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Abstract

Distributed denial of service attacks (DDoS) are a constant problem of
network operators today. Thanks to low cost of entry, high effectiveness,
and the difficulty present in filtering out such attacks from inbound net-
work traffic, DDoS attacks are relatively common and difficult to mitigate
against.

Recent discoveries regarding the conformity of network traffic to cer-
tain power law distributions, namely Benfords and Zipfs laws, has allowed
us to develop a new method of denial of service detection based entirely on
packet header inspection. Power law distributions are fascinating artefacts
of natural processes, applications of which can be found in anywhere from
word counts in books through to numbers used in bank statements. Our
research can detect DDoS attacks by using such distributions to detect
strongly unnatural network traffic scenarios with only minimal metadata.
This however, is not the whole story. Power law potential in IDS is largely
un-researched, and could be applied for more general anomaly based IDS
purposes. It can even be used to filter for denial of service packets in live
streams of data.

What makes Power Laws both fascinating and interesting is that they
have an inbuilt resistance to attempts to tamper or subvert the data anal-
ysis. Given the low computational cost associated with Power law pro-
cessing and the foolproof security inherent to the methods, Power law
distributions make perfect tools for cyber defense, especially in the areas
of DoS and intrusion detection. In this talk we will introduce and discuss
the significance and power of power law distributions, how they relate to
computers, and how this can be used to develop new anomaly detection
systems.

1 Introduction

Network based attacks continue to be significant threats for organisations world-
wide. Attacks like the WannaCry or Petra/GoldenEye ransomware worms,

1



along with the ongoing problem of stockpiled zero day exploits being stolen
by unsavoury interests, indicate the continued requirement for intrusion detec-
tion systems capable of detecting previously unseen attacks [7]. Furthermore,
attacks like the KrebsOnSecurity DDoS amplification attack demonstrate the
rapidly growing problem that the internet of things presents [1]. First line
defences such as firewalls and signature based defenses are usually ineffective
against these kinds of attacks, usually because they are targeting services that
are being hosted by the victim organisation, or because the user is the primary
vector as is the case in social engineering scenarios (spearphishing, etc) [12].
As such, anomaly based detection systems based on determining the difference
between usual “benign” behaviour and malicious behaviour generally through
application of some kind of learning based agent, are becoming more desirable.

Anomaly based detection systems have problems though. They require train-
ing to determine what is and is not malicious, they require constant tuning
as systems and services change and evolve, and they produce many more false
positives than signature based systems. Very often they also require specialised
hardware to collate and correlate activities across an entire network. These
problems tend to exist because anomaly based detection systems need to learn
how a network works. It seems obvious that each system will behave differently,
as each system is uniquely constructed, and has differing services and users. As
such, anomaly based detection systems must learn and continue to learn what
the normal state of any given system is such that it can determine what an
unusual state is. This predisposition for false positives and requirement for on-
going learning creates a high maintenance environment that businesses are less
than excited in maintaining, given that false positives and training time both
use resources and desensitise a business to alerts [11].

An alternative way of setting up an anomaly based detection system is against
some known law or known behaviour of a system. This white paper discusses
a new such set of laws that can be applied, specifically toward network traf-
fic. These are power law probability distributions, which are related to natural
processes, and can be used to determine the difference between benign traffic
and classes of malicious traffic without any training. This white paper will in-
troduce power law probability distributions, discuss how to properly apply and
determine fitness to them, and then discuss potential applications and how such
a system could be set up.

2 Power Law Probability Distributions

2.1 An Introduction

Power law probability distributions are a class of probability distributions that
follow the general exponential decay profile of n

1
x . The interesting and useful

aspect of power law probability distributions is that they tend to be found in
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Figure 1: A visualisation of the Pareto Distribution

functions descriptive of, or dependant on a natural process [9]. They also happen
to be very sensitive to changes to that natural process, very rapidly distorting
away from the expected distribution as the process is distorted. It is rather hard
to avoid this distortion, as both humans and computers are generally bad at
approximating natural randomness. This makes power law probability distribu-
tions highly effective in determining when a natural process has been interfered
with, such as in the case of fraud [3].

While fraud detection use of power laws in financial environments is fairly well
researched, power law applications to information security is reasonably new.
This is because computers were not thought to have natural processes, being
entirely artificial constructs. However, natural processes have no requirement
to be derived from nature; while it can be argued that economics is an ex-
tension of human nature, financial transactions do not appear in nature. At
the very least it has been determined that, collectively, network traffic is likely
to approximate a natural process. It is possible that other elements of com-
puter function also approximate natural processes, however these have not been
researched yet. Naturally, this white paper cannot authoritatively discuss all
possible applications of power law probability distributions to security. What
this paper can and will discuss is how to build a bespoke system to compliment
existing network solutions.

