
A Cryptanalysis of IOTA’s Curl Hash Function

Michael Colavita
Harvard College

Garrett Tanzer
Harvard College

May 27, 2018

“Don’t roll your own crypto” is a compulsory uttered mantra that serves as a good guiding prin-
ciple for 99.9% of projects, but there are exceptions to the rule.1

- David Sønstebø, Founder of IOTA

Abstract

In this paper, we analyze the security of IOTA’s now-deprecated cryptographic hash function Curl. We
independently reproduce and formalize the results of Heilman et al. [7] by demonstrating a second-
preimage attack, a related digest attack, and a constructive full-state collision. We conclude that Curl
is not a secure cryptographic hash function.

1 Introduction

The cryptocurrency landscape is defined by agile development: in such a volatile speculative market, de-
velopers are strongly incentivized to play fast and loose with their schemes’ security, publishing informal
arguments based on heuristics in whitepapers as they let rigorous security proofs fall by the wayside. This
attitude has led to a spectrum of compromises, ranging from IOTA, where fundamental cryptographic primi-
tives were replaced with proprietary, unvetted solutions, to Ethereum, where a cryptographic backbone lends
a false sense of security to critical smart contracts [12].

The former of these cases is remarkable for its notoriety. Until it was replaced in early August by Keccak

[13], the cryptographic hash function Curl was a vital component of signatures in IOTA—at the time the
the world’s 9th largest cryptocurrency with a market cap of over $1.1 billion [4]. In September, Heilman
et al.’s vulnerability report was published, revealing critical flaws in Curl’s collision resistance property.
In response, the IOTA team claimed because its “tangle” blockchain variant makes use of a centralized
Coordinator to validate transactions, the security of the scheme relies only on Curl’s one-wayness—but of
course there is no security proof for this, and much of the network’s central functionality is undocumented
or closed-source. In February, the waters were muddied even further when the private email chain preceding
the disclosure was leaked, revealing more conflicting claims between the two parties and effecting skepticism
from cryptocurrency enthusiasts of the report’s conclusions [9].

In this paper, we reproduce and formalize the results from Heilman et al.’s disclosure report, providing
incontrovertible evidence that Curl is not collision-resistant. In Section 2, we provide background on the
typical guarantees expected from cryptographic hash functions and the techniques—in particular, differen-
tial cryptanalysis—used to break them. In Section 3, we describe Curl as an instantiation of the sponge
construction and analyze its mixing properties. In Section 4, we formalize several attacks on Curl’s crypto-
graphic properties, including a constructive full-state collision attack that allows us to generate unbounded
numbers of fixed-length colliding pairs. In Section 5, we evaluate the relevance of these attacks to Curl at
a structural level, rather than to the constants and parameters of its current instantiation, and in Section 7
we conclude. Our multithreaded C implementation of the central collision attack is publicly available at
curl-collisions.

1We argue that IOTA does not lie in this 0.1%.

1

https://github.com/colavitam/curl-collisions

2 Background

A cryptographic hash function is defined as an efficiently computable function h ∶ {0,1}∗ → {0,1}k [10] such
that for all probabilistic polynomial time adversaries A with access to h, the following informal properties
hold [3]:

Pre-Image Resistance: Given a random y in the range of h, A outputs an x such that h(x) = y with
negligible probability in k.

Second Pre-Image Resistance: Given a random x, A outputs an x′ ≠ x such that h(x) = h(x′)
with negligible probability in k.

Collision Resistance: A outputs an x,x′ such that h(x) = h(x′) with negligible probability in k.

We call the input to the hash function the message or the plaintext, and the output of the function the
digest or the hash. Because the existence of cryptographic hash functions implies P ≠ NP, for practical
constructions the above properties are assumed only after years of vetting by the academic community
and experienced cryptanalysts. One fundamental technique used to discover vulnerabilities in practical
cryptographic primitives is differential cryptanalysis.

Differential cryptanalysis was first discovered secretly in 1974 by the Data Encryption Standard (DES)
design team at IBM, who used foreknowledge of the attack to harden the algorithm’s S-boxes—small non-
linear functions usually implemented as a lookup table. A decade later, Biham and Shamir independently
rediscovered and applied the attack to DES, noting its remarkable resilience to the approach [2]. The term
broadly refers to techniques, usually chosen plaintext attacks, that use statistical relationships between
differences in plain- and ciphertexts, which are usually defined with XOR as ∆ = x ⊕ y. These pairs of
differences, or differentials, between the input and output of an S-box are used to trace dependencies as they
propagate across multiple iterations of a round function. The resulting path, called a differential character-
istic, describes a ∆Y = H(X ⊕∆X)⊕H(X) that occurs with significant probability. While this analysis is
usually used to extract secret keys from block ciphers, it can also be used to find collisions in a hash function
when ∆Y = 0, or to perform related digest attacks for other values of ∆Y [14].

