ENDGAME
SYSTEMS

ENDGAME
SYSTEMS

* Mac OS X and Mach

* Why use Mach for rootkits?

* User-mode Mach rootkit techniques
* Kernel Mach rootkit techniques

ENDGAME
SYSTEMS

* Traditional Unix rootkit techniques are well
understood

* Mach functionality is more obscure

* Rootkits using obscure functionality are less likely
to be detected or noticed

 Mach is fun to program

ENDGAME
SYSTEMS

e Mac OS X kernel (xnu) is a hybrid between Mach 3.0 and FreeBSD
e FreeBSD kernel top-half runs on Mach kernel bottom-half

e Multiple system call interfaces: BSD (positive numbers), Mach
(negative)

e BSD sysctls, ioctls
e Mach in-kernel RPC servers, |0Kit user clients, etc.
e Mach inter-process communication (IPC)
e Communicates over uni-directional ports, access controlled via rights

e Multiple tasks may hold port send rights, only one may hold receive
rights

ENDGAME
SYSTEMS

Mach Tasks own Threads, Ports, and Virtual Memory

BSD Processes own file descriptors, etc.

BSD Processes <=> Mach Task
e task for_pid(), pid_for_task()
POSIX Thread != Mach Thread

e Library functions use TLS

BSD Process

Mach
Thread

Mach Task

Mach
Thread

Mach Port
namespace

Mach
Thread

Virtual Memory
(mapping, permissions,
memory regions)

Mach Task/Thread System Calls

e task create(parent_task, ledgers, ledgers count,
inherit_memory, *child_task)

e thread create(parent_task, *child activation)
e vm_allocate(task, *address, size, flags)

e vym_deallocate(task, address, size)

e vym_read(task, address, size, *data)

e vym_write(task, address, data, data_count)

User-mode Mach Rootkits

* Not as “sexy” as kernel mode rootkits

* Can be just as effective and harder to detect

* Are typically application/process -specific

* Based on thread injection or executable infection

* Would you notice an extra bundle and thread in
your web browser?

ENDGAME
SYSTEMS

e Get access to another task’s task port

e task for_pid() or by exploiting a local privilege escalation
vulnerability

e Allocate memory in remote process for thread stack and code
trampoline

e Create new mach thread in remote process
e Execute trampoline with previously allocated thread stack segment
e Trampoline code promotes Mach Thread to POSIX Thread

e Call _pthread_set_self(pthread _t) and
cthread set_self(pthread t)

Mach Exceptions

e Tasks and Threads generate exceptions on memory errors

e Another thread (possibly in another task) may register as the
exception handler for another thread or task

e Exception handling process:
1. A Thread causes a runtime error, generates an exception

2. Exception is delivered to thread exception handler (if
exists)

3. Exception is delivered to task’s exception handler (if exists)

4. Exception converted to Unix signal and delivered to BSD
Process

Injecting Mach Bundles

e |nject threads to call functions in the remote process

e Remote thread calls injected trampoline code and then target
function

e Function returns to chosen bad address, generates an exception
e Injector handles exception, retrieves function return value
e Call dlopen(), dlsym(), dlclose() to load bundle from disk

e Inject memory, call NSCreateObjectFilelmageFromMemory(),
NSLinkModule()

e |[njected bundle can hook library functions, Objective-C methods

inject-bundle

* inject-bundle
—Inject a bundle from disk into a running process
—Usage: inject_bundle path_to _bundle [pid]

* Sample bundles
—test: Print output on load/run/unload
—isight: Take a picture using iSight camera
—sslspy: Log SSL traffic sent through SecureTransport
—ichat: Log IMs from within iChat

Hooking and Swizzling

* Hooking C functions is basically the same as on
any other platform

—see Rentzsch’s mach_override

* Objective-C runtime has hooking built-in:
—method_exchangelmplementations()
—or just switch the method pointers manually
—all due to Obj-C’s dynamic runtime

—use JRSwizzle for portability

ENDGAME
SYSTEMS

DEMO

13

Rootkitting the Web Browser

e What client system doesn’t have the web browser open at all
times?

e Will be allowed to connect to *:80 and *:443 by host-based
firewalls (i.e. Little Snitch)

e Background thread can poll a known site for command and
control instructions or look for instructions in HTML content
from any site

e |Injected bundles do not invalidate dynamic code signatures
(used by Keychain, etc)

Kernel Mach Rootkits

* Mach system calls allow Mach RPC to in-kernel servers
which perform task, thread, and VM operations

* RPC routines are stored in the mig_buckets hash table
by subsystem id + subroutine id

* Analogous to sysent table for Unix system calls

* Incoming Mach messages sent to a kernel-owned port
are dispatched through mig_buckets

* We can interpose on these function calls or inject new
RPC servers by modifying this hash table

ENDGAME
SYSTEMS

* 1int inject_subsystem(const struct mig_subsystem * mig)

- {

. mach_msg_id_t h, i, r;

. // Insert each subroutine into mig_buckets hash table

. for (i = mig->start; i < mig->end; i++) {

. mig_hash_t* bucket;

. h = MIG_HASH(1);

. do { bucket = &mig_buckets[h % MAX_MIG_ENTRIES];