2.2 Building Detectors

There are two kinds of probability distribution generally. Continuous distri-
butions, which are interested in the general distribution of real numbers; and
discrete distributions, which are interested in the distribution of quantities. In
order to use power law probability distributions for detection purposes, one must
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determine how well one’s data fits the distribution. Statistically, it is far eas-
ier to determine such fit with discrete distributions than continuous. So while
it is possible to build a power law detection device that relies on continuous
power law probability distributions (like for example, the Pareto distribution as
displayed in Figure 1), such construction will be left as an exercise for the reader.

To determine how well data fits any given distribution, one must use a goodness
of fit function. Such a function for a discrete distribution can be as simple as
determining the difference between what is seen and what is expected to be
seen. The simplest function is the sum of squares function, which adds together
the squares of the differences between what is seen and what is expected for
each element of the distribution, like so:

SSE =
n∑
i=1

(observedi − expectedi)2 (1)

This is an inherently simple calculation, and is not the most sensitive, however
it is still functional for detective purposes. It has been suggested that the most
sensitive detection method for power law probability distributions is the Wat-
son’s Cramer von Mises test for goodness of fit (details on how to implement
can be found in [6]), which is a far more complicated method. If possible, it is
recommended that external libraries are used to perform these kinds of assess-
ments should they be desired.

In order to determine when an anomaly has occurred, a threshold under which
deviation from the power law is accepted and above which an anomaly is re-
ported must be set. In our research [10] a numeric threshold value of 0.163 for
the Watson’s goodness of fit test is considered to be most effective for denial of
service (DoS) detection, however there is no reason to believe this is the best
possible value, and other thresholds as low as 0.01 have been suggested [2].
These relate to probability thresholds of 0.01 and 0.5 respectively. Experimen-
tation is advised, especially as some goodness of fit functions that can be used
produce wildly different statistical values.

As this is a statistical value being used for detection purposes, a catchment
window size must be set. This can be of any given size, however it should be
noted that the larger the window, the less sensitive to short events a detector
will be. Conversely, the smaller a window, the more sensitive to short events a
detector will be. The size of a window also can increase the number of false posi-
tives detected, namely that small windows can be so sensitive that short changes
in traffic appear as attacks. The recommended window size is approximately
1000 packets in total.

2.3 Zipf’s Law

In its more general form [8], Zipf’s law states that if elements are ranked by
frequency, then the probability of occurrence of an element of rank r should be
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approximately determinable by the following:

P (r) =
1

rβ
× P (1), (2)

For our purposes, we consider β to be equal to 1. Zipf’s law is best used
with groups of items. A basic network case would be ”number of packets of this
type/size/flag/etc”. Theoretically, the second most populous group should have
approximately 1

2 the number of items as the first. The third group should have
1
3 the number of items as the first, and so on. This distribution is dependant on
the population of the most populous group in each window, and will need to be
recalculated every time. Obviously, this is going to be a reasonably slow part
of this calculation, and is the reason that while this can be conceptually easier
to apply to metrics it is less capable than Benford’s Law.

2.4 Benford’s Law

Benford’s law [6] states that the probability of occurrence of each leading digit
d (d ∈ 1...9) of a large set of decimal numbers generated by a natural process is
given as

P (d) = log10(1 +
1

d
). (3)

Note that the obtained probability distribution is not dependent on the dataset
being measured. Further, Benford’s law may also be used to predict the distri-
bution of first digits in other bases, e.g., binary, besides decimal, and also for
the second and subsequent digits. The following gives the predicted frequencies
for the first digits of decimal numbers.

Digit 1 2 3 4 5 6 7 8 9
Prob. 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Benford’s law does not change with regard to the data it collects, the values
above are the same for every benford compliant data set. This means one can
hard code the expected quantities as a function of their catchment window
size. This makes detecting with Benford’s law mostly a bucketing exercise, and
consequentially very fast. The drawback is that Benford’s law is more difficult
to apply to metrics, as it deals with numbers that are generated by natural
processes. An example from prior research is that Benford’s law is applicable to
the time between arrivals of different network packets. If one finds a metric that
conforms to Benford’s law, this is usually of far better use in detective terms.

3 Applicability to Security

3.1 Overview

While the above can be applied to essentially any computing environment, as-
suming that at first you have determined that the metrics you wish to use
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Figure 2: Benford’s law analysis of
packet inter-arrival times during sev-
eral short DoS attacks

Figure 3: Benford’s law analysis of
packet inter-arrival times during four
short DoS attacks

Figure 4: Zipf’s law analysis of packet
length during the scenario displayed in
Figure 3

Figure 5: Zipf law analysis of packet
length during a Slowloris attack

are power law probability distribution compliant, we will be discussing what is
known to work and what is believed to work currently in research circles. We
will discuss DoS detection and network anomaly detection methods we have
looked at in our research, then we will quickly investigate the possibility of user
activity profiling, and then finish up with our overarching detector system, the
Probability Engine to Identify Malicious Activity or PEIMA, as an example of
how to apply this to a network.

