
Bypassing Local Windows Authentication to Defeat Full Disk

Encryption

Ian Haken (ian.haken@synopsys.com)

November 12, 2015

Full disk encryption is a defensive measure in which all data stored on a physical disk or volume is
encrypted, therefore protecting any data stored on a device such as saved passwords, emails, session tokens,
and intellectual property. Full disk encryption protects data at rest, assuring confidentiality even when an
attacker has physical access such as when a device is lost or stolen. BitLocker is Microsoft’s full disk encryption
solution included with certain versions of Windows, first introduced in 2007.

This paper describes an attack which is able to bypass Windows authentication, even in the presence of
BitLocker full disk encryption, and thus allows an attacker to access a user’s data or install software. On
systems effected this attack therefore bypasses all of the protections offered by BitLocker.

1 Introduction

In 2007, starting with Windows Vista, Microsoft
began including a full disk encryption feature
named BitLocker with professional and enterprise
versions of Windows. Full disk encryption helps
protect users from threats with physical access to
the device or disk. This can, for example, pre-
vent the exposure of proprietary information and
saved account credentials if a laptop is lost, stolen,
or even left temporarily accessible to an attacker
(such when left unattended).

Under the hood, BitLocker’s preferred method
of operation utilizes a system’s Trusted Platform
Module (TPM) to store the secret key used for
full disk encryption, and is able to use the fea-
tures of the TPM to safely provide transparent,
passwordless decryption of the disk on boot. Be-
cause BitLocker can work in a way that’s com-
pletely transparent—without any extra passwords
or prompts on boot—many corporate settings have
opted to enable this form of full disk encryption as
a part of their data loss prevention strategy.

However, this paper presents an attack which
takes advantage of physical access to bypass lo-
cal Windows authentication. When BitLocker is
enabled without any form of pre-boot authentica-
tion by using the TPM (which is Microsoft’s rec-
ommended deployment strategy for BitLocker [1]),
this would allow an attacker to access a user’s data

even though the disk is fully encrypted. Unlike
other attacks that have been considered against
full disk encryption generally or BitLocker specifi-
cally, this attack is completely reliable on systems
effected, is a software-only attack, is fast (there is
no brute-forcing of keys and only takes seconds to
execute), and does not require a sophisticated at-
tacker (only requiring standard open source tools
and a few commands).

This paper describes details of BitLocker’s op-
eration and Windows authentication in order to
illuminate both the countermeasures in place and
how the attack described is able to operate de-
spite them. Notwithstanding the level of detail
discussed in the first few sections, the attack in sec-
tion 5 is fairly straightforward and non-technical,
so eager readers are encouraged to skip straight to
that section, referring back to the earlier sections
if greater insight is desired.

In section 2 the motivation and goals of full disk
encryption schemes are described. The next sec-
tion then discusses the relevant functionality of the
Trusted Platform Module, specifically how it is uti-
lized by Microsoft BitLocker to provide transpar-
ent full disk encryption. Section 4 describes as-
pects of Windows domain authentication and rele-
vant parts of the Kerberos protocol. The final two
sections then describe the attack itself and the im-
pact and mitigation of this attack.

1

2 Full Disk Encryption

Full Disk Encryption (FDE) is a technique of se-
curing data at rest by encrypting all data before
it is written to a disk (or, depending on the imple-
mentation, a particular volume/partition). FDE
avoids the problem of needing to selectively spec-
ify what data should be considered sensitive by
protecting all data on the system. This avoids ac-
cidental leakage of data, such as leaving an unen-
crypted working copy in a temporary directory, a
swap partition, or a page file.

FDE is intended to mitigate the impact of a ma-
licious actor who has physical access to the de-
vice containing the data. FDE will generally offer
no defense against a remote attack since a sys-
tem that is fully operational and allowing remote
access should already be transparently decrypting
any data from the disk. Therefore, FDE should
be viewed as a mitigation against attacks which
include physical access, such as when a device is
lost, stolen, or left unattended. In is therefore in
the context of physical access that we entertain the
attack in section 5.

Depending on the implementation FDE can, be-
sides offering confidentiality of data at rest, also
offer an assurance of system integrity when the
operating system and applications are encrypted.
Although an attacker may write arbitrary cipher-
text to an encrypted disk, they would generally
be unable to determine where on the disk target
files are located, much less be able to write cipher-
text that has meaningful plaintext once decrypted
by the victim. This means an attacker would face
significant difficulty attempting to plant malicious
software on the device, despite having physical ac-
cess. BitLocker also specifically protects the pre-
boot process from modification using the Trusted
Platform Module, as detailed in the next section.