. } while (mig_buckets[h++ % MAX_MIG_ENTRIES].num != 0 &&
. h < MIG_HASH(i) + MAX_MIG_ENTRIES);

. if (bucket->num == 0) { // We found a free spot

. r = mig->start - 1i;

. bucket->num = 1i;

. bucket->routine = mig->routine[r].stub_routine;
. if (mig->routine[r].max_reply_msg)

. bucket->size = mig->routine[r].max_reply_msg;
. else

. bucket->size = mig->maxsize;

. return 0;

. 3

. ks

. return -1;

o

16

Mach Kernel RPC servers

* In-kernel Mach RPC subsystems are enumerated
in the mig_e table and interfaces are in /usr/
include/mach/subsystem.defs

—mach_vm, mach_port, mach_host, host_priy,
host_security, clock, clock priv, processor,
processor_set, is_iokit, memory_object_name,
lock_set, ledger, semaphore, task, thread _act,
vm_map, UNDReply, default _pager object, security

Machiavelli

* Mach RPC provides high-level remote control

—vm_alloc(), vm_write(), thread create() on kernel
or any task

* Want to still use MiG generated client RPC stubs

* Machiavelli Proxy runs as background thread in
control utilities on attacker’s system

* Machiavelli Agents run on the remote compromised
host as user-mode process or in kernel

NetMessage and NetName servers

* Network transparency of IPC was a design goal
* Old Mach releases included the NetMessage Server

—Mach servers could register themselves on the local
NetName server

—Clients could lookup named servers on remote hosts

—Local NetMessage server would act as a proxy,
transmitting Mach IPC messages over the network

* These features no longer exist in Mac OS X

ENDGAME
SYSTEMS

* Machiavelli Proxy
— Runs as background thread of a Machiavelli utility
— Receives messages on proxy ports and sends to remote Agent

— Replaces port names in messages received from Agent with proxy
ports

* Machiavelli Agent
— Receives messages over network from Proxy, sends to real destination

— Receives and transmits reply message if a reply is expected

e Machiavelli Utilities

— Run on control host, use Proxy to control compromised host

20

ENDGAME
SYSTEMS

* Mach messages are structured and unidirectional

 Header:

« typedef struct
- {
. mach_msg_bits_t
mach_msg_size_t
mach_port_t
mach_port_t
mach_msg_size_t
mach_msg_1id_t

} mach_msg_header_t;

msgh_bits;
msgh_size;
msgh_remote_port;
msgh_local_port;
msgh_reserved;
msgh_id;

. Body consists of typed data items

21

Complex Mach Messages

* “Complex” Mach messages contain out-of-line
data and may transfer port rights and/or memory
nages to other tasks

* In the message body, descriptors describe the
port rights and memory pages to be transferred

* Kernel grants port rights to the receiving process

e Kernel maps transferred pages to receiving
orocess, sometimes at message-specified address

Proxying Mach Messages

* Proxy maintains a Mach port set

— A port set has the same interface as a single port and can be
used identically in mach_msg()

—Each proxy port in the set corresponds to the real destination
port name in the remote Agent

—Port names can be arbitrary 32-bit values, so port set names are
pointers to real destination port name values

* Received messages must be translated (local <=>
remote ports and descriptor bits)

 Messages are serialized to byte buffers and then sent

Serializing Mach Messages

e Serializing “simple” messages is simple as they
don’t contain any out-of-line data

e Out-of-line data is appended to the serialized
buffer in order of the descriptors in the body

* Port names are translated during deserialization

—Translating to an intermediate “virtual port name”
might be cleaner

Deserializing Mach Messages

* Port names in the mach message must be replaced
with local port names

* On Agent, this is done to receive the reply

* On Proxy, this is done to replace transferred port
names with proxy port names

—Ensures that only the initial port must be manually
obtained from the proxy, the rest are handled
automatically

* OOL memory is mapped+copied into address space

ENDGAME
SYSTEMS

int main(int argc, char* argv[])

{

kern_return_t kr;
mach_port_t port;
vm_size_t page_size;

machiavelli_t m = machiavelli_init();
machiavelli_connect_tcp(m, "192.168.13.37", "31337");

port = machiavelli_get_port(m, HOST_PORT);

if (Ckr = _host_page_size(port, &page_size)) !'= KERN_SUCCESS) {

errx(EXIT_FAILURE, "_host_page_size: %s", mach_error_string(kr));
¥

printf("Host page size: %d\n", page_size);

return 0;

26

ENDGAME
SYSTEMS

DEMO

27

Miscellaneous Agent services

* Agent must provide initial Mach ports:
—host port
—task_for pid() (if pid == 0 => returns kernel task port)
* As OS X is a Mach/Unix hybrid, just controlling
Mach is not enough
—i.e. How to list processes?

* Instead of implementing Unix functionality in Agent,
inject Mach RPC server code into pid 1 (launchd)

ENDGAME
SYSTEMS

e NKEs can extend or modify kernel networking
functionality via:

e Socket filters

e |P filters

e Interface filters

e Network interfaces
e Protocol plumbers

29

Conclusion

e Mach is a whole lot of fun

* Mach IPC can be made network transparent and
provides a good abstraction for remote host
control

* | wish my desktop was as secure as my iPhone

* For updated slides and tools go to:
—http://trailofbits.com/