3 Description of Curl

Curl is based on the sponge construction paradigm pioneered by the Keccak/SHA-3 cryptographic hash
function [13]. The traditional sponge construction is defined as follows [1]:

Let f be a permutation on b bits. The sponge construction has a state, or “sponge” s ∈ {0,1}b, usually
initialized to s0 = 0b. We can define this state as the concatenation of two substrings s = r∥c at all points in
time. The input message M is padded with the function pad

∣r∣ and split into ∣r∣-bit blocks. Then to compute
the hash, we proceed with two phases:

• Absorbing: For each of ⌈
∣M ∣
∣r∣

⌉ input blocks mi of length ∣r∣, sequentially set r ← r⊕mi then s← f(s).

By si, ri, and ci we denote the state of s, r, and c after absorbing mi.

• Squeezing: Starting with the empty string ∅, while the output is less than the desired length, append
r to the cumulative output and set s← f(s). Finally, truncate any extra bits so that the length of the
output is exactly the desired length, rather than a multiple of ∣r∣.

Curl differs from the standard construction in two significant ways:

1. f is a permutation on t trits, rather than b bits. That is to say, s ∈ {−1,0,1}t and s0 = 0t. To the
best of our knowledge, this has no effect on the properties of the hash function except that it harms
real-world performance.

2. Curl uses no padding function. Instead, we replace the absorbing phase’s update rule r ← r ⊕mi (or
the analogue, addition in F3) with the rule r ←mi. If ∣mi∣ < r at the end of the input, set only the first
∣mi∣ trits of r to ∣mi∣, and leave the rest unchanged. This will be relevant to the Collision Resistance
Attack we present in Section 4.4.

2

Figure 1: The traditional sponge construction [1].

Figure 2: Curl’s sponge construction.

3

sbox = [[1, 1, -1],

[0, -1, 1],

[-1, 0, 0]]

def permute(x, y):

return sbox[x+1][y+1]

def transform(state):

for r in range(81):

nstate = 729 * [0]

t = 0

p = 0

for s in range(729):

p = t

t += 364 if t < 365 else -365

x = state[p]

y = state[t]

nstate[s] = permute(x, y)

state = nstate

return state

Figure 4: Python implementation of permute and transform, for
concreteness. state is an array of length 729.

The practical implementation of Curl is instantiated with the parameters ∣r∣ = 243 and ∣c∣ = 486, and
implements f with 27 nested calls to the function transform. Mathematically, transform ∶ {−1,0,1}729 →
{−1,0,1}729 is defined in terms of the S-Box permute as follows:

transform(x)i = permute(x364i mod 729, x364(i+1) mod 729)

y
-1 0 1

-1 1 1 -1
x 0 0 -1 1

1 -1 0 0

Figure 3: Curl’s S-box, permute.

3.1 Analysis of transform

We now show that transform for this specific choice of S-box is a permutation, satisfying the requirements
of the sponge construction. We first show the following useful lemma.

Lemma 1 (Inversion Given a Single Input Trit). Given the output transform(x) = y and a single input trit
xi for some position i, x can be computed efficiently if either permute(⋅, k) or permute(k, ⋅) is bijective for
all k.

Proof. Suppose, for some choice of S-box, permute(⋅, k) is bijective for all k. Because the domain and range
of permute(⋅, k) are of cardinality 3 for fixed k, we can easily precompute the j such that permute(j, k) = `
for every k and `.

4

`
-1 0 1

-1 1 0 -1
k 0 0 1 -1

1 -1 1 0

Figure 5: The inversion table for Curl’s S-box.

Let gi = 364i mod 729. We have per the definition above that transform(x)i = permute(xgi , xgi+1).
Suppose without loss of generality that we are given xgi+1 as our single input trit. Per above, xgi is fully
determined and we can use the known yi and xgi+1 to compute this value. Next, using yi−1 and xgi , we can
compute xgi−1 . We repeat this procedure to compute xgi for all i. Because gcd(364,729) = 1, {gi ∶ 0 ≤ i < 729}
contains all integers in [0,729). Therefore, this procedure computes xi for all i, and each of these values is
fully determined by the single known trit of x. Thus, by induction, this procedure produces a complete x
such that transform(x) = y.

Suppose instead, for some choice of S-box, permute(k, ⋅) is bijective for all k. We use the same process,
proceeding forward instead of backward to fully determine the input string. Thus, in either case, we can
easily invert given a single input trit.

