segmentation task. Recently this excellent idea has
been introduced in medic image segmentation [1–3, 7]. Considering the charac-
teristic of MRI, some 3D convolutional networks methods were proposed in order
to utilize the 3D contextual information in brain MRI volumes [1, 3].

In addition, several strategies were considered to improve the space consis-
tence of segmentation results, such as using fully connected conditional random
field (CRF) [4] as post-processing step [3], using multi-pathways networks archi-
tectures [1–3] and so on.
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2 Method

2.1 3D Dilated Convolutions

The definition of 2D dilated convolutions was introduced by Fisher Yu for
multi-scale context aggregation in image segmentation task [11]. As below, we
simply general this definition into 3D format.

Let F : Z3 → R be a discrete function. Let Ωr = [−r, r]3 ∩ Z3 and let
k : Ωr → R be a discrete filter of size (2r + 1)3. The 3D dilated convolution
operator ∗l can be defined as

(F ∗l k)(p) =


s+lt=p

F (s)k(t). (1)

The operator ∗l is usually referred as l−dilated convolution operator [11].
Obviously, 1−dilated convolution is the ordinary convolution. Consider the se-
quence dilated convolutional operations:

Fi+1 = Fi ∗li ki for i = 0, 1, . . . , n− 1. (2)

The receptive field of one element in Fi can be defined as the set of elements
in F0 that impact the value of this element. Denote the receptive field as I. Then
the size of receptive field is the number of element in I, i.e. |I|. We illustrate the
middle slice of these two kind of convolutions in figure 1.

2.2 3D Fully Dilated Convolutional Network Architecture

We design a two-pathways architectures with 3D dilated convolutional layers,
as displaying in figure 2. The first pathway network uses multi-modals MRI as
input and adopts a larger dilated factors (1, 2, 2, 2, 1, 1), which concentrate on
large-scale contextual information. The second pathway network uses both the
segmentation results of the first pathway and the multi-modals MRI as input,
which employs a smaller dilated factors (1, 1, 2, 1, 1, 1) and focus on the small-
scale contextual information. The second pathway plays a role in improving the
space consistence of the segmentation results.

3 Experiments and Results

As this is a short paper, we only focus on the brain tumor segmentation task of
this year. We use 190 HGG cases and 70 LGG cases to train our networks and
use 20 HGG cases and 5 LGG cases for validation. Our primary results about
Dice Score, Spec, Sens equal 0.42, 0.99, 0.66 respectively.
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(a) The receptive field of three ordinary convolution layers which equal three 1-
dilated convolution layers.

(b) The receptive field of three dilated convolution layers with dilated factor equals
1, 2, 4 respectively.

Fig. 1: Comparing those two kind of convolutions, it is obvious that the dilated
convolution can expand the size of receptive field without loss of resolution [11].
By changing the value of dilated factor, we can control the size of receptive field,
which provides a facile way to exploit different scale contextual information
without changing the architectures of the networks.

4 Discussion and Conclusion

We use this two-pathways networks to integrate multi-scale information. With
help of dilated convolutions we can achieve large receptive field with less layers
and change receptive field size of network by adopt different dilated convolution
factors. Because we only exam small networks, our primary results are not very
outstanding. In the future work, we will increase the depth of our networks and
exploit some other post-processing methods such as fully connected conditional
random field [4].
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3× 3× 3 2-dilated convolution

1× 1× 1 1-dilated convolution
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Seg
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Fig. 2: The 3D fully dilated convolutional network architecture. Every training
data volumes have been normalized before training. The smaller convolution
kernels (3 × 3 × 3) can effectively decrease the number of parameters for those
networks. And due to the convolution kernels are dilated, we do not lose receptive
field. In the training section, we first train the first pathway network with multi-
modals MRI training data. Then we use the trained first network to segment
the training data and get the prediction volumes. Next, utilize the multi-modals
MRI training data and its corresponding prediction volumes, generated by the
first pathway network, to train the second pathway network.
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Abstract. Automatic brain tumor segmentation from magnetic resonance imag-

ing (MRI) is very important as it is significantly beneficial for early diagnosis, 

radiotherapy planning, outcome prediction and follow-up assessment of patients 

in (high or low grade) brain tumors. As we all known, brain tumor is an aggres-

sive which can grow and spread in any areas of brain. Tumor also includes dif-

ferent subtypes and different kinds of tumor correspond to different treatments 

due to their different characteristics. Thus, pre-delineation of tumor’s sub-

components is in urgent demand to the better diagnosis of life-threatening brain 

tumor. In this paper, we proposed a novel location sensitive brain tumor seg-

mentation framework which can not only detect brain tumors in high accuracy 

quickly, but also improve the accuracy on the state-of-the-art brain tumor seg-

mentation techniques. Our proposed method consists of two stages: 1) tumor 

detection and 2) tumor segmentation. In the first stage, we used a location sensi-

tive region based fully convolutional network to generate a 3D location sensi-

tive map. The location sensitive map can be used to guide the tumor segmenta-

tion in the second stage which could be any deep learning based methods. The 

experimental results show that our brain tumor segmentation method can im-

prove the accuracy of state-of-the-art brain tumor segmentation method. Nota-

bly, our proposed brain tumor segmentation method is a general framework 

which can be easily applied to any other existing brain tumor segmentation 

methods. 

Keywords: Location Sensitive Map, Convolutional Neuronal Network, Brain 

Tumor Segmentation. 

1 Introduction 

In worldwide, there are almost 238,000 patients are diagnosed as brain tumors every 

year [1]. Among them, gliomas are the most common brain tumors among adults, 

which accounts for 70% of adult primary brain tumors [2]. Based on World Health 

Organization (WHO) grade [3], gliomas can be divided into two groups: high-grade 

glioma (HGG) and low-grade glioma (LGG). High-grade gliomas are more aggressive 

(growing faster) and usually have worse outcome with two years or less survival time 
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[4]. The low-grade gliomas are growing slower which come with a longer life expec-

tancy.  Though there are considerable progresses in glioma related research, the diag-

nosis and treatment are still dissatisfactory. In the current clinical routine and studies, 

Magnetic Resonance Imaging (MRI) becomes a primary diagnostic evaluation tools 

and has played an important role in the radiological of assessment of gliomas. MRI 

has been widely used to evaluate the progression of brain tumor and help decide 

treatment plan, since it provides critical and detailed structural information of brain. 

For example, the hyper-intense tissue appearance shown in contrast-enhances T1-

weighted presents enhancing tumor, while the hyper-intensity on T2/FLAIR-weighted 

MRI presents edema tumor. The different proportion of different tumor’s sub-

components would lead to different kinds of brain tumors and result in different 

choices of treatment strategy and outcome.  

Manual brain tumor segmentation is very difficult, time consuming, and prone to 

errors. It is highly required to develop accurate and automatic brain tumor segmenta-

tion methods. However, it is quite challenging to develop the segmentation techniques 

because tumors are usually diffused, low contrast and have a lot of extend tentacle-

like structures. The automatic segmentation technique will also highly suffer from 

intensity changes inside and around tumor, variation of tumor shape, size, position 

and tumor type, all of which are widely variable due to brain tumors can appear in any 

anywhere in brain with any shape and size. Moreover, the intensity values from the 

same tumor can vary drastically due to using different types of MRI scanners (e.g. 

1.5, 3 or 7 tesla) or different imaging acquisition protocol (field of view value, voxel 

resolution, gradient strength, b0 value, etc.) from different hospitals. Additionally, it 

is difficult to distinguish the tumor tissues from the healthy tissues as the boundaries 

of the tumors are usually fuzzy. All of the above factors greatly increase the difficul-

ties of developing accurate brain tumor segmentation algorithms. Multi-modality MRI 

(e.g., T1w, T1 contrasted, T2w, FLAIR sequences) are employed to settle the above 

problems, since almost one unique signature of tumor’s sub-component can be given 

based on imaging information of different modalities. With multi-modality MRI se-

quences, we propose a novel automatic location sensitive brain tumor segmentation 

technique in this study.  

Our proposed method includes two stages: tumor detection and tumor segmentation. 

In the first stage, we create a location map for each subject using a region-based posi-

tion sensitive object detection method to detect tumors in FLAIR sequence. In the 

second stage, the location map is used to guide the segmentation of deep learning-

based brain tumor segmentation techniques. It can be considered as one input of any 

existing traditional or state-of-the-art deep learning-based brain tumor segmentation 

method. In this framework, we use the “deepMedic” [5] brain tumor segmentation 

technique, which achieves top ranking performance in both BRATS and ISLES 2015 

Challenges, in the second stage. There are three contributions in this work: (1) we 

propose a novel automatic and supervised location sensitive method for brain tumor 

segmentation; (2) our proposed framework can perform both brain tumor detection 

and segmentation with robust and accurate performance; (3) our proposed model can 

lead to the faster running time and there is no need of post-processing (e.g., morpho-

logical operations, CRF or MRF). 
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2 Method 

In this study, we proposed a novel unsupervised location sensitive brain tumor seg-

mentation method, which conduct brain tumor segmentation with the guide of results 

from brain tumor detection. As we all know that brain tumor is diffusive and do not 

have a clear boundary. Moreover, it varies a lot in shape and location. All these make 

brain tumor segmentation a more challenging task. In order to solve this challenging 

problem, we proposed a novel location sensitive brain tumor segmentation method 

which is not only sensitive to tumor location, but also sensitive to tumor shape. The 

framework of our proposed method is shown in Figure 1. Our proposed method in-

cludes two stages. At first, we create a location sensitive map for each subject via a 

region based object detection method in the first stage; then, the generated location 

sensitive maps are used to guide the segmentation in the second stage in two ways. 

The first way is considering the tumor location map as one input channel of the sec-

ond stage in order to provide location information to guide the segmentation. The 

second way is taking the location map as a weighted location mask to refine the seg-

mentation results of the second stage by removing tissues outside the map. 

 

Fig. 1.   Frame work of proposed location sensitive brain tumor segmentation method. (① 

represents the pipeline of the first way, ② represents the pipeline of the second way.) 

2.1 Location Sensitive Map 

Since the brain tumor is diffusive and can grow in any region of brain, it does not 

have a clear and inerratic boundary, which makes it much difficult to delineate the 

abnormal tissues from normal brain tissues. To solve these problems, we propose a 

novel location sensitive brain tumor segmentation technique which utilizes a novel 

location sensitive map as guidance for segmentation. Specifically, region-based fully 

convolutional network (RFCN) [6] is employed to create the ingenious location sensi-

tive map.   

In order to generate the location sensitive map, we need to generate the annotation of 

tumor location for the training dataset since we only have ground truth for segmenta-

tion rather than annotation for tumor location. The annotation of tumor location can 

be generated within the following steps: firstly, the connected components of labels 

for training dataset are computed; secondly, we get a distance graph by computing the 

Euclidean distance of each pair of connected components; finally, a breadth-first 
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search (BFS) algorithm is used to determine the nearby tumor components for each 

patient and then a rectangle for each tumor component will be drawn as the corre-

sponding annotation. With the annotation of tumor location, we rearrange the 3D 

FLAIR T2 image into 2D slices with respect to 3 dimensions (i.e., coronal, sagittal, 

axial), and utilize RFCN to detect tumor locations (coordinates of rectangles which 

mark the detected tumors) on those 2D slices in each dimension. The 3D location map 

can be obtained by averaging the score/probability of each rectangle, in three dimen-

sions (i.e., coronal, sagittal, axial), which represents the score/probability of real brain 

tumor appear at this location. Fig. 2 shows the generated location sensitive maps, and 

the white areas in the location maps mean that tumors are most likely located at. The 

white part of location map has high score/probability to be tumor, while the dark part 

of location map has low score/probability to be tumor. From the Fig. 2, we can see 

that the generated location sensitive map is able to accurately predict the location of 

brain tumor and can even capture the outline of tumor. 

 

Fig. 2. The generated location map. (The first row is one case of the generated location map in 

three dimensions (i.e., coronal, sagittal and axial), the second row is ground truth.) 

2.2 Location Sensitive Brain Tumor Segmentation 

From the Fig. 2, we know that the location map can accurately reflect the position of 

brain tumor. Also, it is worth to note that the edge of the white part (the part with high 

score/probability) in the location map is also very similar with the shape of the tumor. 

With such vital information provided in location sensitive map, we can greatly im-

prove the segmentation accuracy of the existing state-of-the-art brain tumor segmen-

tation methods by using the guidance from the location and shape sensitive map. The 
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whole pipeline of our proposed location sensitive brain tumor segmentation method is 

illustrated in Fig. 3. Our proposed method is very simple but efficient, and easy to 

implement, moreover, it is able to achieve great improvement compared with the 

state-of-the-art methods. 

 

Fig. 3. The framework of our proposed location sensitive brain tumor segmentation method 

The key point of our method is that we propose to segment the brain tumor with the 

guidance of location map which is sensitive to not only tumor location but also tumor 

outline.  Specifically, we propose two approaches to utilize the location map to guide 

the tumor segmentation: 

1.  The location map is considered as a weighted location mask and can be applied to 

the segmentation results from any existing brain tumor segmentation methods. Ac-

cording to subsection 3.1, we know that location map can accurately reflect the tumor 

location and shape. Since we average the scores/probabilities in three dimensions to 

get the 3D location map, there may be some outliers which are detected in only on 

dimension. Therefore, we set a threshold value (1/3≈0.3333) on the location map to 

remove the low score part and make the value of high score part equal to 1. Then the 

threshold location map is applied onto the segmentation results of any existing meth-

ods, which will lead to a better result in which only the segmentation results that on 

the binarized location map are kept.   

2. The location map can be treated as one of the input channel of any existing state-

of-the-art brain tumor segmentation methods. Since the location map contains im-

portant information about tumor location, it will somehow influence and guide the 

deep learning model to focus on the part that tumor would most likely located in and 

further improve the segmentation accuracy of original methods. Fig. 3 shows the ef-

fect of brain tumor segmentation method with the guide of location sensitive map. We 

don’t need any other post-processing techniques with this approach. 
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3 Experimental Results 

Dataset and Preprocessing. Our models are training on the data from the 2017 

MICCAI BRATS Challenge training data [7], which consists of 275 cases with 210 

high grade gliomas (HGG) cases and 75 low grade glioma (LGG) cases. The corre-

sponding reference segmentation are provided for all cases in training data which 

include three tumor tissue classes this year: necrotic core (labeled 1), edema (labeled 

2), and enhancing core (labeled 4). Unlike the data provides in the previous years, the 

reference segmentation results are all manually segmented by experts and there is no 

non-enhancing core (labeled 3) labeled this year. The validation data are released at 

the end of June, and there is no ground truth and tumor grade provided. All results are 

reported from the online evaluation platform — CBICA’s Image Processing Portal. In 

the evaluation stage, three labels are merged into different sets which include whole 

tumor (all three classes), the core (classes 1 and 4), and the enhancing tumor (class 4). 

For each subject, there are four modalities provides which are FLAIR, T1, T1-contrast 

and T2. The pre-processing of dataset is done by the organizers which includes skull-

strip, register to a common space and resample to isotropic 1〖mm〗^3 resolution. 

The dimensions of each volume are 240 × 240 × 155. We only normalized the data to 

have a zero mean and unit variance. In order to reduce the problems caused by data 

imbalance between HGG cases and LGG cases, we augmented the LGG data by re-

flecting the data with respect to the sagittal axis, and then all data, including the addi-

tional augmented LGG data, were augmented through the same way to resolve the 

small sample problem. 

Experimental Setting. In order to develop and evaluate our proposed methods before 

the releasing of unlabeled validation and test data, we separate the labeled BRATS 

2017 training dataset (210/HGG, 150/LGG after the first augmentation only applied 

on LGG data) into three part: training, validation and test subsets. Firstly, 30 percent 

of training data are randomly selected and divided into test subset with 63/HGG and 

45/LGG, then 30 percent of the remaining data are randomly selected and divided into 

validation subset with 44/HGG and 31/LGG, and finally the remaining data are split 

into training subset with 103/HGG and 74/LGG. After the release of validation and 

test data, we will train our proposed method on the while training set in order to uti-

lize all available imaging information to get better estimation of segmentation results. 

Our experiments are implemented on an NVIDIA GTX Titan X GPU with 12G 

memory using cuDNN v5.0. 

Experimental Results. In this study, we used the state-of-the-art brain tumor seg-

mentation method “deepMedic” as our baseline, as well as the original segmentation 

method in our proposed framework. The data we used is the BRATS 2017 which 

includes 285 multi-model/channel images of patients with 210 high-grade glioma 

(HGG) and 75 low-grade glioma (LGG). The images were registered to a common 

space and resampled to isotropic 〖1mm〗^3 resolution with dimensions of 
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240×240×155 by organizers. Each modality of images was normalized by subtracting 

the mean and dividing by the standard deviation of the intensities within the brain. 

Training data were augmented via reflection with respect to the sagittal axis, and 

LGG training data were augmented twice in order to alleviate problems caused by 

data imbalance. Table 1 shows the dice scores of using difference brain tumor seg-

mentation methods. From Table 1, we can see that our proposed method outperforms 

the state-of-the-art method “deepMedic”.  

Table 1. Dice scores of our proposed method compared with the state-of-the-art (“Deep-

Medic”) on the online evaluation platform 

Evaluation DeepMedic Proposed 1 Proposed 2 

Dice_ET 73.04 75.37 73.18 

Dice_WT 87.94 89.39 87.52 

Dice_TC 74.17 74.34 74.03 

Sen_ET 76.10 76.59 75.20 

Sen_WT 89.30 88.90 85.81 

Sen_TC 73.14 73.13 70.90 

Spe_ET 99.82 99.82 99.82 

Spe_WT 99.40 99.52 99.56 

Spe_TC 99.71 99.71 99.82 

Hau95_ET 6.909 5.510 4.435 

Hau95_WT 20.71 7.872 4.464 

Hau95_TC 14.18 11.07 10.94 

4 Discussion and Conclusions 

In this study, we proposed a novel location sensitive brain tumor segmentation meth-

od which is robust, efficient and accuracy. Since the brain tumor is diffusive, without 

clear boundary and can grow anywhere in brain, we firstly generate a location sensi-

tive map for each case which can accurately locate the position of tumors and give an 

accurate range of tumor regions. The location sensitive maps are then guide the deep 

learning-based brain tumor segmentation techniques to get accurate delineation of 

brain tumors. The experimental results show that our proposed method can high im-

prove the dice ratio of segmentation results with the state-of-the-art brain tumor seg-

mentation method as baseline. 
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Abstract. In this work, we present a novel method to segment brain tu-
mors using a dilated Fully Convolutional Network [7]. An accurate brain
tumor segmentation is key for a patient to get the right treatment and
for the doctor who must perform surgery. Due to the genetic differences
that exist in different patients, even between the same kind of tumor, an
accurate segmentation is crucial.To evaluate our algorithm we use the
evaluation tool from the Brain Tumor Segmentation challenge, BraTS
from 2017.

Keywords: Deep learning · Brain tumor segmentation · Dilated convolutions ·
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1 Introduction

Cancer is one of the leading causes of death in the world. In the US, cancer is the
2nd leading cause exceeded only by heart disease [1]. To put it in perspective,
one out of every four deaths in the US is caused by cancer. Due to this high-
death ratio, scientist all over the world have tried to find a cure for cancer. In
this work, my intention is to find a faster and more efficient way to detect cancer
in time [8, 11, 12, 13].

According to the National Cancer Institute [2], checking for cancer (or for
conditions that may become cancer) in people who have no symptoms is called
screening. Screening can help doctors find and treat several types of cancer early.
Early detection is important because when abnormal tissue or cancer is found
early, it may be easier to treat. By the time symptoms appear, cancer may have
begun to spread and is harder to treat. Several screening tests have been shown
to detect cancer early and to reduce the chance of dying from that cancer. But
it is important to keep in mind that screening tests can have potential harms
as well as benefits. Some screening tests may cause bleeding or other health
problems.

Screening tests can have false-positive results – the test indicates that can-
cer may be present even though it is not. False-positive test results can cause
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anxiety and are usually followed by additional tests and procedures that also
have potential harms. Screening tests can also have false-negative resultsthe test
indicates that cancer is not present even though it is. False-negative test results
may provide false reassurance, leading to delays in diagnosis and possibly caus-
ing an individual to put off seeking medical care even if symptoms develop[14].
Finally, overdiagnosis is also possible. This happens when a screening test cor-
rectly shows that a person has cancer, but the cancer is slow growing and would
not have harmed that person in his or her lifetime. Treatment of such cancers is
called overtreatment.

In this work, we want to combine a screening method, such as Magnetic
Resonance Imaging, MRI, with the latest technology on machine learning, deep
learning. Deep Learning is a new area of Machine Learning research, which has
been introduced with the objective of moving Machine Learning closer to one of
its original goals: Artificial Intelligence. There have been some approaches using
this method [9] [6], but they havent presented an approach that can beat human
performance.

A correct segmentation is key for many reasons. The most important one
is so that the patient can get the best possible treatment. An accurate tumor
quantification is needed so that the patient gets the amount of treatment that he
needs. A rightful segmentation is crucial too in life-threatening cases. These are
cases where the tumor is next to or on top of one of the cerebellum, or to similar
sensitive parts. Therefore, we need to do a correct segmentation, especially in the
boundaries between tumor and edema. This last part is central when planning
a brain tumor extraction. Doctors need to know what they are facing before
performing any surgery.

One of the main factors for a correct image segmentation is having enough
images to train the network [5]. When working with medical images this can
become an issue.

We are going to work towards a correct segmentation using a Deep Convo-
lutional Neural Network with dilated filters instead of pooling filters. Moreover,
instead of training it with the whole image, we will use a patch-based training
approach.

2 Methods

We apply a fully convolutional network approach in order to produce a per-pixel
segmentation output. Our network is applied to each slice in a scan separately.

2.1 Dilation

An issue with traditional convolutional neural network architectures that use
max pooling is that they downsample the image and thus produce a segmentation
with resolution smaller than the input size.

In [15], Yu et al. develop a new convolutional network module that is specif-
ically designed for dense prediction. They present a model that uses dilated
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Layer Type Configuration Dilation

1 Convolutional 3x3x1x32 1

2 Batch normalization

3 ReLU

4 Convolutional 3x3x32x32 1

5 Batch normalization

6 ReLU

7 Convolutional 3x3x32x32 2

8 Batch normalization

9 ReLU

10 Convolutional 3x3x32x32 4

11 Batch normalization

12 ReLU

13 Convolutional 3x3x32x32 8

14 Batch normalization

15 ReLU

16 Convolutional 3x3x32x32 16

17 Batch normalization

18 ReLU

19 Convolutional 3x3x32x32 1

20 Batch normalization

21 ReLU

22 Convolutional 1x1x32x4 1

Table 1. Configuration of the CNN
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convolutions. This model is designed to systematically aggregate multi-scale con-
textual information without losing resolution. All their work is based on the fact
that dilated convolutions support exponential expansion of the receptive field
without losing resolution or coverage.

Let F : Z2 be a discrete function. Let Ωr = [-r, r]2Z2 and let k : Ωr → R be a
discrete filter of size (2r + 1)2. The discrete convolution opreator can be defined
as

(F ∗ k)(p) =
∑

s+t=p

F (s)k(t) (1)

We now generalize this operator. Let l be a dilation factor and let *l be defined
as

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t) (2)

We will refer to *l as a dilated convolution or and l-dilated convolution.

2.2 Patch-based training

The dataset exhibits severe class imbalance, i.e. the tumor pixels are vastly
outnumbered by the non-tumor pixels. This poses a problem when training the
network, because the non-tumor pixels influence the total loss function much
more strongly than the tumor pixels.

To address this issue, we adopt a patch-based training approach. During
training, we randomly sample patches from the images to form a batch. Each
patch is exactly the size of receptive field of the network.

We sample patches using a uniform distribution over the classes. In other
words, we ensure that each batch has the same number of examples of each
class. This effectively remedies the class imbalance that would be caused by
simply randomly sampling the patches. Moreover, we don’t sample patches from
pixels with zero intensity.

Because the network is fully convolutional, we can use the same network
trained on patches to test on images. At test time, we use whole images as input
to the network to produce the full-resolution output.

3 Results

3.1 Implementation details

To develop the experiment, we used Keras for Python 2.7. All training was done
in one machine with Ubuntu and Nvidia Titan X card with 12 GB of memory.

To train the network, we used a batch size of 120 patches, 1000 batches per
epoch and 1000 epochs. We used an Adagrad optimizer [4] with a learning rate
of 0.01. One training epoch takes 146 seconds.
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3.2 Evaluation on validation dataset

To evaluate our algorithm, we used the BRATS evaluation tool. To measure the
performance of the algorithms, we have to evaluate recall (or sensitivity), speci-
ficity and the dice score (also called F1) [3]. Recall (also known as sensitivity)
is the fraction of relevant instances that are retrieved, therefore it measures the
proportion of positives that are correctly identified as such. Specificity measures
the proportion of negatives that are correctly identified as such. The dice score
or F1, is a is a statistic used for comparing the similarity of two samples. It is
calculated using the precision and recall parameters.

DICE Sensitivity Specificity Hausdorff95

0.52788 0.68864 0.99495 32.01849

Table 2. Mean results for Enhanced Tumor

DICE Sensitivity Specificity Hausdorff95

0.63685 0.71717 0.90964 36.46434

Table 3. Mean results for Tumor Core

DICE Sensitivity Specificity Hausdorff95

0.73717 0.86329 0.97142 43.38166

Table 4. Mean results for Whole Tumor

In Figures 1, 2 and 3 we have included some examples of segmented MRI.
Figure 1 and 2 are good examples of how the segmentation should look like. In
FIgure 3 there are some issues with the edema detection that we will discuss
later.

4 Discussion

Based on the results that we have obtained, we can say that the balancing of
data is key to avoid getting too many pixels labels as background or normal
tissue. In Figure 1 and Figure 2, we can see that the segmentation is correct,
but we still need to address some issues. We have a balanced algorithm, but we
still have room for improvement until we reach human performance.
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Fig. 1. MRI with its corresponding segmentation

Fig. 2. MRI with its corresponding segmentation

One of our main areas of improvement is edema detection. There are some
issues with the detection of edema, since too many pixels are detected as edema
and this lowers the precision of the algorithm. This is caused by the similarity
of some of the edema pixels with adjacent brain pixels. In Figure 3 we can see a
good example of this problem.

As for the tumor pixels, we can see a problem with boundaries or edges.
The edges between edema and tumor core are not segmented well enough. Many
tumor pixels are labeled as edema. And the same thing happens with enhanced
tumor and tumor pixels.

As for enhanced tumor, the algorithm behaves similarly for most of the cases,
and it has a regular behavior in most of the images. However, there are some
issues with enhanced tumor detection, where the dice score is low. We think
that this is due to the low number of enhanced tumor pixels in some of the MRI.
In these cases, the MRI contains few Enhanced Tumor pixels (10-20) and our
algorithm misses all or most of them.
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Fig. 3. MRI with its corresponding segmentation

5 Conclusions

Results are encouraging, especially for whole tumor and lead us to believe that,
even though we still have work to do until we reach our objective, we can keep
working in this direction. The lack of medical data is one of the main problems
that we have encountered in this project. To publish medical data, the three parts
involved, doctor, institution and patient, must agree to publish it. Therefore, if
you arent working with a medical institution, its difficult to obtain lots of medical
data or even trustworthy data. As a future work we would like to implement
a data augmentation model using elastic image deformation, to overcome this
scarcity of data.