3.2 Denial of Service Detection

Power law probability distributions, especially Benford’s law, are extremely ef-
fective at detecting flood based DoS attacks [10]. This is because flood DoS
attacks, simply by virtue of being flooding attacks, break any conceivable nat-
uralness of a network. Packet inter-arrival times conform to Benford’s law on
account of them being generated by that naturalness. Benford’s law tends not
to work if the numbers in a data set are not long enough, as Benford’s law
partially works on the interaction of orders of magnitude and natural proba-
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bility distributions. Because flooding attacks are dependant on large quantities
of data passing into a network to overwhelm the target, necessarily this must
reduce the time between each packet. As a result the traffic cannot follow Ben-
ford’s law. In order to reverse this, the traffic must be spread out again to follow
a more natural rate. At worst, this is equivalent to heavy user usage, and is no
longer an effective DoS. Intriguingly, even very heavy user usage follows power
law probability distributions in general naturally. This means that power law
probability distribution analysis is not only difficult to fool, it is capable of de-
termining the difference between suddenly heavy user traffic and a DoS attack
by virtue of the laws themselves.

Denial of service attacks appear as distinct deviations from conformity with
Benford’s law as can be seen in the multiple attacks in Figure 2. This appears
with either Benford’s law applied to inter-arrival time (Figure 3), or Zipf’s law
with whole packet length (Figure 4). Zipf’s law and packet length tend to work
due to flood based attacks having similar packet sizes from their attackers, es-
pecially in cases of amplification attacks, where the attack is often tuned to the
most effectively amplifying response. This also allows us to determine some-
thing about the attack at the same time as detecting it. A weak or non-existent
anomaly in length when analysed by Zipf’s law may indicate an attacker ag-
gressively randomising packet sizes, or many attackers with unique packet sizes,
while a strong anomaly may tell us that an attacker is using the same packet
for the attack.

This ability to learn something about attacks at the same time they are de-
tected can theoretically be extended to other metrics. An anomaly in TCP flag
types (SYN, ACK, etc) when analysed would also indicate a flood, and would
be significantly stronger in the case of a single flag based flooding attack (SYN
flooding, for example). A lack of such anomaly whilst still detecting anomalies
in length or inter-arrival time could indicate that the attack was over UDP, and
so on.

We can also detect attacks that are not strict flooding attacks. In Figure 5,
we can see the results of power law analysis of packet length during a Slowloris
attack. While it is not consistent, we can still see large and distinct anomalies
from power law conformity, and therefore know an attack is underway. Con-
sequentially, as this looks markedly different from traditional flooding based
attacks, which are consistently large anomalies over time, one would be able to
tell that an attack is a Slowloris attack simply by looking at it.

Power law probability distributions work generically across network traffic. This
means that any sufficient subset of traffic can be analysed in the same way that
traffic in general can be. The result of this is that if one splits up the network
traffic based on source or destination, the apparent source and target of an
attack can be determined due to the presence of anomalies matching those in
the overall network traffic. This also means that we can detect both DoS and
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Figure 6: Three digit Benford’s law analysis for an Nmap session using the -A
flag

Distributed DoS (DDoS) attacks, as cumulatively, all traffic can be analysed in
the same way. Even if an attacker performs a timing attacks such that each
attacking client is not performing a DoS alone, we can analyse all of their traffic
together and still detect an ongoing attack.

Essentially, with only extracting packet length and the time stamp from each
packet header, one can detect DoS attacks and learn something about them.
Collecting more information from the header (TCP flags, source and destination
IP addresses) allows us to learn even more. Notably, this requires no learning,
no deep packet inspection, is hard to fool, and even works while the contents of
the packets are encrypted.

3.3 Network Anomaly Detection

Power law probability distribution based detection methods are not limited to
DoS attacks, and have potential toward general intrusion detection [4, 5]. What
we know so far is that attacks based on rapid, or similarly sized packets can
be detected for similar reasons to DoS attacks. An example of this kind of at-
tack is CVE 2013-2028, a brute force buffer overflow style attack which attacks
the server very quickly with a rapid succession of packets. Another example is
Nmap’s -A profile, as can be seen in Figure 6. Anomalies generated this way are
smaller and less easy to spot than DoS generated anomalies, however they are
still present. While it is feasible that some attacks will have more recognisable
anomalies than others, scripted attacks that happen over time will naturally
distort a network in different ways to an attack that happens very quickly. It is
likely that the best way to handle such classification is with some kind of signa-
ture based or learning agent. This agent would not have to learn the nature of a
network though, that is already handled by the applicability of power law prob-
ability distributions. The agent would instead be designed to detect anomalies
in a network and determine what kind of attack it may be. Such a system does
not exist yet, so the effectiveness of such a system cannot be guaranteed. That
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said, research into power law probability distribution based network anomaly
detection outside our own has shown great promise, and as a completely differ-
ent way of looking at network data presents further opportunities for detecting
attacks that may have been missed by other solutions on a network.

