Porting NetBSD to the RISC-V

Zachary McGrew, Philip A. Nelson
Western Washington University Computer Science Department

I. ABSTRACT

While NetBSD runs on 16 different types of CPU ar-
chitectures, it did not run on the RISC-V. In order to live
up to the slogan “Of course it runs NetBSD” the project
of completing the port of the NetBSD kernel to the new
RISC-V architecture was started. Adapting the kernel to
take advantage of the new platform features while still
maintaining NetBSD’s portability was challenging, but
became and interesting problem to solve. While many
issues were discovered in the process, the final outcome
of booting a kernel on a new architecture was informative
and rewarding.

II. INTRODUCTION

NetBSD [1] is an open source Unix-like operating
system with roots in both 386BSD [2] and the BSD
Net/2 [3] release. NetBSD-1.0 (the second formal release
of NetBSD) supported five CPU architectures [4]. Since
that release in 1994 it has been ported to over 16 different
CPU architectures [5], which has lead to the slogan of
“Of course it runs NetBSD” [1]. It is this slogan that
advanced NetBSD on many platforms that may not even
be considered as a computer, such as the Dreamcast [6]
video game console, or a toaster [7]. One of NetBSD’s
original focuses was architecture independence [8], and
this has made it an excellent choice for porting to new
architectures. To continue on the tradition of running
NetBSD on as many different architectures as possible,
many people have ported NetBSD to most architectures
that are capable of supporting it. When a new open
source architecture that is capable of running NetBSD
became available it became only a matter of time until
a port to that architecture would take place.

The RISC-V [9] architecture is a free and open in-
struction set architecture (ISA). The original design came
from the University of California, Berkeley for research
and educational purposes [10]. Currently under the con-
trol of the RISC-V Foundation, it is comprised of two
specifications: The User Level ISA Specification [11],
and the Privileged ISA Specification [12]. Designed as an
extensible architecture, the User Level ISA specification
defines a set of extensions that may be implemented.
Some extension examples are: the base integer extension
(D), the multiplication and division extension (M), the
atomic extension (A), the single-precision floating-point

extension (F), and the double-precision floating-point
extension (D). These extensions are what the User Level
ISA collectively refers to as the general-purpose ISA,
known as G. The basic set of operations on integers are
defined as an extension, because they are not required to
be present. Instead, an embedded form (E) of these basic
instructions may be used instead, but this also presents
a smaller number of registers. Even things that many
would consider to be standard on a processor such as
multiply and divide are an optional extension, as this
allows for flexibility when creating chips for embedded
systems. The general extensions that define what would
commonly be found on a desktop-class or server-class
processor are bundled into the general extension (G),
which encompasses I, M, A, F, and D. Additionally the
Privileged ISA specification defines the machine (M),
hypervisor (H), supervisor (S), and usermode (U) speci-
fications for operating modes. The S and U modes allow
for the Unix model of security, separating the kernel
mode from the user mode, to be enforced in hardware.
The RISC-V comes in four varieties: RV32I, RV32E,
RV64I1, and RV128I, with the RV128I specification not
completed as of the time of this paper.

This project was a Master’s project for the Computer
Science Department at Western Washington University.
It aimed to complete the port of the NetBSD kernel
to the RISC-V architecture. In particular, the port tar-
geted the RV64GSU, or the expanded form known as
RV64IMAFDSU, variety of the RISC-V. While there
are many more extensions that are defined in the User
Level ISA specification, they are not needed for NetBSD
to function, though NetBSD could be extended to use
them in the future as they become available. The current
User Level ISA specification 2.2 defines both 32-bit
and 64-bit modes, the 64-bit mode was selected for the
NetBSD kernel port as the initial target, though there
is a possibility of supporting both in the future. This
project used a single version of both specifications, the
User Level ISA specification 2.2 and the Privileged ISA
specification 1.10. While these specifications are subject
to change in the future, they are not expected to change
in a manner that breaks existing code.