Furthermore, consider the situation in which our provided xgi+1 is incorrect. By incorrect, we mean that
there exists no x with the provided value xgi+1 at position gi+1 such that transform(x) = y. Per above, our
inference would succeed as we compute the other 728 trits, as they are fully determined by our choice of
xgi+1 . However, if we repeat our inference procedure a 729th time, we will be inferring xgi+1 given yi+1 and
our inferred xgi+2 . Suppose we infer that our given value is correct. This contradicts our original assumption,
as we now have that each of the output trits are produced from the inferred input trits, while we know that
our inferred xgi+1 is incorrect. Thus, we must infer a value other than the known xgi+1 . Therefore, we apply
our inference for an additional step, and if our inferred xgi+1 contradicts the given one, we report that no
such x exists. ∎

Using Lemma 1, we can construct a simple O(1)-time algorithm to compute transform−1. First, we note
that Curl’s S-box satisfies the bijectivity condition given above; permute(⋅, k) is bijective for all k. Given
the output transform(x) = y, we assume x0 ∶= −1 and use the inversion algorithm in Lemma 1 to compute
transform−1(y). If the algorithm determines there is no inverse with x0 = −1, we assume x0 ∶= 0 and repeat
the process. If this also fails, we assume x0 ∶= 1 and repeat the process. If this fails, the output has no
corresponding input. We can now proceed to prove our main theorem.

Theorem 1 (transform is a Permutation). For the choice of S-box used in Curl’s permute function,
transform is a permutation.

Proof. As the domain and range of transform are of the same cardinality, showing that for every y there
exists exactly one x such that transform(x) = y suffices to prove that transform is a permutation. Suppose,
for the sake of contradiction, that there exist x,x′ such that x ≠ x′ and transform(x) = transform(x′) = y.
Note that xi ≠ x′i for every i, as otherwise Lemma 1 implies that x = x′ by using xi as our known trit.
Furthermore, if these x and x′ exist, we can infer them from a single set of trits xi, x

′

i using the algorithm
given above.

Thus transform is a permutation if and only if there do not exist trits xi ≠ x′i and an output y ∶

{−1,0,1}729 such that the algorithm above succeeds for both fixed input trits xi and x′i on output y. To
show this is the case, we construct an inference graph, where each node represents a pair of trits (zj , z

′

j).
Without loss of generality, we reorder the x and y such that inference proceeds in reverse sequential order.
Thus, every edge from a given node corresponds to a trit in y and transitions to the state corresponding to the
inferred (zj−1, z

′

j−1). Per the argument above, the algorithm yields success if and only after 729 transitions
from our original state (xi, x

′

i) we arrive back at our original state. Therefore, we must show that this graph
contains no cycles of length 729 to prove our theorem.

To simplify the graph, we note that there are no nodes corresponding to (zj , z
′

j) where zj = z′j , as this
would imply xi = x′i for some i. Thus we construct the following graph:

5

(−1,0)

(−1,1)

(0,−1)

(0,1)

(1,−1)

(1,0)

−1

0 −1

0

1

−1

0

−1
1 −1

0

1

−1
1

Figure 6: The inference graph for Curl’s S-box.

Using this inference graph, we must determine if there are cycles of length 729. We exponentiate the
graph’s adjacency matrix to the power of 729, yielding a matrix with all zeros on the diagonal. This implies
there are no cycles of length 729 and proves that transform is a permutation.2

∎

3.2 Differential Propagation

We note that if we modify a given trit in the state of the sponge, the transform function propagates this
difference throughout the entire state. However, the rate at which it does so is relatively slow, which becomes
vital for our later cryptanalysis. We prove the following useful lemmas.

Lemma 2 (Dependent States between Rounds). Consider the sponge state sk. If there is a difference at
position p, this difference will propagate to at most the positions (727p mod 729) and (727p − 1 mod 729)
in sk+1.

Proof. The description of Curl’s transform function uses a set of indices i0, . . . , i728 generated by ij = 364j
mod 729. To compute the value at position j in state sk+1, we apply the S-box to the values ij = 364j
mod 729 and ij−1 = 364(j + 1) mod 729 in the state sk. We can invert this relationship to determine all
states from sk−1 that affect position j in sk. We note that 727 is the modular inverse of 364 modulo 729.
Given that position j in state sk is determined by positions 364j and 364(j −1) in state sk+1, a given state p
must satisfy either p ≡ 364j mod 729 or p ≡ 364(j−1) mod 729. Therefore j ≡ 727p mod 729 or j ≡ 727p−1
mod 729. Therefore only the states (727p mod 729) and (727p − 1 mod 729) are affected. ∎

Lemma 3 (Exponential Fan-out of State Differentials). Consider the intermediate states of two sponges
after k rounds with only one differential at position p. After ` additional rounds, all trits that differ lie in a
contiguous modular region of size at most 2` starting at position p′`, which we can solve for analytically.

2Note, however, that this graph does contain cycles of length 2. Thus, this S-box does not yield a permutation for states of
even size.