Disk encryption is not a new technology. File-
Vault, Apple’s FDE implementation for OS X, has
been available since 2003. The Linux module dm-
crypt, which is usually used for disk encryption in
Linux distributions, has been available since 2005.
FreeBSD has two disk encryption modules, GBDE
and GELI, originally released in 2002 and 2005
respectively. BitLocker, Microsoft’s FDE imple-
mentation, was first included with Windows Vista
in 2007. Disk encryption is also included in many
smartphone operating systems; for example, An-

droid introduced full encryption of the data parti-
tion starting with its 3.0 release in 2011.

As with any form of encryption, FDE uses a
secret key to encrypt the data. Since the en-
crypted volume usually includes the operating sys-
tem, most FDE implementations prompt the user
for a password early in the boot process (before the
full operating system can be read from the disk)
in order to derive this secret key. We will refer to
this step as pre-boot authentication. BitLocker,
however, has been developed to take advantage of
the Trusted Platform Module (TPM) available on
many platforms. A TPM is a hardware chip capa-
ble of performing a number of cryptographic oper-
ations and storing secrets. The next section details
how BitLocker uses the TPM in order to safely
store its secret key for FDE, thereby enabling Bit-
Locker to transparently decrypt the operating sys-
tem volume on boot without requiring pre-boot
authentication.

Even when a TPM is available, BitLocker has
the option to enable pre-boot authentication, re-
quiring the user to supply a PIN or insert a USB
key containing a saved secret. However, this comes
with disadvantages as described by Microsoft [4]:

“Pre-boot authentication provides excel-
lent startup security, but it inconve-
niences users and increases IT manage-
ment costs. Every time the PC is unat-
tended, the device must be set to hiber-
nate (in other words, shut down and pow-
ered off); when the computer restarts,
users must authenticate before the en-
crypted volumes are unlocked. This re-
quirement increases restart times and
prevents users from accessing remote PCs
until they can physically access the com-
puter to authenticate, making pre-boot
authentication unacceptable in the mod-
ern IT world, where users expect their
devices to turn on instantly and IT re-
quires PCs to be constantly connected to
the network.

If users lose their USB key or forget their
PIN, they cant access their PC without a
recovery key. With a properly configured
infrastructure, the organizations support
will be able to provide the recovery key,
but doing so increases support costs, and

2

users might lose hours of productive work
time.”

Microsoft therefore explicitly recommends not
using pre-boot authentication when possible [1].
The attack described will take advantage of this
configuration.

3 Trusted Platform Modules

The Trusted Platform Module (TPM) is a stan-
dard for a hardware device capable of various
cryptographic operations, such as secure key gen-
eration and random number generation. It also
has capabilities for performing remote attestation
(that is, providing assurance to a remote third-
party that particular software is being run on a
device) and securely storing secrets. It is this last
feature that is used by BitLocker to store a disk’s
decryption key, which this section will detail.

This section goes into detail on how the TPM
is used to store secrets for BitLocker, but many
specifics are intentionally omitted or simplified for
the sake of brevity and scope. If the reader is inter-
ested in the complete technical details, the TPM
Library Specification [6] has more information.

A TPM is capable of sealing a secret, which en-
crypts the secret in such a way that it is bound
to the specific TPM sealing the secret, the cur-
rent software running on the device, and the con-
figuration of that software. The last two features
are measured using the TPM’s Platform Configu-
ration Registers (PCRs) which are used to record
the software and configuration of the device. How
the PCRs is used is up to the application in ques-
tion (for example, BitLocker by default only uses
4 of the 24 PCRs).

A critical aspect of the PCRs’ operation is that
their values cannot be set directly; instead one can
only append values to PCRs. When the machine
is first booted, all of the PCRs are initialized to a
zero value. When the platform instructs the TPM
to update a PCR with a new value, that value is
appended with the PCR’s previous value, hashed,
and the result is saved to the PCR. This means
that short of calculating a hash collision, an op-
erating system is unable to set arbitrary values in
the PCRs.