Finding the right network configuration to work with such a small amount of
data was an enormous challenge. We went through many different networks and
different configurations to try to find the most suitable network for our needs.
The dilated convolution is effective for brain tumor segmentation to introduce
context without losing output spatial resolution and it is an interesting direction
to explore in the future. One of the main ideas we want to apply is combining
well-known structures like U-Net [10] with the dilation model. Another interest-
ing approach due to its effectiveness for segmentation, is the one proposed by Yu
et al. in [16], where they use Dilated Residual Networks for image segmentation.

To increase the accuracy when detecting Enhanced Tumor, we could address
this by changing the balance of classes during patch sampling and/or adding
class weights.

Brain tumor segmentation isn’t an easy task. Due to the genetics of cancer,
it remains being a task for which the doctors help is needed. However, they dont
have to do all by themselves, since with tools like the one that we have designed
in this work, we can help them and we can contribute in the fight against cancer.
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1 Introduction
SIBIA-GlS is baaed on Gooya et al [8] and on SIBIA (Scalable Integrated
Biophysics-based Image Analysis) [6], a set of algorithms and software for biophysics-
based image analysis. The SIBIA-GlS pipeline comprises two main steps: the
ML-step in which we use supervised machine learning to create probability
maps for the target classes (“whole tumor”, “edema”, “tumor core”, and “en-
hancing tumor”); and the SIBIA-step in which we combine these probabilities
with a biophysical model of tumor growth coupled with large-scale diffeomor-
phic registration to implicitly impose spatial correlations Besides [8], our work
borrows from [10] and the algorithms and workflows in [22] that summarizes the
BRATS 2012 and 2013 competitions. In this work, we used the training, valida-
tion, and testing datasets of the BRATS 2017 competition [1–3]. The BRATS 17
competition has several metrics to assess the quality of a segmentation. In this
paper we just focus on the “whole tumor” Dice score. We achieve 0.87 median
Dice score (0.84 mean) and 0.84 median Dice score (0.83 mean) for the training
and validation images respectively. The histograms are shown below.

Fig. 1 Dice histograms for “whole-tumor” label. Left: training (285 images); Right:
validation (46 images).
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2 Methods
In this section, we discuss the methodology and the overall formulation for
SIBIA-GlS. First, a few words regarding preprocessing. We normalize the in-
tensities by centering their mean after removing the bottom and top 1% outliers
(for each modality separately). Then, we affinely register all images to a normal
(segmented) probabilistic atlas image using an L2 similarity measure and the T1
patient image. All the classification steps take in the atlas space.

Notation: With boldface, we denote vector fields; with normal face fonts we
denote scalar fields. We define the following probability fields: πG (gray mat-
ter), πW (white matter), πF (cerebrospinal fluid and ventricles), πED (edema),
πTC (tumor core), πEN (enhancing tumor), and the πWT (whole tumor) prob-
ability. We also define πA to be the vector probability for a reference brain
(that may or may not have a tumor, depending on the context), so that πA =
{πG , πW , πF , πWT}. We define πS to be the patient vector probability map.

We use SIBIA-GlS for the “whole-tumor” label and then binary classifica-
tion for the other labels. SIBIA-GlS consists of four main components. First,
the inverse tumor growth model is used to biophysically constrain the ML
classifier. Second, the registration problem used for atlas-based segmentation
(with or whithout tumor). Third, supervised machine learning framework
that provides the initial “whole-tumor” probability. Fourth, the overall cou-
pling that combines the three first components to produce a final “whole-tumor”
probability. We briefly describe these components below.

Tumor model: Given πA(0) := πA(x, 0), the probability map of a healthy
brain (i.e., the “atlas”), the forward tumor operator T is given by

πA(1) := πA(x, 1) = T (g,πA(0)). (1)

Here g are tumor growth model parameters that control the tumor growth.
πA(0) comprises πW , πG , and πF , where πA(1) comprises πW , πG , πF , and
πWT . To simplify the notation, we suppress the dependence on the normal atlas
πA(0); we simply write πA = T (g), where g is the vector of parameters that
control the tumor growth dynamics. In this work we used a simple reaction-
diffusion model and g is the initial condition for the tumor parameterized by
125 Gaussians.

In the inverse tumor problem, given πA
∗ (data with tumor) and πA(0) (a

normal brain), we solve an optimization problem for g: ming(πA(1)−πA
∗ )2, were

πA(1) is given by (1). We have omitted (due to space limitations) an additional
regularization term [5–7,11,16] that controls the reconstruction of g.

Registration: We use a velocity-based formulation for diffeomorphic registra-
tion [4, 9, 12–15]. Given a vector field πS(0) and a velocity field v, the forward
image registration problem computes a deformation of πS(0) := πS(x, 0), let’s
call it πS(1) := πS(x, 0). We abstract this operation using R. That is,

πS(1) = R(v,πS(0)). (2)

In the inverse registration problem, we’re given two vector fields πS(0)
and πS

∗ and we seek to compute v such that the difference between πS(1) and
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3

πS
∗ is a small as possible. Formally, minv(πS(1)−πS

∗ )2 such that πS(1) is given
by (2). We have omitted the necessary regularization for the velocity [13].

Supervised classification: We first identify “whole-tumor” voxels using bi-
nary classification. Then, we classify the “whole-tumor” voxels to “tumor core”
and “edema”. Lastly, we classify the “tumor-core” voxels to “enhancing” and
“non-enhancing”. All these are binary classifications. As featured, we use 288
2D Gabor features per voxel, and we use 50,000,000 training voxels. For the
machine learning step we use nearest neighbor classification (using an in-house
code [20,21]) for the “whole tumor” label. For the binary classifications to distin-
guish edema, and enhancing tumor we used 25,000,000 points and used Light-
GBM, an open-source, random-forest classifier. Both classifiers return proba-
bility maps. The whole-tumor probability maps are passed to the next step to
introduce spatial correlation. Then, the updated πWT , along with the πTC and
πEN from LightGBM are combined and threshold to produce the final labels.

Coupled formulation (SIBIA): The inputs to our problem are πS(0) (initial
patient probability map) and πA(0) (normal atlas without tumor). The outputs
are g and v, and πS(1) and πA(1), which contains πWT -the main output of the
SIBIA-GlS part in the pipeline. Formally, the optimization problem (omitting,
for notational simplicity, regularization terms for g and u) is given by

min
v, g

(πA(1)− πS(1))2 such that πA(1) = T (g,πA(0)),

πS(1) = R(v,πS(0)).
(3)

Here we assume we have probability maps πA(0) and πS(0) for both atlas and
patient images and then we try to match them. That means that we need to seg-
ment gray matter, white matter, and CSF and ventricles, in addition to tumor
probabilities. We need this information to be able to calibrate the tumor growth
model through the determination of g. Tumor doesn’t grow in ventricles and ma-
terial properties differ in white and grey matter. We obtained these tissue-type
probability maps using probabilistic atlas segmentation averaging registration
with 10 normal brains and two large-deformation diffeomorphic registration al-
gorithms, DEMONS [17], and our own CLAIRE [14].

3 Results

3.1 SIBIA results

First, we report results for the SIBIA component, assuming a correct and known
πWT and shows how we can grow a tumor in atlas space and then map it to
a given tumor in the patient space, to test our joint inversion / segmentation
approach. By adjusting the regularization parameters, we can adjust the regular-
ization provided by SIBIA. We report representative results in Figure 2. SIBIA
can effectively match the given segmentation. All SIBIA runs are in reduced
1283 resolution. The total run time for SIBIA is under 1 minute using a 10-node
configuration (2-socket Xeon E5-2690 v3 (Haswell) with 12 cores/socket).
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Fig. 2 The top row shows the initial configuration (4 images to the left: probability
maps πA(0) (in particular, from left to right, πG , πW , πF and πWT ) at iteration zero; 4
images to the right: mismatch (pointwise residual) between πA(1) and πS(1) at iteration
zero. The second row shows the same configuration at the final iteration of our coupled
tumor inversion and registration scheme. The three images on the bottom show the
corresponding hard segmentation (left: initial label maps given for the atlas image;
middle: deformed configuration of the atlas image (registered to the patient data) with
simulated tumor; right: synthetic patient image. The obtained atlas based segmentation
(middle image) and the ground truth segmentation for the patient are very similar.

3.2 BRATS Validation results

In figure 3, we present segmentation for seven different BRATS17 cases (from the
training set) for which we get different Dice scores. We can recover multifocal
tumors and quite complex shapes, but we do have cases with quite bad dice
scores both because of false negatives and positives. Overall, there are several
technical reasons that create problems in our algorithm and we will discuss them
in a longer version of this paper.

4 Discussion
We presented preliminary results for our joint formulation for combining atlas-
based and machine learning-based segmentation. Below we list some observations
on our efforts.

– The processing time per patient is about one hour using 10 dual-socket x86
nodes. The most expensive parts is the nearest neighbor classifier and the
20 diffeomorphic registrations for the gray matter, white matter, and CSF.
Both of them are in full resolution (2042×155). SIBIA is much faster because
we use 1283 resolution.

– The nearest-neighbor classifier requires 8 nodes and it uses distributed mem-
ory parallelism based on MPI so that it can handle the problem of finding
nearest neighbors. Notice for each brain we have to find the neighbors of
1.5M voxels in a dataset of 50M voxels. SIBIA and CLAIRE use MPI. The

Proceedings of the 6th MICCAI BraTS Challenge (2017) 200 of 347



5

Fig. 3 Images from the training set: Top-to-bottom: different BRATS brains:
CBICA ABO (0.87), CBICA AWH (0.81), CBICA ATB (0.81), CBICA ATX (0.53),
TCIA 242 (0.93), 2013 26 (0.53), TCIA 177 (0.23). In parenthesis, we report the
“whole-tumor” Dice score. Left-to-right: In the first two columns we show our SIBIA-
GlS segmentation (outlined with a red box) followed by the ground truth segmentation
(provided by the BRATS17 organizers). In the last three columns, we show the T2,
T1ce and FLAIR MRI images for each case. In the segmentation images (the first
two columns), white is enhancing tumor, light gray is edema, and dark gray is non-
enhancing tumor.
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nearest neighbors were run on the Stampede 2 system, CLAIRE and SIBIA
on Lonestar 5 system, and combining the segmentations on the Maverick
system, all at TACC.

– The primary classification is key for SIBIA. We need an acceptable initial
guess for the segmentation based on machine learning for good results. SIBIA
cannot correct really bad initial segmentations.

– Our approach is fully automatic. We only need to specify algorithm param-
eters (for the inverse solvers, iterative solvers, etc) . The results are not
overly sensitive to these parameters. The only important parameter is the
thresholding parameter for πWT , which is used to produce a hard segmen-
tation. Although 0.5 seems obvious, using 0.3 produces much better results
(meaning that a voxel is labeled as “whole-tumor” if πWT > 0.3).

– Our approach integrates biophysical simulations with machine learning, opti-
mization, and image analysis. It can provide bio-physical parameters (growth
rate, mass effect, and others) that might be critical for clinical studies to as-
sess the current and/or future state of an individual patient.

– The solvers for the individual building blocks are based on state-of-the-art
technology in scientific computing [6, 12,14,18–20].

– Unlike [8], we do not iterate to update the SIBIA segmentation. That’s a
limitation of our scheme and will address in future work.

– High-grade and low-grade gliomas have different characteristics but we have
not taken this into account. We simple merged all the training data.

5 Conclusion

We have presented preliminary results for SIBIA-GlS—a new framework for
biophysics-based image analysis for glioma segmentation. We demonstrated that
our approach yields promising results. However, several issues remain open. We
obtain excellent results for SIBIA-GlS if the initial proposal for the segmentation
does not contain significant noise. Improving on this initial segmentation will be
key for our future work. In addition to that we will extend our biophysical model
to, e.g., include edema and mass effect. We expect that this will significantly
improve our current results.
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Abstract. Segmentation of medical images requires multi-scale informa-
tion, combining local boundary detection with global context. State-of-
the-art convolutional neural network (CNN) architectures for semantic
segmentation are often composed of a downsampling path which computes
features at multiple scales, followed by an upsampling path, required
to recover those features at the same scale as the input image. Skip
connections allow features discovered in the downward path to be inte-
grated in the upward path. The downsampling mechanism is typically a
pooling operation. However, pooling was introduced in CNNs to enable
translation invariance, which is not desirable in segmentation tasks. For
this reason, we propose an archgitecture, based on the recently proposed
Densenet, for semantic segmentation, in which pooling has been replaced
with dilated convolutions. We present results on the validation dataset of
the Multimodal Brain Tumor Segmentation Challenge 2017.

Introduction

We present a network architecture for semantic segmentation, heavily inspired
by the recent Densenet architecture for image classification [1], in which pooling
layers are replaced by heavy use of dilated convolutions [2]. Densenet employs
dense blocks, in which the ouput of each layer is concatenated with its input before
passing to the next layer. A typical Densenet architecture consists of a number of
dense blocks separated by transition layers: the transition layers contain a pooling
operation, which allows some degree of translation invariance and downsamples
the feature maps. A Densenet architecture adapted for semantic segmentation
was presented in [3], which adopted the now standard approach of U-net [4]:
a downsampling path, followed by an upsampling path, with skip connections
passing feature maps of the sample spatial dimension from the downsampling
path to the upsampling path.
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In this paper, we describe an alternative architecture adapting Densenet for
semantic segmentation: in this architecture, which we call DeepSCAN, there are
no transition layers and no pooling operations. Instead, dilated convolutions are
used to increase the receptive field of the classifier. The absence of transition
layers means that the whole network can be seen as a single dense block, enabling
gradients to pass easily to the deepest layers.

We describe the general architecture of DeepSCAN, plus the particular features
of the network as applied to brain tumor segmentation, and report preliminary
results on the validation portion of the BRATS 2017 dataset.

Dense blocks

The fundamental unit of a densenet architecture is the densely connected block,
or dense block. In such a block, the output of each layer (where a layer here
means some combination of convolutional filters, nonlinearities and perhaps batch
normalization) is concatenated to its input before passing to the next layer.

Fig. 1. Dense units, as used in the DeepSCAN architecture a) a dense unit without
bottleneck, and b) a dense unit with bottleneck

The layers in our dense blocks have the shape shown in Figure 1. Depending
on its position in the network, the convolution might have kernel size 3 by 3
or 5 by 5, and might or might not be dilated. At deeper levels of the network
(where the feature depth is rather high) a “bottleneck” is used, meaning that
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before the 2D convolution a convolution with 1 by 1 kernels is performed to
reduce the number of parameters. As a nonlinearity, we use Exponential Linear
Units (ELU) [5] rather than the combination of rectified linear unit and Batch
Normalization [6] used in the original Densenet paper. There are two reasons for
this: the first is that densenets are very momery intensive: removing batch norm
layers reduces the overall memory footprint of network. Secondly eliminating
batch normalization makes training less sensitive to high levels of variance in
batches.

Dilated convolutions

We use dilated convolutions to aggregate features at multiple scales. Dilated
convolutions, sometimes called atrous convolutions, can be best visualised as
convolutional layers “with holes”: a 3 by 3 convolutional layer with dilation 2
is a 5 by 5 convolution, in which only the centre and corner values of the filter
are nonzero, as illustrated in Figure 3. Dilated convolutions are a simple way to
increase the receptive field of a classifier without losing spatial information.

Application to Brain Tumor Segmentation

We trained a DeepSCAN classifier on 100 cases (50 LGG, 50 HGG) from the
BRATS 2017 training dataset [7]–[10]. The network used is pictured in Figure 2.
The network was built using Keras [11] and Tensorflow [12], and trained using
stochastic gradient descent with momentum for 100 epochs. Rather than using a
softmax layer to classify the three labels (edema, enhancing, other tumor) we
employ a multi-task approach to hierarchically segment the tumor into the three
overlapping targets: whole tumor, tumor core and enhancing: thus the output of
the network is three sigmoid units, one for each target. The network segments
the volume slice-by slice: the input data is five consecutive slices from all four
modalities, Ground truth for such a set of slices is the lesion mask of the central
slice.
Slices from all three directions (sagittal, axial, coronal) were fed to the classifier
for training, and in testing the results of these three directions were ensembled
by averaging. When applied to the BRATS 2017 validation dataset, the mean
Dice scores for Whole Tumor, Tumor core and enhancing tumor were 0.87, 0.68
and 0.71 respectively. After some mild postprocessing (removing small connected
components), the Dice coefficient for whole tumor increased to 0.88, and for
tumor core to 0.70.
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Fig. 2. The DeepSCAN architecture, as applied to brain tumor segmentation
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Fig. 3. Left, a 3 by 3 kernel. Right, a 3 by 3 kernel with dilation 2, visualised as a 5 by
5 kernel
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Abstract. The aim of this work was to develop a model for accurate auto-seg-

mentation of the glioma brain tumors in multimodal MRIs and prediction of pa-

tient overall survival based on SVMs algorithms. BraTS’2017 datasets were used 

in this study. We developed a model based on an SVMs algorithms for auto-

segmentation of gliomas. Image intensity features were extracted for this purpose 

as well as pre- and post-processing on the MRIs were employed. The model was 

trained using the provided training datasets. Then the trained model was used to 

produce segmentation labels on the validation datasets. Also, the auto-segmented 

labels were called in combination the patient age parameter for OS classifications 

prediction. The OS prediction model was trained using the BraTS’17 OS data. A 

confusion matrix was plotted to evaluate the OS predictor performance in the 

three classification categories, i.e. long, short, and mid-survivors. The evaluated 

segmentation results of the edema sub-region tumor on Flair MRIs is not 

reported. However, for OS classification prediction the algorithm’s sensitivity 

and specificity metrics between the automatically predicted and clinically ob-

tained OS were 100.0% for long-survivors (>15 months); short-survivors 

(<10 months); and mid-survivors (10 to 15 months), respectively. The OS pre-

diction algorithm’s accuracy was 100.0% for classification. The segmentation 

algorithm took approximately 1.0 to 10 minutes to segment edema in an MR scan 

of 155 slices and predict the patient OS on Intel (R) Core (TM) 8.00 GB RAM, 

CPU @ 2.50 GHz processor with 64-bit Operating System. We developed a 

model for glioma brain tumors segmentation in multimodal MRIs and patient OS 

predictions based on the SVM learning algorithm. In its present form, the model 

is fully automated, fairly accurate, easy to implement and efficient. Further im-

proving in the model could provide a robust, and cost-effective supplement to 

traditional segmentation methods. 

Keywords: Glioma Brain Tumors, MRI, Image Segmentation, SVMs Learning 

Algorithm, GBM Overall Survival. 

1 Introduction  

Brain tumors, glioma types, are the most common primary brain malignancies. Glioma 

tumors tend to have different degrees of aggressiveness, variable prognosis and various 
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heterogeneous histological sub-regions, i.e. peritumoral edema, necrotic core, enhanc-

ing and non-enhancing tumor core [1]. Glioma brain tumors are broadly divided clini-

cally into high-grade and low-grade. High-grade tumors are invasive tumors that ag-

gressively grow in a relatively short period of time, leading to the patient's death. Gli-

oblastoma multiform (GBM) is the most common and aggressive high grade (grade IV) 

glioma tumors with a median survival rate of two years or less and require immediate 

treatment [2-3]. In contrast, low-grade tumors are slow-growing, with a life expectancy 

of several years. 

Accurate segmentation (or contouring) of the glioma tumors (with its sub-regions) 

is an essential step in the patient radiation therapy chain for a patient who is a candidate 

for external beam radiation therapy. Multimodalities of magnetic resonance images 

(MRIs) are used for glioma tumors segmentation fused on a computed tomography 

(CT) image acquired during the patient treatment simulation which is standard for pa-

tient treatment planning. Moreover, glioma tumors segmentation is crucial during the 

radiation therapy course for adaptive tumor targeting and after the treatment course for 

follow up purposes to evaluate the progression of the disease and the success of the 

treatment strategy.  

Mostly, the glioma tumors contouring/segmentation are done manually by the radi-

ation oncologist. This task needs a considerable time and effort as well as sometimes 

the oncologist may seek for consultation with a neuroradiologist in some complicated 

cases which adds extra time and effort. In addition, for a given tumor segmentation task 

there are significant variations among the oncologists themselves in contouring/seg-

menting the tumors. Therefore, introducing the image processing routines and state-of-

the-art machine learning (ML) algorithm techniques that can computationally auto-seg-

ment the glioma brain tumors in multimodal MRI scans could have the potential for 

improved diagnosis, treatment planning, and follow-up of individual patients. Besides, 

it could serve as a supporting decision tool or replace the existence traditional method. 

Finally, computational auto-segmentation of gliomas for radiotherapy planning would 

be useful for standardizing and significantly expediting clinic workflow.     

However, developing automated brain tumor segmentation techniques is technically 

challenging in comparison with healthy/normal tissues/organs. One of the reasons is 

lesion areas are only defined through intensity changes that are relative to surrounding 

normal tissue, and even manual segmentations by expert raters show significant varia-

tions when intensity gradients between adjacent structures are smooth or obscured ar-

tifacts [4]. Also, glioma tumors and its sub-structures vary considerably through pa-

tients in its appearance and shape, and localization, size, etc. In this work, we developed 

a state-of-the-art machine learning model based on support vector machines (SVMs) 

for; a) automated segmentation of glioma brain tumors in pre-operative multimodal 

MRI scans and b) prediction of GBM patient overall survival (OS) via integrative anal-

yses of some radiomic features.   
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2 Materials and Methods   

2.1 Dataset 

Brain tumors MRI scans datasets and patient overall survival data used in this work 

were provided by BraTS'17 Challenge [4-7]. The number of patients included was 

n=210 with HGG/GBM and n=75 with LGG tumors as training datasets, and n=46 pa-

tients combing HGG/GBM and LGG as validation datasets. The OS data were included 

with correspondences to the pseudo-identifiers of the GBM/HGG imaging data with 

n=163 as training data and n=33 as validation data. The multimodal MRI training da-

tasets of HGG/GBM and LGG were provided with their ground truth segmentation la-

bels of various glioma sub-regions. The manually segmented volume structures were 

performed by experts following the same annotation protocol, and their annotations 

were revised and approved by board-certified neuroradiologists. Annotation labels in-

cluded were the GD-enhancing tumor (ET), the peritumoral edema (ED), and the ne-

crotic and non-enhancing tumor (NCR/NET). The pre-operative multimodal MRI 

dataset for each patient included four scans; a) T1-weighted (highlights fat locations), 

post-contrast/gadolinium T1c-weighted (taken after the injection of the contrast agent 

gadolinium), c) T2-weighted (highlights water locations), and d) T2-Flair (Fluid Atten-

uated Inversion Recovery, an MR imaging technique that produces images similar to 

T2-weighted images, but with free water suppressed) volumes. The scans were acquired 

during the clinical routine with different clinical protocols and various scanners from 

multi-institutions. The provided multimodal MRI dataset for each patient was co-

registered with aligning the volumes of the four MRI modalities to the same anatomical 

template. Also, the data are interpolated to the same resolution of 1×1×1 mm3 and skull-

stripped to correlate all four images for each patient.  

 

2.2 Machine Learning Model  

We used Support Vector Machines (SVMs) to develop a fully auto-segmentation model 

with no human interaction and OS prediction for patients with GBM. SVMs [8-9] are a 

set of related supervised machine learning (ML) methods used for classification. The 

SVM algorithm creates a hyperplane that separates the data into two classes with the 

maximum-margin. Given training examples labeled (supervised learning) either "1" or 

"0", a maximum-margin hyperplane is identified which splits the "1" from the "0" train-

ing examples, such that the distance between the hyperplane and the closest examples 

(the margin) is maximized. Hence, this makes SVM algorithm a superior choice for 

classification tasks. Some binary classifications do not have a simple hyperplane as a 

useful separating criterion. For those classifications, there is a mathematical approach 

that retains nearly all the simplicity of an SVM separating hyperplane to create non-

linear classifiers by applying kernels [10]. These class of kernel functions includes pol-

ynomials, radial basis function (Gaussian), and multilayer perceptron or sigmoid (neu-

ral network). The mathematical approach using kernels relies on the computational 

method of hyperplanes. Therefore, nonlinear kernels can use identical calculations and 

solution algorithms, and obtain classifiers that are nonlinear. The resulting classifiers 

are hypersurfaces in some space S. 
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Segmentation Model. A fully automated model based on SVMs was developed to 

produce segmentation labels of the different glioma tumor sub-regions. For a given 

patient, the segmentation task was performed with five steps. First, the 3-D MRI data 

and the ground truth data are uploaded to the model. Second, the uploaded images are 

pre-processed and image features are extracted. A 3-D median filter is applied to re-

move the noises in the uploaded volumetric MRI data. Also, the image data are nor-

malized to the global maximum intensity in the image and a thresholding technique (re-

weighting) with an adequate constant value is used for selecting features in the image. 

Moreover, the image data and the segmentation labels data are transformed to vectors 

format. Third, a supervised SVM classifier using the radial basis kernel is used to train 

the model with the extracted features in combination with its manual segmentation la-

bels. A radial basis function kernel, which have given best result among the kernels, is 

used for data classification in the model training. After the classification process is 

completed the model is checked whether it converged or not. Fourth, after the model is 

successfully converged post-processing is applied to the training SVM segmented data. 

Holes filling and something filters are employed to fill the cavities in the segmented 

tumor sub-region and smooth the edges. Also, Gaussian filters are applied to enhance 

the segmentation and remove the noise in the segmented image. Finally, after the model 

is being well trained with enough training data, the trained SVM model is used to pre-

dict the segmentation labels for the new unseen different glioma sub-regions on the 

validation data. A prediction function [12] is used to return a vector of predicted class 

labels for the new MRI data based on the trained SVM classification model. The new 

MRI image is uploaded, pre-processed and post-processed in a similar way in the pre-

vious steps with no ground truth data is used. The whole process is fully automated 

with no human interaction required.   

OS prediction model. An SVM algorithm was also used for this task. The extracted 

features (i.e. tumor size and location) combined with patient age data were used to de-

velop the prediction model. OS data were clustered into three groups: long-survivors 

(>15 months), mid-survivors (5 to 15 months), and short-survivors (<5 months). A lin-

ear SVM classifier was trained using the training data with ground truth. A fraction of 

data was used for cross-validating the model.     

 

2.3 Model Evaluation  

The predicted segmentation labels with our model on a number of evaluation datasets 

were generated. The model performance on the evaluation dataset is not reported due 

to some technical problem on uploading the predicted labels data to the evaluation sys-

tem. The predictive power of the patient overall survival model for classification was 

evaluated with plotting a confusion matrix. Performance metrics of model sensitivity, 

specificity, and accuracy in the three classification categories i.e. long-survivors, short-

survivors, and mid-survivors were reported.  
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3 Results  

The predicted glioma brain tumor, edema structure, segmentation results with an SVM 

learning model on the validation dataset are shown in Fig. 1. The quantitative measures 

of the model for evaluation dataset segmentation are not reported in the results.  

 

Fig. 1. Predicted segmentation labels (green), edema tumor, on a T2-Flair MRI validation data 

(slice# 84:2:98) with our automated model. 