6

Proof. Given Lemma 2, we note that a single change can affect at most two positions in the next round.
Given a differential at position p, the following round can only have differentials at positions 727p mod 729
and 727(p − 1) mod 729. Continuing for another round, we now have potential differentials in positions:

727(727p) mod 729 = 7272p mod 729 = 7272p mod 729

727(727p − 1) mod 729 = 7272p − 727 mod 729 = 7272p + 2 mod 729

727(727p) − 1 mod 729 = 7272p − 1 mod 729 = 7272p − 1 mod 729

727(727p − 1) − 1 mod 729 = 7272p − 727 − 1 mod 729 = 7272p + 1 mod 729

This occupies the region 7272p + k for k ∈ [−1,2]. At the next intermediate state, we extend each of these
differentials to find the beginning of the new changed region. Given the region 7272p+k for a range k ∈ [a, b],
the new region is of the form 7273p + j for j ∈ [−2b − 1,−2a]. This thus yields the recurrence:

a0 = 0

b0 = 0

ai = −2bi−1 − 1

bi = −2ai−1

Note that because 727 mod 729 = −2 mod 729 and the differential may expand to two adjacent positions
(“filling in the gaps” between the entries in the scaled version original region), this resulting region is
contiguous and has size min(2`,729) by induction. The process of solving this recurrence is tedious and
non-instructive, so we do not reproduce the math here. However, we note that the final starting position
after ` states is:

p′` =
((−1)`(1 + 6p) − 3) ⋅ 2`−1 + 1

3
mod 729

This will allow us to analytically solve for position constraints in later attacks.
We further note that this function is bijective for fixed ` and p ∶ [0,729). Our expression can be written

c`−2`p mod 729 for some `-dependent constant c`. Thus, so long as 2` mod 729 has an inverse modulo 729,
the function is bijective. We have gcd(2` mod 729,729) = gcd(2`,36) = 1 and thus the inverse always exists.

∎

4 Attacks

We present several attacks on Curl below. Note that because IOTA used Curl to hash transactions of fixed
size, 2673 trytes [11], length extension attacks as in Sections 4.1 and 4.2 could not be used to launch a
realistic attack on the live IOTA network. Nevertheless, these are undesirable hashing behaviors and may
indicate further vulnerabilities. However, the attacks in Sections 4.4 and particularly 4.5 are relevant for
messages of fixed length and form a plausible attack vector.

For clarity, we define Curln(x; s) to be the length-n hash of x provided the initial state s. n and s are
optional parameters, with default values 243 and 0729 if unspecified. Let S(x) be the sponge state s after
absorbing the message x (without squeezing to generate any output). Note that with this notation, we can
decompose the hashing process into chunks with multiples of ∣r∣ size (plus a final block of size ≤ ∣r∣), as in
Curln(x∥y) = Curln(y;S(x)). Finally, by x[i ∶ j] we mean the substring of x from index i (zero-indexed) up
to and excluding index j.

4.1 Padding Attack

We formalize an attack proposed in [7], where we can create second-preimage collisions for inputs of length
not an integer multiple of ∣r∣.

Attack 1 (Identity-Mapped Padding). For any prefix p of length integer multiple of ∣r∣, if ∣m∣ > 1, then for
all integers k ≤ 243, Curln(m;S(p)) = Curln(m∥S(p)[∣m∣ ∶ k];S(p)).

7

Proof. By the definition of transform, the output is uniquely determined by the input state s = r∥c. There
are two cases:

For Curln(m;S(p)), this input state is m∥S(p)[∣m∣ ∶ 729] by the update rule in Section 3, because m
is superimposed on top of the existing state.

For Curln(m∥p[∣m∣ ∶ k];S(p)), this input state is m∥S(p)[∣m∣ ∶ k]∥S(p)[k ∶ 729].

Because the input states to transform are identical, we can use length extension to create collisions in the
last block of any message with length that is not an integer multiple of ∣r∣ = 243.

∎

4.2 Zero-Extension Full-State Collision

We now describe a straightforward full-state collision in Curl. Such a state collision in Curl was first noted
in [7]. A full-state collision is a set of plaintexts P such that for all p, p′ ∈ P , S(p) = S(p′). Note that
S(p) = S(p′) implies that Curln(p) = Curln(p

′
) for all n. We further require that all plaintexts p ∈ P are

of length 243k for some integer k. This is easily achievable using the approach described in Section 4.1.
This requirement ensures that the state of the sponge after absorbing the full-state collision plaintext is not
affected by any values that may be appended. This condition is necessary for the proof of Theorem 2.

The Curl hash function possesses the interesting design feature that Curln(0
k
) = 0n for all k ≥ 0. Thus

hashing the zero-string always yields the zero-string.3 This implies that Curln(0
243k

) = Curln(0
243j

) and
S(0243k) = S(0243j) for all k, j ≥ 0. To see why this is the case, we note that at each round, Curl’s S-box
performs the mappings (0,0) → −1, (−1,−1) → 1, and (1,1) → 0. As the sponge is initialized to the string
0729 and it remains unchanged after the first 243 values are substituted with our input, after a single round,
the sponge state will be (−1)729. After two, the sponge will be entirely 1. After three, the sponge is again
entirely 0. Thus, because the round count is a multiple of 3, our sponge arrives at the state 0729 unchanged.
By induction, this continues as we absorb additional sets of 243 zero-trits. Thus, this property immediately
admits a full-state collision: the set of plaintexts P0 = {0243k}∞k=0.

