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1 Introduction

Numerous recent papers focus on standard recurrent networks’ problems with
tasks involving long-term dependencies. In this chapter we will solve such
tasks by random weight guessing (RG). Although RG cannot be viewed as
a reasonable learning algorithm we find that it often outperforms previous,
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more complex methods on widely used benchmark problems. One reason for
RG’s success is that the solutions to many of these benchmarks are dense in
weight space. An analysis of cases in which RG works well versus those in
which it does not can serve to improve the quality of benchmarks for novel
recurrent network algorithms.

The main problem of conventional, gradient-based recurrent net learning
algorithms (see overviews by Williams, 1989; Pearlmutter, 1995; see also
Chapter 13) is this: when the net’s attractor dynamics allow for storing
long-term context (Bengio et al., 1994), error signals “flowing backwards in
time” tend to decay exponentially, as was shown first by Hochreiter (1991)
— see also Chapter 7.

In recent years numerous methods have been proposed to address this
problem. For instance, Schmidhuber (1992) suggested to compress regular
sequences with the chunking algorithm. Hochreiter’s ideas (1991) led to
the recent “Long Short-Term Memory” algorithm (LSTM, Hochreiter and
Schmidhuber, 1997a). Bengio et al. (1994) investigated simulated anneal-
ing, multi-grid random search, time-weighted pseudo-Newton optimization,
and discrete error propagation, to evaluate their performance in learning
long-term dependencies. Bengio and Frasconi (1994) also proposed an EM
approach for propagating targets.

Several researchers use the 2-sequence problem (and latch problem) to
compare various algorithms, e.g., Bengio et al. (1994), Bengio and Frasconi
(1994), El Hihi and Bengio (1995), Lin et al. (1995). For the same pur-
pose, some also use the parity problem, e.g., Bengio et al. (1994), Bengio
and Frasconi (1994). Some of Tomita’s grammars (1982) are also often used
as benchmark problems for recurrent networks (see, e.g., Bengio and Fras-
coni, 1995; Watrous and Kuhn, 1992; Pollack, 1991; Miller and Giles, 1993;
Manolios and Fanelli, 1994).

Here we will show that some instances of such problems can be solved
much more quickly by random weight guessing (RG). In other cases, however,
RG does not perform well. This paper’s purpose is not to suggest that RG
is a good algorithm for training recurrent networks. Instead it intends to
contribute to understanding RG’s significance and shortcomings in long time
lag algorithms. It also suggests that RG should be used as a first test to
evaluate some benchmark problem’s difficulty.
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2 Random Guessing (RG)

Given a particular network architecture, RG works as follows:

REPEAT randomly initialize the weights UNTIL the resulting
network happens to classify all training sequences correctly. Then
test on a separate test set.

Note that unlike simulated annealing, RG does not involve a time consuming
“cooling phase.”

We use two architectures A1 and A2 suitable for many widely used
“benchmark” problems: A1 is a recurrent, fully connected network with 1
input, 1 output, and n hidden units. Each hidden unit has a bias weight on
a connection from a “true” unit with constant activation 1.0. A2 is like A1
with n = 10, but less densely connected: each hidden unit sees the input
unit, the output unit, and itself; the output unit sees all other units; all
units are biased. We will indicate where we also use different architectures
or experimental setups.

In all our experiments, we randomly initialize weights in [-100.0,100.0].
Activations of all units (except for the “true” unit) are set to 0 at the begin-
ning of each sequence.

All the “benchmark” problems below require classifying two types of pat-
tern sequences that are fed sequentially (pattern by pattern) into the network
via its input units (in the standard way). To achieve a uniform setting, all
sequence lengths are randomly chosen between 500 and 600 (in most previ-
ously reported experiments, shorter training/test sequences have been used).
Training sets consist of 100 sequences, 50 from class 1 (target 0) and 50 from
class 2 (target 1). Unless mentioned otherwise, binary inputs are -1.0 and
1.0. Correct sequence classification is defined as “absolute error at sequence
end below 0.1”. We stop the search once a random weight matrix correctly
classifies all training sequences. Then we test on the separate test set (100
sequences). In this sense all our results measure generalization performance.

