

Single Sign-On for the Internet:
A Security Story

Eugene Tsyrklevich eugene@tsyrklevich.name
Vlad Tsyrklevich vlad902@gmail.com

BlackHat USA, Las Vegas 2007

Introduction

With the explosion of Web 2.0 technology, the number of individual sites requiring
registration has dramatically increased… and it is becoming apparent that the current
authentication situation is unsustainable. To deal with the dozens of individual logins
and passwords required by different sites, users are being forced to write down their
logins or reuse the same username and password for every website. This is clearly
undesirable as it creates multiple points of attacks and a single hacked site (the
weakest link) has the potential to completely compromise a user’s digital identity on
the Internet today.

OpenID

OpenID is a Single Sign-On protocol that solves the problem of having an individual
login and password for every web site. With OpenID, a user can register once with an
Identity Provider (IdP) of their choice and then use that login on all OpenID-enabled
sites. As OpenID is a decentralized system, a user can register with any identity
provider. In the same way, any site can allow users to login using their OpenID login.
This is in contrast with systems such as Microsoft Passport that are controlled by a
single central entity.

An OpenID login is simply a URL such as http://john.doe.name/ or
http://jonny.myopenid.com/ , that contains a set of HTML tags that identify a user’s
Identity Provider:

<html>
<head>
<link rel="openid.server" href="http://www.myopenid.com/server">
</head>
<body></body>
</html>

For example, in the case above, the Identity Provider (IdP) is www.myopenid.com.

When an Identity Provider successfully authenticates a user, the IdP makes a basic
assertion that a user owns a given URL. Thus the identity provider answers the who
question – e.g. is this user john.doe.name? The IdP does NOT deal with other
questions such as the what (authorization) – e.g. is john.doe.name allowed to access a
site?

http://john.doe.name/
http://jonny.myopenid.com/
http://www.myopenid.com/

Using OpenID

Figure 1 demonstrates a sample login on an OpenID-enabled web site (also called
Relying Party).

Figure 1: Logging in

After providing their login, a user is redirected to their identity provider for
authentication – Figure 2.

Figure 2: User Authentication

After a user enters their password, IdP verifies that the user is disclosing their
information to the site that they originally thought they were logging into (Figure 3).

Figure 3: Relying Party Verification

Finally, the user is redirected back to the original site (Figure 4).

Figure 4: Logged in user

OpenID Protocol

Whilst the screenshots above might give you an impression that OpenID is a trivial
protocol, there are a number of transactions that actually take place in the background.

Figure 5: OpenID protocol

There are seven separate steps that have to take place in order to allow an OpenID
user to login. Each step represents a security risk that is described in detail in the
following sections.

Step 2: Downloading an OpenID URL

As previously mentioned, an OpenID login is simply a URL. Thus when a user logs
into a site and provides their login, the site needs to download the URL and extract
the Identity Provider address to continue with the protocol. As you can imagine,
downloading data from arbitrary hosts on the Internet is extremely risky. Here are
some of malicious URLs that any OpenID-enabled site needs to consider and to be
able to protect against:

• http://www.nsa.gov:1/, http://www.nsa.gov:2/, http://www.nsa.gov:3/, …
It is trivial to specify an arbitrary port and cause the Relying Party to port scan
any host on the Internet. Even if no harm is actually done, it is the OpenID site
that seems to carry out the scan and not the malicious user.

• https://192.168.1.15/internal/auth?ip=1.1.1.1

In addition to connecting to any host on the Internet, the Relying Party can be
tricked into connecting to an arbitrary internal host, which an external attacker
would not normally have access to. This can be exploited to access internal
scripts, for example, that can carry out unauthorized actions.

http://www.nsa.gov:1/
http://www.nsa.gov:2/
http://www.nsa.gov:3/
https://192.168.1.15/internal/auth?ip=1.1.1.1

• http://localhost:8080/

Similarly, the RP has to protect itself from a malicious user who might be
trying to bypass the firewall by forcing the web server to connect to its
firewalled off ports using the loopback interface.

• http://www.youtube.com/largemovie.flv
• http://www.tarpit.com/cgi-bin/hang.pl

Relying Parties also have to protect themselves from Denial of Service attacks
and limit the amount of data and time a single request is allowed to consume

• file:///dev/null
Finally, an RP should limit any downloads to http or https protocols. Other
protocols such as file, ftp, etc should be explicitly disallowed.

The above examples are not meant to be a comprehensive list. They merely point out
some of the attacks that an OpenID-enabled web site needs to be able to protect itself
against. As you can see, a simple task of downloading a user-controlled URL can be
quite treacherous.

Step 3: Negotiating crypto keys

To guarantee the integrity of the exchanged data (provided by HMAC), an Identity
Provider and a Relying party need to agree on a shared cryptographic key. To achieve
this, an IdP and an RP use the Diffie-Hellman (DH) algorithm to come up with a
shared symmetric key, to be used for a predetermined amount of time (see Figure 6).

Figure 6: Diffie-Hellman exchange

Unfortunately, DH is vulnerable to a man-in-the-middle attack. To address this
problem, the OpenID spec suggests that the above HTTP exchange should be
executed over HTTPS to avoid any potential attacks. However if HTTPS is being
used between the two parties, the DH key generation is no longer required, as a
random string can be securely exchanged over the established SSL connection. With

http://localhost:8080/
http://www.youtube.com/largemovie.flv
http://www.tarpit.com/cgi-bin/hang.pl

HTTPS required to guarantee the security of the transaction, the Diffie-Hellman
exchange represents an unnecessary complexity that can be eliminated.