The NetBSD port to the RISC-V had already started
when this project was proposed. Initially contributed by
Matt Thomas in early 2015, the committed code was
a good starting point, but was neither compiling nor

functionally correct. While some of the bugs addressed
in the initial code were truly bugs, many of them weren’t.
When the port was initially started it was targeting
a different User Level ISA specification as well as a
different Privileged ISA specification. It remains unclear
exactly which previous version of the specifications Matt
Thomas was using, but after reading older specifications
it appears to be at least a few versions behind for both.
While the specifications were mostly compatible, some
key components have changed. For example, the bit
fields have changed in some of the crucial control and
status registers (csr). Some of these settings now live in
different bit positions, different registers altogether, or
have been removed entrely in favor of another option.
One such example of this is in the way that floating
point support is disabled. Another large change was the
page table entries in the Privileged ISA specification.
Both their bit fields as a whole have changed, as well
as how the leaf nodes are indicated in the page tables.
There were many subtle changes that went unnoticed
for extended periods of time during this port. There was
even an instruction that was removed from the Privi-
leged ISA specification, but the assembler would still
emit the opcode for it. The “SFENCE.VM” instruction
was replaced with the “SFENCE.VMA” instruction. The
subtle one character difference is all it took between
actually emitting a valid instruction that flushes sections
of the TLB and causing an invalid instruction fault.
These specification changes caused the majority of the
locore.S start function to need to be rewritten in
order to initialize and activate the page tables needed
for virtual memory to function.

III. SIMULATORS, TOOLCHAINS,
AND BUILD SCRIPTS, OH MY!

When the project started no physical RISC-V hard-
ware existed. In order to run RISC-V binaries a simulator
needed to be built for the development system. To
the benefit of researchers and developers, the RISC-
V Foundation released a simulator supporting both the
User Level ISA and Privileged ISA specifications named
Spike [13]. However, Spike has both build and run-
time dependencies on the “Frontend Server” (fesvr) [14].
Fesvr enables access to the host’s resources inside the
simulator. Spike and Fesvr were both compiled with
the host’s native toolchain, as the resulting programs
will run directly on the host. Spike does not have
many requirements outside of Fesvr and the device-
tree-compiler (dtc) [15]. Fortunately the dtc is readily
available in NetBSD’s Pkgsrc [16], or pre-built on certain
platforms. Spike does not currently have a BIOS or
UEFI-like [17] system in place to share system details
and allow for quick hardware interaction. System details
are presented at boot time via a Flattened Device Tree

(fdt) [18]. It also relies on a boot loader to load the
kernel and provide these hardware interaction services.
The Berkeley Boot Loader (BBL) [19] was used when
developing the NetBSD port.

BBL loads the kernel at a known address, and begins
running code at the pre-defined entry point in the ELF
binary that it loads. The BBL was not just built once
and given a kernel file to load. Rather it is required
to be compiled each time a new kernel was built, in
order to embed the kernel inside. Additionally, BBL
required a C library in order to compile, as it utilizes
the string manipulation functions. This meant that an
additional toolchain needed to be built, one just for BBL,
as the toolchain that compiled the NetBSD kernel and
additional tools needed to not link against or reference
a C library and required a special naming scheme.

Once Spike was built, two cross-compiling toolchains
were needed. The first was used to build BBL, and the
second to build the NetBSD kernel. As NetBSD’s in-tree
version of GCC [20] was currently too old to support
the RISC-V architecture, this dual external toolchain
approach was used. The first toolchain was identified
by the triplet prefix [21] “riscv64-unknown-elf” and
consisted of Binutils and GCC that was built as a two-
stage compile. The initial compile of GCC was built with
the Newlib [22] flag but no path to Newlib’s headers
was defined. This was followed by the GNU Newlib
version of the C library being compiled using the stage-
1 compiler. Finally, GCC was compiled again with the
Newlib flag, but was also given the path to the recently
built Newlib headers. This toolchain was used just for
building BBL.

The second toolchain used the triplet prefix “riscv64-
-netbsd,” which was form that NetBSD was already
setup to use. It consisted of Binutils and a single stage
build of GCC without a C library. The “riscv64--netbsd”
toolchain was used to compile the NetBSD kernel, and
to provide additional libraries for the tools that NetBSD
build system needed to compile the kernel.

Due to the complexity of building cross-toolchains,
a build script was created just to manage compiling
the simulator, the boot loader, and the two toolchains.
This allowed changes to the configuration options of
the various tools to be performed quickly, as many re-
configurations were needed before everything functioned
as intended. The “with-arch” option was changed sig-
nificantly before finally becoming “rv64imafd.” Again,
the “imafd” is what the RISC-V ISA specification refers
to as “g,” but using “g” as the setting gave problems
when code explicitly looked for the expanded form of
“imafd.” Another problem was encountered with the
“c” extension, which generated invalid code in certain
circumstances. Rather than debug this compiler issue, the
choice was made to move forward without that feature

enabled in the compiler.