The segmentation algorithm took approximately 1.0 to 10 minutes to segment a gli-

oma tumor, edema, in an MR scan of 155 slices and predict the patient OS in an Intel(R) 

Core(TM) CPU @ 2.50 GHz processor with 64-bit Operating System on our local com-

puter infrastructure. 
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Fig. 2. The plot of the OS classification predicted regions (Left) and the confusion matrix 

(Right). On the confusion matrix, the rows correspond to the predicted class (Output Class), and 

the columns show the true class (Target Class). The diagonal cells show for how many (and 

what percentage) of the examples the trained algorithm correctly estimates the classes of obser-

vations. That is, it shows what percentage of the true and predicted classes match. The off diag-

onal cells show where the classifier has made mistakes. The column on the far right of the plot 

shows the accuracy for each predicted class, while the row at the bottom of the plot shows the 

accuracy for each true class. The cell in the bottom right of the plot shows the overall accuracy.  

The patient overall survival predicted results from the segmented data and patient’s 

age parameter were reported in Fig. 2 for GBM. 

4 Discussion   

Two tasks of glioma brain tumors segmentation and patient overall survival predictions 

using prior patient data were successfully implemented in this work with machine learn-

ing approach.  

Brain tumors, gliomas, segmentation was predicted with a developed fully auto-

mated model based on SVMs. The reason behind choosing SVM is that it is a superior 

algorithm for classification tasks. It is based on a maximum-margin distance between 

the hyperplane and the closest examples (group data). Twelve edema structure segmen-

tation labels were predicted with the model on T2-weighted Flair MR Scans. The quan-

titative evaluation measures were not reported due to a technical problem in uploading 

the data to the system. Qualitatively, the segmentation results in Fig.1 are fairly ac-

ceptable at this stage. However, the predicted segmentation labels could further be im-

proved. For example, standardizing image intensities of imaging modalities/scanners 

and patient images with statistical-parametric-mapping could significantly reduce the 

effect of the patients/modalities variations and improve the predicted segmentations.  

Prediction of patient’s overall survival (OS) using the segmented tumor in combina-

tion with patient age and tumor radiomic features could serve as a survival-predictor 

and provide an informative clue about the patient treatment outcome. The evaluated 

results and metric scores were not received yet. The number (and what percentage) of 

the OS that our algorithm was correctly predicted the classification (Fig. 2) from the 

validation data was 5 (31.3%) as long-survivors, 10 (62.5%), mid-survivors, and 1 

(6.2%) as short-survivors. Thus, the reported sensitivity, defined as correctly classified 

positive samples divided by true positive samples, for three classification categories 

was 100.0% where the true and predicted classes are matching. The number of misclas-

sified predictions were 0 (0.0%) for the three classification categories. Hence, the spec-

ificity, defined as correctly classified negative samples divided by true negative sam-

ples, for three classification categories was 100.0% where our algorithm has made no 

classification mistakes. The overall accuracy achieved by our algorithm reported for 

OS classification predictions was 100.0%. 
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5 Conclusions  

We developed a fully automated model for accurate auto-segmentation of the glioma 

brain tumors in multimodal MRIs and prediction of patient overall survival based on 

SVMs learning algorithms. The segmentation model was trained the BraTS’2017 train-

ing datasets. Then the trained model was used to produce segmentation labels on the 

validation datasets. In addition, the auto-segmented labels were called in combination 

the patient age parameter for OS classifications prediction. The OS prediction model 

was trained using the BraTS’17 OS data. The evaluated segmentation results of the 

edema sub-region tumor on Flair MRIs is not reported. However, for OS classification 

prediction the algorithm’s sensitivity and specificity metrics between the automatically 

predicted and clinically obtained OS were 100.0% for long-survivors (>15 months); 

short-survivors (<10 months); and mid-survivors (10 to 15 months), respectively. The 

OS prediction algorithm’s accuracy was 100.0% for classification. The segmentation 

algorithm took approximately 1.0 to 10 minutes to segment edema in an MR scan of 

155 slices and predict the patient OS on Intel (R) Core (TM) 8.00 GB RAM, CPU @ 

2.50 GHz processor with 64-bit Operating System. In its present form, the model is 

fully automated, fairly accurate, easy to implement and efficient. Further improving in 

the model could provide a robust, and cost-effective supplement to traditional segmen-

tation methods 

References 

1. Holland, E.: Progenitor cells and glioma formation. Current Opinion in Neurology 14(6), 

683–688 (2001). 

2. Ohgaki, H., and Kleihues, P.: Population-based studies on incidence, survival rates, and ge-

netic alterations in astrocytic and oligodendroglial gliomas. Journal of Neuropathology & 

Experimental Neurology 64(6), 479–489 (2005). 

3. Louis, D., Ohgaki, H., Wiestler, O., and Cavanee, W.: WHO classification of tumours of the 

central nervous system. 4th edn. WHO/IARC, Lyon, France (2007). 

4. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., 

Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M., Arbel, T., Avants, B., 

Ayache, N., Buendia, P., Collins, D., Cordier, N., Corso, J., Criminisi, A., Das, T., De-

lingette, H., Demiralp, Ç., Durst, C., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., 

Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K., Jena, R., John, N., Ko-

nukoglu, E., Lashkari, D., Mariz, J., Meier, R., Pereira, S., Precup, D., Price, S., Raviv, T., 

Reza, S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H., Shotton, J., Silva, C., Sousa, N., 

Subbanna, N., Szekely, G., Taylor, T., Thomas, O., Tustison, N., Unal, G., Vasseur, F., Win-

termark, M., Ye, D., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, 

K.: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans-

actions on Medical Imaging 34(10), 1993-2024 (2015). 

5. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Fara-

hani, K., Davatzikos, C.: Advancing the Cancer Genome Atlas glioma MRI collections with 

expert segmentation labels and radiomic features, Nature Scientific Data, (2017). [In Press] 

6. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Fara-

hani, K., Davatzikos, C.: Segmentation Labels and Radiomic Features for the Pre-operative 

Proceedings of the 6th MICCAI BraTS Challenge (2017) 217 of 347

https://www.google.com.lb/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj19cqYnrHVAhWF1RQKHaNOAU4QFggnMAA&url=https%3A%2F%2Facademic.oup.com%2Fjnen&usg=AFQjCNEpUak0Y9qgHTuauzl8HeGGzsXJqA
https://www.google.com.lb/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj19cqYnrHVAhWF1RQKHaNOAU4QFggnMAA&url=https%3A%2F%2Facademic.oup.com%2Fjnen&usg=AFQjCNEpUak0Y9qgHTuauzl8HeGGzsXJqA


8 

Scans of the TCGA-GBM collection. The Cancer Imaging Archive, (2017). DOI: 

10.7937/K9/TCIA.2017.KLXWJJ1Q. 

7. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Fara-

hani, K., Davatzikos, C.: Segmentation Labels and Radiomic Features for the Pre-operative 

Scans of the TCGA-LGG collection. The Cancer Imaging Archive, (2017). DOI: 

10.7937/K9/TCIA.2017.GJQ7R0EF. 

8. Christianini, N., and Shawe-Taylor, J.: An Introduction to Support Vector Machines and 

Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK, 

(2000). 

9. Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning, second 

edition. Springer, New York, USA, (2008). 

10. Fan, R-E., Chen, P-H., and Lin, C-J.: Working set selection using second order information 

for training support vector machines. Journal of Machine Learning Research 6, 1889–1918 

(2005). 

11. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized 

likelihood methods. Advances in Large Margin Classifiers. MIT Press, 61–74 (1999). 

 

 

Proceedings of the 6th MICCAI BraTS Challenge (2017) 218 of 347



Residual Encoder and Convolutional Decoder
Neural Network for Glioma Segmentation

Kamlesh Pawar?1,2, Zhaolin Chen3,4, N. Jon Shah1,3,4, and Gary Egan1,2

1 Monash Biomedical Imaging, Monash University, Australia
2 School of Psychological Sciences, Monash University, Australia

3 Electrical and Computer System Engineering, Monash University, Australia
4 Institute of Medicine, Research Centre Juelich, Germany

Abstract. A deep learning approach to glioma segmentation is pre-
sented. An encoder and decoder pair deep learning network is designed
which takes T1, T2, T1-CE (contrast enhanced) and T2-Flair (fluid at-
tenuation inversion recovery) images as input and outputs the segmented
labels. The encoder is a 49 layer deep residual learning architecture that
encodes the 240 × 240 × 4 input images into 8 × 8 × 2048 feature maps.
The decoder network takes these feature maps and extract the segmented
labels. The decoder network is fully convolutional network consisting of
convolutional and upsampling layers. Additionally, the input images are
downsampled using bilinear interpolation and are inserted into the de-
coder network through concatenation. This concatenation step provides
spatial information of the tumor to the decoder, which was lost due to
pooling/downlsampling during encoding. The network is trained on the
BRATS-17 training dataset and validated on the validation dataset. The
dice score, sensitivity and specificity of the segmented whole tumor, core
tumor and enhancing tumor is computed on validation dataset.

Keywords: deep learning, image segmentation, computer vision, CNN

Introduction

Gliomas are the tumors of the central nervous system which arises from glial
cells. The gliomas are classified into two types depending on the aggressiveness
of the tumor. The more aggressive are called high grade gliomas (HGG) and less
aggressive are called low grade (LGG), both types of tumors are malignant and
need treatment. The accurate segmentation of gliomas is important in grading,
treatment and monitoring of the tumor progression. Mutiple MR image contrasts
are used to evaluate the type and extent of tumor. The different contrasts T1,
T2, T1-CE and T2-Flair are analysed by a radiologists and tumor regions are
manually segmented. Segmenting brain tumor is a comprehensive task, and large
intra-rater variability is often reported, e.g. 20% [1]. Thus it is imperative to

? correspondence to: kamlesh.pawar@monash.edu
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have a reliable automatic segmentation algorithm that standardizes the process
of segmentation, resulting in more precise planning, treatment and monitoring.

Deep learning methods based on convolutional neural networks (CNN) [2, 3]
have demonstrated highly accurate results in image classification and segmenta-
tion [4]. However, selection of the number of CNN layers is a complex task. On
one hand, increasing the number of layers improves complexity of the network
and leads to more accurate results. On the other hand, designing more deep
CNN may result in degradation of performance due to exploding/vanishing gra-
dients. This problem is partially solved by the batch normalization layers [5] that
minimizes the chances of exploding/vanishing gradients. Another limitation of
designing deep neural network is that training them becomes difficult after a
certain depth and the network ceases to converge. However recently introduced
residual networks [6], consisting of short cut connections can be trained to the
larger depths. In this paper we present an encoder-decoder based CNN archi-
tecture to solve the tumor segmentation problem. The network consist of two
parts, first is a 49 layer deep residual encoder network followed by a 10 layers of
fully convolutional decoder network. The performance for the whole tumor, core
tumor and enhancing tumor were 0.824, 0.627 and 0.575 respectively.

Fig. 1. Residual encoder and convolutional decoder network; the encoder is a 49 layer
deep residual network and the decoder is a 10 layer deep fully convolutional network
with bilinear upsampling layers. The input data is also downsampled using bilinear
interpolation and is inserted back into the decoder through concatenation.

Methods

The method presented here is based on residual learning convolutional neural
network [6]. The network is a 2D CNN, which performs segmentation on indi-
vidual slices. The network is designed as an encoder-decoder pair, the four input

2
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Layer Input dimension Output dimension

Upsample-1 8 × 8 × 2048 15 × 15 × 2048

Concat-1 15 × 15 × 2048 15 × 15 × 2052

Conv-1a 15 × 15 × 2052 15 × 15 × 1024

Conv-1b 15 × 15 × 1024 15 × 15 × 1024

Upsample-2 15 × 15 × 1024 30 × 30 × 1024

Concat-2 30 × 30 × 1024 30 × 30 × 1028

Conv-2a 30 × 30 × 1028 30 × 30 × 512

Conv-2b 30 × 30 × 512 30 × 30 × 512

Upsample-3 30 × 30 × 512 60 × 60 × 512

Concat-3 60 × 60 × 512 60 × 60 × 516

Conv-3a 60 × 60 × 516 60 × 60 × 256

Conv-3b 60 × 60 × 256 60 × 60 × 256

Upsample-4 60 × 60 × 256 120 × 120 × 256

Concat-4 120 × 120 × 256 120 × 120 × 260

Conv-4a 120 × 120 × 260 120 × 120 × 128

Conv-4b 120 × 120 × 128 120 × 120 × 128

Upsample-5 120 × 120 × 128 240 × 240 × 128

Concat-5 240 × 240 × 128 240 × 240 × 132

Conv-5a 240 × 240 × 132 240 × 240 × 64

Conv-5b 240 × 240 × 64 240 × 240 × 64

SotmaxwithLoss 240 × 240 × 64 240 × 240 × 4

Table 1. Decoder network input and output dimensions for each layer; all the kernal
sizes in the decoder were 3 × 3

images of size 240×240 are given as input to the encoder that encoded them into
8×8×2048 data. This encoded data are provided to a fully convolutional decoder
network that predict the labels for the glioma segmentation. The Resent-50 [6]
which was the winner of ILSRVC 2015 image classification challenge was used
as an encoder network followed by fully convolutional layers of decoder network.

Fig.1, shows the network architecture; it consist of the first 49 layers of
Resnet-50 as the encoder. The decoder network consist of upsampling layers
that enlarges the dimension of images by a factor of 2. The weights of upsam-
pling layer were fixed to bilinear upsampling and were not learned. During the
encoding process the spatial information is lost due to pooling/downsampling,
therefore the spatial information is reintroduced into the decoding network by
concating the original images scaled by bilinear interpolation after each upsam-
pling layer. After each convolutional layer the batch normalization and scaling
was performed followed by an ReLU non linear activation function. The layer
parameters for encoder network, which is derived from first 49 layers of Resnet-
50 are presented in [6]. The decoder networks’ input and output dimensions are
shown in the Table.1, where each layer consist of convolutional kernal of size
3 × 3. The output of the decoder network layer is class probabilities for labels.

3
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The training dataset [7–10] used to train the network was provided by organ-
iser which consisted of 3D brain images of 284 patient with four different con-
trast: T1, T1-CE, T2 and T2-Flair. The images were normalized using histogram
matching, the reference histogram used was obtained by averaging histograms
of all the training dataset. The data is divided into 254 training and 30 test
dataset. The caffe [11] framework was used to train the network using stochastic
gradient descent.

Results

The trained network was tested on the validation data and the results of segmen-
tation were uploaded on the computing portal provided by the organisers. The
dice score, sensitivity, specificity and Hausdorff distance were computed on the
segmented labels. The Table.2, shows the result of segmentation on 46 different
validation dataset. The segmentation network was also tested on test dataset
derived from the training dataset, this was the dataset on which the network
was not trained. The results of the segmentation on one slice from 3 different
patient are shown in Fig.2

Metric Whole Tumor Core Tumor Enhancing Tumor

Dice Score (mean) 0.824 0.627 0.575

Dice Score (median) 0.865 0.728 0.724

Sensitivity (mean) 0.831 0.669 0.595

Sensitivity (median) 0.885 0.746 0.690

Specificity (mean) 0.993 0.994 0.999

Specificity (median) 0.994 0.997 0.999

Table 2. Results for the segmentation on validation dataset of 46 patients

Discussion

The median of dice score, sensitivity and specificity are all greater than the
mean, which indicates that the proposed method performed well for most of
the dataset but did not performed well for a few, that took the mean to the
lower side. The boundaries of the labels segmented by the proposed algorithm
are smooth compared to the ground truth (Fig.2(g)), this may be due to the fact
that some of the ground truth were created using automated algorithms rather
than human rater.

Conclusion

In this paper, we developed a 59-layer deep encoder-decoder CNN network that
takes a 2D slices of 3D MRI mutimodal images as input and outputs the seg-

4
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Fig. 2. Segmentation results on test dataset for 3 different patients; (a, b, c) are the
ground truth; (d, e, f) are segmentation results from the proposed residual encoder -
convolutional decoder network

mented labels. The average and median dice score for whole tumor were 0.824
and 0.865 respectively.
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Abstract. In this paper, we propose a cascaded ensemble method based
on Random Forest, named as Ensemble-of-Forest, (EoF). Instead of
classifying huge amount of data with a single forest, we proposed two
stage ensemble method for Multimodal Brain Tumor Segmentation prob-
lem. Identification of Tumor region and its sub-regions poses challenge
in terms of variations in intensity, location etc. from patient to patient.
We identify the initial region of interest (ROI) by linear combination of
FLAIR and T2 modality. For each training scan/ROI, we define a Ran-
dom Forest as first stage of ensemble method. For a test ROI, collect
a set of similarly seen ROI and hence forest based on mutual informa-
tion criteria and collect majority voting to classify voxels in it. We have
reported results on BRATS 2017 dataset in this paper.

Keywords: Brain Tumor Segmentation, Ensemble method, Random Forest

1 Introduction

Gliomas is one of the well known form of brain tumor from glial cells. It is
categorized as either Low Grade Gliomas (LGG) or High Grade Gliomas (HGG).
HGG is found to be more aggressive in growth leading to death. The tumor
region is also divided into sub-regions inside named as necrotic, enhancing and
non-enhancing part. The automated methods must delineate tumor region and
segment them from healthy brain. However, presence of tumor is highly varies in
terms of intensity, texture, appearance etc. from patient to patient. Hence, one
needs to take many parameters in to account for classification and segmentation
task [1], [2].

The Multimodal Brain Tumor Image Segmentation (BraTS) challenge have
seen various methods in past few years [3]. The Deep Learning/CNN, SVM,
Random Forest and CRF based methods are most commonly used approaches
[4], [5], [6], [7], [8], [9].

Random Forest (RF) [10], being a supervised learning method has been ex-
plored in the brain tumor segmentation context led by work of Zikic et. al. [11].
The authors have proposed Gaussian Mixture model based prior probability es-
timation for various tissues which are used to train Decision Forest in the later
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stage. Goetz et. al. [12] have proposed their method based on Extremely Ran-
domized Tree method [13] to leverage the selection of features in splitting in
trees as in classical random forest. Meier et. al. [14] proposed Random forest
method followed by Conditional Random Field (CRF) as spatial regularization.
Malmi et. al. [15] proposed two stage RF architecture where first stage classifies
Tumor and Non-Tumor tissues. Second stage involve classification of tumorous
tissues to various sub-parts. The method follows multiple postprocessing steps
using morphological operations and Markov Random Field (MRF) as spatial reg-
ularization. Folgoc et. al. [16] proposed multilayer RF architecture where each
layer sequentially refines predefined ROI in to sub parts of tumor region/classes.
Ellwaa et. al. [17] have proposed a new way to select sample from few patients
only instead of selecting samples from whole database.

Inspired by previous methods with RF, we propose a novel method based
on two stage architecture. The crux of method is to find the relevance of the
tumor/patient seen in the past. In essence, we tries to capture the resemblance of
the input patient/tumor from given database as a past examples. The proposed
architecture is shown in Figure 1. We model the characteristics each example
via RF. Given an input test pattern, selected similar RF cast their votes and
again ensemble in majority fashion as second stage predication. Since, brain
tumor segmentation is a imbalanced class problem, the method give much scope
to select samples from small classes. Also, the method can be extended easily
with more data with respect to time for better predication. The section below
describe all the step in detail followed by result and discussion section.

Fig. 1. The proposed architecture as Ensemble of Forest (EoF) method
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2 Method

2.1 Dataset

We have used MICCAI BRATS 2017 dataset in this work [3], [18], [19], [20]. The
dataset contains total 285 cases, 210 HGG and 75 LGG patients. Each patient
has 4 modalities, namely, FLAIR, T1, T1-Contrast enhanced, T2 and ground
truth label volume of size 240× 240× 155. The database comprises of contribu-
tion from various organizations, this make challenging to cop-up with variety in
data. The sub-regions considered for evaluation are: 1) the ”enhancing tumor”
(ET), 2) the ”tumor core” (TC), and 3) the ”whole tumor” (WT). The labels
in the provided data are: 1 for necrotic (NCR) and the non-enhancing (NET),
2 for edema (ED), 4 for ET, and 0 for everything else. The TC entails the ET,
as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the
tumor. The WT describes the complete extent of the disease, as it entails the
TC and the peritumoral edema (ED). All the imaging datasets have been seg-
mented manually, by one to four raters, following the same annotation protocol.
The provided data are distributed after their pre-processing, i.e. co-registered to
the same anatomical template, interpolated to the same resolution (1mm3) and
skull-stripped.

2.2 Pre-Processing

The N4ITK bias correction method [21] was applied to all the images in dataset
using 3DSlicer software. Afterward, all the images were rescaled in the range
[0− 255].

2.3 Initial Segmentation

We have considered linear combination of FLAIR and T2 imaging modalities
as Ifused = α ∗ IFLAIR + (1 − α) ∗ IT2 (where α is adjusted experimentally)
[9]. This helps to maintain the hyper-intensity of the tumor region and, at the
same time, to suppress the intensity of other irrelevant areas [22]. An intensity
at T th percentile is defined as threshold in Ifused, τ , and volume intensity above
τ is converted to 1, otherwise 0, thus converted to binary mask. Afterward,
M largest connected components in 3D is extracted from the binary mask as
initial region of interest (ROI). The selection of multiple components is done in
order to capture presence of abmornal tissues at different locations. Here, we
have considered three largest connected components. The image Ifused is also
considered for feature generation along with those four modalities in the next
step.

2.4 Feature Extraction

After extracting initial ROI for each patient, we have derived 280 features at
each voxel locations. The features used are as follows:
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1. Appearance - Intensity in each modality (1× 5 = 5 features)
2. Texture - a) Image Gradient in three directions in each modality, b) Min,

Max, Mean, Median, Mode intensities after Gaussian smoothing at scale,
∈ 0.5, 1.0, 1.5, and window siez 3 × 3 × 3 and 5 × 5 × 5 (3 × 5 = 15 +
5× 3× 2× 5 = 150 features)

3. Statistical - Max, Min, Mean, Median, Mode, Standard deviation, kurtosis,
skewness and three central order moments in each modality with window
size 3× 3× 3 and 5× 5× 5 (11× 5× 2 = 110 features)

2.5 Forest Generation

Random Forest is ensemble method utilizing numerous of trained decision trees
for decision making [10]. It pass test input to each tree and collect class infor-
mation and aggregate them to make final decision. The most commonly used
aggregation method is Majority Voting. The construction of RF takes limited
subset of features to make an split. In this work, we propose a Random Forest
to each patient data. Since data is quite large and requires more trees in the
training. Hence, we proposed two stage hierarchical ensemble method. For each
training scan, a Random Forest is constructed considering features at only initial
ROI locations.

2.6 Ensemble of Forests

The idea is to find a resemblance with the patients in the database. Here, we
tries to model given test example, with already seen past examples. Hence, a
mutual information based criteria is used to find out M similar cases from the
database. So, for each test case, class information is collected from each those
similar forests and aggregated again in majority voting fashion as final class
label with equal weights. Note that, mutual information with itself is considered
to be zero and hence it is not considered in similar M cases for training database.

3 Results

We have used only BRATS 2017 training dataset released by Challenge Orga-
nizers. The dataset contains 285 patient volumes where 210 are HGG cases and
rest are LGG cases. The parameter values estimated experimentally as: M = 11,
α = 0.7 and T = 98 percentile. The Figure 3 shows the boxplot for the training
database and mean of whole tumor, tumor core and enhance part are 0.64, 0.49
and 0.47 respectively.

4 Discussion

In this paper, a novel two stage based Random forest is proposed. A forest of
small trained forests is build to classify test pattern aggregation voting from all

Proceedings of the 6th MICCAI BraTS Challenge (2017) 228 of 347



5

Fig. 2. The flowchart for proposed method

such small forest. For each patient, a small forest is trained based on the features
extracted from initial ROI. The results presented here are satisfactory. However,
a details analysis is sought for construction of those small forests and trees inside
in them.
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(a) Dice Coefficient

(b) Hausdorff Distance

Fig. 3. The performance of proposed method on BRATS 2017 training database. Pa-
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Fig. 5. The performance graph of Dice coefficient for whole tumor on BRATS 2017
validation dataset
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Abstract. This paper presents a deeply-supervised neural network method 

based on Holistically-Nested Edge Detection (HED) for automatic segmenta-

tion of brain tumor from multi-modal magnetic resonance images (MRI). The 

HED method, which is originally developed for image edge detection using 

deep convolutional neural networks, is extended for multiple-object segmenta-

tion. The performance of the proposed method is measured in terms of Dice 

score. Experiments on 2017 Multimodal Brain Tumor Image Segmentation 

Benchmark (BRATS) challenge datasets demonstrate that the method performs 

well. The assessments revealed the Dice scores of 0.86, 0.60, and 0.69 for 

whole tumor (WT), tumor core (TC), and enhancing tumor (ET) classes, respec-

tively. 

Keywords: HED, Brain Tumor, MRI. 

1 Introduction 

Gliomas, a type of brain tumor originating from glial cells, are the most frequent pri-

mary brain tumors in adults [1]. Improved quantification of the various aspects of a 

glioma requires accurate segmentation of the tumor in MRI scans. Since the manual 

segmentation is time-consuming and subject to human error and irreproducibility, 

automatic segmentation has received a lot of attention recently. However, automated 

segmentation of brain tumor is difficult because tumors appear in different shapes, 

sizes, locations, and intensities. The presented methods in previous rounds of BRATS 

challenge [2-5] mostly fall under two categories. The first category includes patch-

wise methods where the input images are divided into many patches. The patches are 

then fed to the classifiers individually and the classifier determines the class of the 

center voxel of the patch. Examples include Support Vector Machine (SVM), Ran-

dom Forest, and Convolutional Neural Network (CNN) based methods [6-8]. Unlike 

the patch-wise methods, the second category of segmentation methods feed the whole 

slice of the MRI to the classifier as once. Almost all the methods in the second cate-

gory are based on Fully Convolutional Networks (FCN) [9]. While the methods in the 

first category are very time-consuming, the ones in the second category are very effi-

cient. 
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An automatic brain tumor segmentation method is presented in this paper which falls 

under the second category. The presented method is a deeply supervised neural net-

work [10] based on a modified HED [11]. The rest of the paper is organized as fol-

lows: the used dataset is presented in section 2, the proposed method is descried in 

section 3, the achieved results are provided in section 4, and the paper is concluded in 

section 5. 

2 Material 

The MRI scans used in this study include data from the BRATS 2017 challenge that 

include 210 high grade glioma (HGG) and 75 lower grade glioma (LGG) cases. The 

image datasets share the following four MRI contrasts: T1, post-contrast T1-weighted 

(T1c), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR). All 

the images are co-registered and resampled to the same voxel resolution: 155 slices of 

240×240 pixels. The scans are annotated by domain experts and four labels are used: 

edema, non-enhancing (solid) core, necrotic (or fluid-filled) core, and enhancing core. 

In this study, T1 modality is disregarded and the remaining three modalities are used. 

It is also worth to mention that the WT class includes all the annotated labels, the TC 

class includes all the labels but edema, and the ET class includes only enhancing core 

label. 

3 Proposed Method 

The proposed method consists of three steps: preprocessing, classification, and post-

processing. These steps are explained in the next subsections. 

3.1 Preprocessing 

Unlike computed tomography (CT) where the measurements are done in absolute 

units, MRI scans are expressed in arbitrary units that differ between study visits and 

subjects. In this work, N4BiasCorrect filter followed by a simple piece-wise linear 

histogram matching algorithm is used to normalize the intensity of the MRI scans. 