More significantly, given this full-state collision, we can generate an unbounded number of derivative
collisions.

Theorem 2 (Extension of Full-State Collisions). Given a full state collision P and a message m, for all
p, p′ ∈ P , Curln(p∥m) = Curln(p

′
∥m).

Proof. The proof of this theorem is trivial given the definition of the absorb stage. We have, per the
definition of a full-state collision that S(p) = S(p′) for all p, p′ ∈ P . As ∣p∣ = 243k for some integer k,
p will be fully absorbed after k iterations independently of m. The same analysis holds for p′. Thus
Curln(p∥m) = Curln(m;S(p)) and Curln(p

′
○m) = Curln(m;S(p′)). However, as S(p) = S(p′), these values

are identical and the messages collide. ∎

Given this property, we can stage a second-preimage attack on Curl, allowing us to generate a message m′

such that Curln(m
′
) = Curln(m) for a given m.

Attack 2 (Second-Preimage Attack Using Zero-Extension). Given a plaintext m and hashed value Curln(m),
for all p ∈ P0, Curln(p∥m) = Curln(m).

Proof. As P0 is a valid full-state collision, per Theorem 2 we have that Curln(p∥x) = Curln(p
′
∥x) for all

p, p′ ∈ P0. However, as the empty string ∅ ∈ P0, we thus have Curln(p∥x) = Curln(∅∥x) = Curln(x). Thus
p∥x is the desired second input. ∎

3IOTA purports that this feature makes it easier to recognize when zero or empty strings have been hashed, but we note
that because the hash function is deterministic, the zero-string would always have an identifiable hash value [9]. Furthermore,
it is not abundantly clear that this was a meaningful design choice for the hash function. Note that for all choices of S-box,
Curl243(0

243
) = y243 for some trit y. We can force y ≠ 0 through some slight modifications to the S-box, but this necessarily

admits another type of length extension attack where our full-state collision is the set {0243 ○ y2430 ○ y2431 ○ ⋅ ⋅ ⋅ ○ y243k }
∞

k=0. See 5.2
for a full consideration of these issues.

8

4.3 A Related Digest Attack

Due to the relatively simple cyclic structure used within transform, a related digest can be generated by
trit-shifting certain inputs. This attack was first discovered by Heilman et al. [7].

Attack 3 (Related Digest Generation through Trit-Shift Operation). For all messages m and a, b, k such
that a + ∣m∣ + b = 243, Curln(0

a
∥m∥0b) ≈ Curln(0

a−k
∥m∥0b+k) ≫ l ≈ Curln(0

a+k
∥m∥0b−k) ≪ l, for some l,

where ≫ and ≪ denote trit shift and ≈ denotes equality, except at the first and last k positions.

Proof. We first note that because modular addition is used to iterate over the positions in the previous
sponge state, adjacent positions in this cyclic list of positions are used to compute S-boxes. When we trit
shift a message that is padded by zeroes on both sides, we trit shift the entirety of the initial sponge state,
as the remainder is initialized to zero.

The trit at position p is used in the computation of the new trits at positions 727p mod 729 and 727p−1
mod 729. After a shift of one bit, these become 727(p − 1) mod 729 = 729p + 2 mod 729 and 727(p − 1) − 1
mod 729 = 729p + 1 mod 729. Critically, order is retained, but an offset is applied. This corresponds to a
circular shift at each step of transform. Thus, the final digest is a trit-shift of the original digest, with
unpredictable values outside the range of this shift. ∎

4.4 A Constructive Collision Attack

We now formalize the differential cryptanalysis approach to constructing a collision set forward by Heilman
et al. [6].

Attack 4 (Constructive Collision Generation through Differential Cryptanalysis). Through a computation-
ally feasible constraint problem and a brute force search over 12 rounds of Curl, a novel collision can be
constructed in minutes on commodity hardware.

Proof. We first select a trit position we would like to toggle between two messages. Our algorithm will then
produce two colliding messages that are identical except for the toggled trit. The algorithm proceeds in two
phases: a constraint phase and a brute force phase.

During the constraint phase, we exploit two undesirable properties of the transform function: slow
propagation of differentials and simple algebraic structure. We utilize Lemma 2, which shows that at any
state where only one differential is present, the next state can have at most two differentials. Thus, at each
round of transform, we can at most double the number of differentials in our state. As we have introduced
a single differential into our initial state by toggling a trit in our message, we must limit the spread of this
differential.

Fortunately, the Curl S-box has useful properties for avoiding the propagation of this differential. Due
to the modular structure used for computing permute, the differential will appear in the first position of one
permute operation and the second position of another. If the differential appears in the first position, we
cannot stop a new differential from occurring, as no second argument allows the output to remain unchanged
if the first input changes. However, if the differential appears in the second position, a first input of −1 allows
the differential {−1,0}, and a first input of 1 allows the differential {0,1}.

y
-1 0 1

-1 1 1 -1
x 0 0 -1 1

1 -1 0 0

Figure 7: Propagation of differentials in permute.