Using the PCRs, the boot process for a plat-
form establishes a chain of trust. The first code to

execute on the device (e.g. the BIOS or EFI) is
assumed to be trusted. It hashes its own code and
configuration and puts the result into the PCRs.
It then hashes the next stage of the boot process
(usually the master boot record and bootloader) as
well as its configuration (such as the boot drive’s
partition table), puts that result in the PCRs, and
then hands off control to the next boot stage. That
next boot stage is then responsible for hashing the
next stage of the boot process (such as the Win-
dows boot manager), putting that value in the
PCRs, and then handing off control. In this fash-
ion, each part of the boot sequence is responsible
for fingerprinting the next and putting that result
into a PCR before passing on control. This way
any change to the boot sequence (such as using
an attacker-controlled boot drive) will result in a
different set of values in the PCRs.

When the TPM seals a secret value, it uses any
(or all) of the PCRs as a parameter. The TPM
will then only unseal the secret if the current val-
ues of the PCRs match the values at the time the
secret was sealed. In effect, this means that only
the software which stored the secret in the TPM
to begin with is capable of retrieving it on sub-
sequent boots. Not only does this prevent an al-
ternate operating system from extracting the Bit-
Locker key from the TPM, it also provides an im-
plicit integrity check on the boot process which can
detect forms of malware such as bootkits.

A simplified version of the boot process is shown
in figure 3. This figure omits many values that
go into PCR registers (such as configuration val-
ues, partition tables, etc) and collapses some boot
stages, but illustrates the general procedure in
which each component’s signature is added to the
TPM’s PCRs before being given control. If any
part of the boot process is modified on a subse-
quent boot (such as booting off a different disk or
removable media), the PCR values will also be dif-
ferent and the TPM will not unseal the decryption
key.

By using the chain of trust, the TPM can be
used to store BitLocker’s key and therefore avoid
any need for the key to be specified by a user.
Thus BitLocker’s FDE can operate in a completely
transparent way; many users may not even real-
ize that FDE is enabled on the device. When
a machine with BitLocker configured this way is
turned on, it will boot all the way into the full op-

3

BIOS/EFI
MBR and
bootloader

Operating System
(Encrypted)

RAM

TPM

1.1: Read and hash

1.2: Save to PCRs
1.3: Pass control

2.1: Unseal key

2.2: Save key to RAM

2.3: Pass control

3: Use key as needed

1. The BIOS/EFI hashes the next boot stage: the MBR, bootloader, etc. It puts the result in TPM
PCRs. Control is passed to the next boot stage.

2. The Windows bootloader asks the TPM to unseal the BitLocker encryption key, which will verify
the current PCR values. The returned key is stored in RAM, the operating system is decrypted, and
control is passed to the operating system.

3. The operating system continues to decrypt disk contents on the fly using the key stored in RAM.

Figure 1: Simplified BitLocker boot process

erating system without any interaction, eventually
presenting the user with the usual Windows login
screen.

To an attacker, there are a number of compo-
nents which may be attacked with the ultimate
goal of accessing the plaintext user data on the
disk. If early parts of the boot chain have a de-
fect which can be compromised, or if the root
trust object (e.g. the BIOS or EFI) can be writ-
ten with an unsigned image, the attacker could
spoof the remaining PCRs and then pass control to
an attacker-controlled operating system which can
simply request the BitLocker key from the TPM.
There are a number of modern defenses that make
this more difficult, such as UEFI Secure Boot [5].

The TPM itself could be attacked in an attempt
to retrieve the decryption key. In 2007, Evan
Sparks demonstrated an attack on the TPM which
allowed him to reset the PCR register values by
grounding a particular circuit line while the ma-
chine was already running [11]. Using this tech-
nique, an attacker could boot into a custom oper-
ating system, reset the PCR values to zero, and
then set its own PCR values directly in order to
unseal the key. This issue was fixed in the 1.2

TPM specification, but it does not preclude other
hardware-based attacks.

Once the TPM has released the key to the oper-
ating system, the operating system will keep that
key in memory to transparently encrypt and de-
crypt disk sectors on the fly. This means the RAM
itself can be attacked to try and retrieve the key,
such as in a cold boot attack [10].