The same procedure is done for all three used modalities. First, a histogram of the 

scan is calculated. The peak of the histogram corresponds to the white matter of the 

brain. Also, the 1 and 99 percentiles of the cumulative histogram are calculated. Then, 

the values between the 1 percentile and the peak index are mapped to n1 and n2 inter-

val, and the values between the peak index and 99 percentiles are mapped to n2 to n3 

interval. In this study, n1, n2, and n3 are chosen as 0, 127, and 255, respectively. It is 

worth to mention that the histogram is calculated using signal-only voxels and the 

blank voxels are excluded. By using this simple preprocessing algorithm, all modali-

ties of all MRI scans are normalized to n1 to n3 interval. 

Proceedings of the 6th MICCAI BraTS Challenge (2017) 235 of 347



3 

3.2 Classification 

The classification is done via a HED-based neural network. HED was originally pro-

posed for edge detection but it is extensible to other applications such as segmenta-

tion. The core of a HED is a FCN. However, HED has multiple side outputs located at 

each convolutional layer together with a fusion of all the side outputs. All the outputs 

are compared to the ground truth during the training and this deep supervision makes 

the network to be trained more effectively compared to FCNs. More details about 

HED is available in [11]. 

Although HED is introduced for binary classification (edge/non-edge), the architec-

ture is changed in this work for multiple-class classification tasks. The MRI scans are 

fed to the network slice-by-slice. In other words, the three modalities of a single pre-

processed slice are fed to the network and the network generates three binary classifi-

cation maps for WT, TC, and ET classes where each pixel in the binary maps corre-

sponds to a voxel in the input images. 

The number of background voxels is much higher than the number of tumor voxels in 

the dataset. Two simple solutions are sought in this work to reduce the class skew. 

First, those slices with no signals are excluded from training. Second, a window of 

200×200 pixels is cropped from the center of the slice where the original slice size is 

240×240. The removed pixels correspond to the blank area around the skull. This 

simple solution reduces the number of background pixels at least by 30 percent and 

consequently lowers the skew. 

3.3 Postprocessing 

Once the whole scan is passed through the neural network slice-by-slice, the generat-

ed binary maps for each class are put together to generate the 3d tumor maps for the 

entire scan. The 3d binary maps include false alarms. Postprocessings for the three 

classes are conducted individually to reduce the false alarms and improve the accura-

cy. 

For the WT class, postprocessing includes maintaining the largest connected object 

and getting rid of the other objects. But before applying this, a morphological binary 

opening operator is applied to the 3d binary map to separate those false alarms that 

are connected using weak connections and subsequently reduced their sizes. 

Postprocessing for TC class includes multiplying its 3d binary map by the postpro-

cessed WT 3d binary map. By doing this, all the false alarms outside the whole tumor 

segment are removed. Like the CT class, postprocessing for ET class includes multi-

plying its 3d binary map by both the postprocessed WT and CT 3d binary maps. 

4 Results and Discussions 

The neural network was implemented in Caffe and the rest of the pipeline was im-

plemented in Python. All the available training data from BRATS 2017 were used in 

training the neural network. The training was carried out via a Stochastic Gradient 

Descent strategy with a batch size of 30 on a NVIDIA Titan Xp graphic card. 
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The performance was measured using the BRATS online evaluation system for the 

validation dataset. The achieved Dice scores are reported in Table 1. 

Table 1. Dice scores for the validation dataset 

Dataset WT TC ET 

Validation 0.86 0.60 0.69 

 

A sample segmentation outcome together with the ground truth is shown in Fig. 1. 

 

 

Fig. 1. Sample segmentation results. Top row from left to right: FLAIR, T2, and T1c. Middle 

row: segmented WT, TC, and ET. Bottom row: ground truth WT, TC, and ET. 

5 Conclusions 

An automatic method for brain tumor segmentation method in MRI scans was pre-

sented in this paper. The classification core of the presented method is a deeply su-

pervised neural network based on HED. Low computational complexity, yet very 

effective preprocessing and postprocessing steps were added to the pipeline that high-

ly improved the accuracy of the segmentation. The achieved results are very promis-

ing and demonstrate the effectiveness of the presented method in terms of the seg-

mentation accuracy. Moreover, the method has very low computational burden as the 

neural network as well as the preprocessing and postprocessing steps are very compu-

tationally efficient. 
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Abstract

Accurate and automated brain tumour segmentation from MRI images
is important for performing quantitative analysis of MRI data. There
is great potential to utilize quantitative imaging data as prognostic and
predictive biomarkers for glioma patients. In this article we present two
approaches, one for brain tumour segmentation task and the other for
survival prediction. For segmentation task we propose a fully automatic
method using random forests algorithm. For prediction task we compare
XGBoost, random forests and logistic regression algorithms. We utilize
T1, T2, FLAIR and T1 post contrast image series along with clinical
parameter of age for predicting survival.

Keywords Brain Tumour segmentation, Survival Prediction, Random Forests,
XGBoost, Gradient Magnitude, ResNet .

1 Introduction

In this paper we propose a novel approach for segmentation task using Random
Forest. Features for random forest[6] include pixel location, pixel intensity, av-
erage of pixel intensities over a 5*5*5 region, gradient magnitude over 5*5*5
region and texture over a 20*20*20 region. These features are extracted from
various MRI sequences like T1,T2, FLAIR and T1 post contrast images. For
prediction task we propose an approach using XGBoost[7]. Features for XG-
Boost are extracted from MR images using ResNet[8]. We detail our methods
in section 2 , experiments and results in section 3 and in section 4 we present
conclusion and future ideas for work.

1
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2 Methods

2.1 Segmentation

In segmentation task we have used random forest as our classifier and we have
classified each pixel into one of the four classes (1 for NCR NET, 2 for ED, 4 for
ET, and 0 for everything else). We have chosen spatial location of pixel, inten-
sity of each pixel along average of intensities around the pixel over a 20*20*20
and 5*5*5 window, gradient magnitude over a 5*5*5 window and texture. Idea
behind using this is to get both global context and local context at pixel level
for classification.

Before giving the entire data to the classifier we have down sampled the data
to remove skewness as well as to speed up the training step. We randomly pick
pixels for each label so that each class has the same number of data points.

The parameter settings used within the Random Forest algorithm include:

• n estimators = 10 : The number of trees per forest.

• max features = sqrt(n features) : The number of features to consider when
looking for the best split.

• min samples split = 2 : The minimum number of samples required to split
an internal node.

• min samples leaf = 1 : The minimum number of samples required to be
at a leaf node.

• n features = The number of features when fit is performed.

2.2 Survival Prediction

In survival prediction we have used ResNet(with soft-max layer removed) to ex-
tract features from each of T1,T2, FLAIR and T1 post contrast images. ResNet
is a pre-trained network for image recognition which won the 1st place on the
ILSVRC 2015 classification task. These extracted features along with age are
then passed on to XGBoost for training and prediction.

XGBoost stands for extreme gradient boosting. XGBoost is an implementa-
tion of gradient boosted decision trees designed for speed and performance.
The features which make this algorithm dominating over others are:

• Sparse Aware implementation with automatic handling of missing data
values.

• Block Structure to support the parallelization of tree construction.

• Continued Training so that you can further boost an already fitted model
on new data.

2
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Along with XGBoost we have also used Random Forest and Logistic Regres-
sion and compared their performance.

3 Experiments and Results

All the experiments were carried out using Scikit learn[9] and opencv[5] on
python3.5. Code that has been developed for our experiments can be accessed
here1 and data-set[4][1][2][3] that has been used is provided by the BraTS 2017
organizers.

3.1 Segmentation

For segmentation task currently we have trained on ten scans from training data
and we have not included texture as a feature. We would be adding texture as
a feature and use all data for training by the final deadline. We have evaluated
our method on data which was used in training and completely unseen data.
The results are tabulated below.

. 0 1 2 4

0 72996 3 25 2
1 4 72820 40 162
2 15 141 72839 31
4 3 410 32 72581

The table above is a confusion matrix which has the count of pixels for each
label and the data is seen in training. The accuracy is more than 99 percent for
all classes

. 0 1 2 4

0 16380337 86308 1029549 217641
1 440 2137 9544 19555
2 734 3186 61373 13711
4 2357 979 6831 21318

The table above is a confusion matrix which has the count of pixels for each la-
bel and the data is completely unseen. Accuracy in test scenario is 92.2 percent
for all classes.

1https://github.com/karthikrvnr/Brain_Tumor_Segmentation
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3.2 Survival Prediction

For survival prediction we have divided the given data into 70 and 30 for training
and testing respectively. The results for both classification and regression are
tabulated below.

3.2.1 Regression

Regressor Mean Avg Error in days

Logistic Regression 253
XGBoost 225

Random Forest 203

3.2.2 Classification

We have used XGBoost and Random Forest for classification.

. Short Medium Long

Short 32 28 16
Medium 8 12 12

Long 20 24 28

The table above is a confusion matrix using XGBoost Classifier.

. Short Medium Long

Short 40 20 16
Medium 8 12 12

Long 20 28 24

The table above is a confusion matrix using Random Forest Classifier.

4 Conclusion and future work

In this paper we have presented our approach for brain tumour segmentation
and survival prediction using Random Forests. Continuing this work for final
submission we want to include texture as one of the features and improve accu-
racy by using all the data for training. For survival task we would like to use
Weighted Majority algorithm instead of giving age along with ResNet features
to the classifier and see how it affects the accuracy.
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Abstract. Automated medical image analysis has a significant value
in diagnosis and treatment of lesions. Brain tumors segmentation has a
special importance and difficulty due to the difference in appearances
and shapes of the different tumor regions in magnetic resonance im-
ages. Additionally the data sets are heterogeneous and usually limited
in size in comparison with the computer vision problems. The recently
proposed adversarial training has shown promising results in generative
image modeling. In this paper we propose a novel end-to-end trainable
architecture for brain tumor semantic segmentation through conditional
adversarial training. We exploit conditional Generative Adversarial Net-
work (cGAN) and train a semantic segmentation Convolution Neural
Network (CNN) along with an adversarial network that discriminates
segmentation maps coming from the ground truth or from the segmenta-
tion network for BraTS 2017 segmentation task[15, 4, 2, 3]. We also pro-
pose an end-to-end trainable CNN for survival day prediction based on
deep learning techniques for BraTS 2017 prediction task [15, 4, 2, 3]. The
experimental results demonstrate the superior ability of the proposed ap-
proach for both tasks. The proposed model achieves on validation data
a DICE score, Sensitivity and Specificity respectively 0.68, 0.99 and 0.98
for the whole tumor, regarding online judgment system.

Keywords: Conditional Generative Adversarial Network, Brain Tumor
Semantic Segmentation, Survival day prediction

1 Introduction

Medical imaging plays an important role in disease diagnosis and treatment plan-
ning as well as clinical monitoring. The diversity of magnetic resonance imaging
(MRI) acquisition regarding its settings (e.g. echo time, repetition time, etc.) and
geometry (2D vs. 3D) also the difference in hardware (e.g. field strength, gradi-
ent performance, etc.) can yield variation in the appearance of the tumors that
makes the automated segmentation challenging [8]. An accurate brain lesion seg-
mentation algorithm based on multi-modal MR images might be able to improve
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the prediction accuracy and efficiency for a better treatment planning and moni-
toring the disease progress. As mentioned by Menze et al. [15], in last few decades
the number of clinical study for automatic brain lesion detection has grown sig-
nificantly. In the last three years, Generative Adversarial Network(GAN) [6]
become a very popular approach in various computer vision studies for example
for classification [18, 13], object detection [11, 24], video prediction [14, 5, 23], im-
age segmentation[9] and even mass segmentation for mammogram analysis [25].
In this work we address two tasks by BraTS-2017 [15, 4, 2, 3] challenges by two
different approaches. Semantic segmentation is the task of classifying parts of
images together that belong to the same object class. Inspired by the power
of cGAN networks [25, 9], we propose an end-to-end trained adversarial deep
structural network to perform brain High and Low Grade Glioma (HGG/LGG)
tumor segmentation. We also illustrate how this model could be used to learn
a multi-modal images, and provide preliminary results of an application for se-
mantic segmentation. To this end we consider patient-wise ”U-Net” [19] as a
generator and ”Markovian GAN” [10] as an discriminator. For the second task
of BraTS-2017 [15, 4, 2, 3], we designed an end-to-end trainable CNNs on clini-
cal data which enables to predict the survival day. The architecture use parallel
CNN which one way is responsible to learn patient-wise MR images and another
learned representation of clinical data. A detailed evaluation of the parameters
variations and network architecture is provided. The contribution of this work
can be summarized as following:

– We proposed a robust solution for brain tumors segmentation through con-
ditional GAN. We achieved promising results on two type of brain tumor
segmentation (The overall Dice for whole-tumor region is 0.68, Specificity
0.99 and Sensitivity 0.98).

– We proposed an automatic and trainable deep learning architecture for sur-
vival day prediction based on clinical data and MR images.

The rest of the paper is organized as follows: Chapter 2 describes the proposed
approaches for semantic segmentation and survival day prediction, Chapter 3
presents the detailed experimental results. Chapter 4 concludes the paper and
gives an outlook on future work.

2 Methodology

In this chapter we will describe first our proposed approach to the brain tumor
sub-region segmentation based on deep learning and then our approach to the
survival day prediction. The core techniques applied in our approach are de-
picted as well. In the GAN theory [6], the Discriminator Network (D) tries to
decide if a certain input is sourced from the reference distribution, or has been
generated by the Generator Network (G). The training procedure in G uses the
pixel labels of certain multi-modal images and D tries to distinguish this certain
boundary regions (we have three sub region tumor) comes from reference distri-
bution or generative network. In order to incorporate more classes to this output
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Fig. 1. The proposed architecture for semantic segmentation of brain tumor

while keeping with the GAN spirit of distinguishing distribution class instead
of one example class, we could add additional input sources. As suggested by
Goodfellow [6], one can consider the cGAN models with multi-class labels as:

1. GAN model with class-conditional models: which make the input label rather
than the output. We ask GAN to generate specic classes. [16]

2. GAN model with N different output classes: that network trained by N
different ”real” and no ”fake” classes. [21]

3. GAN models with N+1 different output classes: which the network train by
N different ”real” and an additional ”fake” class. This type works very well
for semi-supervised learning when it combined with feature matching GANs
e.g. [20]

Therefor our proposed method lies in the second category as we consider for each
multi-modal image three segmentation classes. Figure 1 describes the proposed
approach to the brain tumor segmentation. In continue we describe the detail of
techniques of pixel label classes for prediction in section 2.1 and for survival day
prediction in section 2.2.

2.1 Brain Tumor Semantic Segmentation

We adapt the generator and discriminator architectures from [17, 9]. We ap-
plied Virtual-BatchNorm-Convolution [7] on generator network to make the ”U-
Net” [19] patient-wise. We choose ”U-Net” architecture as generator because
most of the deep learning approaches are patch-wise learning models, which
ignore the contextual information within the whole image region. Like winner
of BraTS-2016 [1], we come over this problem by leveraging global-based CNN
methods (e.g. Seg-Net, Encoder-Decoder and FCN) and incorporating multi-
modal of MRI data. We use Virtual-BatchNorm [7] in the generator network
and Reference-BatchNorm [7]in the discriminator network to reduce over-fitting.
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The discriminative network is based on ”Markovian GAN” [17]. Then two models
trainable simultaneously through back propagation, corresponds to a minimax
two-player game. An ”U-Net” generative model G; Captures the data distribu-
tion, pixel segmentation and train to minimize the probability of D making a
mistake. A ”Markovian GAN” discriminative model D: to estimate the proba-
bility that a sample came from the training data rather than G.

2.2 Survival Day Prediction

Figure 2 describes our solution for survival day prediction. We proposed a two
path way architecture which one has several CNN and it is responsible for multi-
modal image representation and another learned the clinical data features. The
extracted features from each path way, concatenated in next step to shared
the learned features. Then they passed to two fully connected layers to learn
the survival day. We use Virtual-BatchNorm [7] on the CNNs network which
learned image representation. To prevent over-fitting, we generated augmented
images through horizontal and vertical flipping and re-scaling. We applied Mean
squared error as Loss function. We mapped the clinical data (Ages and survival
days) into float[0,1].

3 Experiments

In order to evaluate the performance of the proposed cGANs method, we test the
method on two types of brain tumor data provided by BraTs 2017 challenge [15,
4, 2, 3]. We applied a bias field correction on the MR images to correct the
intensity non-uniformity in MR images by using N4ITK [22]. In next step of
pre-processing we applied histogram matching normalization [12]. We train both
the generator and the discriminator to make them stronger together and avoid
making one network significantly stronger than the other by taking turn. We
consider multi-madal images from same patient in each batch during training
and use all the released data by BraTS 2017 challenge[15, 4, 2, 3] in training time
which is 75 patients with Low Grade Glioma(LGG) and 210 patients with High
Grade Glioma(HGG). We used all prepared image-modal from three axes of x,y,z
(3x4x155x285) that the input and output are 4-3 channel images(4:image-modal;
3:three sub-region of each tumor type). We get better result when don’t shuffle
input data in generator network. In generator network Sign function helps for
noise reduction. The generator for all layers use ReLU activation function except
output layer which use Tanh. Qualitative results are shown in Figures 3. On this
size data sets (530100 2D images with the size of 250x250) training took around
72 hours on parallel Pascal Titan X GPUs. Table 11 shows the results of the
proposed models evaluated at BraTS 2017 online judge system. The evaluation
system uses three tasks. The online system provides the results as follows: The
tumor structures are grouped in three different tumor regions. This is mainly
due to practical clinical applications. As described by BraTS 2017 [15, 4, 2, 3],
tumor regions are defined as:
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Fig. 2. The propose architecture for survival day prediction
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1. WT: Whole tumor region represents the area with all labels 1,2,3,4 which 0
for normal tissue, 1 for edema, 2 for non-enhancing core, 3 for necrotic core,
4 shows enhancing core.

2. CT: Core tumor region represent only tumor core region, it measures label
1,3,4.

3. ET: Enhancing tumor region (label 4)

There are four kinds of evaluation criteria for segmentation task like Dice
score, Hausdorff distance, Sensitivity and Specificity has provided by BraTS
2017 challenge organizer as an online judgment system.

Table 1. Preliminary results till now from BraTS-2017 online judge system on Vali-
dation data(unseen data)

Whole Tumor Core of Tumor Enhanced Tumor

Dice 0.70 0.55 0.40
Sensitivity 0.68 0.52 0.99
Specificity 0.99 0.99 0.99

Fig. 3. The output segmentation result on training data

Table 1 shows the preliminary results but our work is still on the progress.
Table2 shows the survival day prediction results.

Table 2. Preliminary results on survival day prediction. We used 70% of the data
(115 patients) for training, 10% (16 patients) for validation and 20% (32 patients) for
testing. The first path way of CNN has seven input channel which four from multi-
modal images and three from segmented regions. We translated ages from interval [0,
100] into float [0,1] and also for survival day did from [0-1750] days into float of [0,1].

Data Accuracy

Validation 73.1%
Test 64.08%
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Fig. 4. The output segmentation result on training data

Fig. 5. The preliminary segmentation result on validation data

Fig. 6. clinical data distribution from training set
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Fig. 7. different regression techniques (e. g. Support Vector Regression, Polynomial
Regression, ) for survival day prediction.

4 Conclusion

In this paper, we propose and evaluated approaches for two important clini-
cal tasks: brain tumor segmentation and prediction of survival day after tumor
diagnosis. The proposed approach for tumor segmentation is end-to-end train-
able based on the newly proposed conditional generative adversarial network.
Furthermore, adversarial training is used to handle the global-based CNN in
generator to reduce over-fitting and increase robustness. We proposed an auto-
mated trainable parallel convolution neural network to predict the survival day
as the second task in the challenge. These networks learn a loss adapted to the
task and data at hand, which makes it applicable in unseen data. For the future
work, we look for further improvement on generative network by incorporating
recurrent neural network(RNN) inside of our Encoder-Decoder.
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Abstract. In this paper an automatic brain tumor segmentation ap-
proach based on Convolutional Neural Networks (CNN) is proposed.
The model architecture is composed of two small CNNs, one extract-
ing local and the other one features from larger region [5]-[6]. In addition
to the information extracted from the differences in the appearance be-
tween healthy and tumorous tissues, the method exploits the facts that
very often tumor introduces high asymmetry to the brain and that the
most difficult task is the classification within tumor (between different
tumor stadiums) and within tumor’s proximity (between healthy and tu-
morous tissue). The method training and hyper-parameter tuning were
performed on the BRATS 2017 training dataset and the final results are
reported on the BRATS 2017 validation dataset. The Dice scores for the
validation dataset are 0.64182, 0.80571 and 0.65275 for enhancing tumor,
whole tumor and tumor core, respectively.

Keywords: brain tumor, tumor segmentation, CNN segmentation

1 Introduction

Tumor segmentation is an important step in the evaluation of tumor’s grade,
monitoring and modeling of its progress, what is necessary for successful therapy
and surgery planning. Manual tumor segmentation is time consuming and it
is prone to the intra and inter rater variability. In recent years, the challenge
of the automatic tumor segmentation has attracted a significant attention of
scientist and engineers. Numerous discriminative and generative approaches were
proposed and the methods based on neural networks are becoming the most
dominant [5]-[7]. The article is structured as follow. In the Section 1 a short
overview of the database used for training and validation is provided. In the
Section 2 the proposed method is described. In the Section 3 experiment details
are given. The results are presented in the Section 4 and at the end conclusions
and future work are provided in the Section 5.

2 Database

BraTS 2017 training database is composed of 210 high grade glioma (HGG) and
75 low grade glioma (LGG) tumor cases. For each case four magnet resonance
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imaging (MRI) modalities (T1, T2, T1CE, flair) are provided and ground truth
for four classes, namely healthy tissue, necrotic and non-enhancing tumor, per-
itumoral edema and enhancing tumor [1]-[2]. BraTS 2017 validation database
contains 46 cases without information about tumor’s grade and ground truth
segmentation. In order to validate algorithm’s performance as in real world sce-
nario, training database is split into two subset. The first subset contains two
thirds of training data (140 HGG, 50 LGG) and it is used for segmentation model
training. The second subset contains one third of the training data (70 HGG,
25 LGG) and it is used to determine when to stop algorithm’s training, to guide
the training process by changing hyper-parameters and to tune post-processing
thresholds. The validation set is not seen during any part of the training process.

3 Methods

3.1 Pre-processing

Each volume is normalized using mean and standard deviation of its non-zero
voxels.

3.2 Segmentation model

The proposition of this brain tumor segmentation method is motivated by the
success of the methods that are using parallel CNNs to extract features from the
regions of different sizes [5]-[6]. The model architecture is composed of two small
CNNs. One CNN is trained to extract features from patches of larger size and
to exploit information about brain’s asymmetry and patch position (large region
CNN). The other CNN is trained to extract local features from small patches
(small region CNN) and it could be seen as means of segmentation refinement.
The small and large region CNN features are merged by a fully connected layer
and are further used for voxel classification.

Another important information is related to the fact that the patches cap-
turing tumorous regions are much more difficult to discriminate than those cap-
turing exclusively healthy and mostly tumorous tissues. This is addressed by
representing segmentation process as a combination of two classification prob-
lems. The first problem is two class problem of discrimination between healthy
and tumorous tissues. Training patches for this part are sampled from the en-
tire brain region. Another, more difficult, problem is classification of the voxels
into four classes: healthy tissue, necrotic and non-enhancing tumor, peritumoral
edema and enhancing tumor. Training patches for the four class segmentation
are randomly selected from the tumor region and its close neighborhood.

Large region CNN architecture and input data. The input to the large
region CNN is composed of 11 patches. For a given voxel for each modality a 33
x 33 patch and its corresponding pair from the position mirrored with respect to
the sagittal plane are extracted. This enables the model to exploit asymmetry
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introduced by tumor. In addition to those 8 volume patches, three patches that
contain normalized distances from the brain’s center along all three axis are ex-
tracted as well.

The structure of CNN used for large region feature extraction.

1. Convolutional layer 1

(a) convolution 5 x 5 x 11 x 32

(b) ReLU neuron activation

2. Convolutional layer 2

(a) convolution kernels 5 x 5 x 32 x 64

(b) ReLU neuron activation

(c) max pooling with stride 2 x 2

3. Convolutional layer 3

(a) convolution 5 x 5 x 64 x 128

(b) ReLU neuron activation

4. Fully connected layer 1

(a) fully connected 8192 x 512

(b) ReLU neuron activation

5. Fully connected layer 2

(a) fully connected 512 x 32

(b) ReLU neuron activation

Small region CNN architecture and input data. The input to the small
region CNN is composed of 4 patches. For a given voxel for each modality a 13
x 13 sized patch is extracted.

The structure of CNN used for small region feature extraction.

1. Convolutional layer 1

(a) convolution 5 x 5 x 4 x 32

(b) ReLU neuron activation

2. Convolutional layer 2

(a) convolution 5 x 5 x 32 x 64

(b) ReLU neuron activation

3. Fully connected layer 1

(a) fully connected 1600 x 256

(b) ReLU neuron activation

4. Fully connected layer 2

(a) fully connected 256 x 32

(b) ReLU neuron activation
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Small and large region feature merging. The structure of the fully con-
nected network used for merging small and large region features.

1. Fully connected layer 1
(a) fully connected 64 x 32
(b) ReLU neuron activation

2. Fully connected layer 2
(a) fully connected 32 x 4
(b) Softmax

Loss function is a linear combination of log-losses of two and four class clas-
sification problems.

In order to prevent over-fitting to the segmentation model training data the
disturb labels approach is used [8]. In this approach one part of the labels is set
to a label selected in a random manner from set of existing labels.

3.3 Post-processing

In the post-processing stage all the voxels classified as tumorous with low pre-
diction score are set as healthy. The remaining regions classified as tumorous
are labeled using connected-component method. If the size of a region is below
certain threshold or the mean prediction score of the region is not high enough,
it is re-classified as a healthy region.

4 Implementation details

The algorithm implementation was done in Python programming language.
For data loading and saving NiBabel library was used, volume pre and post-
processing were performed by the standard libraries numpy and scipy and the
segmentation model was created and trained with tensorflow. The hardware em-
ployed was composed of nVidia’s GeForce GTX 980 Ti (6 GB) GPU and Intel
Core i7-6700K CPU @ 4.00 GHz (32 GB). The training lasted approximately
20h and the testing lasts around 3.5 mins per volume.

In order to facilitate training process some meta data were computed be-
fore training such as normalization parameters, brain masks and tumor distance
maps. Brain mask corresponds to the volume’s region where all modalities are
non-zero. Tumor distance map contains distances to the tumor for each voxel
that is present in the brain mask and it is used to select data for two and four
class classification problems. It is computed using 3d dilation morphology oper-
ator.

5 Results

In the Table 1 Dice scores obtained on the validation dataset, not seen by the
training algorithm, are provided.
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Table 1. Results of tumor segmentation on BraTS 2017 validation dataset.

Enhancing Tumor Whole Tumor Tumor Core

Dice score 0.64182 0.80571 0.65275

6 Discussion and conclusions

In this paper a CNN based approach for brain tumor segmentation is presented.
It was shown that a small segmentation model can achieve considerably promis-
ing results. The future work will include increase of model’s size and training on
larger amount of data (entire training dataset and additional data produced by
augmentation).
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Abstract. Accurate tumor segmentation is crucial for treatment and
survival prediction of cancer patients. Manual segmentation of brain tu-
mor is often time consuming and the performance of the segmentation
varies based on the operators experience. This leads to the requisition
of fully automatic method for brain tumor segmentation. In this paper,
we propose a fully automatic method for the segmentation of brain tu-
mor from multi modal MR images, which is evolved by integrating a
densely connected fully convolutional neural network (FCNN), followed
by post-processing using a Dense Conditional Random Field (DCRF).
The proposed FCNN consists of blocks of densely connected layers, tran-
sition down layers in down-sampling path and transition up layers in
up-sampling path. The method was tested on dataset provided by Multi
modal Brain Tumor Segmentation Challenge (BraTS) 2017. The training
data is composed of 210 high-grade brain tumor and 75 low-grade brain
tumor cases. On the BraTS 2017 validation data, the proposed network
achieves a mean whole tumor, tumor core & active tumor dice score of
0.87, 0.68 & 0.65. respectively.