Thus, if we wish to limit the propagation of a differential throughout the rounds of transform, we simply
express each round as a recursive function of S-boxes and ensure that when a differential occurs in the second
input of an S-box, the first input is constrained such that the differential does not propagate. This creates
a set of constraints that guarantee that any message that satisfies the constraints will not propagate the

9

differential. Note that these constraints will constrain both positions in the message and positions in the
initial state of the sponge. As such, we must brute force an input message that generates such a state.

Unfortunately, due to the exponential blowup of these constraints, this is only feasible for a small number
of rounds. In our experimentation, 8 could be achieved on the order of minutes, while larger numbers of
rounds took on the order of hours. However, once a match is found, we have a message that can be modified
at a large set of positions such that the differential at our fixed position will not propagate for 8 rounds.

At this point, it is instructive to consider what constitutes a collision for the hash function. Because
the digest is simply extracted from the first 243 trits of the sponge state, we must guarantee that after all
27 rounds, all differentials lie in the latter two-thirds of the sponge state, which is of size 486. To do so,
we invoke Lemma 3, which guarantees that ` rounds after a state with only one differential, the number
of differentials is at most 2`. We note that after 7 rounds, at most 27 = 128 differentials exist, all in a
contiguous region. So long as this region lies entirely within the latter two-thirds of the sponge state, we
have produced a collision. Thus, we aim to find a message satisfying the precomputed constraints that
contains only one collision after an additional 12 rounds of hashing. If this is the case, with high probability
the entire differential region will lie in the sponge state not used to produce the digest, creating a collision.
Note that there are a total of 486 − 128 + 1 = 359 offsets at which the final differential may begin so as to lie
completely within the latter two-thirds of the sponge state. As the position of the differential after ` states
as computed in Lemma 3 is bijective in p, the original differential position, our final differential will lie in
the desired range with probability 231/729 ≈ 0.492.

This brute force search is feasible on commodity hardware due to the relatively low probability of dif-
ferential propagation at each round. In our experimentation, this took several minutes on commodity
hardware. ∎

Using this methodology, we were able to find the following non-trivial collisions, among others. Note that
the digests are identical despite the messages differing at a single trit.

ACMUXEIFDOIVQMVZNXPNWGSA9JGCN9RIMWOYNFLAVLBKRJPKRAYFCGSD9CAJEFVPHIWRZEKQHUHCAKKSTXM
DZMMVEVVCTQFRTMDR9QLPG9QUWBHBQBVOPDWDIOFUWBK9IREKOUVRHDODLLXCLMJWZZXENYXDUSVDGU
hash = BUEXRNXFUP9HUMBOJWJZBQKDTZKOUVUXSJAXGKMNH9I9EWNBXPBCFNEPBFCQFDYZZCBMXOTP9DOIMKEZ9

ACMUXEIFDOIVQMVZNXPNWGSA9JGCN9RIMWOYNFLAVLBKRJPKRAYFCGSD9CAJEFVPHIWRZEKQHUHCAKKSTXM
DZMMVEVVCTQFRTMDR9QLPG9QUWBHBQBVOPDWDIOGUWBK9IREKOUVRHDODLLXCLMJWZZXENYXDUSVDGU
hash = BUEXRNXFUP9HUMBOJWJZBQKDTZKOUVUXSJAXGKMNH9I9EWNBXPBCFNEPBFCQFDYZZCBMXOTP9DOIMKEZ9

As part of this work, we have created an open-source implementation of the tools used to construct a
novel collision in Curl. To the best of our knowledge, no such tools were publicly available before this
report. Additional collisions and an open-source implementation of the colliding algorithm are available at
curl-collisions.

4.5 A Constructive Full-State Collision

We next build on Attack 4 to create a full-state collision.

Attack 5 (Constructive Full-State Collision through Differential Cryptanalysis). Through slight modifica-
tions to Attack 4, we can produce a full-state collision in the sponge state, enabling generation of an arbitrary
number of collisions.

Proof. Fortunately, the extension from the singular collisions generated in Attack 4 to full state collisions is
rather trivial. Consider the final step of the algorithm, in which we search for a message pair that generates
differentials only in the latter two thirds of the sponge state. If, instead, these differentials occurred only in
the first third of the sponge state, the messages would not collide.

However, if we append 243 trits to the ends of our messages, this region will be entirely overwritten,
discarding the differentials and creating a full-state collision. Thus, we amend our search from above to seek
differentials in only the first 243 trits of the sponge state. We then append an arbitrary string of 243 trits
to both messages and create a full-state collision. Given the conditions described in Attack 4, this occurs
when the differential lies at 243 − 127 + 1 = 117 locations, which occurs with probability 117/729 ≈ 0.160. ∎

Using this methodology, we were able to construct the following full state collision prefix, excluding the
arbitrary 243 trits on the end. This search took on the order of an hour on commodity hardware.