Having the “riscv64--netbsd” toolchain working was
the last step involving source external to NetBSD that
was needed in order to build the tools target of NetBSD’s
build.sh [23] tool. Build.sh is the tool that is utilized
to build the entire NetBSD operating system in a plat-
form agnostic manor. It can be given various configura-
tion flags, and information about targeted hosts. Cross-
toolchains can be automatically built and used to compile
the entire operating system using this tool. As part of its
normal build process build.sh should build the needed
cross-toolchain using the in-tree Binutils and GCC, but
they were currently too old and lacked support for
RISC-V. This required that build.sh be told to use an
external toolchain. The EXTERNAL_TOOLCHAIN and
TOOLCHAIN_MISSING variables were used to inform
it not to build these tools, but this introduced another
problem. The dbsym and mdsetimage tools needed to
know exactly where the build folder for libbfd and
libiberty were. The makefiles that build.sh uses to build
those tools were extended in order to work around that
issue. The makefiles for both dbsym and mdsetimage
were modified to allow the BFDDIR and IBERTYDIR
variables to be set externally, which enabled passing
them to build.sh. The patch enabling these settings was
accepted into the NetBSD tree in December 2017, and
is now available for others too use.

With the build.sh tools operation completed, the kernel
build itself was attempted. NetBSD had very portable
code and tried to conform to strict standards where
possible. This could be seen through the fact that it can
be compiled on many platforms with various versions
both GCC and Clang [24]. However, when this project
began NetBSD was utilizing the GCC 5.x release series,
which did not include as many warning checking func-
tions as the newer GCC 7.3 compiler that the RISC-V
Foundation had added RISC-V support to. Something
as critical as an operating system kernel needed to
ensure it is correct as possible, so the NetBSD kernel
was initially built with the “-Werror” flag. This turned
all warnings into errors and prevented the build from
progressing. The additional warnings introduced into
GCC were beneficial for detecting problems that can
occur, but hindered the ability to get further in the build.
Enabling the -V NOGCCERROR="yes” flag for build.sh
allowed progress while other NetBSD developers worked
on the fallout of having additional warnings enabled in
the compiler. This build.sh flag allowed the build to
only produce warnings and errors in the sys/arch/riscv
directory, which was the intended place to finally start
writing and fixing code. These warnings and errors that
came from that directory unfortunately meant that the
code that had been committed was either incorrect or
had bit rotted from not being touched in the years since

its addition. The problem would later be determined to
be a combination of those issues as well as the RISC-V
specification having changed since the initial code was
committed to the source tree.

IV. VIRTUAL MEMORY

The entry point of the kernel is defined in the file
kern.ldscript as “ENTRY (start).” The aptly titled symbol
start function referenced by entry is defined as a label
in locore.S. This assembly language file contains almost
all of the lower level code used by the port that needs
to be written by hand in assembly. The job that the
start function performs is to enable virtual memory,
get to the virtual address where the kernel will run,
and do any remaining machine dependent initialization
that needed to happen before the machine independent
function main will be called.

The RISC-V utilizes a standard multilevel page table
approach for virtual memory. As of Privileged ISA spec-
ification 1.10 there are three specification for page tables:
Sv32, Sv39, and Sv48. The “Sv” stands for Supervisor,
which is the mode or access level the chip is running the
operating system in, while the number suffix is the size
of the virtual address space. Because NetBSD RISC-
V port targets the RV64I specification as its primary
target, the Sv39 system was chosen. While the the 39-bit
virtual address (VA) allows for a maximum of 512GB
of memory, the larger 48-bit VA space would extend
the maximum to 256TB of memory, but also requires
one additional page table entry lookup. The 512GB limit
seemed to vastly exceed the current systems at the time
of this writing, and in the future if need arises it can
be switched to Sv48 without too much additional work.
This would only require the addition of an extra layer
in the page tables, which amounts to just updating the
machine dependent helper functions that create, modify,
and perform lookups on the page tables.