Keywords: Fully convolutional neural networks, multi modal MRI seg-
mentation, conditional random fields

1 Introduction

Segmentation of the gliomas from MR images is the preliminary step for treat-
ment and surgical planning. Manual segmentation of gliomas are tedious and
results in inter rater variability. In this paper, we propose a 103 layer deep fully
convolution neural network (FCNN) for automatic segmentation of gliomas. The
network was trained on 2-D axial slices of the brain. Densely connected Condi-
tional Random Fields was incorporated into the framework as a post processing
tool. Additionally, connected components analysis was used to remove false pos-
itives generated by the network.
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2 Materials & Method

2.1 Data

The images used to train and validate this model were obtained from the BraTS
2017 challenge dataset [1], [2]. The training dataset consisted of multi modal
MR images of 284 patients, with 210 patients from the high grade gliomas cat-
egory (HGG) and 74 patients from the low grade gliomas (LGG) category. The
following MRI modalities were provided for each patient: T2-weighted fluid at-
tenuated inversion recovery (FLAIR), T1-weighted (T1), T1-weighted contrast-
enhanced (T1ce), and T2-weighted (T2). The provided images were co-registered
to the same anatomical template, interpolated to the same resolution (1 mm3)
and skull-stripped. The image dimension is 240×240×155, with 155 being the
number of slices in the axial direction. Manually annotated ground truth seg-
mentations were provided for three classes : GD-enhancing tumor (ET label
4), the peritumoral edema (ED label 2), and the necrotic and non-enhancing
tumor (NCR/NET label 1). The network was trained on slices extracted from
the axial plane.

2.2 Pre-processing

Multi modal scans can vary between patients depending on several factors in-
cluding the instrument used, image acquisition axis, etc. In order to account for
the patient-to-patient variation in the MR images, we adopted z-score normal-
ization where we subtract the mean and divide by the standard deviation of the
entire volume for each of the four channels of an individual’s scan.

2.3 Densely connected FCNN model

Our segmentation technique is based on the One Hundred Layers Tiramisu model
proposed for semantic segmentation originally by Simon Jgou et al [6]. Like most
state-of-the-art models, the Tiramisu model involves a down-sampling path and
up-sampling path, where a single slice of the brain is provided as input at the
beginning of the model and class-wise probabilities for every pixel is output at
the end of the up-sampling path.

The Tiramisu model ,shown in Fig. (1), consists of dense blocks(DB) used
in DenseNet [5], which are made up of repeated Batch Normalization layers,
ReLU, 3×3 convolutions and small skip connections. The dense blocks are paired
with transition down layers(TD) in the down-sampling path and transition up
layers(TU) in the up-sampling path. The transition down layer consists of 1× 1
convolutions followed by 2 × 2 max-pool layer with stride 2. Transition up layer
is composed of 3 × 3 transpose convolutions with stride 2. The various blocks
used in the model are shown in Fig. (2).
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Fig. 1: Architecture of the proposed network
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(a) (b) (c)

Fig. 2: Blocks used in the model. a) Dense Block. b) Transition Down. c) Tran-
sition Up

2.4 Post-processing using Dense-CRFs and Connected Components
Analysis

To smoothen the segmentation predicted by the above model, we used fully
connected conditional random fields with Gaussian edge potentials as proposed
by Krähenbühl et al [7]. The unary potentials used by the CRF was computed
using the predicted softmax probabilities. Further, the MR brain slice (all four
modalities) along with the computed unary potentials was used for inferring the
pixel labels.

The false positives in the prediction were further reduced by using connected
component analysis, wherein only the largest component was retained.

3 Results

The performance of the proposed technique on the local HGG test data (n=21) is
shown in Table (1) & Fig. (3). On the local test HGG data, the network achieved
as mean whole tumor, tumor core and active tumor dice score of 0.84, 0.83,
0.80 respectively. The proposed post processing technique ( CRF+ connected
component analysis) yield a 1 % improvement in the whole tumor dice score, 1%
in tumor core and 0.5 % in active tumor respectively.

On the local LGG test data (n=8), The performance of the proposed tech-
nique is shown in Table (2). Compared to HGG, the model underperforms on
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Tumor core segmentation, while maintaining good performance on the whole
tumor segmentation.

Table 1: Results of local test HGG data
Whole Tumor Tumor Core Active Tumor

Mean 0.84 0.83 0.80

Std Deviation 0.16 0.18 0.14

Median 0.89 0.87 0.84

Table 2: Results of local test LGG data
Whole Tumor Tumor Core Active Tumor

Mean 0.82 0.43 –

Std Deviation 0.11 0.29 –

Median 0.85 0.44 –

The performance of the proposed technique on the BraTS 2017 validation
data (mixture of HGG and LGG) in given in Table (3). For whole tumor segmen-
tation, the network maintains its performance on the validation data. However,
a dip in performance was observed in the tumor core and active tumor regions on
the validation set when compared to the local test data. The poor performance
of the proposed technique on LGG tumor core segmentation negatively skews
the performance statistics of our method on the validation data.

Table 3: Results of BraTS 2017 validation data, (n= 40)
Whole Tumor Tumor Core Active Tumor

Mean 0.87 0.68 0.65

Std Deviation 0.11 0.34 0.32

Median 0.91 0.82 0.78

4 Conclusion

In this paper,we propose an automatic technique to segment gliomas from MR
scans.

– A 103 layer deep network was implemented for segmentation of the gliomas
from MR scans.
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(a)

(b)

Fig. 3: Results of the proposed network on local test data. For each sub-
figure ( Left to Right, Top to Bottom), Ground truth, Prediction(before post-
processing), Prediction(after post-processing) , and the normalized FLAIR image
slice, in that order.
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– A single network was used for the segmentation task, irrespective of the
grade of the glioma.

– The Dense CRF improved the performance of the network in all compart-
ments.

– The proposed network completes the entire pipeline ( preprocessing, predic-
tion & post processing) under 30 seconds.

The network was developed using TensorFlow framework.
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Abstract. Glioblastoma is a stage IV highly invasive astrocytoma tumor. Its 

heterogeneous appearance in MRI poses critical challenge in diagnosis, prognosis 

and survival prediction. This work extracts a total of 1207 different types of 

texture and other features, tests their significance and prognostic values, and then 

utilizes the most significant features with Random Forest regression model to 

perform survival prediction. We use 163 cases from BraTS17 training dataset for 

evaluation of the proposed model. A 10-fold cross validation offers normalized 

root mean square error of 30% for the training dataset and the cross validated 

accuracy of 67%, respectively.   

1 Introduction 

Glioblastoma (GB) is categorized as a World Health Organization (WHO) stage IV 

brain cancer that originates in a star-shaped brain cells in the cerebrum called astrocytes 

[1] [2]. GB is the most invasive brain tumor and its highly diffusive infiltrative 

characteristics makes glioma a lethal disease [3] with a median survival of 14.6 months 

with radiotherapy and temozolomide, and 12.1 months with radiotherapy alone [4]. In 

addition, heterogeneity in GBM [5] poses further challenge not just for diagnosis, but 

also for prognosis and survival prediction using MR imaging.   

In [6], the authors use the different subtype tumor volumes, extent of resection, 

location, size and other imaging features in order to evaluate the capability of these 

features in predicting survival. The authors in [7] use comprehensive visual features set 

known as VASARI (Visually AcceSAble Rembrandt Images) [8] in order to predict 

survival and correlate these features for genetic alterations and molecular subtypes. In 

[9], the authors quantify large number of radiomic image features including shape and 

texture in computed tomography images of lung and head-and-neck cancer patients.  

This work discusses overall survival prediction using Random forest regression 

model based on different structural multiresolution texture features, volumetric, and 

histogram features. However, accurate representative tumor features requires accurate 

tumor segmentation. The recent developments in deep learning domain have opened up 

new avenues in various medical image processing research. Several recent studies [10] 

[11] apply Convolutional Neural Network (CNN) based deep learning techniques to 
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solve brain tumor segmentation problem successfully. Consequently, this work 

implements a state-of-the-art CNN architecture following [10] to enhance brain tumor 

segmentation task. 

2 Dataset 

In this study, we use MR images of 163 high grade GBM patients with overall survival 

(in days) data from BtaTS17 training data set [12] [13] [14] [15] (the median age, 

61.167 years; range, 18.975-78.762 years). The available scans of the MRI are native 

(T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated 

Inversion Recovery (FLAIR) volumes. The dataset are co-registered, re-sampled to 

1 𝑚𝑚3 and skull-stripped. 

3 Methodology 

3.1 Brain tumor segmentation 

Accurate segmentation of tumor from the MRI is pre-requisite for survival prediction 

as most potent features are derived from the affected region. The complete pipeline for 

survival prediction is shown in Fig. 1. Note this paper primarily explains the proposed 

survival model.  

Our previous works on multiclass MRI brain tumor segmentation using texture based 

features [16] [17] have yielded important results. The detail description of multiclass 

abnormal brain tumor segmentation is found in [16] [17]. Our texture features are 

extracted from raw (T1Gd, T2, and Flair) modalities tumor volumes. The texture 

representations are piecewise triangular prism surface area (PTPSA) [18], 

multifractional Brownian motion (mBm) [19], Generalized multifrational Brownian 

motion (GmBm) [20] [21], and five representations of Texton filters [22], respectively. 

This work further improves the segmentation performance by employing a two-stage 

process in which the outcomes from the deep learning based method are fused with that 

of a handcrafted feature based method that utilizes Random Forest (RF) for the 

classification task.  

The input to the CNN are image patches where the 3rd dimension is comprised of the 

four MRI modalities: T1, T1Gd, T2, and FLAIR. The output of CNN is the 

classification of five tissues such as background, enhanced tumor, edema, necrosis and 

non-enhanced tumor, respectively. All the inputs to the CNN are pre-processed with 

N4-ITK bias correction, and intensity normalization for inter-volume consistency [10]. 

The training set is image patches randomly obtained from the BRATS 2017 training 

MRI volume set. The sufficiently trained CNN is subsequently used for the 

segmentation of testing data as shown in Fig. 1. 
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Fig. 1. Pipeline for tumor segmentation and survival prediction.   

3.2 Survival Prediction 

In this study we address the association between structural multiresolution texture 

features and overall survival. We extract 42 features from each raw MRI modality and 

texture representation of the whole tumor volume. These features are described by 

histogram, the co-occurrence matrix (measure the texture of image), the neighborhood 

gray tone difference matrix (measure a grayscale difference between pixels with certain 

grayscale and their neighboring pixels) and the run length matrix (capture the 

coarseness of a texture). In addition, we extract 5 volumetric and 6 histogram features 

from the tumor and the different tumor sub-regions (edema, enhancing tumor, and 

tumor core). Further, the tumor locations and the spread of the tumor in the brain are 

also considered. Finally, 9 area properties are extracted from the whole tumor from 

three viewpoints (view are set along 𝑥, 𝑦 and 𝑧 axis). 

Feature selection is performed in three steps; first significant features were selected 

using a univariate cox regression model. Then, another univariate cox regression is 

applied on the quantified significant features. This ensure that these features are able to 

split the dataset into short vs. long survival. A total of two hundred and forty (240) 
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features out of one thousand and two hundred and seven (1207) features (~ 20 % of the 

total extracted features) are found to be significant in the previous two feature selection 

steps.  

 

Fig. 2. Feature selection steps and survival model Pipeline 

Finally, the two hundred and forty features are reduced to forty significant features 

using a recursive feature selection algorithm. The steps of feature selection and survival 

prediction is shown in Fig. 2. The selected features are then fed into Radom Forest 

regression model [23] for survival prediction.  

4 Experimental Results 

We perform tenfold cross-validation on survival prediction features extracted from the 

ground truth, which is available with the BraTS17 training dataset (163 patients), in 

order to evaluate the performance of the proposed RF survival regression model. We 

use the normalized root mean square error (NRMSE) of the overall survival predicted 

values as metric for evaluation. However, the survival prediction features are extracted 

from the fused segmented tumor using the BraTS17 validation dataset as described in 

Fig. 1.  

The cross validated NRMSE of the training dataset is 30%. In addition, to evaluate 

the performance of the survival model based on classification, the overall survival is 

divided into three classes (long, medium and short) survivors corresponds to (>15 

months, >10 months and <15 months, <10months), respectively. The cross validated 

accuracy is 67%. At the time of writing this paper, the evaluation of the validation 

dataset is not available. 
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5 Conclusion  

In this work, we present a complete pipeline to perform survival prediction starting with 

brain tumor segmentation. The method uses BraTS17 validation dataset in a two-stage 

process for segmentation in which the outcomes from the deep learning based method 

are fused with that of our handcrafted feature based method.  The segmented tumor 

volumes along with other volumetric, and histogram features are used in an RF 

regression model for survival prediction. We achieve cross validated NRMSE of 30% 

on the BraTS17 dataset and cross validated accuracy of 67%, respectively.  
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Symmetry-driven Fully Convolutional Network
for Brain Tumor Segmentation

Haocheng Shen, Ruixuan Wang, Jianguo Zhang, and Stephen McKenna
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Abstract. We present a symmetry-driven fully convolutional network
for brain tumor (and sub regions) segmentation in multimodal MR im-
ages. Our structure consists of a downsampling path and three upsam-
pling paths, which extract multi-level contextual information by con-
catenating hierarchical feature representatio. Meanwhile, we introduce
a symmetry-driven FCN by the proposal of using symmetry difference
images. The model was evaluated on BRATS17 training and validation
datasets.

Keywords: tumor segmentation, FCN, symmetry-driven

1 Introduction

Precise localization of brain tumors in 3D MR images is clinically crucial to
make treatment plans, guide surgery and monitor the rehabilitation progress.
Since manually segmenting is time-consuming, computer-aided automatic and
reliable segmentation of brain tumor is necessary. Among brain tumors, gliomas
appear most frequent [1], either at high grade (HG) or low grade (LG) accord-
ing to the aggressive form of the disease. Due to the diversity and variation of
tumor size, shape, location, and appearance of gliomas, multimodal MRs are
often taken from patients to enhance the contrast of potential tumor and its
structures. Normally the tumor region could be divided into four different sub-
regions: edema, necrosis, non-enhancing and enhancing, where the combination
of the last three structures is also called tumor core.

The automatic segmentation of gliomas is often formulated as a patch-level
or voxel-level classification problem, where each (either 2D or 3D) patch in the
3D MR is classified as one type of the sub-structures. Deep convolutional neural
networks (CNNs) automatically learning high-level discriminative feature repre-
sentations, are not surprisingly achieving state-of-the-art results when applied
to MRI brain tumor segmentation [5–7].

Different from traditional CNN models, fully convolutional networks (FCNs)
were recently proposed by removing all the fully connected layers and have
achieved promising results for medical image segmentation [11–13]. In FCNs,
up-sampling layers are added on top of the down-sampling convolutional layers,
in order to gain the same spatial size as that of the original input. Compared to
CNNs, FCNs run only once on the whole input and would generate the classifi-
cation result for each voxel (or pixel), which is more computationally efficient.
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We present a symmetry-driven fully convolutional network for brain tumor
(and sub regions) segmentation in multimodal MR images. Due to the property
of FCN, our model enables end-to-end training and fast inference. We evaluate
our model on BRATS17 dataset and report the initial results.

2 Methods

2.1 FCN structure

The architecture of the proposed method is illustrated in Fig 1. It contains
two modules, i.e., one downsampling path with convolutional and maxpooling
layers and three upsampling paths with upsampling and convolutional layers.
The downsampling path aims at enlarging receptive fields to encode high level
abstract and contextual information to detect tumors, while the upsampling
paths reconstruct the fine details such as tumor boundaries. We designed the
upsampling paths in a hierarchical manner to take full advantage of multiple
scale feature maps from downsampling path.

The downsampling path is similar to VGG-16 network [9], but instead of
using total 5 convolutional blocks (one convolutional blocks contains two or
three convolutional layers with 3 × 3 kernels and 1 maxpooling layer with 2 ×
2 strides), we only use the first 3 convolutional blocks. For upsampling paths,
we simply upsample the feature maps from the last convolutional layer of each
convolutional block (before maxpooling layer) to the original spatial size. Then
another three convolutional layers are applied to encode multi-scale feature rep-
resentations. The resulting feature maps from three upsampling paths are con-
catenated before the final classification layer. We formulate the training of whole
network as a per-pixel classification problem with respect to the ground-truth
segmentation masks and choose categorical cross entropy as the loss function.
The 2D slices split from 3D MR volumes from axial view as the input of the
proposed network.

2.2 Symmetry Difference Maps

It was noted that symmetry in axial view is an important cue for brain tumor
segmentation as tumors usually break symmetric appearance of a health brain.
We encode brain symmetry information to the CNN framework by adding extra
symmetry maps. Our symmetry maps are computed as follows: 1) we first locate
the symmetric axis in T1 modality axial slices through the approach presented
in [8]; 2) given the symmetric axis, we found the corresponding matching pixel
pairs and calculated their intensity differences. In order to reduce the effects
of the errors of symmetric axis and image noises, each image was smoothed
beforehand using a Gaussian filter with 5 × 5 kernel. The most matched pixel
was searched in a 11 × 11 local window centered on the mirrored the location
w.r.t the symmetry axis. The resulting intensity differences are then converted
into range [0, 1] by a sigmoid function. We calculated symmetry difference maps
for each MR modality and combined them with the four original images as the
inputs of our CNN framework as show in Fig. 1.

Proceedings of the 6th MICCAI BraTS Challenge (2017) 275 of 347



Symmetry-driven FCN for Brain Tumor Segmentation 3

Fig. 1: FCN structure. Images and symmetry maps are concatenated as the input
to the net [10]. Colored rectangles represent feature maps with numbers nearby
being the number of feature maps. Best viewed in color.

3 Evaluation

Our model was evaluated on BRATS17 dataset [1–4] which contains 210 HGG
and 75 LGG training data with known ground-truth segmentation maps and
46 validation data without revealing tumor grade information. Each subject’s
data includes 4 modalities (T1, T1-contrast or T1c, T2, and Flair) which were
skull-stripped and co-registered. Quantitative evaluation is performed on three
sub-tasks: 1) the complete tumor; 2) the tumor core; 3) the enhancing tumor
region. For each sub-task, Dice, Sensitivity, Specificity and Hausdorff Distance
are computed.

Our network model was implemented in Keras with Theano as backend. The
network was trained using the Adam optimizer, with learning rate 0.001. The
down-sampling path was initialized with VGG-16 weights [9] while up-sampling
paths were initialized randomly using He’s method [14].

We randomly split 210 HG and 75 LG in BRATS17 training set into two
subsets at a ratio of 7:3, resulting in 201 training data (147 HG and 54 LG) and
84 test data (63 HG and 21 LG). The performance curves on 84 test data along
epochs are shown in Fig 2. It is observed that all sub-tasks performances were
saturated at about the 15th epoch, resulting in 0.87, 0.76, 0.69 in terms of Dice
for Complete, Core and Enhancing tasks, respectively.

For the 46 validation data, we used the 15th epoch model trained by the 201
training data. The results are shown in Table 1. From both training and vali-
dation results, we found segmenting Enhancing is the most difficult task as LG
cases usually contains small or even no regions of enhancing parts. Misclassifying
the enhancing parts in LG cases may cause a significantly drop in terms of Dice
performance.
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Fig. 2: Training-validation results on BRATS17. From left to right: Complete,
Core and Enhancing tumor task. The vertical axis is Dice while horizontal axis
is the number of epochs.

Table 1: Performance on the BRATS17 46 validation set

Complete Core Enhancing

Dice 0.885 ± 0.082 0.752 ± 0.224 0.695 ± 0.293
Sensitivity 0.874 ± 0.115 0.750 ± 0.251 0.784 ± 0.257
Specificity 0.995 ± 0.004 0.997 ± 0.004 0.998 ± 0.004
Hausdorff 7.347 ± 17.632 11.569 ± 17.853 6.987 ± 11.090

4 Conclusion

We propose a symmetry-driven FCN and achieved reasonable segmentation re-
sults on BRATS17 dataset. We are still working on multiple potential extensions
in order to improve our performance including data augmentations, multi-task
FCN and classification on HG and LG cases.
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Abstract. In this paper, we propose a novel learning based method for automat-

ed segmentation of brain tumor in multimodal MRI images, which incorporates 

two sets of machine -learned and hand crafted features. Fully convolutional 

networks (FCN) forms the machine learned features and texton based features 

are considered as hand-crafted features. Random forest (RF) is used to classify 

the MRI image voxels into normal brain tissues and different parts of tumors, 

i.e. edema, necrosis and enhancing tumor. The method was evaluated on 

BRATS 2017 challenge dataset. The results show that the proposed method 

provides promising segmentations. The mean Dice overlap measure for auto-

matic brain tumor segmentation against ground truth is 0.86, 0.78 and 0.66 for 

whole tumor, core and enhancing tumor, respectively. 

Keywords: Fully Convolutional Networks, Random Forest, Deep Learning, 

Texton, MRI, Brain Tumor Segmentation. 

1 Introduction 

Accurate segmentation of brain tumor may aid the fast and objective measurement of 

tumor volume and also find patient-specific features that aid diagnosis and treatment 

planning [1]. Due to the recent advances in deep neural networks (DNN) in recogni-

tion of the patterns in the images, most of the recent tumor segmentations have fo-

cused on deep learning methods. Recently, fully convolutional networks (FCN) have 

been suggested for dense (i.e. per-pixel) classification with the advantage of end-to-

end learning [2], without requiring those additional blocks in convolutional neural 

networks (CNN) based approaches. Despite the advantage of dense pixel classifica-

tion, FCN-based methods still have limitations of considering the local dependencies 

in higher resolution (pixel) level. The loss of spatial information, which occurs in the 

pooling layers, results in coarse segmentation. This limitation will be addressed in our 

work by incorporating high resolution hand-crafted textural features which consider 

local dependencies of the pixel. Texton feature maps [3] provides significant infor-

mation on multi-resolution image patterns in both spatial and frequency domains. 
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In this paper, a novel fully automatic learning based segmentation method is pro-

posed, by applying hand-crafted and machine-learned features to random forest (RF) 

classifier. The machine-learned FCN based features detect the coarse region of the 

tumor while the hand-crafted texton descriptors consider the spatial features and local 

dependencies to improve the segmentation accuracy. 

2 Methods 

Our method is comprised of four major steps (pre-processing, FCN, Texton map gen-

eration, and RF classification) that are depicted in Fig. 1. In the pre-processing stage, 

the intensities were normalized for each protocol by subtracting the average of inten-

sities of the image and dividing by their standard deviation. Then, the histogram of 

each image was normalized and matched to the one of the patient images which is 

selected as the reference. 

 

Fig. 1. Flowchart of the proposed method. The FCN architecture, machine learned feature 

extraction, and texton features. 

2.1 FCN-based Features 

A FCN-8s architecture in [2] was adopted for segmentation of brain tumor in multi-

modal MRI images, where the VGG16 [4] was employed as CNN classification net. 

The FCN-8s was constructed from FCN-16s skip net and FCN-32s coarse net, which 

was implemented by fusing predictions of shallower layer (Pool3) with 2 × upsam-

pling of the sum of two predictions derived from pool4 and last layer. Then the stride 

8 predictions were upsampled back to the image. 

The feature vector is generated for each voxel based on the score map from the 

FCN. For each class label, a score map is generated, 4 maps are generated using the 

standard BRATS17 labelling system. The values of each map layer corresponding to 

each voxel are considered as machine-learned features of that voxel. 
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2.2 Texton features 

The texton based features were applied in the proposed method as hand-crafted fea-

tures to support the machine-learned features and improve the segmentation results. 

Textons are obtained by convolving the image with a Gabor filter bank. To cover all 

orientations six different filter directions were used: [0o, 30o, 45o, 60o, 90o, 120o]. 

Filter sizes were [0.3, 0.6, 0.9, 1.2, 1.5] and the wavelength of sinusoid coefficients of 

the Gabor filters were [0.8, 1.0, 1.2, 1.5]. 

The MR images were convolved with the Gabor filters, then the filter responses are 

merged together and clustered using k-means clustering. The number of clusters 16 

was selected as the optimum value for the number of clusters in texton map. The tex-

ton map is created by assigning the cluster number to each voxel of the image. The 

texton feature for each voxel is the histogram of textons in a neighborhood window of 

5 × 5 around that voxel.     

The normalized intensity value of the voxels in each modality which is obtained 

from the pre-processing stage is also included in the feature vector. Therefore, in total 

55 features were collected (4 FCN score maps, 3 protocol intensities and 48 texton 

histograms) for usage in the next step. 

 

2.3 RF Classification 

The potential tumor area detected by the FCN output was considered as the initial 

region of interest (ROI). This ROI was selected as a confidence margin of 10 voxels 

in 3D space around the detected initial tumor area which was calculated by morpho-

logical dilation. The feature vectors for voxels in this ROI were fed to the random 

forests. The main parameters in designing RF are tree depth and the number of trees. 

RF parameters were tuned by examining different tree depths and number of trees on 

training datasets and evaluating the classification accuracy using 5-fold cross valida-

tion. The number of 50 trees with depth 15 provided an optimum generalization and 

accuracy. Based on the classes assigned for each voxel in the validation dataset, the 

final segmentation mask was created by mapping back the voxel estimated class to the 

segmentation mask volume. Finally, the bright regions in the healthy part of the brain 

near to the skull were eliminated using a connected component analysis. 

3 Results 

The proposed method was performed on MATLAB 2016b on a PC with CPU Intel 

Core i7 and RAM 16 GB with the operating system windows 8.1. The FCN was im-

plemented using  MatCovNet toolbox [5]. GPU GeForce gtx980i was used to run 

FCN. The RF was implemented using open source code provided in [6] which is a 

specialized toolbox for RF classification based on MATLAB. 

Both FCN and RF are trained on BRATS 2017 [7–10] training dataset which in-

clude 220 high grade glioma (HGG) and 75 low grade glioma (LGG) patient cases. 

The method was evaluated on BRTAS 2017 validation dataset which include 46 pa-

tient cases. 
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The evaluation measure which are provided by the CBICA's Image Processing Por-

tal, i.e. Dice score, sensitivity, specificity, Hausdorff distance, were used to compare 

the segmentation results with the gold standard (blind testing). Figure 2 shows seg-

mentation results of the proposed method on some cases of BRATS 2017 validation 

dataset. Table 1 provides the evaluation results obtained by applying the proposed 

method on BRATS 2017 validation dataset.  

 

Fig. 2. segmentation masks for validation dates, using the proposed method. Light blue: necro-

sis and on-enhancing, green: edema, dark red: enhancing. 

Table 1. Segmentation results for validation dataset which was provided by CBICA portal. ET: 

enhancing tumor, WT: whole tumor, TC: tumor core. 

