I OpenD

Single Sign-On for the Internet:
A Security Story

Eugene Tsyrklevich eugene@tsyrklevich.name
Vlad Tsyrklevich vlad902@gmail.com

BlackHat USA, Las Vegas 2007

Introduction

With the explosion of Web 2.0 technology, the number of individual sites requiring
registration has dramatically increased... and it is becoming apparent that the current
authentication situation is unsustainable. To deal with the dozens of individual logins
and passwords required by different sites, users are being forced to write down their
logins or reuse the same username and password for every website. This is clearly
undesirable as it creates multiple points of attacks and a single hacked site (the
weakest link) has the potential to completely compromise a user’s digital identity on
the Internet today.

OpeniD

OpenlD is a Single Sign-On protocol that solves the problem of having an individual
login and password for every web site. With OpenlD, a user can register once with an
Identity Provider (I1dP) of their choice and then use that login on all OpenlD-enabled
sites. As OpenlD is a decentralized system, a user can register with any identity
provider. In the same way, any site can allow users to login using their OpenID login.
This is in contrast with systems such as Microsoft Passport that are controlled by a
single central entity.

An OpenlID login is simply a URL such as http://john.doe.name/ or
http://jonny.myopenid.com/, that contains a set of HTML tags that identify a user’s
Identity Provider:

<html>

<head>

<link rel="openid.server" href="http://www._.myopenid.com/server''>
</head>

<body></body>

</html>

For example, in the case above, the Identity Provider (1dP) is www.myopenid.com.

When an Identity Provider successfully authenticates a user, the IdP makes a basic
assertion that a user owns a given URL. Thus the identity provider answers the who
question — e.qg. is this user john.doe.name? The IdP does NOT deal with other
questions such as the what (authorization) — e.g. is john.doe.name allowed to access a
site?

http://john.doe.name/
http://jonny.myopenid.com/
http://www.myopenid.com/

Using OpenlID

Figure 1 demonstrates a sample login on an OpenlD-enabled web site (also called
Relying Party).

€3 Iyte: spread the Cred - Mozilla Firefox =0l x|

File Edit Wiew History Bookmarks Tools Help delicio.us

(:El v > - @ IIJ} !; TAG |uhttp:,l'll'jyte.cumll'authll'luginI |1'| [?'] "' Goongle e

Sign in with Openld Help

VALY Home Signup Everybody's Claims [sewen]G0

Sign in with OpenlD whatis openio?

1) http:/feugene.tsyrklevich.name| Signin

Examples:

bttt fyou.myopenid.comyf
http:ffusername livejournal .com/
http: fffirst.last.names
=axarple.iname

Don't have an OpenlD? Sign up to get one now.

Done ’rl O A

Figure 1: Logging in

After providing their login, a user is redirected to their identity provider for
authentication — Figure 2.

¥ sign In - Mozilla Firefox

File Edit ¥ew History Bookmarks Tools Help delicio.us

¢ - W - @ E @I @https:,i,l’www‘myupen\d.cum;’signinjasswurd?tid=92bcdb19I ﬁm{w% |

|»

% myOpenlID

SECURE OPENID PROVIDER

YOUR FERSONAL ICON

7) About this page Dismiss Home

Sign Up
If you hawve a MyOpenlD account, sign in here, Sign up if you don't yet have an account,

Recover Account
1 Motice Dismiss

OpenlD Site Directory

Y¥ou must sign in to authenticate to http:/fjyte.comd as as http:/feugene tovrklevich. name/.

= Sgn in with an 550 certificate

Username http://eugene.tsyrklevich.name/

Password

O Stay signed in

Sign In Cancell

Help | Feedback | Privacy Blog | About Us | & 2007 JanRain, [nc. p—
MyOpen D™ and the MyOpenlC™ website are trademarks of JanRain, Inc,

=]
Done WAL My apenid, com ﬂ 'E’T
Figure 2: User Authentication

After a user enters their password, IdP verifies that the user is disclosing their
information to the site that they originally thought they were logging into (Figure 3).