When the kernel is initially loaded into memory by
BBL it is put into one, large, contiguous block of
memory. This predetermined information permits the use
of the RISC-V’s MMU feature that allows any PTE entry
to be a leaf node in the tree. Another way to think of this
is that it has support for multiple page sizes. However,
the Privileged ISA specification defines only a 4K page
size on both the 32-bit and 64-bit systems, and when
the page table is marked as the final entry before the last
level in the page table it is specifying a contiguous block
of 4K pages. The Sv39 spec allows for 1GB and 2MB
contiguous blocks of pages. When the start function
builds the page tables instead of mapping the kernel on
4KB pages it maps them by 2MB contiguous areas. At
the time the system was first successfully booted, a non-
debug kernel was slightly larger than 8MB, which means
only five entries in the second-level page table need to

be created. Unfortunately, the space after the kernel up
to the next 2MB boundary is wasted, and is something
that will be addressed in future work. In order to create
the initial page tables in the start function, only two 4K
pages are reserved at compile-time.

The first of the those pages, the L1 page ta-
ble, has two entries; one for the kernel and one
for physical memory. Currently, the kernel is mapped
at OxffEf£E£££00000000, which makes identifying
kernel space easy. Physical memory is mapped starting
above the end of the reserved kernel space, which allows
for direct access to all physical memory. This technique
is in use on many platforms, but was recently removed
from some of the key platforms such as 1386 and AMD64
due to the Meltdown and Spectre hardware bugs that are
present there. However, for development purposes this
made doing manual lookups in page tables faster because
of the direct access to the entire physical memory. There
is a limitation to this direct mapping method, and that is
it will require more of the virtual memory space to be
occupied that otherwise would not. Additionally, as more
memory is mapped in the kernel will need to be mapped
starting at a lower address in order to accommodate this
larger physical memory space that is mapped above it.

The second of the reserved pages, the L2 page table,
is initialized to point at the five contiguous 2MB blocks
that hold the kernel. These entries are marked as a leaf
node in the page table, even though they are not at
the maximum depth. Taking advantage of this hardware
feature allowed for creating a single entry to map out a
contiguous block of 2MB of memory, instead of an entry
per 4KB section. It also saved and additional five 4KB
pages from being allocated to hold all those entries.

Once the start function initializes the page tables,
the Supervisor Address Translation and Protection (satp)
register needs to be set to activate them. This register’s
job is to point to the physical page number (PPN) of the
top level of the page table, define the currently activated
address space identifier (ASID) of the current process,
and the selected memory mode. The memory mode is
set to Sv39, the ASID is set to 0 as this will eventually
be referred to as PID 0, and the PPN of the L1 page
table that was created is set.

Writing to the satp register will cause a page fault. The
machine status register (mstatus) contains a bit labeled
Trap Virtual Memory (TVM) to control this behavior,
but the operating system is running in supervisor mode,
and is unable to override the setting that BBL initialized.
As such, the common technique of mapping both the
high virtual address and the low physical address to
the same L2 entry, which would allow you to continue
running at the existing physical address, and then jump
to the high address does not work as expected. How-
ever, the FreeBSD [25] developers found an impressive

workaround to use the fault resulting from the write
to the satp register to their advantage. The technique
involves first loading the value of the virtual address of
a label that immediately follows the write to satp in the
Supervisor Trap Vector Base Address Register (stvec),
then writing to the satp register. The system will fault
to the virtual address and continue running. While this
initially seemed less elegant than jumping to the correct
virtual address, it does seem faster, as it requires less
setup and tear-down for the page table entries. Finally,
once the system has faulted to the virtual address the
correct address of the true fault handler can be set in
stvec for when an actual fault occurs, of which there can
be many. At this point in the start function the system has
memory mapping enabled, and is running at its virtual
address. The remaining hardware dependent initialization
can occur, such as bootstrapping the physical memory
mapping manager.

V. PMAP COMMON

The NetBSD pmap(9) [26] man page states that pmap
is “machine-dependent portion of the virtual memory
system.” By definition pmap is machine dependent, but
NetBSD tries to reduce machine dependent code to
as small of sections as possible. The vast majority of
the pmap code among ports performs the same tasks
as other platforms and only deviates when it needs to
perform a special hardware function. Enter NetBSD’s
pmap common. Initially written by Matt Thomas in early
2011, pmap common is an implementation of pmap
designed to be shared among ports. It was created to
simplify the machine dependent code to sections that are
as small as possible and reduce common problems that
continuously appear, requiring the same fix to be applied
throughout the source tree. Examining one of the smaller
functions in pmap common, such as pmap_create() this
abstraction becomes apparent.