 Dice  Sensitivity  Specificity  Hausdorff (95%) 

 ET WT TC ET WT TC ET WT TC ET WT TC 

Mean 0.66 0.86 0.78 0.57 0.83 0.72 1.00 1.00 1.00 3.76 7.61 8.70 

STD 0.28 0.09 0.19 0.28 0.13 0.21 0.00 0.01 0.00 4.38 12.99 13.52 

4 Conclusion 

In this paper, a novel method was proposed in which the machine-learned features 

extracted using FCN were combined with hand-crafted texton features to encode 

global information and local dependencies into feature representation. The score map 

with pixel-wise predictions was used as a feature map which was learned from multi-

modal BRATS2017 training dataset using the FCN. The machine-learned features, 

along with hand-crafted texton features were then applied to random forests to classi-

fy each MRI image voxel. 
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The results of the FCN based method showed that the application of the RF classi-

fier to multimodal MRI images using machine-learned features based on FCN and 

hand-crafted features based on textons provides promising segmentations. The mean 

Dice overlap measure for automatic brain tumor segmentation against ground truth is 

0.86, 078 and 0.66 for the whole tumor, core and enhancing tumor, respectively. 
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Abstract. This paper presents an expert automated system for detecting and pre-
liminary diagnosing the human brain tumors using T1-weighted Magnetic Reso-
nance Images with contrast. The system uses computer based procedures to de-
tect tumor areas and to identify the type of tumor as benign or malignant with 
using multi-class classification. Generally, this system is consisted from three 
main distinct modules: detecting brain tumors with image processing and pattern 
recognition methods, feature extraction according to the important medical pa-
rameters, multi-class hybrid classification. According to the first part, an approx-
imate reasoning is used to enhance the quality of MRI scans and segment them 
into special ROI (Region of Interest) areas. In the second part, the extraction of 
texture features of specialized ROIs has been achieved by using Gray Level Co-
occurence Matrix (GLCM). Then, these features are compared according to the 
stored features in the Training Base. Finally, preliminary diagnosing and differ-
entiating brain tumors and identifying the tumor types according to the hybrid 
classification are performed. However, brain tumors have different characteris-
tics in different slice planes. In order to eliminate the inaccurate results, several 
consecutive planes are used for processing. Finally, the performance of this sys-
tem is obtained as %95 with using 100 images from BraTS’17 dataset (50 images 
are used for training and 50 images are used for testing). All results show that the 
system works efficiently in tumor detection and classification of the samples. 
Keywords: Brain Tumor Detection, Medical Image Processing, Magnetic Reso-
nance Imaging (MRI), Multi-Class Classification 
 

 
1 Introduction	

 
      Brain tumors among humans have gained importance for decades and generally 
differ according to the sex, age, race and nationality. Like other tumor types, some of 
malignant brain tumors such as Glioblastomas might develop suddenly from lower 
grades [1]. Therefore, preliminary diagnosing of the brain tumors in an appropriate time 
is very crucial for further treatments [2]. 
      In recent years, the usage of the imaging tools in neuroscience department has been 
significantly increased. Especially, Magnetic Resonance Imaging (MRI) has been used 
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as a powerful brain imaging model that allows to take non-invasive measurements and 
3D assessment of the tissue morphology [3]. MRI system mainly provides an unparal-
leled inside view of the human body. Also, the reputation of this imaging model has 
greatly increased and the knowledge of the normal and abnormal anatomy for important 
medical research are become a useful critical component in diagnosing and treatment 
areas.  
      Reliability and time-saving are the important parameters systems for fast detection 
and classification of brain tumors for the doctors. Common practices that are based on 
specialized technicians are become slow and possess a degree of subjectivity that is 
hard for quantifying [4].  

 The designed system is consisted from a successful hybrid algorithm for detecting 
and identifying the brain tumor from a given MRI image of patients. This system also 
finds sufficient usage under tumor detection in the medical area such as computer aided 
preliminary diagnosis. Diagnosing of brain tumors is a complex issue and brain cancer 
can be classified into 120 different types. According to this, benign brain tumors can 
be explained as life-threatening as malignant tumors, as they squeeze out normal brain 
tissue and disrupt some of the brain functions [5].  
      The purpose of this paper is to design, implement, interpret and evaluate the system 
which is given as the expert automated system to preliminary diagnose the brain tumors 
and to identify the tumor types, especially in T1-weighted images with contrast. 
However there are many uncertainities in images which are very difficult to handle, the 
offered system can be able to model such uncertainities, so this system have the suffi-
cient potential to provide better performance. According to the first part of the system, 
an approximate reasoning is used to enhance the quality of MRI scans and segment 
them into special ROI (Region of Interest) areas. In the second part, the extraction of 
texture features of specialized ROIs has been achieved by using Gray Level Co-occu-
rence Matrix (GLCM). Then, these features are compared according to the stored fea-
tures in the Training Base. Finally, preliminary diagnosing and differentiating brain 
tumors and identifying the tumor types according to the hybrid classification are per-
formed.  
      The rest of the paper is organized as follows: Section 2 presents the methods of the 
expert automated preliminary diagnosis system for identifying brain tumors’ features 
and types. Image processing and pattern recognition stages, feature extraction and 
image classification techniques are discussed in Section 2. The results obtained from 
evaluation and conclusions are given in Section 3 and 4, respectively.  
 
2 Methods 
 
      This work generally involves processing of raw T1-weighted MR images that are 
affected by brain cancer for humans for tumor detection, identification and classifica-
tion of different types of brain tumors. In addition, images used for this study are gen-
erally MRI images and they are obtained from BraTS’17 image dataset [6, 7, 8 ,9]. The 
whole system is also designed with a Graphical User Interface (GUI) with using 
MATLAB 2016b version according to the Nielson’s usability criteria [10]. Also, in the 
GUI development phase, Furkan Muratdağı helped Berkan URAL for increasing the 
success and the stability rates of the system. 
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Fig. 1. Flowchart of the System 

 
According to Fig. 1, all steps are given below, respectively. 
 
Pathological Detection 
      All slices of MR images processed by the given system are classified as abnormal 
and also, this is known that these images contain a tumor or tumors based on the radi-
ologist pathology report. 
2.1 Load MR Image 

 For this step of the approach, images taken from the test subjects are generally in 
gray-level color format. Image size for each patient is approximately 255 um x 255 um 
and “uint8” is the class type of the dataset. 
2.1    Pre-processing/Filtering 
      For this step, this is seen that most of the images have different noise types. Espe-
cially, Gaussian noise is the most common noise type among the images and this noise 
type is eliminated with using 5x5 Median filter with a standard deviation [11]. Then, 
this step consists the histogram equalization part. The main problem in the process for 
detecting the edge of the tumor area is that the tumor area is generally seen very dark 
on the image. To overcome this issue, histogram equalization is mainly performed. The 
aim of the fundamental enhancement is to increase the contrast between the brain and 
the tumor region. Finally, to enhance contrast between the normal brain and tumor area, 
a special sharpening filter is used on the MR images. 
2.2    Segmentation 
      Segmentation is an essential issue for image classification. Currently, in many clin-
ical works, segmentation is done manually or strongly supervised by a human expert. 
The knowledge level of operator affects the performance of the segmentation method. 
In addition, manual segmentation makes the original segmentation step more deterio-
rating. Hence, there is a great need for an expert automated brain tumor detection tool. 
In the segmentation phase, automated techniques are mainly used. These are; thresh-
olding, edge detection, clustering and region extraction. 

 The aim of this step is to subdivide the images into their constituent object parts. 
The level of the subdivision depends on the rules and criteria in image processing and 
the segmentation has to stop when the edge of tumor is able to be detected and also 
isolating the tumor from the background is the other important problem. Otsu thresh-
olding is used as segmentation part in order to obtain a thresholded image with gray 
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level 1 or 0. “1” represents the tumor area and “0” represents the background, respec-
tively. Therefore, the thresholding index is obtained by using (1) [12]; 

   T = 
!"#∗%"#

&'(
)*+

,'(
İ*+

%"#
&'(
)*+

,'(
İ*+

                                  (1) 

where M is the MRI image and Mij represents the image’s pixels.  
2.4     Binarization 
      The main purpose for this step is to differentiate the contrast value between normal 
and tumor regions in the images. In this step, median filtered images are filtered through 
a standard 15 pixel Gaussian filter, so some important details are exposed.  
2.5   Tumor Detection 
      In this phase, some morphological operations such as erosion, dilation and closing 
methods are used for filling the broken gaps at the edges and to have continuities at the 
boundaries [13]. After the dilation operation, a filling operator is applied to fill the close 
contours. After this step, the centroids of special Region Of Interest (ROI) areas are 
calculated to localize the regions. The final region after extraction is then logically op-
erated for extraction of the main region in the MR image. 
2.6    Feature Extraction 
      This stage involves obtaining important features of the extracted region in the MR 
images. The features can mainly be used as giving the property of the texture and the 
information are stored in the knowledge base for training of the system. Then, the ex-
tracted features are compared with the features of the other out-of-sample images for 
the classification step. For this occasion, Gray Level Co-occurence Matrix (GLCM) 
features are mainly used to separate and distinguish the result between the normal and 
the tumor area in the brain [14]. Generally, three GLCM matrices are used for this im-
plementation according to the axial, sagittal and coronal slice diagonals (0, 90, 135 
degrees). 
2.7    Classification 
      A hybrid classification method which is included the common k-Nearest Neighbor 
(k-NN) and Support Vector Machine (SVM) techniques is mainly used to detect candi-
date circumscribed tumor for this step and also to identify the final class of the pro-
cessed data [15]. Obtained hybrid classification method is an adaptive system that 
learns to perform a function from input data. Adaptive means that the system parame-
ters can be changed during the processes. In the training section, different MR images 
are used and the features and the tumor types are stored in the knowledge base. After 
the training phase, the parameters of the classification are fixed and the system perfor-
mance is highly increased with using the deploy tool in MATLAB. This system can be 
similar in many ways with Artificial Neural Network during training phase. The net-
works of training phase consist of some mapping values and these values are generally 
between a set of input and output values. With using a learning algorithm or changing 
the weight values, the training phase can be controlled simultaneously. 

 
3 Results and Discussion 

 
      The developed interface successfully classifies an input MR image into the type of 
the tumor such as benign or malignant. 50 sample images are used in the testing phase, 
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respectively. Then, the test images are compared with stored features from the training 
phase. According to the statistical analysis, %95 success rate is obtained from ROC 
curve analysis of the whole system. 
      Figure 2 shows the main objectives of the interface which are mentioned in the 
study. Also, in Fig. 2 and Fig. 3, a tumor region extraction process is specifically shown 
as step by step and also a classification example according to a sagittal image is given 
in Fig. 3 in detail. 
 

 
(a) 
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(b) 

Fig. 2. Results of Extraction and Classification For Axial (a) and Sagittal (b) Images 
 

 
Fig. 3. Tumor Extraction Procedure for Sagittal Image 

 
      The whole results given above show that the system works efficiently with %95 
success rate for tumor detection and identification stages. The truth of the obtained final 
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results is also supported by the brain tumor specialists from Ataturk Education and Re-
search Hospital, from Ankara/TURKEY. The quality rate of the system can motivate 
us to extend this work to develop the system as a whole body tumor diagnosis scan 
system. 

 
4 Conclusion 

 
      In this research, an expert automated preliminary diagnosis system for identifying 
brain tumors’ features and types has been developed. The proposed system can help the 
doctors for diagnosing the human brain tumors, for further treatments. The main con-
tributions in this paper are the several important image processing and pattern recogni-
tion methods, a specific segmentation and a special classification methods. In addition, 
the presented system has been encoded and the main modules of the system have been 
tested and validated in order to increase the diagnosing rate positively.  

 This research has some potential future developments. The preliminary diagnostic 
results can demonstrate the high classification accuracy for the image processing and 
classification structures. Moreover, the preliminary results also motivate us to extend 
this framework to detect and localize the tumors in the other organs. When this work is 
adapted to the different fields, this can be given a chance to early diagnose the different 
types of diseases. Also, if the methods of this study are improved, the tissue recognition 
can be done successfully. This can help doctors for diagnosing important diseases on 
time. 
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Abstract. In this report, we proposed an automatic brain tumor seg-
mentation method using a deep learning framework based on the fully
convolutional network. The proposed method carries out the segmenta-
tion using three 2D U-nets that are trained to segment brain tumors in
the three orthogonal views, i.e., the axial, coronal and sagittial views. The
final segmentation labels are created via a majority voting of these three
U-nets. Common preprocessing steps including inhomogeneity correction
and histogram alignment are applied on both training and testing im-
ages. The proposed method was tested on the BRATS 2017 brain tumor
segmentation database. Two sets of U-nets were trained to segmentation
glioblastoma and lower grade glioma separately. The Dice coefficients for
the edema region, whole tumor and tumor core segmentation are 0.69,
0.85, 0.74 respectively.

Keywords: deep learning, fully convolutional network, brain tumor seg-
mentation, U-net

1 Introduction

Brain tumor segmentation is one of the crucial steps for surgery planning and
treatment evaluation. Despite the great amount of effort being put to address
this challenging problem in the past two decades, segmentation of brain tumor
remains to be one of the most challenging tasks in medical image analysis [1].
This is due to both the intrinsic nature of the tumor tissue being heterogeneous
and the extrinsic problems with unsatisfactory image quality of clinical MRI
scans. For example, the tumor mass of a glioma patient, the most common brain
tumor, often consists of peritumoral edema, necrotic core, enhancing and non-
enhancing tumor core. In addition to the complicated tumor tissue pattern, the
MRI images can be further corrupted with a slowly varying bias field and/or
motion artifacts, etc. In this study, we propose a hybrid method that consists of
a pre-processing phase, where bias file correction and histogram alignment are
performed and a segmentation phase using a deep learning framework. In our
preliminary experiments, the proposed method delivered promising results on
the public database of BRATS 2017 [2–4].
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2 Methods

2.1 Data and Processing

In this study, we used the BRATS 2017 database, that consists of about 460
clinically-acquired pre-operative multimodal MRI scans of glioblastoma (GBM/HGG)
and lower grade glioma (LGG). Each of the scans contains four MRI series,
namely T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes. The images were
acquired from 19 different institutions. Manual segmentation of three types of
tumor tissue, i.e. GD-enhancing tumor (ET), the peritumoral edema (ED), and
the necrotic and non-enhancing tumor (NCR/NET) were provided for each case.
In addition to the skull-striping and registration of four series, we added more
pre-processing steps to fix the inhomogeneity of the MRI images and normalized
the tissue intensity. For inhomogeneity correction, we used the N4ITK package
proposed in [5]. Then the histogram of each volume is matched to a manually
picked patient with HGG. This is done using Laszlo’s approach implemented in
ITK [6].

2.2 2.5D U-net

To perform the tumor segmentation, we adapted the U-net method proposed
by Ronneberger et al. [7]. This is a variation of the fully convolutional network
(FCN), the fully connected layers of classical CNNs are replaced by convolutional
layers [8], which allows FCNs to be applied to images of any size and output
label maps proportional to the input image and avoid the time-consuming sliding
window operation. The original U-net was proposed to segment 2D images, in
order to segment tumor in 3D, we trained three U-nets that will segment different
tumor tissue types in 2D slices acquired in three orthogonal projects, i.e., in the
axial, coronal and sagittal views. The final label map is generated by a majority
voting of these three U-nets.

2.3 Implementation details

Our U-net implementation was based on the Keras framework with Theano
backend (http://keras.io). The U-net architecture is identical to the one proposed
in the original paper, with a little modification to allow the input image to have
4 channels. In addition to the histogram alignment, each channel is normalized
group-wise to have 0 mean and standard deviation of 1. As HGG and LGG
lesions are very different from each other, two sets of U-nets were trained to
segment different types of tumor. In addition, a support vector machine (SVM)
is trained to classify whether a case is HGG or LGG using the histogram of tumor
core region from the HGG U-net sets, i.e., each case is segmented as HGG then
classified with the SVM to see if the LGG U-net set need to be run.

For training all the U-nets, the categorical cross-entropy is used as the loss
function for multi-structure segmentation. Stochastic gradient descent (SGD) is
used as the optimizer in all training process.
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Table 1. Segmentation accuracy evaluation on the validation data

Tumor type Edema Total tumor Tumor core Cases

HGG 0.820±0.105 0.879±0.087 0.819±0.155 36

LGG 0.229±0.411 0.749±0.282 0.442±0.391 10

total 0.695±0.322 0.851±0.156 0.742±0.272 46

3 Results

The proposed method was evaluated using the training and validation data of
the BRATS 2017 database [2–4]. The HGG set was trained on 210 cases and
the LGG set was trained on 75 cases. The validation set consists of 46 cases,
among which 10 cases were classified by the SVM as LGG (the true labels are
unknown).

Overall, the Dice coefficients for the edema region, whole tumor and tumor
core segmentation are 0.69, 0.85, 0.74 respectively. However, the Dice scores are
much better for the HGG cases than the LGG cases. Table 1 summarized the
results on the validation data.

Fig. 1. An example of relatively well segmented cases. In this case, the Dice coefficients
for the edema region, whole tumor and tumor core segmentation are 0.945, 0.877, 0.937
respectively
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Fig. 2. An example of not well segmented cases. In this case, the Dice coefficients for
the edema region, whole tumor and tumor core segmentation are 0.201,0.585, 0.193
respectively

4 Discussion and conclusion

In this study, we proposed a relative simple 2.5D U-net approach for tumor
segmentation. While implementing a 3D U-net could potentially improve the
segmentation accuracy, the 3D U-net approach faces some piratical challenges,
such limited GPU memory that limits the depth of U-net and a limited number
of training samples that can cause overfitting. The 2D U-nets are much easier
to train and use larger number training samples (by converting 3D volumes to
2D slices). However the direct comparison with 3D U-net is not available as
the leadboard is anonymous at the moment. From our experience, the LGG
cases are more difficult to segment. This may be due to both the inconsistent
appearance and the limited number of training data. Some future work include
to add dropout layer to reduce the overfitting of the U-nets. Auto-context as
reported in other studies may also help to further improve the segmentation
accuracy.

In conclusion, we have proposed a hybrid image segmentation methods based
on deep neural network. In our preliminary experiments, the proposed method
delivered promising results on the public database of BRATS 2017
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Abstract. A cascade of fully convolutional neural networks is proposed
to segment multi-modality MR images with brain tumor into background
and three subregions: enhanced tumor core, whole tumor and tumor core.
The cascade is designed to decompose the multi-class segmentation into
a sequence of three binary segmentations according to the subregion hi-
erarchy. Segmentation of the first (second) step is used as a binary mask
for the second (third) step. Each network consists of multiple layers of
anisotropic and dilated convolution filters that were obtained by training
each network end-to-end. Residual connections and multi-scale predic-
tions were employed in these networks to boost the segmentation per-
formance. Experiments on BRATS 2017 online validation set predicted
average Dice scores of 0.764, 0.897, 0.825 for enhanced tumor core, whole
tumor and tumor core respectively.

Keywords: Brain tumor, convolutional neural network, segmentation

1 Introduction

Gliomas are the most common brain tumors that arise from glial cells. They
can be categorized into two basic grades: low-grade gliomas (LGG) that tend to
exhibit benign tendencies and indicate a better prognosis for the patient, and
high-grade gliomas (HGG) that are malignant and more aggressive. With the de-
velopment of medical imaging, brain tumors can be imaged by various Magnetic
Resonance (MR) modalities, such as T1, T1-contrast, T2 and Fluid Attenuation
Inversion Recovery (FLAIR). Different modalities can provide complementary
information to analyze different sub-regions of gliomas, such as tumor cores and
edema regions.

Automatic segmentation of brain tumors and substructures is promising to
provide accurate and reproducible measurements of the tumors. It has great
potential for better diagnosis, surgical planning and treatment assessment for
brain tumors [15, 2]. However, this segmentation task is challenging because 1)
the size, shape, and localization of brain tumors have considerable variations

Proceedings of the 6th MICCAI BraTS Challenge (2017) 297 of 347
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WNet	 TNet	 ENet	

Segmentation of 
whole tumor 

Input 
volumes 

Segmentation 
of tumor core 

Segmentation of 
enhanced tumor core 

Fig. 1. The proposed triple cascaded framework for brain tumor segmentation. Three
networks are proposed to hierarchically segment whole tumor (WNet), tumor core
(TNet) and enhanced tumor core (ENet) sequentially.

among patient; 2) the boundaries between adjacent structures are often ambigu-
ous due to the smooth intensity gradients, partial volume effects and bias field
artifacts.

Discriminative methods based on deep neural networks have achieved state-
of-the-art performance for multi-modality brain tumor segmentation tasks. Sev-
eral key ideas to improve the performance of segmentation networks have been
explored in the literature. These include efficient end-to-end training using a fully
convolutional approach [1, 8], incorporating large visual contexts by employing
a mixture of convolution and downsampling operations [12, 9], maintaining high
resolution multi-scale features with dilated convolution and residual connection
[17, 14, 5], and handling training data imbalance issue by designing new loss
functions [7, 16] and sampling strategies [16].

Inspired by the previous work of cascaded neural networks for liver segmenta-
tion [6], we propose a cascade of CNNs for brain tumor subregion segmentation.
We take advantage of dilated convolution, residual connection and multi-scale
prediction to boost performance of the networks. In addition, we use anisotropic
convolution to deal with 3D images as a trade-off between memory consumption
and model complexity.

2 Methods

2.1 Triple Cascaded Framework

The proposed cascaded framework is shown in Fig. 1. We use three networks to
hierarchically and sequentially segment substructures of brain tumors. The first
network (WNet) segments the whole tumor from multi-modality 3D volumes of
the same patient. The second network (TNet) segments the tumor core from the
whole tumor region given by WNet, and the third network (ENet) segments the
enhanced tumor core from the tumor core region given by TNet. Segmentation
of the first (second) network is used as a binary mask for the second (third)
network. These networks deal with binary segmentations and have different re-
ceptive fields. For WNet, the receptive field is the whole image region. The re-
ceptive field of TNet and ENet is the whole tumor region and tumor core region
respectively. There are several benefits of using such a cascaded segmentation
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Fig. 2. Our anisotropic convolutional networks with dilated convolution, residual con-
nection and multi-scale fusion. ENet uses only one downsampling layer considering its
smaller input size.

framework. First, compared with training a single network for all substructures
which requires complex network architectures, using three binary segmentation
networks allows for a simpler network for each task. Therefore they are easier to
train and can reduce over-fitting. Second, this helps reduce false positives since
TNet only works on the region extracted by WNet and ENet only works on the
region extracted by TNet. Third, this hierarchical pipeline follows the anatomic
structure of tumors. It restricts the tumor core to be inside the whole tumor
region and enhanced tumor core to be inside the tumor core region.

2.2 Anisotropic Convolutional Neural Networks

For 3D neural networks, the balance between memory consumption and feature
representation ability should be considered. Many 2D networks take a whole
2D slice as input and can capture features in a large receptive field. However,
taking a whole 3D volume as input consumes a lot of memory and therefore
limits the resolution and number of features in the network, leading to a low
representation ability. As a trade-off, we propose anisotropic networks that take
a stack of slices as input with a large receptive field in 2D and a smaller receptive
field along the direction orthogonal to the 2D slices. The architectures of our
proposed MNet, TNet and ENet are shown in Fig. 2. All the networks are fully
convolutional and use 10 residual connection blocks with anisotropic convolution,
dilated convolution, and multi-scale fusion.
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Anisotropic and Dilated Convolution. To deal with anisotropic receptive
fields, we decompose a 3D kernel of size 3×3×3 into an intra-slice kernel with
size 3×3×1 and an inter-slice kernel with size 1×1×3. Convolutional layers with
either of these kernels have Co output channels and each is followed by a batch
normalization layer and an activation layer, as illustrated by blue and green
blocks in Fig. 2. We use Parametric Rectified Linear Unit (PReLU) [10] in the
activation layers. WNet and TNet use 20 intra-slice convolutional layers and
four inter-slice convolutional layers with two 2D downsampling layers. ENets
use the same set of convolutional layers as WNet but only one downsampling
layer considering its smaller input size. We only employ up to two layers of
downsampling in order to avoid large image resolution reduction and loss of
segmentation details. After the downsampling layers, we use dilated convolution
for intra-slice kernels to enlarge the receptive field within a slice. The dilation
parameter is set to 1 to 3 as shown in Fig. 2.

Residual Connection. For effective training of deep CNNs, residual connec-
tions [11] were introduced to create identity mapping connections to bypass the
parameterized layers in a network. Our MNet, TNet and ENet have 10 residual
blocks. Each of the block contains two intra-slice convolutional layers, and the
input of a residual block is directly added to the output, encouraging the block to
learn residual functions with reference to the input. This can make information
propagation smooth and speed the convergence of training [11, 14].

Multi-scale Prediction. In deep convolutional neural networks, sequential
convolutional layers increase the receptive field and they capture features at
different scales. Shallow layers learn to represent local and simple features while
deep layers learn to represent global and abstract features. To combine both
local and global features, we use three 1×3×3 convolutional layers at different
scales of the networks to get intermediate predictions and upsample them to
the resolution of the input. A concatenation of these predictions are fed into
an additional 1×3×3 convolutional layer to obtain the final score map. These
layers are illustrated by red blocks in Fig. 2. The outputs of these layers have Cl

channels where Cl is the number of classes for segmentation in each network.

3 Experiments and Preliminary Results

Data and Implementation Details. We used the BRATS 20171 [15, 2, 4, 3]
training and validation set for experiments. The training set contains images
from 285 patients (210 HGG and 75 LGG). The BRATS 2017 validation set
contains images from 46 patients with brain tumores of unknown grade. Each
patient was scanned with four modalities: T1, T1c, T2 and FLAIR. We up-
loaded the segmentation results to the BRATS 2017 server which evaluated the
segmentation and provided quantitative measurements in terms of Dice score,

1 http://www.med.upenn.edu/sbia/brats2017.html
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sensitivity, specificity and Hausdorff distance of enhanced tumor core, whole
tumor, and tumor core respectively.

Our networks were implemented in Tensorflow2 using NiftyNet3. We used
Adaptive Moment Estimation (Adam) [13] for training, with initial learning
rate 10−3, weight decay 10−7, batch size 5. Training was implemented on a an
NVIDIA TITAN X GPU. We set Co to 48 and Cl to 2 for MNet, TNet and
ENet.

Table 1. Dice and Hausdorff measurements of our method (UCL-TIG) compared with
top performance achieved by other teams. The results were provided by the BRATS
2017 validation leaderboard up to 18:00 July 23, 2017 (US eastern time). EN, WT, TC
denote enhanced tumor core, whole tumor and tumor core respectively.

Dice Hausdorff

ET WT TC ET WT TC

UCL-TIG* 0.7640 0.8970 0.8254 3.7133 3.9701 7.5424
MIC-DKFZ 0.7320 0.8964 0.7971 4.5470 6.9741 9.4767
CIAN 0.7112 0.8932 0.7349 4.1870 4.6126 8.1886
pvg 0.7129 0.8989 0.7514 6.9825 4.1616 8.6493
biomedia1 0.7570 0.9016 0.8202 4.2225 4.5576 6.1055

Table 2. Sensitivity and specificity measurements of our method (UCL-TIG) com-
pared with top performance achieved by other teams. The results were provided by the
BRATS 2017 validation leaderboard up to 18:00 July 23, 2017 (US eastern time). EN,
WT, TC denote enhanced tumor core, whole tumor and tumor core respectively.