Step 4: Relying Party to Identity Provider redirect

Once the IdP has been identified and the crypto keys have been exchanged, the web
site (Relying Party) redirects the user to the Identity Provider for the actual
authentication. The user is redirected to their IdP server using a simple HTTP redirect
construct:

Location: http://www.myopenid.com/server?
openid.assoc_handle=%7BHMAC-SHA1%7D%7B4..&
openid.identity=http%3A%2F%john.doe.name%2F&
openid.mode=checkid_setup&
openid.return_to=http%3A%2F%2www.somesite.com%2F&
openid.trust_root=http%3A%2F%2www.somesite.com%2F

Unfortunately, the IdP server address is specified by the web site itself. Thus a
malicious Relying Party can easily redirect a user to a malicious, yet identically
looking, provider that can be used to steal a user’s password. Today, “phishing” is the
most well known attack against OpenID protocol and remains unsolved.

It should also be noted that the same attack can be carried out by a malicious URL
host without the Relying Party realizing that such an attack was even taking place. For
example, a malicious http://john.doe.name/ host could return

<link rel="openid.server" href="http://www.myprecious.com/server">

instead of

<link rel="openid.server" href="http://www.myopenid.com/server">

causing the Relying Party to send the user to the wrong IdP! The end result would be
the same – a user’s identity would be stolen, potentially without them even realizing
that they had just been phish’ed.

Steps 5 & 6: Identity Provider authentication

Once the user is redirected to the Identity Provider (IdP) server, they log in and
authorize the Relying Party. Once they are logged into one site, they can be
automatically logged into other sites. Whilst of great convenience to the user, the IdP
becomes a central clearing place for all user logins. Thus a malicious IdP can easily
spy on a user’s activity on the Internet. Apart from using multiple OpenID logins,
there is little that a user can do today to avoid disclosing their surfing habits, when
using OpenID enabled sites, to their Identity Provider.

http://john.doe.name/

Step 7: Identity Provider to Relying Party redirect

Once a user is authenticated, the Identity Provider redirects them back to the original
web site:

Location: http://www.somesite.com/finish_auth.php?
openid.assoc_handle=%7BHMAC-HA1%7D%7B47bb..&
openid.identity=http%3A%2F%2Fjohn.doe.name%2F&
openid.mode=id_res&
openid.return_to=http%3A%2F%2www.somesite.com&
openid.sig=vbUyND6n39Ss8IkpKl19RT83O%2F4%3D&
openid.signed=mode%2Cidentity%2Creturn_to&
nonce=wVso75KH

The problem with this redirect is the fact that anyone who can obtain this URL (e.g.
by sniffing the wire) can replay it and get logged into the site as the victim user. Some
of the Identity Providers use nonces (number used once) to allow a user to log into the
site once and fail all the consecutive attempts. The nonce solution works if the user is
the first one to use the URL. However a fast attacker who is sniffing the wire can
obtain the URL and immediately reset a user’s TCP connection (as an attacker is
sniffing the wire and knows the required TCP sequence numbers) and then execute
the replay attack as described above. Thus nonces only protect against passive
attackers but cannot prevent active attackers from executing the replay attack.

Other attacks

Once a user is logged in, there are a number of other attacks that can be executed
against the user. One of the attacks is a cross-site request forgery:

<html><body>
<iframe id="login"
src="http://bank.com/login?openid_url=john.doe.name" width="0"
height="0"></iframe>

<iframe id=“transfer"
src="http://bank.com/transfer_money?amount=100&to=attacker"
width="0" height="0"></iframe>
</body></html>

The above HTML code contains 2 hidden iframes that silently log a user into their
banking site (assuming the site is trusted and a user has already logged into another
OpenID site) and then transfer the money to an attacker. The above attack succeeds
because the Identity Provider, and not the Relying Party, dictates the user login
security policy. Thus OpenID Relying Parties have little say over how users should
login because they do not control their login security policy.

Security Benefits

Besides the obvious benefit of having a single login and password that do not need to
be written down anywhere to be remembered, OpenID also has another important
security advantage. As the majority of users will only use one OpenID login, the
authentication of that login can be made extremely secure. At present, it is expensive
for individual web sites to provide their users with extra security features such as
client-side certificates, smartcards or SecurIDs. However, with OpenID an Identity
Provider might be able to afford to put the time and money into securing a single
“front gate” instead of having dozens of sites securing their individual “front gates”.
This has the potential to greatly increase the security of our everyday logins.

Conclusion

Whilst this paper has presented a number of attacks against OpenID, it still remains
the only viable option for the Internet-wide SSO system. Some of the attacks
presented are either partially solved already or can be solved with relative ease. Other
attacks such phishing and the redirect attack require further thought. However, it is
our belief that OpenID can be made secure.

	Introduction
	OpenID
	Using OpenID
	OpenID Protocol
	Step 2: Downloading an OpenID URL
	Step 3: Negotiating crypto keys
	Step 4: Relying Party to Identity Provider redirect
	Steps 5 & 6: Identity Provider authentication
	Step 7: Identity Provider to Relying Party redirect
	Other attacks
	Security Benefits
	Conclusion