Our main motivation for using the same architectures and experimental
conditions for many different problems is to prevent critique of problem-
specific fine-tuning. For instance, in our experiments we do not adapt archi-
tectures until we find the best.

All results in the remainder of this note are averages of 10 or more simu-
lations. In all our simulations, RG classifies correctly at least 99% of all test
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set sequences; average absolute test errors are always below 0.02, in most
cases below 0.005.

3 Experiments

3.1 Latch and 2-Sequence Problems

The first task is to observe and classify input sequences. There are two
classes. There is only one input unit or input line. See, e.g., Bengio et al.
(1994); Bengio and Frasconi (1994); Lin et al. (1995). The latch problem was
designed to show how gradient descent fails. We tested two variants, both
with three free parameters.

Latch variant I. The recurrent network itself has a single free parameter:
the recurrent weight of a single tanh unit. The remaining two free parame-
ters u1 and u2 are the initial input values, one for each sequence class: For
sequences of the first class, the first input value of the sequence is the free
parameter u1, while for sequences of the second class, the first input value
of the sequence is the free parameter u2. These two free parameters allow to
simulate and simplify the situation in which another sub-network computes
the bit which should be stored in the latch. If it is not even possible to
learn u1 and u2 using the gradient, then it would not have been possible to
train this sub-network to compute the right output. The output targets at
sequence end are +0.8 and -0.8. In an online fashion, Gaussian noise with
mean zero and variance 0.2 is added to each sequence element except the
first, at each presentation. Hence a large positive recurrent weight is nec-
essary to accomplish long-term storage of the bit of information identifying
the class determined by the initial input. The latter’s absolute value must
be large to allow for latching the recurrent unit.

RG solves the task within only 6 trials on average (mean of 40 simula-
tions). This is better than the 1600 trials reported in Bengio et al. (1994)
with several methods. RG’s success is due to the few parameters and the
fact that in search space [−100, 100]3 it almost suffices to get the parameter
signs right (there are only 8 sign combinations).

Latch variant II. Sequences from class 1 start with 1.0; others with -1.0.
The targets at sequence end are 1.0 and -1.0. The recurrent network has a
single unit with tanh activation function. There are 3 incoming connections:
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one from itself, one from the input, and one bias connection (the inputs are
not free parameters). Gaussian noise is added as in variant I.

RG solves variant II within 22 trials on average. This is better than the
1600 trials reported by Bengio et al. (1994) with several methods on the
simpler variant I.

2-sequence problem. Only the first N real-valued sequence elements con-
vey relevant information about the class (the inputs are not free parameters).
Again we will consider two cases: N = 1, and N = 3 (used in Bengio et al.
1994). In the first case (N = 1) we set the first sequence element to 1.0 for
class 1, and -1.0 for class 2. The output neuron has a sigmoid activation
function; the target at sequence end is 1.0 for class 1 and 0.0 for class 2. In
case N = 3 two 3-vectors in [−1, 1]3 are randomly chosen in advance — they
represent the initial subsequences determining the sequence class. N > 1 was
chosen because the probability of obtaining random initial patterns with sig-
nificant differences increases with N . Sequence elements at positions t > N

are generated by a Gaussian with mean zero and variance 0.2.
The best method among the six tested by Bengio et al. (1994) solved the

2-sequence problem (N=3) after 6400 sequence presentations, with a final
classification error rate of 0.06. In more recent work (1994), Bengio and
Frasconi were able to improve their results: an EM-approach was reported
to solve the problem within 2900 trials.

RG with architecture A2 and N = 1 solves the problem within 718 trials
on average. RG with A1 (n = 1 in the architecture) requires 1247 trials, and
reaches zero classification error on all trials.