Sensitivity Specificity

ET WT TC ET WT TC

UCL-TIG* 0.7748 0.9118 0.8412 0.9985 0.9942 0.9973
MIC-DKFZ 0.7900 0.8965 0.7807 0.9984 0.9956 0.9988
CIAN 0.7355 0.8925 0.6843 0.9983 0.9948 0.9988
pvg 0.7316 0.9037 0.7199 0.9982 0.9948 0.9982
biomedia1 0.7895 0.9088 0.7829 0.9982 0.9946 0.9986

Segmentation Results. Quantitative evaluation are shown on the BRATS
2017 leaderboard4,5. Table 1 presents Dice and Hausdorff measurements accord-
ing to the leaderboard. It shows that our method achieves competitive results
in terms of dice scores averaged over patients. Table 1 also shows our method

2 https://www.tensorflow.org/
3 http://niftynet.io/
4 https://www.cbica.upenn.edu/BraTS17/lboardValidation.html
5 Results retrieved on 18:00 23/July/2017 (US eastern time).
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achieves low Hausdorff distances for different tumor subregions. Table 2 presents
sensitivity and specificity measurements according to the leaderboard.

4 Conclusion

We developed a cascaded system to segment glioma subregions from multi-
modality brain MR images. Results on BRATS 2017 online validation set pre-
dicted average Dice scores of 0.764, 0.897, 0.825 for enhanced tumor core, whole
tumor and tumor core respectively.
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Abstract. In this paper, we propose a sparse representation-based radiomics 

framework to predict overall survival (OS) time of HGG. Firstly, we develop a 

patch-based sparse representation method to extract the high-throughput texture 

features in tumor region. Then, we propose to combine locality preserving pro-

jection and sparse representation to select discriminating features more effec-

tively. Finally, we treat the OS time prediction as a multi-classification task and 

apply sparse representation to classification. Experimental results demonstrate 

that, with 10-fold cross-validation, the proposed method achieves the prediction 

accuracy of 90.97% and 93.55% by using T1 contrast-enhanced and T2 

weighted magnetic resonance (MR) images, respectively.  

Keywords: HGG, OS Time Prediction, MR imaging, Sparse Representation. 

1 Introduction 

Recently, radiomics has been successfully used in clinical diagnosis and prognosis. 

By converting medical images into mineable high-throughput features, radiomics 

provides a more comprehensive quantification of the entire tumor, and subsequently 

makes effective decision on these data. Yu et al. [1] exploit the extracted 671 radi-

omics features to noninvasively estimate isocitrate dehydrogenase 1 (IDH1) mutation 

for low grade gliomas. Multi-modality radiomics features were combined in [2] to 

predict the OS time for HGG. Among these applications of radiomics, extracting and 

selecting effective features for specific problem is very crucial, since good features 

lead directly to accurate classification.  

Sparse representation (SR) has demonstrated great advantages in image restoration, 

feature selection and pattern recognition. In image processing, SR generally exploits 

adaptive learning dictionaries rather than the traditional analytically-designed diction-

aries with fixed basis, such as wavelet, to represent images. Therefore it gave rise to 

the ability to extract or represent some small textures and details which usually play a 

decisive role in image classification. In addition, SR considers that natural signals can 

be represented linearly by a small number of atoms in dictionary. These atoms repre-

sent the essential features of target data and can be selected by the pl -norm regulariz-
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er of sparse model. Based on this principle, SR was successfully used for feature se-

lection [3], canonical correlation analysis [4]. 

In this paper, we propose a SR-based radiomics framework to predict the OS time 

for HGG. Specifically, first, we develop a SR-based method to convert the statistical 

distribution of tumor texture into high-throughput texture features. Second, we pro-

pose a novel model combining locality preserving projection (LPP) and SR to select 

the most discriminative features. Particularly, a new structure preservation regularizer 

is introduced in feature selection model for considering the structures of within-class 

samples and between-class samples. Finally, we use sparse representation classifica-

tion (SRC) to predict the OS time. 

2 The Proposed Method 

2.1 Sparse Representation-based Feature Extraction 

Fig. 1 shows the flow chart of SR-based image texture feature extraction. First, we 

extract image patch sets n d

L

Y R , n d

M

Y R  and n d

S

Y R  from the segmented 

tumor images corresponding to long-survivors, mid-survivors and short-survivors, 

respectively. Where n  and N  denote the size and number of image patches, respec-

tively. Then we learn three dictionaries n k

L

D R , n k

M

D R  and n k

S

D R  from 
n d

L

Y R , n d

M

Y R  and n d
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Y R , respectively, by using the K-singular value 

decomposition algorithm [5].  
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Fig. 1. Sparse representation-based feature extraction. 

Finally, we extract the texture features by the following SR-based model: 
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where 3[ , , ] n k

L M S

D D D D= R , iy  denotes the i -th image patch in the tumor re-

gion of test image, m  denotes the total number of image patches. 1 2
ˆ , m       , 

3k

i R  is the SR coefficients corresponding to iy . 3kf R  is the final obtained 

texture feature.   is a regularization parameter. Orthogonal matching pursuit (OMP) 

algorithm could be used to solve the SR model in Eq. (1). 

2.2 Sparse Representation-based Feature Selection 

In this section, we propose a SR-based feature selection method to select the discrim-

inative features. The proposed feature selection model is formulated as: 

 
2

1 2 2,1

1 ˆmin [ ( ) (1 ) ( )] ,
2

T T w T T b T

F
tr tr      

w
Y w F w FL F w w FL F w w+  (2) 

where ˆ c NY R  denotes a coding matrix of class labels, 1[ ] d N

i N

F = f f f R  

denotes high-dimensional feature data. d , N  and c  denote, respectively, the number 

of feature variables, subjects and classes. 
d cw R  is a SR coefficient matrix. 

w N NL R  and b N NL R denote the within-class and between-class graph laplacian 

matrix, respectively. [ ( ) (1 ) ( )]T w T T b Ttr tr  w FL F w w FL F w  denotes a structure 

preservation term, which is designed to enable the within-class samples to be closer 

and the between-class samples to be far away in the new feature space. 0 1   is a 

tuning parameter. Sparse regularization term 
2,1

w  is designed to remove redundant 

features. 1  and 2  are the tuning parameters. Objective function (2) can be solved 

by the accelerated proximal gradient method [6].  

Once we obtain the sparse matrix w , we rank the 2l -norm value of each row of 

w  in the descending order, then select features corresponding to the top-ranked rows. 

SRC proposed in [7] has achieved much success in pattern classification. Hence, in 

this paper, we apply SRC to predict the OS time. 

3 Results and Discussion 

We use the dataset provided by the MICCAI ‘BraTS 2017’ to validate the proposed 

method. This dataset was collected and organized by Bakas et al [8][9][10]. The seg-

mentation benchmark proposed by [11] was used to segment the tumor images in the 

dataset. According to ‘BraTS 2017’, we cast the OS time prediction problem as a 

multi-classification task and divide the data into three categories based on survival, 

i.e. long-survivors (e.g., >15 months), mid-survivors (e.g. between 10 and 15 months) 

and short-survivors (e.g., <10 months). Our experimental dataset consists of 50 long-

survivors, 42 mid-survivors and 63 short-survivors. For each case, we first extract 

1452  texture features from T1 contrast-enhanced and T2-weighted MR images, re-

spectively. Then we use the SR-based feature selection method to remove the redun-
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dant features. Finally, the selected features are fed into SRC to predict OS time. We 

use leave-one-out cross validation (LOOCV) and 10-fold cross validation (Tenth) to 

validate the proposed model, respectively. The classification accuracy of the overall 

subjects and each class of subjects are calculated, respectively, to evaluate the predic-

tion performance. The prediction results of the proposed framework is reported in 

Table 1. 

As could be seen, the texture feature of T2 weighted MR image achieves the prom-

ising prediction result, with the highest accuracy of 96.13% in terms of LOOCV. For 

the two modalities, the gaps between the results of two validation methods is less than 

4.5%. This demonstrates that the proposed method has high robustness in terms of the 

proportion of training samples to testing samples. In addition, the prediction perfor-

mance of T2-weighted MR image is superior to that of T1 contrast-enhanced MR 

image as a whole. 

Table 1. Prediction accuracy of different features and validation methods (%). 

Method ACC ACC-long ACC-middle ACC-short 

T1-Loocv 94.84 92.00 92.86 98.41 

T1-Tenth 90.97 90.00 83.33 96.83 

T2-Loocv 96.13 100.0 90.48 96.83 

T2-Tenth 93.55 92.00 90.48 96.83 

4 Conclusions 

In this paper, we proposed a novel sparse representation framework to predict the 

(long, middle or short) OS time for HGG patients. Experimental results shown that 

our extracted features significantly improved the predictive accuracy of OS time. This 

further demonstrates that there is a close relationship between image texture and the 

OS time, even though these relationship is still poorly understood in clinical, the pro-

posed method will help to understand it. 
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Abstract. In this study, we developed automatic segmentation of brain tumor using SegNet, 
a method based on a two-dimensional convolutional neural network and used the HGG data sets 
(n = 210) of BraTS 2017 for network training. We compared training schemes including or ex-
cluding slices without labeled tumor regions. The input images were FLAIR images. From the 
results, the dice similarity coefficients (dice=0.74, 2-fold cross-validation) obtained with training 
data sets excluding slices without labeled tumor region was significantly higher than those 
obtained with all slices (P<0.05, paired T- test). In the preliminary results, we were able to per-
form fully automatic segmentation of whole tumor region using SegNet. We aim to improve the 
performance of segmentation using more MR image contrasts (i.e., T1, T2, and T1Gd) 

Keywords: Gliomas, Deep learning, SegNet, Image segmentation 

1 Introduction 

Brain gliomas are tumors associated with glial cells. They are the primary brain tumor 
among adults. Investigations improving diagnosis of gliomas are thus highly desirable. 
BraTS 2017 hosts the competition [1-4] for segmentations of brain gliomas with MR 
images. In this study, we attempt to use the recently advanced convolutional neural 
network architecture, SegNet [5] for this task. SegNet is a semantic segmentation ar-
chitecture consisting of an encoder-decoder network followed by a pixel-wise classifi-
cation layer. We compared different training schemes for SegNet. 
 

2 Method 

The training data sets provided by BraTS 2017 included multimodal MRI scans 
(HGG:210, LGG: 75). Four types of MR images (T1, T1 contrast enhanced, T2 and 
FLAIR) and images segmented manually by one to four raters (3 labels, 1: the necrotic 
and non-enhancing tumor, 2: the peritumoral edema, 4: GD-enhancing tumor) were 
provided. The images were all combined into a 3D volume (matrix size: 240x240x155) 
with the NIfTI file format. In this study, we used FLAIR images of 210 HGG data sets 
to evaluate the segmentation algorithm. The 3D volume of a subject was converted into 
155 axial slices with a matrix size of 240x240. The data set was termed the group B. 
We further constructed a data set (the group A) excluding slices without labeled tumor 
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region.  We used SegNet for pixel-wise semantic segmentation.  The architecture of 
our SegNet implementation is shown in Fig. 1. The network consisted of encoder and 
decoder layers with 26 convolutional layers and an output layer connected a multi-class 
soft-max classifier. It was implemented with the Tensorflow framework. Two-fold 
cross-validation was used to evaluate the performance of the segmentation. The soft-
ware procedure slice-by-slice segmented a whole brain FLAIR volumes and then 
merged the 2D slices into a 3D volume with the NIfTI file format.  We subsequently 
evaluated the dice similarity coefficients between the true labels and the obtained 
whole-tumor segmentations.  With groups A and B, we evaluated three schemes to train 
the SegNet. Two of the schemes were to train SegNet with A and B, respectively. The 
third scheme (A+B) is to use the SegNet trained with A as pretrain weights and then 
train the SegNet with B.    

 

 
Fig. 1. SegNet architecture. 

3 Results 

Figure 2 displays an example of segmentation results. Figure 2(a) shows the true seg-
mentation provided by BraTS 2017 and Figures 2(b-d) displays the segmentation results ob-
tained with SegNet trained with different training schemes (i.e., A, A+B, B). The numbers un-
derneath the figures are the dice similarity coefficients of the segmentation results. The red region 
indicated the segmented area of the whole tumor. In this demonstration, the scheme A produced 
a higher dice coefficient, which is consistent with visual observation.    Table 1 lists the average 
dice coefficients of the segmentation results of 210 HGG subjects. The results suggest that dice 
coefficients produced by training schemes A and A+B are significantly higher than those 
generated by the scheme B (P<0.05, paired T-test). No prominent differences between the 
schemes A and A+B were identified.  
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Fig. 2. The segmentation results of a subject: (a) reference (b)with the scheme A, 

(c) with the scheme A+B (d) with the scheme B 
 

Table. 1. Dice coefficients of three schemes 
 

 

4 Discussions and Conclusions 

 
In this study, we used SegNet for glioma segmentations with three training schemes. 
The dice metrics obtained using the schemes A and A+B were significantly higher than 
that obtained using the scheme B. No significant differences between the results 
obtained by A and A+B were identified. The results support using the scheme A as the 
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training method since training with A+B requires longer training period.  During the 
BraTS 2017 competition, we continue to investigate methods to improve the segmentation re-
sults. For the results shown in this abstract, we only use the FLAIR images of the HGG data 
sets. The best segmentation results achieved the average dice coefficient of 0.74 for the 
whole HGG data set. We attempt to include more image contrasts (T1, T1ce, and T2) 
into SegNet to evaluate whether multi-modal images could improve the segmentation 
results.  
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Abstract. This work mainly tries to improve the two-pathway model for
segmenting the brain tumor from MRI data. We extend the model to di-
rectly process 3D data and predict tumor voxel. There are also some other
optimizations like pre-classification of voxels, multiple resolution based
convolution network to help improve the segmentation performance.

Keywords: Brain tumor segmentation, 3D deep neural network, Convo-
lutional neural network, Multi-resolution deep network, Random Forest
Classification

1 Introduction

There have been a lot of algorithms and model to do tumor segmentation in
Magnetic Resonance Image (MRI) data. Details please refer to the survey [4]
and we do not repeat here. Among these work, the two-pathway model [1] is a
simple yet efficient model which have been examined for its good performance
in previous BraTs Challenging with the real data. In our work, we did some
optimizations to extend the original two-pathway models. Currently the work
are still undergoing and the performance is still on tuning, so the report here is
a little bit simple and corresponding method/model may even change in future.

2 Method

Our method of this brain tumor segmentation work is originated from the two-
pathway model [1]. We believe that the learning directly on 3D would better
utilize the spatial hints within the 3D MRI data thus improve the model perfor-
mance.

[3] is a good work to directly model and learning 3D MRI data for brain tumor
segmentation. I addition, it utilize the relationship between multi-scale image
data to help improve the segmentation result. We first adopt its 3D modeling
in modeling and experiments, and then we tried to scale the original data into
different resolutions to understand how it can benefit the segmentation.

? This work is done when he was in internship in Cisco Systems (China) Research and
Development Co.Ltd.
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[2] did some interesting work to pre-classify the 2D images to help segmenta-
tion. Here we also do pre-classification on 3D data so that the model can early
know the drafted category of 3D voxels.

3 Experiment Result

The experiments are done on BraTs Challenging 2017 training and validation
data [5][6][7][8]. Currently the model is still under tuning and the performance
looks not so good. Anyway, we would redesign some part of the model to over-
come the slow convergence problem and the slow learning issues in the model.
Besides, we hope the model tuning work later can help improve the accuracy.

Fig. 1. Preliminary result of the model

4 Conclusion

Our method is more like a 3D version of two-pathway model. It is still not so
good as we expected, as the network is still not so deep and we are afraid the
segmentation capability may not be enough. Later we would first overcome the
slow convergence problem and the tune the segmentation performance. After
that, we would like to investigate the deeper network and if possible to utilize
the advantage of ResNet structure to help the segmentation work.
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Automatic Brain Tumor Segmentation with 3D
Deconvolution Network with Dilated Inception

Block
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Abstract. Segmenting brain tumors from multi-modal imaging remains
to be a challenging task despite the growing interest in the area. Brain
tumors have a highly variable shape, appearance and spatial location. In
this paper, we simplify 3D inception network [5] with dilated convolution
[6] to capture multi-scale information. And we build a deconvolution
network with dilated inception blocks to segment 3D images.

1 Method

1.1 Pre-processing

For each channel of each MRI case, we compute the standardized z-scores (zero
mean and unit covariance) to put the data in the same scale.

1.2 Dilated Inception Residual Block

The original inception network make convolutions with kernel size 1, 3, 5, 7 in
parallel way. Some following works replace a convolution with kernel size 5 with
two convolutions with kernel size 3. To make the network simpler, we replace a
convolution with kernel size 2 ∗ n + 1, n = 1, 2, 3 with a convolution with the
kernel size 3 and the dilation n.

In this way, we can get the following two kinds of blocks (Fig. 1, Fig. 2).

1.3 Deconvolution Network

As the inception network should be able to get multi-scale information, we do
not use up-sampling to merge features from different scales.

We use a deconvolution network to make the segmentation. (Fig. 3) We use
two reduction blocks and one deconvolution layer to make the input and output
be in the same scale.
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Fig. 1. Dilated inception resent block.

2 Experiments

We have evaluated our method on BRATS 2017 [4, 3, 1, 2] Validation data with
DICE score.

The average DICE Score is 0.8709, 0.7824, 0.5777 for whole tumor, tumor
core and enhancing tumor, receptively.
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Fig. 2. Dilated reduction block.
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Fig. 3. Deconvolution network.
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Abstract. The Magnetic Resonance Images (MRI) which can be used
to segment brain tumors are of 3D. To make use of 3D information, 3 2D
Fully Convolutional Neural Networks (FCNNs), each of which is trained
to segment brain tumor images from axial, coronal, and sagittal views
respectively, are integrated in this paper. The 3 FCNN models are in-
tegrated by fusing their segmentation results rather than by fusing into
one deep network, which makes sure that each FCNN model is still al-
lowed to be tested by 2D slices, guaranteeing the testing efficiency. A
majority voting strategy is applied to do the fusing job. The proposed
method can be easily extended to integrate more FCNN models which
are trained to segment brain tumor images from more views, without
retraining the FCNN models that we already have. In addition, Condi-
tional Random Fields (CRFs) are applied to make sure the appearance
and spatial consistency of our segmentation results. Experimental results
show that, integrating the segmentation results of multiple 2D FCNNs
obviously improve the segmentation accuracy.

Keywords: Brain Tumor Segmentation, Fully Convolutional Neural Networks,
Conditional Random Fields, Multi-views

1 Introduction

Brain tumor segmentation results provide the volume, shape, and localization of
brain tumors, which are crucial for brain tumor diagnosis and monitoring. Brain
tumor segmentation technologies develop fast in recent years, especially those
methods based on deep learning.
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Besides in brain tumor segmentation area, deep learning has been successfully
used in many other medical image segmentation areas. According to statistics,
segmentation is the most common subject among the literatures that apply
deep learning to medical images, and Convolutional Neural Networks (CNNs)
are the most successful type of deep learning models for image analysis [1].
CNNs based methods have won many medical image segmentation challenges,
such as Multimodal Brain Tumor Segmentation Challenge (BRATS) [2] and
International Symposium on Biomedical Imaging (ISBI) cell tracking challenge
[3].

Many kinds of medical images, such as the Magnetic Resonance Images (M-
RI) which can be used to segment brain tumors, are of 3D. To take full use of
3D information for medical image analysis, it is better to use 3D CNNs. Howev-
er, 3D CNNs have large memory and training time requirements [4]. Therefore,
many researchers have tried to integrate multiple 2D CNNs for segmenting 3D
medical images, such as [4] and [5]. These methods integrated their multiple
2D CNNs into one deep network, and the 2D patches in multi-views centered
at the same voxel should be sent into their deep networks at the same time.
Under this situation, 3D images could only be segmented patch by patch, which
is a very slow testing strategy, even if we change their CNNs into FCNNs. To
improve the testing efficiency, we integrate multiple 2D FCNNs by integrating
their segmentation results. Each FCNN model is trained by patches but tested
by 2D slices, which improves the testing speed greatly. In this paper, we train 3
2D FCNN models using 2D patches of axial, coronal, and sagittal views respec-
tively. During testing, we use these 3 networks to segment brain tumors slice
by slice in 3 different views, yielding 3 segmentation results. Then we fuse these
3 segmentation results by voting. Experimental results show that this strategy
is useful to improve segmentation accuracy. We also use CRF to make sure the
appearance and spatial consistency of our segmentation results.

2 Method

The proposed segmentation method consists of 5 main steps: pre-processing,
segmenting brain images slice by slice using 3 2D FCNN models, processing seg-
mentation results using CRF, fusing segmentation results obtained in 3 different
views, and post-processing. The fusing operation is performed before or after
CRF, as shown in Fig. 1-(a) and Fig.1-(b) respectively.

2.1 Pre-processing

To make similar intensities in MRI scans of the same modality have similar tissue
meanings, pre-processing steps are utilized. Our pre-processing steps include
N4ITK [6] and intensity normalization [7].
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(a)

(b)

Fig. 1. Flowchart of our brain tumor segmentation method: (a) fusing the segmentation
results obtained from different views before CRF; (b) fusing the segmentation results
obtained from different views after CRF

2.2 Segmenting brain images by FCNNs

We use the same FCNN structure proposed in [7] as shown in Fig. 2, which has
two different sizes of inputs. The large inputs pass through a series of convolu-
tional and pooling layers and turn into feature maps with the same size of small
inputs. These feature maps together with small inputs are used to predict their
center pixel’s label. Different from [7], we train 3 FCNN models in this paper,
using 2D patches extracted from axial, coronal, and sagittal slices respectively.
During testing, we use these 3 segmentation models to segment brain images
slice by slice from 3 different views and obtain 3 segmentation results.

Fig. 2. The structure of our FCNN model
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2.3 Processing segmentation results by 3D CRF

To make sure the appearance and spatial consistency of segmentation results,
we use CRF to optimize our segmentation results. We have tried Conditional
Random Fields as Recurrent Neural Networks (CRF-RNN) [8] and 3D CRF
[9]. Experimental results showed that 3D CRF performed slightly better than
CRF-RNN.

2.4 Fusing segmentation results obtained in 3 different views

As described in Section 2.2, 3 FCNN models are trained to segment brain images
from 3 different views. During testing, their segmentation results are fused to
make better use of the 3D information provided by the 3D MRI scans. In our
experiments, the 3 segmentation results obtained in 3 different views are fused
by majority voting.

We fuse the segmentation results as a post-processing step rather than fuse
the 3 FCNN networks in one deep network, aiming to make sure that each FCNN
model still has the ability to segment brain images slice by slice for efficiency. In
this way, our method improves the efficiency of integrating multiple 2D CNNs
while achieves better accuracy than using a single 2D CNN network.

2.5 Post-processing

We remove small isolated areas and correct some voxels label to post-process
our segmentation results automatically by a simple thresholding method.

3 Experiment

3.1 Dataset

BRATS 2017 [10,11,12] separates its imaging data as 3 datasets, namely training
dataset, validation dataset, and testing dataset. Each case in these 3 datasets
contains multi-modal MRI scans, including T1, T1Gd, T2, and FLAIR. Similar
to the previous BRATS challenges [13], all MRI scans of the same case have been
skull-stripped, co-registered to the same anatomical template, and interpolated
to the same resolution. Ground truth of each case in BRATS 2017 is produced by
manual annotation. Up to now, the BRATS 2017 testing dataset is not available
for participants. Therefore, we only use its training and validation dataset in our
experiments.

BRATS 2017 training dataset contains 210 HGG (High Grade Glioma) cases
and 75 LGG (Low Grade Glioma) cases. In this paper, we separate the 210 HGG
into 2 subsets as 168 HGG and 42 HGG respectively. The subset of 168 HGG
is used as the training dataset and the subset of 42 HGG is used as a testing
subset. The ground truth of each training case is provided along with its MRI
scans and we evaluate the segmentation results of the 42 HGG cases on our own
personal computer.
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BRATS 2017 validation dataset contains 46 cases with unknown grades. S-
ince the ground truth of each validation case is not released to participants, its
segmentation result can only be evaluated on its evaluation website1.

3.2 Evaluation results

Our segmentation models are trained by the 168 HGG cases. The evaluation
scores of our models on the other 42 HGG cases are shown in Tab. 1, where
the method called Fusing(FCNNs)+3D CRF fuses the segmentation results be-
fore 3D CRF, as shown in Fig. 1-(a), and the method called Fusing(FCNNs+3D
CRF) fuses the segmentation results after 3D CRF, as shown in Fig. 1-(b). The
scores in Tab. 1 indicate that fusing the segmentation results obtained from dif-
ferent views obviously improve the segmentation accuracy. Tab. 1 also indicates
that Fusing(FCNNs)+3D CRF+post-process has a better performance on PPV,
while Fusing(FCNNs+3D CRF)+post-process has a better performance on Sen-
sitivity. From the view of Dice, Fusing(FCNNs)+3D CRF+post-process performs
slightly better on enhancing core, while Fusing(FCNNs+3D CRF)+post-process
performs better on complete tumor.

Table 1. The average evaluation scores of 42 HGG cases

Methods
Dice PPV Sensitivity

Comp. Core Enh. Comp. Core Enh. Comp. Core Enh.

FCNNs(axial) 0.623 0.701 0.633 0.480 0.602 0.530 0.971 0.916 0.877
FCNNs(coronal) 0.666 0.738 0.675 0.578 0.664 0.594 0.963 0.896 0.865
FCNNs(sagittal) 0.662 0.703 0.653 0.526 0.607 0.574 0.957 0.912 0.846

Fusing(FCNNs) 0.696 0.800 0.730 0.562 0.753 0.663 0.974 0.901 0.877

Fusing(FCNNs)+3D CRF 0.859 0.867 0.824 0.931 0.915 0.804 0.816 0.850 0.880

Fusing(FCNNs)+3D CRF
+post-process

0.864 0.868 0.831 0.941 0.909 0.825 0.818 0.854 0.873

FCNNs(axial)+3D CRF 0.857 0.843 0.787 0.873 0.840 0.731 0.857 0.875 0.895
FCNNs(coronal)+3D CRF 0.862 0.843 0.800 0.898 0.869 0.765 0.845 0.850 0.880
FCNNs(sagittal)+3D CRF 0.845 0.848 0.797 0.887 0.853 0.762 0.827 0.869 0.874

Fusing(FCNNs+3D CRF) 0.865 0.864 0.816 0.906 0.894 0.784 0.845 0.861 0.887

Fusing(FCNNs+3D CRF)
+post-process

0.873 0.868 0.828 0.920 0.895 0.813 0.846 0.865 0.879

U-net(axial) 0.807 0.749 0.752 0.787 0.829 0.799 0.856 0.743 0.763
U-net(axial)+3D CRF 0.811 0.750 0.754 0.798 0.834 0.804 0.850 0.740 0.763

On the same 168 HGG cases, we train a U-net [3] to segment brain tumors
and compare its performance with our method on the same 42 HGG cases. U-
net won ISBI cell tracking challenge in 2015 and it is one of the most popular

1 https://ipp.cbica.upenn.edu/
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deep networks used to segment medical images in recently years. The evaluation
scores in Tab. 1 show that the segmentation performance of U-net is much better
than the performance of FCNNs. However, FCNNs+3D CRF works much better
than U-net+3D CRF.

Table 2. The average Dice scores of BRATS 2017 validation dataset (46 cases)

Methods
Dice

Comp. Core Enh.

