blfsl?:k hat

USA 2017

A New Paradigm for Full System

JONAS PFOH
SEBASTIAN VOGL



Overview /

1. About us

2. Motivation

3. Architecture

4. Implementation
5. Demo

6. Summary




blgek hat

usA 2017



Dr. Jonas Pfoh

* Engineers at FireEye

« Work on malware detection

 Research Interests
 Virtualization and Virtual Machine Introspection

 Malware and exploitation techniques

Dr. Sebastian Vogl




2. Motivation L

usA 2017




2. Motivation: What we did /

rVMI: “Debugger on Steroids*

 Runs completely isolated form the target through
Virtualization

* Full control over the target with VMI

- Leverages memory forensiscs to make the full state of
the guest available to the analyst

 Interactive and scriptable




2. Motivation: Why we did it

Manual dynamic analysis

* Analyzing malware and exploits
» Gain a full understanding of a sample

e TOOIs

1. Debuggers

2. Sandboxes




2. Motivation: Why we did it /

Debuggers
* Provide visibility and flexibility
- BUT: NEVER DESIGNED FOR MALICIOUS SOFTWARE

 Inherent attack vectors

1. No isolation
2. Rely on the OS to function and to obtain data

3. Designed to trace a single process (or the kernel)




2. Motivation: Why we did it /

Sandboxes

* Provide isolation and evasion resistance
« BUT: NEVER DESIGNED FOR INTERACTIVE ANALYSIS

 Manual analysis is difficult
1. Limited Visibility
2. Limited Control

3. Limited Interface




2. Motivation: Why we did it /

The current state of interactive dynamic analysis

* Neither debuggers nor sandboxes were designed for this

» We face a tradeoff between visiblility/flexibility and
ISolation/evasion resistance

* We are not aware of any tool that combines these properties

=) \\/e heed a new tool that was designed for the job.




_;__Q-———_:—-—__——

3. Arhifectu re




3. Architecture: Goals /

1. Resistant to evasion
2. Full system analysis

3. Interactive and scriptable




3. Architecture: Resistant to evasion /

Building Block 1
Virtualization Layer Virtualization

e " ayatem from the

System : :
anhalysis environment

* |ncrease
evasion-resistance

Virtual Hardware

Hypervisor

| y




3. Architecture: Full system analysis /

Building Block Il
Virtualization Layer VMI

 Provides full control of

Guest Operating target system

System

 Allows access to entire
state of the VM

: « Exports this
Virtual Hardware functionality through

Hypervisor an API




3. Architecture: The semantic gap

15

10100101001001000110100010111101010010110100010101110110
01101000101011101100010001011110101001001011100101100010
11110100010101110110000101010011110101001110010100001010
00001011101100010001011110100101001001000110100010111101
01110110000101010011110101100010101110110001000101111010
10010010111001011000101111010001010111011000010101001111
01010011100101000010100000101110110001000101111000011010
01110110000101010010100010010010100001001010001001000001
01111101010101111011110101100010101110110001000101111010
10010010111001011000101111010001010111011000010101001111




3. Architecture: The semantic gap

101001010010010001101
01101000101011101104
111101000101011101
00001011101100010¢

-t EPROCESS
KPROCESS Pcb;
_EX_PUSH LOCK Proc

01110110000101010 "LARGE INTEGER Cre
10010010111001011 "LARGE INTEGER Exj
01010011100101000 EX RUNDOWN REF R
011101100001010100 JORD64 UniquePr
0111110101010111101 ~T ENTRY A
10010010111001011000N - "

16

p010110100010101110110
001011100101100010
P01110010100001010
)0110100010111101
0001000101111010
1000010101001111
P0101111000011010
y01010001001000001
110001000101111010
A11000010101001111

/ o crt
usA 2017



3. Architecture: Full system analysis /

Building Block Il
Virtualization Layer Semantic Layer

Guest Operating * Reconstruct the
semantic knowledge of

System
y the guest OS

« Export this knowledge
through an API

Virtual Hardware Semantic
Layer

Hypervisor

| y




3. Architecture: Interactive and scriptable /

T Building Block IV
virtualization Layer Interactive Interface

« Environment for the
actual analysis

Guest Operating

System
* Provides access to the

VMI layer and the
semantic layer

Virtual Hardware Semantic » Support for scripting
Layer

Hypervisor

18




4. Implement

P il

blgek hat

usA 2017

AV ©

;s 2



4. Implemetation: Virtualization /

Building Block |
Virtualization

Guest Operating

System e Chose KVM/QEMU as a

basis as it is the natural
choice for a debugger

« System does not
Virtual Hardware depend on the

KM hypervisor
QEMU

w y




4. Implemetation: VMI /

Building Block I

VMI
G“esét gfeirqa“”g . Extended KVM/QEMU
y with a VMI interface

* Interface exposes the
hardware features

Virtual Hardware « Exported this interface
KVM via QMP
AV QVIP

QEMU

| y




4. Implemetation: Semantic Layer /

Building Block Il
Semantic Layer

Guest Operating
System

 Used Rekall as a basis
* Supports multiple OSs

 Can access OS
structures in python

Virtual Hardware OMP r'VMI Plugins « Added a QMP address
KVM Client space to access the VM
VMI Rekall Core through VMI

QEMU

22




4. Implemetation: Interface

Guest Operating
System

Virtual Hardware
KVM

QEMU VIMI

23

QMP
Client

r'VMI Plugins

Rekall Core

4

Building Block IV
Interactive Interface

« Used the iPython shell
of Rekall as basis for
the debugger interface

 Added Rekall plugins
for VMI commands

« Added rVMI events and
exported an interface
to these events




emonhnstration

usA 2017




5. Demonstration

DEMO




blgek hat

usA 2017




)
Summary <O FireEye

* |nteractive dynamic malware analysis is an
Important technique
* Currently no tools for the job
 We presented rVMI: Debugger on steroids
* |solation
* Full control and full access
* |Interactive and scriptable

https://github.com/fireeye/rVMI

We are open to feedback and feature requests and hope for
contributions.