With N = 3, however, RG requires around 68,000 trials on average to
find a solution (mean of 40 simulations). If we ignore that RG trials need
much less computation time than EM trials then EM seems faster. RG’s
difficulties stem from the continuous nature of the search space. With N > 1,
two tasks must be learned simultaneously: recognizing a multi-dimensional
pattern (class 1 or 2), and latching it (storing one bit for the long term). The
pattern recognition task is harder for RG.

3.2 Parity Problem

The second task requires to classify sequences consisting of 1’s and -1’s ac-
cording to whether the number of 1’s is even or odd (Bengio et al. 1994;
Bengio and Frasconi 1994). The output neuron has a sigmoid activation
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function; the target at sequence end is 1.0 for odd and 0.0 for even. Bengio
et al. (1994) also add [-0.2, 0.2] uniform noise to the sequence elements.

For sequences with lengths between only 25 and 50 steps, among the
six methods tested by Bengio et al. (1994), only simulated annealing was
reported to achieve zero final classification (within about 810,000 trials).
A method called discrete error BP took about 54,000 trials to achieve final
classification error of 0.05. In Bengio and Frasconi’s more recent work (1994),
for sequences with 250-500 steps, an Input/Output Hidden Markov Model
(IOHMM) took about 3400 trials to achieve final classification error of 0.12.
Comparable results were obtained with and without noise.

Two RG cases are considered. In the first case, the inputs are binary
+1’s and -1’s. In the second case, uniform noise in [-0.2, 0.2] is added to
the input. With no noise, RG with A1 (n = 1, identical to Bengio et al.’s
1994 architecture) solves the problem within 2906 trials on average. This is
comparable to or better than the best already reported results. RG with A2
(no noise) solves it within 2797 trials. With architecture A2, but without
self-connections for the hidden units, RG solves no-noise parity within 250
trials on average. This is much better than any previously reported results.
Such excellent results can be obtained even with sequence lengths exceeding
500.

In case of noisy inputs, however, RG (with architecture A1) requires
41,400 trials on average. Although RG trials take only half the time of
IOHMM trials, IOHMMs were much faster. This suggests that adding input
noise may be a way to break down candidate learning algorithms relying a
lot on random search.

3.3 Tomita Grammars

Many authors also use Tomita’s grammars (1982) to test their algorithms.
See, e.g., Bengio and Frasconi (1995), Watrous and Kuhn (1992), Pollack
(1991), Miller and Giles (1993), Manolios and Fanelli (1994). Since we al-
ready tested parity problems above, we focus here on a few “parity-free”
Tomita grammars (the grammars #1, #2, and #4). Most previous work
facilitated the learning problem by restricting sequence length. E.g., Miller
and Giles’ maximal test sequence length is 15, and maximal training se-
quence length is 10. Miller and Giles (1993) report the number of sequences
required for convergence (for various first and second order networks with
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3 to 9 units): Tomita #1: 23,000 – 46,000; Tomita #2: 77,000 – 200,000;
Tomita #4: 46,000 – 210,000. RG, however, performs better in these cases
(as always, we use the experimental conditions described in section 2). The
average results are: Tomita #1: 182 (with A1, n = 1) and 288 (with A2),
Tomita #2: 1511 (with A1, n = 3) and 17953 (with A2), Tomita #4: 13833
(with A1, n = 2) and 35610 (with A2).

It should be mentioned, however, that by using our architectures and
very short training sequences (in the style of Miller & Giles) one can achieve
reasonable results with gradient descent, too.

4 Final Remarks

RG will not work well in case of complex architectures with many free
parameters except when solutions are rather dense in weight space. In fact,
RG-tests are useful for discovering whether this is the case or not. If so, then
the problem will not be a convincing benchmark. Our experiments with A2
(which has comparatively many hidden units and free parameters) indeed
provide examples of such cases.