Fusing(FCNNs)+3D CRF
+post-process

0.881 0.788 0.754

Fusing(FCNNs+3D CRF)
+post-process

0.888 0.792 0.749

Apart from the 42 HGG cases, we also test our segmentation models on
BRATS 2017 validation dataset. The Dice scores are shown in Tab. 2, which in-
dicates that Fusing(FCNNs)+3D CRF+post-process performs slightly better on
enhancing core, while Fusing(FCNNs+3D CRF)+post-process performs better
on complete tumor and tumor core.

4 Conclusion

In this paper, we segment 3D brain images by integrating the segmentation
results of multiple 2D FCNNs, which are trained to segment brain images from
axial, coronal, and sagittal views respectively. Each of the 2D FCNN networks
is tested slice by slice, guaranteeing the segmentation efficiency of our method.
We also use CRF to optimize our segmentation results. Experimental results
show that our fusing strategy improves segmentation accuracy. Moreover, the
proposed method is not limited to fuse the 3 segmentation results obtained from
3 different views. It could be extended to fuse the more from more views.

Acknowledgements: This work was supported by the National High Technol-
ogy Research and Development Program of China (2015AA020504) and the Na-
tional Natural Science Foundation of China under Grant No. 61572499, 61421004.
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Abstract. In this paper, we propose a two-stage method based on U-Net and 

FusionNet for automatic brain tumor segmentation. In the first stage, we adopt a 

U-net architecture with a reweighted loss function to the 2D slices, in order to 

get a coarse segmentation mask with high sensitivity. Then, we dilate the seg-

mentation mask generated from the first stage and divide mask into small cubic 

volumes. In the second stage, a 3D FusionNet is used to precisely segment these 

small cubic volumes and the predictions of cubic volumes are concatenated to 

get the final segmentation result. The proposed method has the following ad-

vantages: 1) it not only captures global information from whole slices but also 

grasps local details from small cubic volumes; 2) 2D and 3D information are 

both taken into consideration; 3) the network architectures in two stages are 

similar and both make dense pixel-wise predictions, leading to fast testing and 

training. Preliminary results on BRATS 2017 validation dataset demonstrate 

that proposed method can achieve good performance with DICE scores of 0.89, 

0.80 and 0.75 for complete tumor, core tumor and enhancing tumor, respective-

ly. 

Keywords: Brain Tumor Segmentation, Cascaded Convolutional Neural Net-

works, Two Stage Method, U-Net, FusionNet, Multimodal MRI. 

1 Introduction 

   With its outstanding performance in computer vision and pattern recognition, Con-

volutional Neural Networks (CNNs) have attracted enormous attention in medical 

image analysis fields. However, medical image data have two major characteristics 

different from natural image:1) medical data is usually three-dimensional (3D); 2) 

there exists a strong imbalance between the number of normal tissue and non-normal 

tissue. In order to deal with 3D data, most of CNN-based methods can be divided into 

2D-CNNs and 3D-CNNs according to the dimensions of input. Although 3D-CNNs 

can make full use of the 3D information from MRI, 3D-CNNs usually use a relatively 

shallow network in order to alleviate increased computational cost and memory con-

sumption, which leads to limited representation capability. However, 2D-CNNs can 
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utilize deeper network architecture to learn complicated representation to achieve 

good performance. Therefore, each method has its own advantages and disadvantages. 

On the other hand, these CNN-based methods can be roughly divided into single-

prediction models and dense-prediction models. The former usually uses small patch-

es to predict the label of its center pixel, while the later aims to dense label prediction, 

i.e., get the label of every voxel of the whole slices or large patches simultaneously. 

Clearly, the former only considers the local information and doesn’t take spatial con-

sistency into consideration; the later learns global information from whole slices or 

large patches, so it is much faster during testing and training.  

Due to data imbalance, the learning process may converge to local minima of a 

sub-optimal loss function, thus predictions may strongly bias towards non-tumor tis-

sue. To cope with this problem, single-prediction models may control sampling ratios 

of normal tissue and tumor, or use two phase training [1], where in the first phase, all 

labels of samples are equiprobable and in the second phase, labels of samples con-

form to the un-balanced nature of the data. On the other hand, other methods reweight 

loss function to alleviate this problem. 

In this paper, we propose a two-stage segmentation method based on U-Net and 

FusionNet for automatic brain tumor segmentation. In the first stage, we employ 2D 

U-Net to the 2D slices to detect the locations of tumors roughly. Meanwhile we re-

weight the loss function to deal with data imbalance. Then we dilate coarse segmenta-

tion mask from the first stage and divide it into small cubic volumes. In the second 

stage, 3D FusionNet is used to precisely segment these cubic volumes and then we 

concatenate predictions of cubic volumes to get the ultimate and precise segmenta-

tion. The proposed method has the following advantages: 1) In the first stage, we use 

slices as input of 2D U-Net, so we can learn the global contextual information of 

whole slices to get coarse segmentation; in the second stage, we focus on small local 

cubic volumes to grasp the details to achieve precise predictions. 2) 2D and 3D in-

formation are both taken into consideration. 3) In both stages, the networks make 

dense pixel-wise predictions. Thus, it is fast during testing and training.  

2 Data 

We use the training set of BRATS 2017 challenge [2,3,7,8], which contains 210 

high-grade glioma (HGG) and 75 low-grade glioma (LGG) patient scans. Each patient 

has four MRI sequences which are named T1, T1c, T2 and FLAIR. These are 

resampled to 1×1×1 mm
3
 and dimensions of each MRI sequence is 240×240×155. 

The provided manual segmentations include four labels: 1 for necrotic (NCR) and the 

non-enhancing (NET) tumor, 2 for edema (ED), 4 for enhancing tumor (ET), and 0 

for everything else, i.e. normal tissue and background (black padding). The official 

evaluation is calculated by merging the predicted labels into three sets: whole tumor 

(1,2,4), tumor core (1,4) and enhancing tumor (4).  
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3 Method 

3.1 Pre-processing 

To distinguish background from normal tissue, we relabel the background to label 

3. Each sequence is individually normalized by subtracting the mean value and divid-

ing by the standard deviation of all voxels in the sequence. 

 

3.2 Two Stage Method 

The First Stage.  We apply a 2D U-Net to 2D slices to capture global information and 

get a coarse segmentation mask. The architecture is based on U-Net, consisting of one 

down-sampling path and one up-sampling path. Different from the original U-Net [4], 

we use zero padding for all the convolutional layers to keep the output dimension of 

both down-sampling and up-sampling path. And we employ batch normalization [5] 

(“BN”) before each ReLU. The architecture is shown in Fig.1. 

 

 

Fig. 1. The 2D U-Net architecture used in this work 

Following [6], we adopt median frequency balancing method to handle the prob-

lem of label imbalance, where the weight assigned to a class in the loss function is the 

ratio of the median of class frequencies computed on the entire training set divided by 

the class frequency. The loss function that we used is categorical cross-entropy after 

softmax. 

  We use slicing images as inputs to train this network. The purpose of this stage is 

to obtain a segmentation mask which indicates if each voxel belongs to the tumor or 
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not. Then we dilate the segmentation mask by 10 voxels to reduce undetected tumor 

as much as possible.  

 

The Second Stage.  In this stage, we focus on local details and use a 3D FusionNet to 

predict the small cubic volumes to obtain precise and fine segmentation result. The 

3D FusionNet is illustrated in Fig.2. Like the standard FusionNet [9], 3D FusionNet 

consists of an encoding path and a symmetric decoding path and four types of basic 

building blocks are used to construct the network. We use image patches of 32×32×16 

voxels as input. Different from the standard FusionNet, all the convolutional layers 

are replaced with three-dimensional convolution kernels. In order to reduce the 

memory consumption, we decrease the depth of network and number of feature maps, 

therefore, there are four resolution steps, which means three max pooling layers are 

used and the number of feature maps are halved. 

 

 

   Fig. 2. The 3D FusionNet architecture used in this work 
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     We sample 3D patches that are near to the tumor randomly as the training set for 

the 3D FusionNet. The dilated segmentation mask from the first stage is divided into 

small cubic volumes and the voxel labels are densely predicted by the 3D FusionNet. 

Then we concatenate the predictions of cubic volumes to get the final segmentation 

result. 

 

3.3 Post-processing 

We use a morphological filter to remove isolated small clusters. Some small clus-

ters may be erroneously classified as tumor, thus we remove clusters in the segmenta-

tion obtained by the second stage if these clusters are smaller than a predefined 

threshold. We don’t remove any clusters if the largest cluster is smaller than the 

threshold. 

4 Results and Discussion 

Preliminary results were obtained presented in Table 1. To evaluate the effect of 

our proposed method, we trained 2D U-Net without loss reweighting and compared it 

with the one-stage method (2D U-Net with loss reweighting) and two-stage method 

(2D U-Net with loss reweighting + 3D FusionNet). 

         Table 1. Performance on validation set. 

 Dice 

 Complete Core Enhanced 

2D U-net 0.87 0.75 0.69 

One-stage 0.86 0.77 0.71 

Two-stage 0.89 0.80 0.75 

 

           Sensitivity 

 Complete Core Enhanced 

2D U-net 0.85 0.70 0.75 

One-stage 0.92 0.77 0.82 

Two-stage 0.91 0.80 0.77 

 

  Specificity 

 Complete Core Enhanced 

2D U-net 0.99 0.99 0.99 

One-stage 0.98 0.99 0.99 

Two-stage 0.99 0.99 0.99 
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5 Conclusions 

In this work, we propose a two-stage method based on U-Net and FusionNet for au-

tomatic brain tumor segmentation. The proposed method not only takes both 2D and 

3D information into consideration, but also combines global contextual information of 

whole slices with local details extracted from small cubic volume. And both of stages 

make dense pixel-wise predictions, which accelerates predictions. Our empirical re-

sults indicate good performance is achieved. In the future, we would make more con-

tributions to the network architecture and further promote the performance.    
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TP-CNN: A Two-Phase Convolution Neural
Network based model to do automatic brain

tumor segmentation by using BRATS 2017 data
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Abstract. This is the preliminary report for the BraTS 2017 challenge
at MICCAI. The goal of this challenge is to utilize multi-institutional pre-
operative MRI scans to segment out different tumor subregions, whose
information will be then used to make predictions for patient overall
survival. We build a two-phase patch-based convolution neural network
(TP-CNN) to make classification for all the pixels in the brain regions,
and refining the segmentation results by conditional random files (CRF)
and certain post-processing procedures. With the segmentation results,
we are able to extract different kinds of radiomic features and combine
them with the age information to make subject-level prediction for the
survival rate by using XGBoost method.

Keywords: Convolution Neural Network, XGBoost, Conditional Ran-
dom Field, patch-based

1 Introduction and Data Summary

Brain tumor segmentation plays an important role in accurate diagnosis and
efficient treatment of brain cancers, which has also drawn a lot of attention in
the field of imaging analysis and computer vision. Certain kinds of brain tumors
such as gliomas and glioblastomas are difficult to localize because they are often
diffused, poorly contrasted, variously shaped and do not have fixed size or ap-
pearing location. Since manual segmentation may be time wasting and laborious,
scientists take great effort in designing reliable automatic grain tumor segmen-
tation methods and the BraTS 2017[3–6] challenge is one of such platforms such
that all kinds of segmentation methods could be tested and evaluated.

The Brats 2017 challenge data set includes subjects from three different re-
courses, which are labeled with ’2013’, ’CBICA’ and ’TCIA’ respectively. Es-
pecially, 20 subjects from group ’2013’, 88 from group ’CBICA’ and 102 from
’TCIA’ are with high-grade gliomas (HGG), while the other 75 subjects from
group ’2013’ and ’TCIA’ are with low-grade gliomas (LGG). For each patient,
four kinds of MRI scans are provided, including T2-weighted fluid attenuated in-
version recovery (Flair), T1-weighted (T1), post-contrast T1-weighted (T1Gd),
and T2-weighted (T2). All the four kinds of MRI scans are roughly registered
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2 TP-CNN: A Two-Phase Convolution Neural Network based model

to a common template and resampled at 1mm resolution level, where the di-
mension of each MRI image is 240 × 240 × 144. In the training data set, the
annotation of three tumor regions, which are GD-enhancing tumor (ET label
4), the peritumoral edema (ED label 2), and the necrotic and non-enhancing
tumor (NCR/NET label 1), are provided along with the MRI scans.

2 Method and Framework

2.1 Preprocessing

By checking the raw image data, we found that the MRI scans from different
subjects may have varied intensity ranges and are suffering the bias which needs
to be corrected. We use the the robust intensity normalization method proposed
by [7] to do the preprocessing. The details of the procedures are described as the
following steps:

1. Linearly transfer the original intensities of each individual MRI scans (I1(v))
to the range between 0 and 255 (I2(v)).

2. Calculate the intensity histogram with 256 bins. Then find the gray-value of
highest histogram bin x ∈ [0, 255] of I2(v).

3. Calculate the robust deviation which is formulated as σ2 = [
∑

(vi−x)2]−1, vi ∈
I2(v)

4. Update the image value by v∗i = (vi − x)/σ ∗ c1 + c2
5. Update the image value by v∗i = min(max(v∗i , 0), 255)

Figure 1 demonstrated the processing procedure of 2 subjects, which are
randomly selected from group ’2013’ and ’TCIA’ respectively.

Fig. 1. Framework of TP-CNN procedure
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TP-CNN: A Two-Phase Convolution Neural Network based model 3

2.2 Two-phase convolution neural network

After the preprocessing of the raw MRI images, we propose a patch-based two-
phase convolution neural network (TP-CNN) to label all the pixels within the
brain regions as non-tumor (0) or the three tumor classes (1, 2, 4). Specifically,
the second-phase could be seen as a conditional optimization procedure, which
is to refine the segmentation results within the tumor mask built by the first-
phase CNN model. The input for both two CNN models will be the squared
patches extracted from slices along the Z axis of the MRI images, where the
corresponding label for each individual patch will the class that the center pixel
of the patch belongs to. Since the four modalities T1, T2, T1Gd and Flair are co-
registered, for pixels at the same location of T1Gd, T2 and Flair, we will generate
three patches from each of them as the three channels of the input X for the
CNN models, where T1 is dropped since the performance of our method with
and without T1 do have show much difference and the model with fewer image
channels have fewer parameters, which may dramatically reduce computational
time in training and testing.

In the first phase of our CNN models, we extract patches in two different
sizes, where the smaller one is (18 + 3n) × (18 + 3n) and the larger one is
(35 + 6n)× (35 + 6n), where n denotes the kernel size, which determines the size
of the two patches. The reason of this architecture choice is that we want the
class prediction of a pixel to be decided by both the local features within a small
region around the pixel and the larger ’context’: the comparative location of
the pixel inside the brain. We adopt the structure of the CNN model described
in Zhao, et.al, 2017 in the first phase, where the larger input will be merged
with the small input at a certain layer after passing through several convolution
and pooling layers. The layer settings are shown in Figure 2. By experiment, we
choose n = 5 to be optimal kernel size, with which we are able to mask out the
whole tumor regions as the starting point for the second-phase procedure. In
experiment, we pick out 100 subjects from all the five groups, and within each of
the four classes randomly sampled 1000 pixels to build the two kinds of patches,
so the total sample size will be around 2× 100× 4× 1000. There are many more
pixels belonging to the non-tumor class in brain regions, but we sampled equal
number for the four classes to avoid the unbalance bias.

The motivation of adding the second-phase CNN model is that because of
the large patch size we select in the first-phase CNN model, the whole tumor
region could be masked out but a major issue is that many non-tumor regions
will be misclassified as tumors. Specifically, the boundaries between different
classes are difficult to classify, since pixels belonging to different groups along the
boundaries may share similar features when the patch size is large. On the other
hand, because of the memory limit, we are unable to sample enough patches for
each individual subject to cover all the brain regions into the training data, which
may also reduce the prediction power of the model. However, the sensitivities
by the first-phase CNN model is high, meaning that most of the tumor regions
could be masked out even with many misclassified non-tumor parts. Therefore,
the main goal of phase 2 is to refine the segmentation results within the mask
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4 TP-CNN: A Two-Phase Convolution Neural Network based model

built by phase 1. We adopt three convolution neural network with different input
sizes and try to combine the prediction result by each of them. The first model
still uses the same setting as the model in phase 1, but all the sampled points
are within six-pixel distance from the tumor mask built by step 1. The second
model has a single-size patch input, which is 13 by 13, and we combine classes 1
and 4 into a bigger class which helps us to better determine the regions of tumor
core. Then within the tumor core specified by the second model, we use the
third model with the patch size 7 by 7 to refine the segmentation performance of
classes 1 and 4. The latter two models pay more attention to the local features.

To further improve the segmentation results, we extract the probability map,
which are combined with the local features generated by ANTs to train a XG-
Boost model to re-do the pixel-level classification. Specifically, all the sample
points used by XGBoost here will be selected from those pixels which have differ-
ent prediction labels by different CNN models in phase 2. The whole framework
of our method is illustrated in Figure 2. Figure 3 gives an example showing how
the segmentation is improved after each refining step.

Fig. 2. Framework of TP-CNN procedure

2.3 Conditional Random Filed and Post-processing

The segmentation method shown in the previous subsection by using a two-
phase CNN model is pixelwise, which does not consider the neighbor information
around each pixel. Therefore, to obtain a spatially smooth segmentation results,
we adopt conditional random fields (CRF) [8] as a post-processing step to refine
the results from the TP-CNN procedures. Specifically, TP-CNN predicts the
probability of assigning segmentation labels to each voxel, and CRF takes the
prediction results and image information as input integrating with the pixel
intensities and position information to globally smooth the shape of each tumor
region.
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Fig. 3. Example segmentation through TP-CNN procedure

Besides CRF, we also further improve the segmentation results by applying
following post-processing procedures:

1. The voxels within the tumor mask whose gray values of the corresponding
flair image are less than 0.95 times the mean intensity value within that
mask, and the gray value smaller than 150 in T1Gd images and 0.95 times
mean intensities within the mask in the T2 images will be excluded from the
tumor mask.

2. For those voxels within the enhancing tumor area whose gray value of T1Gd
image are less than 110, the predicted label need to be changed to necrosis
group.

3. Using FSL clustering method to segment the tumor mask into all connected
components/clusters. If a cluster within which the mean gray value of both
T2 and Flair images are larger than 150, voxels within that cluster will be
removed from the tumor mask.

4. Voxels in clusters whose volume is less than 0.2 times the largest connected
cluster volume will be reclassified as non-tumor; voxels in necrosis clusters
whose volume is less than 0.01 times the largest connected neucrosis cluster
volume will also be reclassified as non-tumor.
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5. Fill in the holes within the tumor mask and assign voxels within the holes
to necrosis area.

The performance by one-step CNN, two-phase CNN and final combined
model regarding the dice-ratio of each tumor regions, corresponding sensitivi-
ties and ’Hausdorff distance’ statistic are compared and shown in Table 1.

Table 1. Results comparison among step1, step2 and final combined two-phase results

3 Survival prediction by XGBoost

XGBoost [1] is short for Extreme Gradient Boosting, where the term Gradient
Boosting is proposed in the paper Greedy Function Approximation: A Gradient
Boosting Machine, by Friedman[2]. In brief, XGBoost is a tree-based boosting
algorithm, which performs well in supervised learning problems and previous
challenges. The advantage of using XGBoost here to predict the survival time
for each patient is that we could throw out the unimportant features by based
on AUC value and avoid over-fitting.

We extracted various imaging features of the tumor regions to predict the
survival time. Nine shape features, including volume, surface, roundness and
ratio between subregions, are calculated based on the segmentation results of
each tumor subregion. And 10 intensity statistics features(such as maximum,
minimum, median, kurtosis) 57 texture features(13 gray-level co-occurrence ma-
trix features, 8 statistics of local binary patterns and 36 threshold adjacency
statistics) and 72 wavelet transform features are separately extracted from all
subregions and modalities.

Besides the global feature mentioned above, we also train a convolution neural
network and extract the last dense layer as supplementary features. We take
five 2-D slices in X-Y space with most pixels belonging to class 1 and 4 for
each subject to generate the training data, which is augmented by flipping,
rotating and pixel shifting. Then we train a CNN model using the VGG-16
setting and extract the dense layer before the softmax layer as features, which
are combined with the global features and age for each subject as predictors
(we are currently considering using 3D-CNN to extract the feature within the
tumor regions roughly masked out based on our segmentation results because
the way we use to select 2-D slides depend more on the accuracy of segmentation
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predictions on validation data). We use Pearson chi-square test to analyze the
marginal correlation between each of all m predictors with the survival time, and
sort the m covariates by p−value from small to large, where the covariate with
smaller p−value may show more significant association with the survival time,
and we then use XGBoost to gradually add in covariates until AUC value will
not increase for a certain number of steps. To test the performance of our model,
we randomly split the training data into two parts, one of which is used to train
the model and the other used to test the prediction accuracy. We do 10-fold
cross-validation to test the performance of our method and use the classification
evaluation by dividing the survival time into three classes using threshold 10 and
15 to compute the prediction accuracy. The highest prediction accuracy could
reach 85% and the mean accuracy is around 70% (while the lowest accuracy could
be 55%). The average MSE (mean square error) of the 10-times experiment is
around 79680 (in days).

4 Conclusion and Discussion

Our two-phase convolution neural network together with post-processing and
XGBoost is an automatic method to do brain tumor segmentation by using deep
learning method. According to the performance of our method on the validation
data set, our method could make an acceptable segmentation prediction for
the non-tumor and three tumor regions in terms of dice-ratio and Hausdorff
distance. The biggest advantage of our method is that we could achieve a very
high sensitivity, which means that we do not have much tumor regions to be
considered as non-tumor part. Another important characteristic of our method
is that we do adopt some models with complicated structures such as Fully-
CNN model, which may require a lot of computation power, but to combine the
results from several simple models by using XGBoost and CRF, which is much
cheaper in time consuming and machine cost. For the survival time prediction
task, we use CNN model to extract the features from each of the four modalities
and then use XGBoost to build the regression model, which could provide a
relatively good prediction accuracy considering the small sample size we have.

We have to admit that there are at least two weaknesses of our method.
First, the pixel-based prediction procedure may result in some singular points
with a misclassified label within a regions having correct predictions, which may
cause a huge reduce in the tumor core dice-ratio. Second, compared with FCNN
or other slice-based method, our TP-CNN model could not acquire a smooth
segmentation results, even though it can be improved by doing post-processing.
Despite these potential disadvantages, the simple structure and the combining
idea of our method will still be competitive when there are limited computing
power and time, to build a reasonable results in segmenting tumor regions and
predicting survival time of patients.
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Abstract

We developed a Multi-pathway 3D dilated Convolutional Neural Network
(CNN) for BRATS Brain Tumour Segmentation challenge. Our CNN seg-
ment image volumes in a patch-wise manner. We extended a Vanilla Feed-
forward 3D CNN in two useful ways. Firstly instead of stacking all four
Magnetic Resonance (MR) sequences into images of 4 channels, we apply
multi-pathway architectures with each pathway processing one MR sequence.
Secondly we added a contextual information stream that process contextual
voxels around a patch using dilated convolution. Our 3D CNN achieved a
good performance with the all training and validation data from BRATS
2017(Dice ET=0.66, Dice WT=0.85, and Dice TC=0.70).

Keywords: Brain Tumor Segmentation, Dilated Convolution, 3D CNN

1. Introduction

We developed a Multi-pathway 3D dilated Convolutional Neural Net-
work (CNN) for BRATS Brain Tumour Segmentation challenge[1, 2, 3, 4].
Previous works [5, 6, 7] have applied standard feed-forward 3D CNNs on
medical image segmentation and obtained promising results. In this work,
We extended a vanilla Feed-forward 3D CNN with Multi-pathway architec-
ture and dilated convolution in order to improve performance. Our CNN
process MR volumes in a patch-wise manner, namely we divide a brain MR
volume into a dense grid of smaller 3D patches, and train CNN to predict the
segmentation maps in the central regions of patches. We are also inspired by
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Kamnitsas et al[5] to include additional neural network stream that process
contextual information surrounding the patch. However we applied dilated
convolution which removes the need to downsample surrounding information,
as performed in [5].

2. Method

Figure 1 shows an overview of our architecture. In our 3D CNN we
have 2 input information processing streams, which process patch of size
273 and contextual information patch of size 393 respectively. The CNN is
trained to segment the central 93 region of the patch. Inside each information
processing stream, instead of stacking all four Magenetic Resonance (MR)
sequences into images of 4 channels, we apply multi-pathway architectures
with each pathway processing one MR sequence. Figure 2 illustrates the
multiple pathways within each processing stream. Multi-pathway allows each
stream to learn decoupled and independent features from each MR sequences.

Figure 1: Overall 3D CNN architecture

Inside each pathway there are 9 3D convolutional layers. We also imple-
mented residual connections as developed by He et al[8]. All convolutional
layers have valid padding and 3×3×3 convolutional kernels. For all pathways,
the number of channels in each layer are 30−30−30−40−40−40−40−50−50.
For residual connections, the merging of two feature maps requires same fea-
ture map sizes except the channel dimension. Therefore we cropped the cen-
tral part of the larger skip-passed feature maps to ensure the same feature
map size. We also used concatenation instead of element-wise summation
for feature map merging because concatenation is allows more flexibility of
feature map merging.

For the contextual information, we use dilated convolution[9] to effectively
increase the receptive field size without using any down-sampling or pooling

2
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Figure 2: Pathways for each Magnetic Resonance (MR) sequence with Residual connec-
tions

layers. Figure 3 compares standard convolution with dilated convolution.
Dilated convolution allows stride spacing between input positions, thereby
increase the receptive field without increasing the number of kernel param-
eters. Therefore dilated convolution is well suited for modeling contextual
information around each voxel. In our contextual pathways we used dilated
convolution with a dilation factor of 2 except for the first convolutional layer.

Figure 3: Comparison of standard convolution (left) and dilated convolution (right).

Our 3D CNN is trained end-to-end with Stochastic Gradient Descent
Back-Propagation algorithm. We used RMSProp [10] optimizers with initial
learning rate of 0.001 and batch size of 64.

3
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We trained our 3D CNN on all 285 patients’ images from BRATS 2017[1,
2, 3, 4] training data set. From images of each patient, the same number of
patches were generated from foreground and background, in order to alleviate
the class-imbalance in the original images. Specifically, 500 patches of the
background and another 500 patches of foreground are randomly generated,
namely 1000 patches of each patient in total. These amount of patches could
lead to better estimation with reasonable memory and computation cost. In
the training process, we loaded patches from 50 patients for each sub epoch,
and shuffle all the patients at the start of each epoch, to avoid the over-fitting
on a specific cluster of patients.

Figure 4: Flair (left) and segmentation (right).

4
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3. Results

Our 3D CNN are validated with images of all 46 patients from BRATS
2017[1, 2, 3, 4] validation data set on CBICA Image Processing Portal[11].
Figure 4 shows two examples of our segmentations comparing with the orig-
inal flair images, Table 1 shows the DICE values, and Table 2 shows the
Hausdorff distances.

Table 1: Dice values
Dice ET Dice WT Dice TC
0.6645 0.8516 0.6983

Table 2: Hausdorff distances
Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC
15.29 17.47 19.32

4. Discussion and Conclusion

In this paper we proposed a multi-pathway 3D CNN architecture for med-
ical image segmentation. The four separate pathways for all MRI modalities
can flexibly learn the specific textual features of each sequence. The dilated
convolutional pathway can use contextual information effectively.
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