Each of the above options presents significant
difficulties, and Microsoft discusses how most of
these attacks are mitigated by BitLocker’s design
[7]. Attacking the BIOS/EFI is platform specific
and is likely not be possible if its images need to
be signed by the manufacturer. Attacking later
parts of the boot chain such as the master boot
record or the Windows bootloader would likely
be difficult because these components are small
and single-purpose, leaving them with a relatively
small attack surface. Finally, cold boot attacks
are not totally reliable, involve a greater degree of
sophistication, and may be impossible if the mem-
ory components of the device are non-removable
and the system is configured to not boot off of any
secondary devices.

In lieu of any of the above, the final target for

4

attack would be the operating system itself which
has been given the decryption key and is tasked
with protecting it and using it responsibly. Since
a machine with passwordless BitLocker will trans-
parently retrieve the decryption key and boot to
the Windows login screen, Windows authentica-
tion becomes the attack surface for defeating Bit-
Locker in this paper. The next section describes
the details of Windows domain authentication in
order to provide insight into how the attack is able
to bypass it.

4 Kerberos and Windows Do-
main Authentication

As mentioned above, when BitLocker is transpar-
ently enabled using the TPM the boot process will
transparently retrieve the decryption key from the
TPM and boot up as usual to the Windows login
screen. To an attacker, the login screen is the only
barrier between the attacker and the user’s data.

In the absence of full disk encryption, local Win-
dows authentication is not a true barrier; an at-
tacker can simply change local account passwords
on the disk and use those altered credentials to lo-
gin. With BitLocker enabled, this is not a viable
attack.

The login screen presents an attack surface in
the form of domain authentication. Corporate en-
vironments use centralized domain accounts which
can be used to authenticate with multiple ma-
chines and services. When logging into a machine
using a domain account, that machine contacts the
domain controller (DC) in order to verify the cre-
dentials provided, and may or may not grant access
based on the DC’s responses.

Windows authentication is locally handled by
the Local Security Authority (LSA), an extensible
system which can use any number of Security Sup-
port Providers (SSPs) [3]. A number of SSPs are
included with Windows including Kerberos which
is the default protocol used for client-domain au-
thentication [8].

One could write a book to completely cover the
Kerberos protocol (indeed, some have [9]), so this
paper will only just cover the relevant parts of the
protocol and do so at a very high level. Kerberos
may have different servers such as the authenti-
cation server (AS) and the key distribution center

(KDC), but for this summary we will treat both of
these services as residing on the domain controller
(DC). We will be abstractly referring to a “target
service” to which a user may want to gain access,
though in our current context the target service
will just be the local workstation.

Kerberos manages mutual authentication using
shared secrets; for user accounts this is generally a
password hash. Each machine in the domain also
has an account in the Kerberos database (formally
called machine accounts) which also have a shared
secret key (formally called machine passwords).

Kerberos operates using session-long authenti-
cation tokens called tickets. When a user first
authenticates to a Kerberos domain (using their
password), they are given a ticket-granting-ticket
(TGT). This ticket is then used for the rest of the
session instead of the user’s password whenever re-
questing application authorization. In particular
when requesting access to an application service
(such as the login to the local workstation), the
TGT is used to request a ticket for that service,
and this service ticket is then verified by that tar-
get service.

This workflow is visually shown in figure 2. The
response from the DC in step 2 includes both the
TGT and an associated secret key encrypted with
the user’s password. The login screen will use the
typed password to decrypt the session key from
the response, the login failing at this point if the
typed password is different from the one in the
DC’s account database. Similarly, the ticket T re-
turned by the DC in step 4 has a portion signed
with the target service’s machine password. When
this ticket is passed to the target service in step 5,
that machine verifies T using its own copy of the
machine password, thus verifying that the ticket
was generated by the DC.

As noted above, the target service in our sce-
nario is the local workstation, so an attacker can’t
intercept or manipulate the AP REQ/AP REP
messages. However, the domain controller is re-
mote, and since the attacker has physical control
of the machine, the attacker also has control of
network communication and can direct communi-
cation to an attacker-controlled “mock” domain
controller. The mock domain controller can be
configured by the attacker to respond to any traffic
as though it were the true domain controller.