Listing 1 shows in the source for pmap_create() that
no matter if the platform has hardware support for
page tables (Defined as PMAP_HWPAGEWALKER) or
not, initialization starts the same. All pmap structures
come from a standard pool, have their reference count
set to one, their minimum and maximum addresses
initialized, etc. Once the common resources of the pmap
structure are initialized, a smaller helper function is
called to initialize for the machine dependent portions.
The RISC-V has hardware based page tables, so the
pmap_md_pdetab_init() function will be called. Note
that NetBSD refers to page tables as page directories,
except for the final entry, which is referred to as a page
table.

When this project started, pmap common only func-
tioned on platforms that didn’t have hardware page table
support. At that time it was in use on MIPS and on

Listing 1. pmap_create()
pmap_t
pmap_create (void)
{
UVMHIST_FUNC(___func__);
UVMHIST_CALLED (pmaphist) ;
PMAP_COUNT (create) ;

pmap_t pmap = pool_get (&
pmap_pmap_pool, PR_WAITOK) ;
memset (pmap, 0, PMAP_SIZE);

KASSERT (pmap—>pm_pai[0] .pai_link.
le_prev == NULL);

pmap—->pm_count = 1;
pmap->pm_minaddr =
pmap->pm_maxaddr

VM_MAXUSER_ADDRESS;

VM_MIN_ADDRESS;

#ifndef PMAP_HWPAGEWALKER
pmap_segtab_init (pmap) ;
#else
pmap_md_pdetab_init (pmap) ;
#endif

#ifdef MULTIPROCESSOR
kcpuset_create (&pmap->pm_active,

true);
kcpuset_create (&pmap—>pm_onproc,
true);
KASSERT (pmap—->pm_active != NULL);
KASSERT (pmap—>pm_onproc != NULL);
#endif

UVMHIST_LOG (pmaphist, "_<--_done_ (
pmap=%#jx)", (uintptr_t)pmap,
0, 0, 0);

return pmap;

some Power PC ports, both of which directly manipulate
their TLBs to achieve the results of virtual memory.
This meant that a large amount of work needed to
be completed outside of the RISC-V platform specific
directory. Working outside of the platform directory
requires great care to ensure that it does not negatively
impact other platforms. This additional work amounted
to not writing the expected pmap common functions, but
creating new functions specific to hardware page tables,
and then hooking them into the existing pmap common

code. Along with pmap common only functioning on
non-hardware page table based MMUs at the project’s
beginning, pmap common was itself in a very incomplete
state. It only compiled on the MIPS and PowerPC
platforms due to an issue with conditional preprocessor
code. The RISC-V pmap common helper functions that
were in the source tree at this project’s beginning had
been written to interface with a version of pmap common
that had not been committed into the NetBSD source tree
leading to much confusion.

Due to the complexities of pmap, it can be under-
standable that abstracting it further and ensuring not to
break other platforms is not an easy task. The side effect
of this is that now that this project has extended pmap
common to include hardware page table support, more
platforms can be ported to it as well. Pmap common,
while a key element of the project, was just one task.
Some miscellaneous parts still needed to be worked out
before the system could get to forking and running a
new process.

VI. MISCELLANEOUS

One required element of the port was the creation
of a new console device driver. This driver is currently
named “sbicons” for the System Binary Interface (SBI)
[27] that it uses. This interface is provided by BBL
and allows for the operating system to access it via
an environment call (ecall) [28]. This ecall traps to the
next privileged mode above what is currently running
and optionally passes additional data with the call. In
the case of the new sbicons console driver it utilizes
two helper functions that wrap these ecalls into the
BBL. The sbi_console_putchar() function will
make an ecall with the SBI_ID set to 1, and the first
argument holds the ASCII value of the character to
write to the console. The sbi_console_getchar()
functions similarly, except the SBI_ID is set to 2, and no
arguments are passed, instead it returns the value from
register a0 to pass back the character value that was read
from the console. Utilizing the SBI was a great benefit
for developing, in that it allowed for a very simple and
quick console device driver to be written. The working
console provides for an extra debugging method besides
relying on Spike’s limited memory dumping and register
printing capabilities. In the end, printing to the console
was required in order to continue debugging, because
Spike is not currently capable of printing the contents of
virtual memory.