JOpenID Yerification - Mozilla Firefox

File Edit “ew History Bookmarks Tools Help delicio.us {}

ﬁ - W - @ @ E @I |ﬂhttps:,i,l’www‘myopen\d.com;’trust?requestfid=33411869' QLKJ&QJ ||

é myOpenlID

SECURE OPENID PROVIDER

WOUR PERSONAL ICON

OPENID VERIFICATION

4 site identifving as http:ffjyte.comf has asked us for confirmation that | http:ffeugene.tsyrklevich.namef is your
identity URL.

http: ffeugene. teyrklevich. name £

Home

Allow Forever| Allow Once | Deny|

Registration Personas
What exactly do these buttons do? 2

fcocount Settings
OpenlD Site Directory
Your Affiliate Sites

Sign Out

EreeY(our] Dy

Help | Feedback | Privacy Blog | About Us | @ 2007 JanRain, nc.
My Dpen|C™ and the MyCpenlC™ website are trademarks of JanRain, Inc. _I
-
Done wana, myopenid, com ﬂ E’ [/]

Figure 3: Relying Party Verification

Finally, the user is redirected back to the original site (Figure 4).

3 Iyte - Newest claims - Mozilla Firefox 10| x|

File Edit Wiew History Bookmarks Tools Help dellicio.us

@ - -_._> - @ " | ﬁ E TAG |u http:,l',l'jvte.cu:nm,l'claims,l'ﬂnu:lI |T| Pl §'|Google krg‘]
I Signed in as eugene tsyrklevich.name (Sign Out) I Help —
Jyte Home You MakeaClaim Groups Everybody’s Claims | Search | Go

Feastured Mewvest Most Wotes Discussed Zolid Cortested Recently Commented by weatched Watched conversation

Advanced Search

Tags Newest claims

culture Showing 1 to 10 of 30689 total. Next 10

food

humar Cheese.

] By o darraghg.myopenid.com 1 minute ago

Internet

lite The Jerry Springer show is the most

lanauage democratic show on television.

lifer By o darraghg.myopenid.com & minutes ago

music

philosophy @E | have read "The Attention Economy:

nolitics The Natural Economy of the Net" by

brogramming Michael H. Goldhaber.

sesraslieem By e lvan FXS 25 minutes ago ;I
Dane IE' @ A

Figure 4: Logged in user

OpenlID Protocol

Whilst the screenshots above might give you an impression that OpenlD is a trivial
protocol, there are a number of transactions that actually take place in the background.

— 7. Redirect —»

John Doe OpeniD-enabled
4 Redirett Web 2.0 sit_e aka RP
5 Enterpasswnrd‘ (e.g. www.jyte.com)

l f. Authorize RP |

l Y / 2. Dowenload CpenlD url

3. Megotiate crvpto keys ‘

v

Identity Provider aka IdP
(e.g. www.myopenid.com)

John Doe's URL host
(e.g. http:ffjohn.doe.name)

Figure 5: OpenlD protocol

There are seven separate steps that have to take place in order to allow an OpenlD
user to login. Each step represents a security risk that is described in detail in the
following sections.

Step 2: Downloading an OpenlID URL

As previously mentioned, an OpenlID login is simply a URL. Thus when a user logs
into a site and provides their login, the site needs to download the URL and extract
the Identity Provider address to continue with the protocol. As you can imagine,
downloading data from arbitrary hosts on the Internet is extremely risky. Here are
some of malicious URLSs that any OpenlID-enabled site needs to consider and to be
able to protect against:

e http://www.nsa.gov:1/, http://www.nsa.gov:2/, http://www.nsa.gov:3/, ...
It is trivial to specify an arbitrary port and cause the Relying Party to port scan
any host on the Internet. Even if no harm is actually done, it is the OpenlID site
that seems to carry out the scan and not the malicious user.

e https://192.168.1.15/internal/auth?ip=1.1.1.1
In addition to connecting to any host on the Internet, the Relying Party can be
tricked into connecting to an arbitrary internal host, which an external attacker
would not normally have access to. This can be exploited to access internal
scripts, for example, that can carry out unauthorized actions.

http://www.nsa.gov:1/
http://www.nsa.gov:2/
http://www.nsa.gov:3/
https://192.168.1.15/internal/auth?ip=1.1.1.1

e http://localhost:8080/
Similarly, the RP has to protect itself from a malicious user who might be
trying to bypass the firewall by forcing the web server to connect to its
firewalled off ports using the loopback interface.

e http://www.youtube.com/largemovie.flv

e http://www.tarpit.com/cqgi-bin/hang.pl
Relying Parties also have to protect themselves from Denial of Service attacks
and limit the amount of data and time a single request is allowed to consume

e file:///dev/null
Finally, an RP should limit any downloads to http or https protocols. Other
protocols such as file, ftp, etc should be explicitly disallowed.