In this exchange, there are two unknowns to

5

Target Service Local Domain Controller

1. AS REQ(krbtgt)

2. AS REP, TGT

3. TGS REQ(host/host.realm), TGT

4. TGS REP, T

5. AP REQ(host/host.realm), T

6. AP REP

Figure 2: The Kerberos exchange for workstation login using domain credentials

an attacker: the user password (used to en-
crypt/decrypt the TGT key) and the machine
password (used to encrypt/decrypt part of the
ticket T). In our scenario however, both places
where the user password is used is under control of
the attacker. That is, the attacker will both be en-
tering the password on the Windows login screen
and will be setting the user password in the mock
DC account database. However, the machine pass-
word is saved on the (encrypted) workstation and
is therefore unknown to the attacker. If the DC
uses a different machine password when creating
the ticket T, the machine will be unable to verify
the ticket and Windows will display the following
message to the user on the login screen:

“The trust relationship between this
workstation and the primary domain
failed.”

So even with a mock domain controller, an at-
tacker will be unable to generate a ticket T that
the machine will accept.

Omitted from the discussion so far is what hap-
pens when authenticating with a domain account
when the domain controller is unreachable. For
instance, if a laptop is being used in a hotel and is
not on the corporate network or is simply offline,
users are still able to unlock the machine using
domain credentials. This is because Windows will
(by default) cache credentials and use that cache
when the DC is unreachable [2].

The credential cache will be the target of the
attack in this paper. By poisoning the local cre-
dential cache with an attacker-known password,
the attacker is then able to log in to the system

using that password. This attack is achieved us-
ing the password change Kerberos protocol to poi-
son the credentials cache. When changing a user’s
password, the workstation instead of requesting
a TGT will request an application ticket for the
kadmin/changepw service. The DC will supply
such a ticket (again, with a secret encrypted us-
ing the user’s current password), and the worksta-
tion will use this in the request to set a new pass-
word with the DC. However, in no part of this ex-
change is a machine password involved. Nonethe-
less, when the password change protocol is com-
plete the Kerberos SSP updates the local creden-
tial cache with this new password.

The password reset exchange for Windows do-
mains using Kerberos is described in full detail in
RFC 3244 [12]. Since there is no machine password
involved, this is an exchange which the mock DC
can participate. Getting the local workstation to
participate in this exchange just requires the DC
to announce that the user’s password has expired,
which will then cause the workstation to prompt
the user for a new password. Using this prompt,
the attacker can initiate the exchange. Fundamen-
tally, this is the root of the issue described in this
paper: the password reset exchange does not re-
quire the DC to provide authentication (i.e. an
unknown machine password) and the client-side
implementation of this exchange will update the
local credentials cache after a successful exchange.
This exact procedure for exploiting this defect is
detailed in the next section.

6

5 The Attack

As described in the prior sections, the attack to by-
pass local authentication and thereby defeat Bit-
Locker’s full disk encryption assumes the following
conditions:

1. BitLocker is enabled without pre-boot au-
thentication, so the attacker is able to boot
up the machine to the login screen.

2. The machine has joined a domain and an au-
thorized domain user has previously logged
into the machine.

Assuming these conditions apply, the attack
simply requires setting up a mock domain con-
troller with the target user account’s password set
as expired. The shell commands in figure 3 is
an example of how to do this using Samba on
a Debian-based Linux distribution. The exam-
ple assumes the target machine is attached to the
MISKATONIC domain and the user account name
is ihaken. When performing this attack against
an actual target, the attacker could retrieve the
domain and username from network traffic (both
will show up in plaintext as part of DNS/Kerberos
protocols) or just by reading both names off of the
login screen on the target machine.

The next step is to connect the target machine to
the network where this DC advertises its presence.
Once connected, the attacker logs in to the target
machine using the password specified when setting
up the domain user account (in the example in fig-
ure 3: “password!23”). Because the password is
considered expired, the target machine will prompt
the attacker to set a new password (which the
attacker will set to an arbitrary, attacker-known
value). Although the login will still fail (because
the machine password on the DC is absent), the
new user password value nonetheless poisons the
local credentials cache. Thus, the final step is to
disable the machine’s network connection and lo-
gin with the new password, which will be validated
against the poisoned cache.

Once logged in, the attacker now has access to
all of the user’s data, such as emails, intellectual
property, saved passwords, cached credentials, etc.
If the user is a local administrator, the attacker
could even dump the BitLocker key from kernel
memory. Though as noted by Microsoft [7]:

“When an attacker has sign-in access to
the PC, there are few reasons for the at-
tacker to decrypt the drive, because they
would already have full access to the data
within it.”