Another issue that was discovered was context switch-
ing with soft interrupts. NetBSD uses the concept of soft
interrupts to be able to provide low-priority callbacks.
When a soft interrupt triggers the process that was
interrupted is “pinned” and the process that needs the
callback message is notified. The pinned process does

not have its accounting time modified while the other
process is notified of the interrupt. When the soft inter-
rupt handler finishes, control is returned to the pinned
process. Soft interrupts can be implemented one of two
ways: pure software based or hardware accelerated. The
existing code had set out to use hardware accelerated soft
interrupts, and that path was continued. The hardware
accelerated version takes advantage of a context switch
to check if a soft interrupt has occurred. If one or more
have occurred, the context switch it will use that opportu-
nity to call a soft interrupt before completing the original
context switch. The code in cpu_fast_switchto()
had an issue where it was passing the soft interrupt
handler to itself as the pinned process, rather than the
previously running process. This lead to an issue where
an assertion was triggered due to the pinned process
not being in a running state. Additionally the code in
the cpu_fast_switchto_cleanup() function was
directly modifying a mutex, which caused problems
elsewhere when the mutex value was verified. Correcting
this last issue brought the port to where it currently is:
running.

VII. CURRENT STATUS

In its current state (as of the writing of this paper)
NetBSD on the RISC-V is: capable of initializing and
utilizing the virtual memory system, has a working
console device driver, a working pmap implementation
courtesy of an updated pmap common with hardware
page table support, is capable of creating and context
switching between light weight processes, creating a new
process (PID 1), and switching between processes while
also passing soft interrupts.

The system will boot, initialize virtual memory, ini-
tialize the console, bootstrap pmap, create additional
kernel threads, fork and create the first process that will
eventually become init. However, the system will prompt
for the root file system path to be provided as there
is not one available. Unfortunately there is not a way
to compile the userland tools and populate a root file
system. This lack of userland tools is caused by the
use of an external toolchain, which will be addressed
in additional work happening in the overall NetBSD
project.

VIII. FUTURE WORK

As mentioned previously, the version of NetBSD’s
GCC that lives in the source tree is too old to support
the RISC-V architecture. The external toolchain was a
valid approach for building and getting the kernel to
boot because it does not need to include the C library.
However, in order to build the userland tools needed
to populate the root file system there are two possible

solutions. Either an extensive amount of work to hook
deeper into the build system with an external toolchain
needs to take place, or the in-tree GCC needs to be
updated. At least one NetBSD developer is currently
working to import GCC 7.3 into the NetBSD tree, but
updating a tool as crucial as the compiler is not a small
task. With each update to GCC new features are gained,
such as support for additional platforms, like the RISC-V.
But each update also brings the possibility of the depre-
cation of older architectures; Something that can greatly
affect an operating system like NetBSD that supports
so many of them. It of course also means new bugs and
idiosyncrasies to find in both the warnings generated and
problems with code generation. The immediate benefit
for the RISC-V port is that the userland binaries can
be built and a root filesystem can be produced to allow
further development and use of the port.

One short term goal is getting the port booting on
the SiFive HiFive Unleashed [29] board. Running on
real hardware could allow for testing things that are not
possible in Spike, such as device drivers and networking.

As Spike supports multiple cores, and the HiFive
Unleashed board has four cores, it would be great to
get SMP support. Currently only the first core does
any work. Additional cores are initialized by BBL, but
shortly after control is given to them they each jump into
an infinite loop that waits for an interrupt that will never
arrive. Enabling SMP will require inter process interrupts
(IPI) so that each core can signal to the others.

As mentioned in the virtual memory section the RISC-
V has support for big pages. An area of future work and
research is the allocation of these big pages once the
system has been up and running. As the physical memory
gets fragmented it may be difficult to find 512 contiguous
4KB pages that also start on a 2MB boundary. Various
ideas of how to track this have been discussed and it
could lead to interesting research in the future, as well
a nice performance enhancement for applications that
perform large allocations.

Yet another area of work could be mapping as much of
the kernel as possible on 2MB pages, but use the smaller
4K pages to map out the area after the last full 2MB
page. Reclaiming this space could allow for the system
to reuse this memory in a meaningful way, instead of it
sitting untouched as it currently is.