The above examples are not meant to be a comprehensive list. They merely point out
some of the attacks that an OpenlID-enabled web site needs to be able to protect itself
against. As you can see, a simple task of downloading a user-controlled URL can be
quite treacherous.

Step 3. Negotiating crypto keys

To guarantee the integrity of the exchanged data (provided by HMAC), an ldentity
Provider and a Relying party need to agree on a shared cryptographic key. To achieve
this, an IdP and an RP use the Diffie-Hellman (DH) algorithm to come up with a
shared symmetric key, to be used for a predetermined amount of time (see Figure 6).

POST fserver HTTP/1.0
Host: www. myopenid. com
Content-type: application/z-www-form-urlencoded

Content-length: 204

openid.mode=aszsociate Sopenid.assoc_type=HMAC-ZHAT &
openid.session_type=DH-SHA1E:

opettd dh consumer public=OV1ewpfI31QmIPmvHE 6 g IHESSFUBD APHY2F653TT
k3arlaldvh Ve Ladk Qv QhyS GO0 OT vV N w s Vei FV 0% 2 BiuE nFtmPn7 gy g 3wE =5
NTHD =250 221 27 WEw WV g GE 1Y vilne 1 B gE Tu3Ewp WIHDh L 7K xwCyq¥ 2B 2gls O
gwezBDEE Vyuxh{%2D&openid.dh modulus=ANz50gulOX LsDhm Y msWiziEOH
Tdufo2Vebt2EMT ZuTe? louldmLEX %2 E Ve LiemOcPymZ2CEE YHMN Oyyim Glmg
3BVASEcLnSE3THHo XGHblzgd LEE1%2F 2687 go 7 8T Enx Tk gm Y 0rzlT 5bTT1 2K a3
DuE dil% 2BX UK TXEF vi8WEvsix Y Oréropenid. dh_gen=Ag%2D%3D

Figure 6: Diffie-Hellman exchange

Unfortunately, DH is vulnerable to a man-in-the-middle attack. To address this
problem, the OpenID spec suggests that the above HTTP exchange should be
executed over HTTPS to avoid any potential attacks. However if HTTPS is being
used between the two parties, the DH key generation is no longer required, as a
random string can be securely exchanged over the established SSL connection. With

http://localhost:8080/
http://www.youtube.com/largemovie.flv
http://www.tarpit.com/cgi-bin/hang.pl

HTTPS required to guarantee the security of the transaction, the Diffie-Hellman
exchange represents an unnecessary complexity that can be eliminated.

Step 4: Relying Party to Identity Provider redirect

Once the 1dP has been identified and the crypto keys have been exchanged, the web
site (Relying Party) redirects the user to the Identity Provider for the actual
authentication. The user is redirected to their IdP server using a simple HTTP redirect
construct:

Location: http:/ /www.myopenid.com/server?
openid.assoc_handle=%7BHMAC-SHA1%7D%7B4..&
openid.identity=http%3A%2F %john.doe name%2F&
openid.mode=checkid_setup&

openid.return_to=http%3A %2F %2www.somesite.com %2F&
openid.trust_root=http%3A %2F %2www.somesite.com %2F

Unfortunately, the 1dP server address is specified by the web site itself. Thus a
malicious Relying Party can easily redirect a user to a malicious, yet identically
looking, provider that can be used to steal a user’s password. Today, “phishing” is the
most well known attack against OpenlD protocol and remains unsolved.