A problem solvable by RG on a certain architecture, however, might still
be a useful benchmark for a different architecture.

Successful RG typically hits “flat minima” of the error function (Hochre-
iter and Schmidhuber, 1997b), that is, regions in weight space where the
training error is (a) low and (b) hardly affected by perturbations of the
weight vector. The reason is: flat minima correspond to fat maxima of the
posterior. Actually they correspond to large regions in weight space where
solutions are dense in the mathematical sense. In other words: RG works
well on problems where the precise weight values do not matter — and flat
minima precisely correspond to low-precision weights.

RG’s success depends on sufficient parameter initialization intervals (Kolen
& Pollack, 1991). For instance, given a particular architecture, the intervals
[-0.1,0.1] and [-5,5] may lead to quite different search results. Of course, the
success of algorithms other than RG also heavily depends on their parame-
ter initialization intervals, and on the length of the time intervals between
re-initializations.

It should also be mentioned that solutions to many well-known, simple,
nontemporal tasks such as XOR can be guessed within less than 100 trials
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on numerous standard feedforward architectures. Compare, for instance,
Gallant (1990).

Of course, we do not intend to say that RG is a good algorithm — it is just
a reasonable first step towards benchmark evaluation. We would never use
RG in realistic applications. Realistic tasks require either many free parame-
ters (e.g., input weights) or high weight precision (e.g., for continuous-valued
parameters), such that RG becomes completely infeasible. For example,
Schmidhuber’s task (1992) requires to memorize one particular event among
numerous other locally represented events. This in turn requires numerous
different input units and too many input weights to be guessed within rea-
sonable time.

Some of the tasks mentioned above may be easily solvable by non-neural,
symbolic methods such as Fu’s and Booth’s (1975) or graph search heuristics
such as Lang’s (1992), perhaps even much faster than by RG. The com-
parisons in this paper, however, are limited to various recent long time lag
algorithms for neural networks. Note also that symbolic methods tend to fail
in presence of noise — RNNs do not.

We are aware of two neural methods that have been successfully applied
to long time lag tasks that RG cannot solve in reasonable time due to too
many free parameters: the sequence chunker (Schmidhuber, 1992) and Long
Short-Term Memory (LSTM — Hochreiter and Schmidhuber 1997a, 1997c).
The chunker’s applicability is limited to compressible sequences, LSTM’s is
not. LSTM eliminates some of gradient-based approaches’ problems and
can solve complex long time lag tasks involving distributed, high-precision,
continuous-valued representations. Such tasks cannot be quickly solved by
RG nor by any other method we are aware of. Other interesting long time
lag approaches have been presented in papers by El Hihi and Bengio (1995)
and Lin et al. (1995). They suggest mechanisms such as long time delays
in recurrent connections to allow for handling proportionally longer tempo-
ral dependencies. Some ideas in these papers are also related to the ideas
of handling long-term dependencies by introducing multiple time scales or
a hierarchy of state variables (Mozer, 1992; Schmidhuber, 1992; Saul and
Jordan, 1996; Jordan et al., 1997).
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5 Conclusion

Previously proposed long time lag algorithms can do significantly worse than
simple RG for certain already proposed benchmark tasks. In other cases
(e.g., involving subtasks such as pattern recognition in continuous spaces, or
additional input noise), RG does not do as well. This suggests that simple-
minded strategies such as RG should be routinely included among algorithms
against which newly introduced long time lag algorithms are compared. Fur-
thermore, new benchmark tasks should be designed to make simple random
search algorithms fail on them. In particular, we recommend tasks involving
distributed and/or real-valued input and output representations.

For more sophisticated weight guessing biased towards networks with low
Levin complexity, see Schmidhuber (1997).

An obvious extension of RG will apply gradient-based optimization phases
to certain parameter initializations found by RG. In general, however, it is
not obvious a priori how to optimally allocate overall computation time to
more expensive gradient iterations as opposed to faster but less precise RG
trials.
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