The current method used for debugging is nothing
more than calls to printf(). NetBSD has an exist-
ing cross-platform in-kernel debugger known as DDB.
Getting DDB to work would be a great benefit for
debugging, but the current issue is decoding backtraces.
The RISC-V hardware has a return address register (ra)
that holds the return address of a function call. This leads
to the pattern where the return address is only written to
the stack in the preamble of the function that is called if

that function calls another function. Without a consistent
way to walk back up the call stack it is currently unclear
how to get a stack trace.

Flattened Device Tree (fdt) support would be a great
benefit for running on both actual hardware and on other
simulators that do not configure themselves identical
to the way that Spike does. FDT support will allow
NetBSD to read the device tree information and know the
amount of memory that is available and at what physical
addresses. The FDT will also contain for information
such as hardware clocks, interrupt controllers, etc. FDT
support already exists on at least one other supported
platform of NetBSD. This platform’s code can be used
as a working example of how to support FDT on RISC-
V.

NetBSD has a great deal of compatibility code in it
already and this trend could and should be continued
with the RISC-V. As the main focus is RV64 it would
be nice to enable compatibility for RV32 on RV64 chips.
The AMDG64 port can run 1386 binaries, and recently the
aarch64 port gained compatibility with the arm32 port’s
binaries. Continuing with this would be a nice added
feature if the need ever arises.

Floating point support was present and presumably
working for the older specification when the initial
code was committed. As was mentioned previously, the
specifications have changed and the floating point control
registers have been altered. In the port’s current state
the floating point registers are completely left alone for
context switches, which will break floating point support
in userland. Enabling floating point and handling these
additional registers in context switches should not be
an enormous task, it was just a non-critical issue when
getting the kernel booting.

IX. ACKNOWLEDGMENTS
In no particular order, Zach would like to thank:

o Phil Nelson — For all the guidance he provided,
and for the inspiration to even attempt this port

o Aran Clauson — For believing in me enough to
purchase a SiFive HiFive Unleashed board for test-
ing

o Matt Thomas — For starting the RISC-V port, and
PMAP Common

o Nick Hudson — For sharing the updated but not
committed pmap common code, and answering my
pmap questions because I was never able to speak
with Matt Thomas

X. REFERENCES

[1] The NetBSD Foundation. The NetBSD Project.
Oct. 25, 2018. URL: https://netbsd.org (visited
on 11/18/2018).

(2]

(3]

(4]

(5]

(6]

(7]

(8]

William Frederick Jolitz and Lynne Greer Jolitz.
“Porting Unix to the 386: the Basic Kernel”. In:
(Nov. 1, 1991). URL: http://www.drdobbs.com/
open- source/porting- unix- to- the- 386- the- basic-
kernel/184408655 (visited on 11/18/2018).
Computer Systems Research Group. Net/2. June
1991. URL: https ://archive . org/ details / net . 2
(visited on 11/18/2018).

Chris G. Demetriou. NetBSD 1.0 Release An-
nouncement. Nov. 8, 1994, URL: https://www.
netbsd.org/releases/formal-1.0/NetBSD-1.0.html
(visited on 11/18/2018).

The NetBSD Foundation. Platforms supported by
NetBSD. Nov. 18, 2018. URL: https://wiki.netbsd.
org/ports/ (visited on 11/18/2018).

The NetBSD Foundation. NetBSD/dreamcast.
Aug. 19, 2018. URL: https://wiki.netbsd.org/ports/
dreamcast/ (visited on 11/18/2018).

Jesse Off. NetBSD Toaster Powered by the TS-
7200 ARM9 SBC — Technologic Systems Blog.
Nov. 10, 2016. URL: https://www.embeddedarm.
com/blog/netbsd - toaster - powered - by - the - ts -
7200-arm9-sbc/ (visited on 11/18/2018).

The NetBSD Foundation. The History of the
NetBSD Project. Sept. 5, 2018. URL: https://
www. netbsd. org/about/history. html (visited on
11/18/2018).

RISC-V Foundation. RISC-V Foundation — In-
struction Set Architecture (ISA). Nov. 18, 2018.
URL: https://riscv.org (visited on 11/18/2018).
Krste Asanovié. Home Page for Krste Asanovié.
Sept. 13, 2018. URL: https://people.eecs.berkeley.
edu/~krste/ (visited on 11/18/2018).