10

https://github.com/colavitam/curl-collisions

PJGZBOAWTZGMTXBKRFQJMBWNPIKNPMBNHFMMPDZGVB9XXJ9MCJAIQKXAHRMGCWN9XL9SIYZC9TUGFEBSK
9GBNRYYAXXRWCPGTZR9XRIHXMYGRTEAHUSYGVKDSAUW9VTVJMMJXRLZRNZRPMEOFYAVBTHM9GZYEGOWQT

PJGZBOAWTZGMTXBKRFQJMBWNPIKNPMBNHFMMPDZGVB9XXJ9MCJAIQKXAHRMGCWN9XL9SIYZC9TUGFEBSK
9GBNRYYAXXRECPGTZR9XRIHXMYGRTEAHUSYGVKDSAUW9VTVJMMJXRLZRNZRPMEOFYAVBTHM9GZYEGOWQT

Full-state collisions are automatically detected and reported in our open-source implementation.

5 Structural Analysis

We now consider the attacks described above in the general model used by Curl: a sponge construction in
which input overwrites sponge state and a permutation-substitution network is used to absorb input. Let
the initial state of the sponge be given by s0 ∶ {−1,0,1}729. Let the S-box used be given by f ∶ {−1,0,1}2 →
{−1,0,1}. These analyses demonstrate that our attacks show weaknesses in the structure of Curl itself, not
just the constants and parameters selected by IOTA.

5.1 Full Parameter Invariance of Attack 1

We now consider a variant of Curl in which all semantics are identical except for a substituted S-box, f . We
note that our proof for Attack 1 remains unchanged in this setting, as it has no dependency on the S-box.
Intuitively, if we pad our message with the corresponding values in the sponge state, the state is unchanged
after the message chunk is copied in. This is true regardless of the S-box used.

Furthermore, this attack succeeds for any initialization of the sponge s0. The sponge state after hashing
a message is easily computable and deterministic regardless of the initial sponge state s0. Thus, we can
always pad with trits that do not result in a changed sponge state.

5.2 S-Box Invariance of Attack 2

Consider again the generalized version of Curl with S-box f . Our zero-extension full-state also holds in this
setting with minor modifications. Suppose our S-box specifies the mappings f(−1,−1) = a−1, f(0,0) = a0,
and f(1,1) = a1. Our sponge begins in the state 0729, proceeds to the state a7290 , then to the state a729a0

,
recursively for 27 states. We can represent this as a state machine in which we begin in state 0, then proceed
to state a0, then proceed to state aa0 , and so on. The state specifies the value of every entry in the sponge
state.

If the transitions in this state machine form a cycle of length 3, after 27 transitions we will be at our
original state 0, and the attack is unchanged. Otherwise, we may arrive at a state other than 0. In this case,
we simply extend our message with 243 trits of the value we arrived at. As our state machine must contain
a cycle (as it has three nodes and three edges), we will end up at a new state. If this state is 0, we have
produced a full state collision for {0243a2430 ,0243a2430 0243a2430 , . . .}. If the state is not zero, we simply follow
the cycle until it becomes periodic (with period 1 or 2), and produce a set of colliding messages that adheres
to that pattern. This attack is a special case of 1.

Note that while we can always produce a full-state collision regardless of f , the second-preimage attack
only succeeds when the state machine has a cycle of length 3. Otherwise, our message leaves the sponge in a
different state than it was upon initialization and we cannot use it to extend arbitrary messages. However,
if the S-box does not admit a cycle of length 3 then transform is necessarily not a permutation.

5.3 S-Box Invariance of Attack 3

Attack 3 has no dependency on the S-box and relies only on the cyclic structure of the transform function
and the state s0. As such, so long as the state s0 is initialized to k729 for some k, we can produce a similar
related digest attack by padding our message with k instead of 0, regardless of the choice of S-box.

5.4 Initialization Invariance of Attacks 4 and 5

Next, consider a generalized version of Curl in which the initial sponge state is s0 but the S-box remains
identical. We note that this does not pose a problem for our constructive collision attacks, as we determine
a message that satisfies our propagation constraints by brute force. In the new variant, we simply perform

11

this search with an initial state s0 instead of 0729. After finding a state that satisfies the constraints, the
remainder of the attack remains identical.

In the case that the S-box is not identical, we can use the same form of the attack with different
constraints, assuming the S-box still has duplicates in its rows or columns. If the S-box does not contain
duplicates in its rows or columns (and thus f(⋅, x) and f(x, ⋅) are bijective for all x), the attack no longer
succeeds, as we cannot easily constrain the propagation of differentials.

6 Signatures

While the details of IOTA’s signature scheme remain murky, we can see from the reference implementation
that signatures act on the hashes of transaction bundles, rather than on the bundles themselves [8]. This,
combined with the failure of Curl’s collision resistance property, opens IOTA up to an EU-CMA (Existential
Unforgeability Chosen Message Attack) [5].