In a situation where the victim does not real-
ize their machine is under attack (e.g. the ma-
chine has been left temporarily unattended), the
attacker could install malware on the device, such
as a keylogger or backdoor, and return to the de-
vice to the unwitting victim (commonly called an
“evil maid” attack).

This attack is 100% reliable on effected systems,
is not sophisticated (no custom tool was developed,
no patches to Samba were necessary, and it was
executed with just a few shell commands), and
can be executed in a matter of seconds. Config-
uring Samba manually, this can be done in under
a minute. If a tool was written to respond auto-
matically based on DNS/Kerberos requests (thus
automatically determining the domain/realm and
the username), this could be used to bypass the
login screen in a matter of seconds.

Although this attack is specifically a bypass of
Windows authentication, it is primarily of inter-
est as a bypass of BitLocker’s full disk encryp-
tion. It assumes physical access to the target ma-
chine, and the only context in which this assump-
tion does not already imply total access is when
the disk is encrypted. However, this authentica-
tion bypass applies in general and is conceivably
a vector for accessing a user’s machine/data in a
less invasive manner than rebooting the machine
into an attacker-controlled operating system (the
typical attack vector when given physical access to
an unencrypted device). For example, if a laptop
were left unattended only briefly, an automated
version of this exploit could allow an attacker to
bypass the lock screen and plant malware on the
computer in a matter of seconds, whereas an alter-
nate attacks requiring a full reboot would be too
time-consuming and more noticeable.

6 Impact and Mitigations

As described, any system using BitLocker without
pre-boot authentication and using domain creden-
tials is vulnerable to this attack. In testing, all ver-
sions of Windows since Vista (Vista, 7, 8, and 10)

7

$> apt-get install -y samba > /dev/null

$> samba-tool domain provision

Realm [MISKATONIC.UNI]: MISKATONIC.UNI

Domain [MISKATONIC]: MISKATONIC

Server Role (dc, member, standalone) [dc]:

DNS backend (SAMBA INTERNAL, BIND9 FLATFILE, BIND9 DLZ, NONE) [SAMBA INTERNAL]:

DNS forwarder IP address [192.168.56.10]: 192.168.56.1

Administrator password:

Retype password:

$> smbpasswd -a -n ihaken

Added user ihaken.

$> NOW=`date`; date -s '2001-01-01 00:00:00'

$> echo -e 'password!23\npassword!23' | smbpasswd -s ihaken

$> date -s "$NOW"

Figure 3: Example configuration of the mock domain controller for the attack

are vulnerable. On such machines, any data that
can be read by the domain account is then readable
by the attacker. If the domain account has local
administrative rights, this means all data on the
drive can be read. Essentially, BitLocker provides
no protection on these systems.

Microsoft has investigated this issue and is plan-
ning to release an update which prevent this ex-
ploit in November 2015. As usual, the most impor-
tant security procedure is to make sure you have
applied all security updates to your effected sys-
tems.

Until the update is released, there is no simple
solution to this problem. If data loss prevention
is critical, you can enable pre-boot authentication
with BitLocker, i.e. require a PIN or USB key.
However, as noted in Microsoft’s notes above, this
increases the risk and cost of using BitLocker, and
it introduces a great deal of friction for users.

Similarly, simply using a BIOS boot password
would prevent this attack (since it would prevent
an attacker from booting the machine at all), but
deploying and managing machine BIOS passwords
corporation-wide may not be practical for reasons
similar to managing pre-boot authentication.

It is also possible to disable cached credentials
in the Windows LSA or (equivalently) to require
authentication with the DC in order to login. This
also prevents this attack, but means users will not
be able to use their machines when offline or oth-
erwise disconnected from the corporate network.
Since this would make a laptop unusable outside
of the office, this is generally not an acceptable

option.

This attack is a exploiting an artifact of the un-
derlying protocol used for client-domain communi-
cation which has existed since this part of the pro-
tocol was first designed for Windows 2000. Indeed,
in testing this attack was effective on all versions
of Windows since Windows 2000 (even though this
is wasn’t relevant until BitLocker was introduced
with Windows Vista).