Andrew Waterman and Krste Asanovié, eds. The
RISC-V Instruction Set Manual, Volume I: User-
Level ISA, Document Version 2.2. RISC-V Foun-
dation. May 7, 2017. URL: https://content.riscv.
org /wp - content/uploads /2017 /05 /riscv - spec -
v2.2.pdf (visited on 11/18/2018).

Andrew Waterman and Krste Asanovié, eds. The
RISC-V Instruction Set Manual, Volume II: Priv-
ileged Architecture, Version 1.10. RISC-V Foun-
dation. May 7, 2017. URL: https://content.riscv.
org/wp-content/uploads/2017/05/riscv-privileged-
v1.10.pdf (visited on 11/18/2018).

RISC-V Foundation. Spike, a RISC-V ISA Simula-
tor. Nov. 18, 2018. URL: https://github.com/riscv/
riscv-isa-sim/ (visited on 11/18/2018).

RISC-V Foundation. RISC-V Frontend Server.
Nov. 18, 2018. URL: https://github.com/riscv/
riscv-fesvr (visited on 11/18/2018).

Index of /pub/software/utils/dtc/. Nov. 18, 2018.
URL: https://mirrors.edge.kernel.org/pub/software/
utils/dtc/ (visited on 11/18/2018).

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

The NetBSD Foundation. pkgsrc. Oct. 5, 2018.
URL: https://pkgsrc.org/ (visited on 11/18/2018).
UEFI Forum. “The UEFI Primer”. In: (Aug. 15,
2014). URL: http://www.uefi.org/sites/default/files/
resources/UEFI%20Primer_Aug%2015%202014_
Final.pdf (visited on 11/18/2018).

devicetree.org. “Devicetree Specification”. Ver-
sion 0.2. In: (Dec. 20, 2017). URL: https://github.
com / devicetree - org / devicetree - specification /
releases/download/v0.2/devicetree- specification-
v0.2.pdf (visited on 11/18/2018).

RISC-V Foundation. RISC-V Proxy Kernel.
Nov. 18, 2018. URL: https://github.com/riscv/
riscv-pk (visited on 11/18/2018).

The GCC Team. GCC, the GNU Compiler Col-
lection - GNU Project - Free Software Foundation
(FSF). Nov. 13, 2018. URL: https://gcc.gnu.org/
(visited on 11/18/2018).

Inc100. Target Triplet - OSDev Wiki. Jan. 19,
2017. URL: https://wiki.osdev.org/Target_Triplet
(visited on 11/18/2018).

The Newlib Homepage. Mar. 17, 2016. URL: https:
/[www . sourceware . org / newlib/ (visited on
11/18/2018).

Luke Mewburn and Matthew Green. “build.sh:
Cross-building NetBSD”. In: (Aug. 21, 2003).
URL: https://www.usenix.org/legacy/publications/
library / proceedings / bsdcon03 / tech / full_papers/
mewburn/mewburn_html/index . html (visited on
11/18/2018).

llvm-admin-team. Clang C Language Family
Frontend for LLVM. Nov. 18, 2018. URL: https:
/lclang.llvm.org/ (visited on 11/18/2018).

The FreeBSD Project. The FreeBSD Project.
Nov. 18, 2018. URL: https://netbsd.org (visited
on 11/18/2018).

PMAP(9) Kernel Developer’s Manual. Ver-
sion NetBSD 8.99.25. Feb. 16, 2012.

RISC-V Foundation. “RISC-V SBI specification”.
In: (Oct. 17, 2018). URL: https://github.com/riscv/
riscv-sbi-doc/blob/master/riscv-sbi.md (visited on
11/18/2018).

Andrew Waterman and Krste Asanovié, eds. The
RISC-V Instruction Set Manual, Volume II: Privi-
leged Architecture, Version 1.10. RISC-V Founda-
tion. May 7, 2017. Chap. 3.2. URL: https://content.
riscv. org/wp - content/uploads /2017 /05 /riscv -
privileged-v1.10.pdf (visited on 11/18/2018).
SiFive - HiFive Unleashed. Nov. 18, 2018. URL:
https://www.sifive.com/boards/hifive- unleashed
(visited on 11/18/2018).