At a high level, this attack game requires the adversary to produce a valid signature for any m given a
polynomial number of signing queries for messages m′

≠m. Because IOTA’s scheme signs h(m) rather than
m itself, a signature valid for a queried m′ will be identical to a signature for m such that h(m) = h(m′

).
This corresponds exactly to the Collision Resistance property of cryptographic hash functions; because we
can efficiently find a colliding pair m,m′ for Curl, in the EU-CMA attack game we can query a signature
for m′ and output it as a forged signature for the message m. Therefore, contrary to IOTA’s claims, Curl’s
Collision Resistance is required for the EU-CMA security of its signature scheme.

Though existential forgery and chosen message attacks may seem like implausible attack models, see the
original [7] for discussion of how they might be applied for practical attacks on the IOTA network.

7 Conclusion

In this paper, we have demonstrated, formalized, and made publicly available practical second-preimage
attacks on Curl by length extension and fixed-length/unbounded-length collision resistance attacks by dif-
ferential cryptanalysis. Our analysis suggests that these vulnerabilities are not due to the concrete parameters
used to instantiate Curl in the implementation of IOTA, like permute or ∣r∣, but rather fundamental problems
with the new variants of the sponge functions absorb and transform.

8 Acknowledgements

We would like to thank Boaz Barak for his feedback, support, and assistance in simplifying the proof of
Theorem 1.

References

[1] Bertoni, Guido, et al. “Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Appli-
cations.” Selected Areas in Cryptography Lecture Notes in Computer Science, 2012, pp. 320–337.

[2] Biham, Eli, and Adi Shamir. Differential Cryptanalysis of the Data Encryption Standard. Springer-
Verlag, 2011.

[3] Cochran, Martin. “Notes on the Wang Et Al. 263 SHA-61 Differential Path.” pp. 1–19. Cryptology
EPrint Archive, 2007, https://eprint.iacr.org/2007/474.

[4] “CoinMarketCap”, 6 Aug. 2017, web.archive.org/web/20170806014139/https://coinmarketcap.com/.

[5] Goldwasser, Shafi, et al. “A Digital Signature Scheme Secure Against Adaptive Chosen-Message At-
tacks.” SIAM Journal on Computing, vol. 17, no. 2, 1988, pp. 281–308.

[6] Heilman, Ethan. “Breaking IOTA’s Curl Hash Function.” 3 May 2018,
www.youtube.com/watch?v=x3W0TYbLk4U.

12

[7] Heilman, Ethan, et al. IOTA Vulnerability Report: Cryptanalysis of the Curl Hash Function Enabling
Practical Signature Forgery Attacks on the IOTA Cryptocurrency. 7 Sept. 2017, https://github.com/mit-
dci/tangled-curl/blob/master/vuln-iota.md.

[8] “Iotaledger/Iota.lib.java.” GitHub, IOTA, https://github.com/iotaledger/iota.lib.java/blob/f43d606f041
d1bf6eceb44d6758b710149b15d0a/src/main/java/jota/utils/Signing.java#L186.

[9] Ivancheglo, Sergey, et al. Leaked Email Chain between IOTA Foundation members and
MIT Digital Currency Initative researchers. July–October 2017, http://www.tangleblog.com/wp-
content/uploads/2018/02/letters.pdf.

[10] Rogaway, Phillip, and Thomas Shrimpton. “Cryptographic Hash-Function Basics: Definitions, Implica-
tions, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance.”
Fast Software Encryption Lecture Notes in Computer Science, 2004, pp. 371–388.

[11] Schiener, Dominik. “The Anatomy of a Transaction.” IOTA Guide, domschiener.gitbooks.io/iota-
guide/content/chapter1/transactions-and-bundles.html.

[12] Security Alert. Parity Technologies Ltd., 8 Nov. 2017, paritytech.io/security-alert-2/.

[13] Sønstebø, David. “Upgrades & Updates.” IOTA Blog, The IOTA Foundation, 7 Aug. 2017,
blog.iota.org/upgrades-updates-d12145e381eb.

[14] Wang, Xiaoyun, and Hongbo Yu. “How to Break MD5 and Other Hash Functions.” Lecture Notes in
Computer Science Advances in Cryptology – EUROCRYPT 2005, 2005, pp. 19–35.

13

	Introduction
	Background
	Description of Curl
	Analysis of transform
	Differential Propagation

	Attacks
	Padding Attack
	Zero-Extension Full-State Collision
	A Related Digest Attack
	A Constructive Collision Attack
	A Constructive Full-State Collision

	Structural Analysis
	Full Parameter Invariance of Attack 1
	S-Box Invariance of Attack 2
	S-Box Invariance of Attack 3
	Initialization Invariance of Attacks 4 and 5

	Signatures
	Conclusion
	Acknowledgements