It should also be noted that the same attack can be carried out by a malicious URL
host without the Relying Party realizing that such an attack was even taking place. For
example, a malicious http://john.doe.name/ host could return

<link rel="openid.server" href="http://www.myprecious.com/server">

instead of

<link rel="openid.server" href="http://www.myopenid.com/server’>

causing the Relying Party to send the user to the wrong IdP! The end result would be
the same — a user’s identity would be stolen, potentially without them even realizing
that they had just been phish’ed.

Steps 5 & 6: Identity Provider authentication

Once the user is redirected to the Identity Provider (1dP) server, they log in and
authorize the Relying Party. Once they are logged into one site, they can be
automatically logged into other sites. Whilst of great convenience to the user, the IdP
becomes a central clearing place for all user logins. Thus a malicious IdP can easily
Spy on a user’s activity on the Internet. Apart from using multiple OpenlID logins,
there is little that a user can do today to avoid disclosing their surfing habits, when
using OpenlD enabled sites, to their Identity Provider.

http://john.doe.name/

Step 7: Identity Provider to Relying Party redirect

Once a user is authenticated, the Identity Provider redirects them back to the original
web site:

Location: http://www.somesite.com/finish_auth.php?
openid.assoc_handle=%7BHMAC-HA1%7D%7B47bb..&
openid.identity=http%3A%2F%2Fjohn.doe.name%2F &
openid.mode=id_res&
openid.return_to=http%3A%2F%2www.somesite.com&
openid.sig=vbUyND6n39Ss8lkpKI19RT830%2F4%3D&
openid.signed=mode%2Cidentity%2Creturn_to&
nonce=wVso75KH

The problem with this redirect is the fact that anyone who can obtain this URL (e.g.
by sniffing the wire) can replay it and get logged into the site as the victim user. Some
of the Identity Providers use nonces (number used once) to allow a user to log into the
site once and fail all the consecutive attempts. The nonce solution works if the user is
the first one to use the URL. However a fast attacker who is sniffing the wire can
obtain the URL and immediately reset a user’s TCP connection (as an attacker is
sniffing the wire and knows the required TCP sequence numbers) and then execute
the replay attack as described above. Thus nonces only protect against passive
attackers but cannot prevent active attackers from executing the replay attack.

Other attacks

Once a user is logged in, there are a number of other attacks that can be executed
against the user. One of the attacks is a cross-site request forgery:

<html><body>

<iframe id="login"

src="http:/ /bank.com/login?openid_url=john.doe.name" width="0"
height="0"></iframe>

<iframe id=“transfer"

src="http:/ /bank.com/transfer_money?amount=100&to=attacker"
width="0" height="0"></iframe>

</body></html>

The above HTML code contains 2 hidden iframes that silently log a user into their
banking site (assuming the site is trusted and a user has already logged into another
OpenlD site) and then transfer the money to an attacker. The above attack succeeds
because the Identity Provider, and not the Relying Party, dictates the user login
security policy. Thus OpenlD Relying Parties have little say over how users should
login because they do not control their login security policy.

Security Benefits

Besides the obvious benefit of having a single login and password that do not need to
be written down anywhere to be remembered, OpenID also has another important
security advantage. As the majority of users will only use one OpenlD login, the
authentication of that login can be made extremely secure. At present, it is expensive
for individual web sites to provide their users with extra security features such as
client-side certificates, smartcards or SecurlDs. However, with OpenID an ldentity
Provider might be able to afford to put the time and money into securing a single
“front gate” instead of having dozens of sites securing their individual “front gates”.
This has the potential to greatly increase the security of our everyday logins.

Conclusion

Whilst this paper has presented a number of attacks against OpenlD, it still remains
the only viable option for the Internet-wide SSO system. Some of the attacks
presented are either partially solved already or can be solved with relative ease. Other
attacks such phishing and the redirect attack require further thought. However, it is
our belief that OpenID can be made secure.

	Introduction
	OpenID
	Using OpenID
	OpenID Protocol
	Step 2: Downloading an OpenID URL
	Step 3: Negotiating crypto keys
	Step 4: Relying Party to Identity Provider redirect
	Steps 5 & 6: Identity Provider authentication
	Step 7: Identity Provider to Relying Party redirect
	Other attacks
	Security Benefits
	Conclusion