3.4 User Profiling

Networks are not the only field that power law probability distributions can be
applied. It has been shown that power laws are also effective at determining
user identity, specifically through keystroke profiling [5]. Essentially, keystroke
latency follows Zipf’s law, allowing us to know at a glance whether a user is
actually typing. This may not seem helpful at a first glance, however, attacks
using malicious USB devices that present themselves as keyboards to hijack a
computer would be immediately detectable via this method, as would any script
or program that acts as keyboard input. What is far more interesting however
is that individual typists differ in different ways from Zipf’s law. One typist will
have a different set of latencies to another, and will be different from Zipf’s law
in unique amounts to other users. This allows a profile of that user to be built,
and for deviations from that user’s profile to be detected. In this way, one could
determine when a user’s account was being used by an unauthorised user.

This concept of profile building can be extended. It was also shown in [5]
that while Benford’s law does not apply to keystroke latency, it can be used to
determine a profile in the same way Zipf’s law can. This is because while the
latency is not necessarily a number generated in such a way that conforms to
Benford’s law, the use of said law allows one to detect when the system gener-
ating that number (the user) has changed. This can be theoretically extended
out to any user affected process. One could feasibly profile user commands, user
network usage, and other user computer usage to profile a user and determine
when their activity has changed.

3.5 PEIMA system

PEIMA, the Probability Engine to Identify Malicious Activity, is a framework
we have built to showcase what we would expect a power law probability dis-
tribution detection engine would look like. The engine consists of a number
of detectors, each providing a stream of conformance datapoints to a decision
engine, that then uses those datapoints to determine if there is an attack, and
what measures to take to respond to it. For example, in a DoS scenario, the
engine (as displayed in Figure 7) would detect a strong, continuous anomaly in
both zipf analysis of length and benford analysis of inter-arrival time, and could
send an alert to security staff, and maybe even attempt to alter the network
gateway to drop packets coming from the apparent attacker. While this sounds
a lot like a usual IDS/IPS style set up, the difference is that power law analysis
is so light weight, this could very easily be entirely deployed on the gateway
itself.
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Figure 7: Example overview diagram of PEIMA system

Due to the inherent capability for Benford’s law to be hardcoded into a de-
tection mechanism, as well as the minimal amount of mathematical work to
determine if an anomaly exists or not, and finally the fact that detection can be
as simple as a numeric threshold, PEIMA can run on very low resources. That
does not mean that PEIMA is limited by low resources, a far more complicated
example could be a system integrated into an existing security setup.

Existing security appliances, for example network taps and log analysis soft-
ware currently feeding a Security Information and Event Management (SIEM)
style solution could also perform power law probability distribution analysis, or
have such analysis performed on their exported data. PEIMA’s decision mech-
anism could then be integrated into the existing alert generating software as
another view on the data collected from around the network. This could al-
low for more accurate alert generation, as by virtue of power law probability
distribution conformance being hard to fake, an alert for an attack with cor-
responding PEIMA alerts would be more likely a legitimate attack than one
without. Also, suspected infiltration of a network coupled with deviations from
PEIMA user profiles would be more severe than without.

PEIMA could be implemented as a host based IDS, or a network based IDS, or
both. This flexibility, low overhead, and lack of training time for what is effec-
tively an anomaly based IDS system is what can set the PEIMA based system
apart from other anomaly IDS solutions.

4 Conclusions

Power law probability distribution based anomaly detection provides a new way
of looking at information security metrics in general. In the realm of network
security, it has been shown to be capable of providing a new, fast, and accurate
way of detecting DoS attacks, as well as having possible extensions to general
intrusion detection across a network. It is also possible to extend such anal-
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ysis to user profiling and host based intrusion detection. In this white paper,
we have discussed some of the required details in constructing such a system,
as well as some of the inherent benefits of such a system. We have also dis-
cussed a framework, PEIMA, around which one can build a power law based
anomaly detection system. Power law probability distribution analysis is new
to information security, and the possible benefits and applications are not yet
fully plumbed, so expect not only to see these starting to appear in solutions in
the near future, but also to see more applications in the security space.
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