

rVMI

A New Paradigm for Full System Analysis

JONAS PFOH SEBASTIAN VOGL

Overview

- 1. About us
- 2. Motivation
- 3. Architecture
- 4. Implementation
- 5. Demo
- 6. Summary

1. About us

1. About us

Dr. Jonas Pfoh

- Engineers at FireEye
- Work on malware detection
- Research Interests
 - Virtualization and Virtual Machine Introspection
 - Malware and exploitation techniques

Dr. Sebastian Vogl

2. Motivation

2. Motivation: What we did

rVMI: "Debugger on Steroids"

- Runs completely isolated form the target through
 Virtualization
- Full control over the target with VMI
- Leverages memory forensiscs to make the full state of the guest available to the analyst
- Interactive and scriptable

Manual dynamic analysis

- Analyzing malware and exploits
- Gain a full understanding of a sample
- Tools
 - 1. Debuggers
 - 2. Sandboxes

Debuggers

- Provide visibility and flexibility
- BUT: NEVER DESIGNED FOR MALICIOUS SOFTWARE
- Inherent attack vectors
 - 1. No isolation
 - 2. Rely on the OS to function and to obtain data
 - 3. Designed to trace a single process (or the kernel)

Sandboxes

- Provide isolation and evasion resistance
- BUT: NEVER DESIGNED FOR INTERACTIVE ANALYSIS
- Manual analysis is difficult
 - 1. Limited Visibility
 - 2. Limited Control
 - 3. Limited Interface

The current state of interactive dynamic analysis

- Neither debuggers nor sandboxes were designed for this
- We face a tradeoff between visibility/flexibility and isolation/evasion resistance
- We are not aware of any tool that combines these properties
- We need a new tool that was designed for the job.

3. Architecture

3. Architecture: Goals

- 1. Resistant to evasion
- 2. Full system analysis
- 3. Interactive and scriptable

3. Architecture: Resistant to evasion

Virtualization Layer **Guest Operating** System Virtual Hardware Hypervisor

Building Block 1 Virtualization

- Isolate the target system from the analysis environment
- Increase evasion-resistance

3. Architecture: Full system analysis

Building Block II VMI

- Provides full control of target system
- Allows access to entire state of the VM
- Exports this functionality through an API

3. Architecture: The semantic gap

3. Architecture: The semantic gap

```
1010010100100100011010
                                    N010110100010101110110
01101000101011101100
                                       1001011100101100010
                          EPROCESS
111101000101011101
                                        001110010100001010
                     KPROCESS Pcb;
000010111011000100
                                         00110100010111101
                     EX PUSH LOCK Prod
01110110000101010
                                          .0001000101111010
10010010111001011
                                          1000010101001111
01010011100101000
                                         00101111000011010
                     EX RUNDOWN REF R
011101100001010100
                                         01010001001000001
                      NORD64 UniquePr
01111101010101111101
                                        110001000101111010
100100101110010110001
                                        R11000010101001111
```


3. Architecture: Full system analysis

Building Block III Semantic Layer

- Reconstruct the semantic knowledge of the guest OS
- Export this knowledge through an API

3. Architecture: Interactive and scriptable

Building Block IV Interactive Interface

- Environment for the actual analysis
- Provides access to the VMI layer and the semantic layer
- Support for scripting

4. Implementation

4. Implemetation: Virtualization

Building Block I Virtualization

- Chose KVM/QEMU as a basis as it is the natural choice for a debugger
- System does not depend on the hypervisor

4. Implemetation: VMI

Building Block II VMI

- Extended KVM/QEMU with a VMI interface
- Interface exposes the hardware features
- Exported this interface via QMP

4. Implemetation: Semantic Layer

Building Block III Semantic Layer

- Used Rekall as a basis
- Supports multiple OSs
- Can access OS structures in python
- Added a QMP address space to access the VM through VMI

4. Implemetation: Interface

Building Block IV Interactive Interface

- Used the iPython shell of Rekall as basis for the debugger interface
- Added Rekall plugins for VMI commands
- Added rVMI events and exported an interface to these events

5. Demonstration

5. Demonstration

6. Summary

- Interactive dynamic malware analysis is an important technique
- Currently no tools for the job
- We presented rVMI: Debugger on steroids
 - Isolation
 - Full control and full access
 - Interactive and scriptable

https://github.com/fireeye/rVMI

We are open to feedback and feature requests and hope for contributions.