I suspect this weakness in the protocol comes
about because this threat model was not applica-
ble when it was originally designed. At that point
in time, an attacker having physical control of a
client machine meant it was already totally com-
promised. However, as this paper demonstrates,
the threat model needs to be revisited. What was
once a perfectly reasonable protocol breaks down
under this revised threat model. This is a good les-
son to be taken from this research. Threat models
can change over time even when the software in
question doesn’t. However, when threat models
change, the security architecture of applications
may need to be carefully revised along with them.

References

[1] “BitLocker Countermeasures.” [Online]. Avail-
able: https://technet.microsoft.com/

en-us/library/dn632176.aspx

[2] “Cached credentials security in Windows
Server 2003, in Windows XP, and in Windows

8

https://technet.microsoft.com/en-us/library/dn632176.aspx
https://technet.microsoft.com/en-us/library/dn632176.aspx

2000.” [Online]. Available: https://support.
microsoft.com/en-us/kb/913485

[3] “Logon and Authentication Technolo-
gies,” [Online]. Available: https:

//technet.microsoft.com/en-us/library/

cc780455%28v=ws.10%29.aspx#w2k3tr_sec_

authn_over_tthr

[4] “Protect BitLocker from Pre-Boot At-
tacks,” [Online]. Available https:

//technet.microsoft.com/en-us/library/

dn632180.aspx

[5] “Secure Boot Overview,” [Online]. Available:
https://technet.microsoft.com/en-us/

library/hh824987.aspx

[6] “TPM Library Specification,” [On-
line]. Available: https://www.

trustedcomputinggroup.org/resources/

tpm_library_specification

[7] “Types of Attacks for Volume En-
cryption Keys,” [Online]. Available:
https://technet.microsoft.com/en-us/

library/dn632182.aspx

[8] “What Is Kerberos Authentication?” [Online].
Available: https://technet.microsoft.

com/en-us/library/cc780469%28v=ws.10%

29.aspx

[9] Jason Garman. Kerberos: The Definitive
Guide. O’Reilly Media, Aug. 2003.

[10] J. Alex Halderman, Seth D. Schoen, Nadia
Heninger, et al. “Lest We Remember: Cold
Boot Attacks on Encryption Keys,” Proc. 17th
USENIX Security Symposium (Sec ’08), San
Jose, CA, July 2008. Available: https://

citp.princeton.edu/research/memory/

[11] Evan R. Sparks. “A Security Assessment
of Trusted Platform Modules,” June 2007.
Available: http://www.cs.dartmouth.edu/

~pkilab/sparks/

[12] M. Swift, J. Trostle, and J. Brezak, “Mi-
crosoft Windows 2000 Kerberos Change Pass-
word and Set Password Protocols,” IETF, RFC
3244, Feb. 2002. [Online]. Available: https:

//www.ietf.org/rfc/rfc3244.txt

9

https://support.microsoft.com/en-us/kb/913485
https://support.microsoft.com/en-us/kb/913485
https://technet.microsoft.com/en-us/library/cc780455%28v=ws.10%29.aspx#w2k3tr_sec_authn_over_tthr
https://technet.microsoft.com/en-us/library/cc780455%28v=ws.10%29.aspx#w2k3tr_sec_authn_over_tthr
https://technet.microsoft.com/en-us/library/cc780455%28v=ws.10%29.aspx#w2k3tr_sec_authn_over_tthr
https://technet.microsoft.com/en-us/library/cc780455%28v=ws.10%29.aspx#w2k3tr_sec_authn_over_tthr
https://technet.microsoft.com/en-us/library/dn632180.aspx
https://technet.microsoft.com/en-us/library/dn632180.aspx
https://technet.microsoft.com/en-us/library/dn632180.aspx
https://technet.microsoft.com/en-us/library/hh824987.aspx
https://technet.microsoft.com/en-us/library/hh824987.aspx
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://technet.microsoft.com/en-us/library/dn632182.aspx
https://technet.microsoft.com/en-us/library/dn632182.aspx
https://technet.microsoft.com/en-us/library/cc780469%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc780469%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc780469%28v=ws.10%29.aspx
https://citp.princeton.edu/research/memory/
https://citp.princeton.edu/research/memory/
http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.cs.dartmouth.edu/~pkilab/sparks/
https://www.ietf.org/rfc/rfc3244.txt
https://www.ietf.org/rfc/rfc3244.txt

	Introduction
	Full Disk Encryption
	Trusted Platform Modules
	Kerberos and Windows Domain Authentication
	The Attack
	Impact and Mitigations

