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ABSTRACT

In an effort to enhance the reader’s physical understanding, this chapter begins with a discussion of fundamental
concepts including parcel oscillations in a stable atmosphere, wave propagation, and the fluid motions associated with
vertically propagating internal gravity waves. This is followed by a brief review of the theory of small-amplitude
mountain waves, beginning with the case of air flowing over a series of sinusoidal ridges in a basic state with uniform
wind speed and stability. The Jinear theory is then extended to cover isolated mountains and situations with vertical
vatiations in the basic-state wind speed and stability.

The effects of nonlinearity on the flow are introduced in a discussion of downslope windstorms. Three different
theoretical models of the downslope windstorm are compared. The first argues that the development of strong downslope
winds is analogous to the transition from subcritical to supercritical flow in a hydraulic jump. The second proposes
that downslope winds are produced by the superposition of partially reflected waves generated at atmospheric interfaces
where there is a rapid change in the static stability, such as the tropopause. The third suggests that strong winds are
produced by processes that become active when vertically propagating waves become unstable and “break” in the
upper troposphere.

The problem of forecasting downslope winds is discussed. Recent observational and theoretical investigations of the
gust structure embedded in the downslope wind current are reviewed. The paper concludes with a selective overview
of recent work on the flow around isolated three-dimensional mountains.

4.1. Introduction

A disturbance is created when stably stratified air is
forced to rise over a topographic barrier. The energy as-
sociated with that disturbance is usually carried away from
the mountain by gravity waves. Gravity waves forced by
mountains are specifically referred to as mountain waves.
Mountain waves exert a drag on the upper levels of the
atmosphere; indeed, the cumulative worldwide effect of
mountain-wave drag is believed to have a significant in-
fluence on the strength of the mean zonal circulation near
the polar jet streams. Large-amplitude mountain waves
can be associated with regions of clear-air turbulence that
pose a hazard to aviation. Mountain waves can also be
associated with strong surface winds that blow down the
mountain along its lee slope; wind gusts in excess of 50
m s~! have been measured in extreme events.

This chapter reviews some of the fundamental aspects
of mountain waves and examines recent progress in our
understanding of downslope windstorms and the airflow
around an isolated mountain. A discussion of the basic
physical properties of internal gravity waves is provided
in section 4.2, and is intended to improve the reader’s
physical intuition about the motions in these waves. Al-
though the material in section 4.2 is certainly elementary,
it is not often covered in textbooks [Gill (1982) is the
exception]. The theory of section 4.2 is applied to linear
mountain waves in section 4.3. Detailed expositions of
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linear mountain-wave theory have been provided by a
number of previous authors; therefore, section 4.3 is lim-
ited to a brief review. Downslope windstorms are discussed
in section 4.4; this material draws on a number of recent
studies that appear to have clarified our understanding of
the dynamics governing these events. Recent progress in
our understanding of the airflow over an isolated moun-
tain is described in section 4.5.

4.2. Fundamentals of internal gravity waves

While most people have some intuitive familiarity with
external gravity waves through their contact with surface
waler waves, many meteorologists are not familiar with
the atmospheric motions that occur in an internal gravity
wave. Therefore, in an attempt to gain a more thorough
physical understanding of mountain waves, let us review
some fundamental aspects of gravity waves. For simplicity,
the influence of the Coriolis force will be neglected and
the waves will be assumed to lie in the two-dimensional
x-z plane.

The basic forces that give rise to internal gravity waves
are buoyancy restoring forces. If an air parcel is displaced
vertically in a stably stratified flow, the buoyancy differ-
ence between the parcel and its environment will produce
a restoring force, accelerating the parcel back toward its
equilibrium position. In the absence of pressure gradient
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forces, the parcel will oscillate along a vertical axis through
its equilibrium position at the Brunt-Viisild frequency

1/2
N=(£%) , (4.1)

00 dz
where 8y(z) is the vertically varying mean-state potential
temperature. [ The derivation of this result may be found
in Holton (1979) p. 50, or Gill ( 1982} p. 129.] If pressure
gradient forces are again neglected and the parcel is con-
strained to oscillate along a path tilted off the vertical axis
by an angle ¢ (one might imagine that it is attached to a
slanted rod by a frictionless coupling), buoyancy forces
will produce an identical type of oscillatory motion at the
reduced frequency N cos¢. The factor cos¢ arises from
the reduction in the component of gravitational acceler-
ation, and the reduction in the apparent stratification,
along the slanting path [ see Holton ( 1979) p. 160, or Gill
(1982) p. 132]. Thus, buoyancy driven oscillations can
be accommodated at any frequency less than N by se-
lecting a suitable angle for the sloping trajectory. However,
it is not possible to support buoyancy driven parcel 0s-
cillations at frequencies greater than the Bruni-Viisild
frequency.

The pressure gradients and buoyancy forces in an in-
ternal gravity wave play the role of the slanting rod with
the frictionless coupling in the preceding illustration—
they act in concert to keep air parcels oscillating along a
path slanted off-vertical at the angle that matches the fre-
quency of the wave to the resonant frequency N cos¢. In
order to see how this works, consider small-amplitude
perturbations about a basic state at rest in a Boussinesq
atmosphere, which satisfy the linearized governing equa-
tions

du OF
+ —

il (4.2)
% + g = b, (4.3)
g? + Nw =, (4.4)
%+%=, (4.5)

where b = g(8 — 6p)/8;, P = c,8,(m — mp), and N* = (g/
8,)df,/ dz [the Boussinesq version of Eq. (4.1)]. Here =
is the Exner function pressure (p/p;)*%; xo(z) and 8o(z)
are the hydrostatically balanced basic-state pressure and
potential temperature; p, and 8, are constant reference
values, and b represents buoyancy. Equations (4.2)-(4.5)
are formally equivalent to the linearized Boussinesq
equations for an incompressible fluid (for which b= —g(p
— po) ps, P = (D — po)/ps, and N? = —(g/p.)dpo/dz).
These equations reduce to a single equation for w:
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A solution to (4.6), describing the vertical velocity per-

turbations in an internal gravity wave, is
w = wy cos{kx + mz — ut). (4.7)

Given the preceding expression for w, (4.5) implies

u= —% wp cos{kx + mz — vt), (4.8)
and (4.4) requires ’
N2
b= - we sin{kx + mz — vi). (4.9)
Finally, (4.2) and (4.8) imply
P=- ';C—T wo cos(kx + mz — vt).  (4.10)

A schematic diagram is plotted in Fig. 4.1, representing
the perturbation fields (4.7)-(4.10) at a single instant in
time. All perturbation quantities are constant along the
straight lines kx + mz = constant; these are lines of con-
stant phase, or “wave fronts.” Equations (4.7) and (4.8)
imply that u/w = —m/k; thus all air parcel motions are
parallel to the wave fronts. The angle between the slanting
air parcel trajectories and the vertical () is determined
by the dispersion relation

,_ N%*

= m = N? cos?p.

v

(4.11)

It follows that the air parcels in an internal gravity wave
oscillate along trajectories exactly as if they were attached
1o a rod slanting off the vertical at the angle ¢ = cos™’
{v/N).

The case illustrated in Fig. 4.1 is one in which &k < 0
and m < 0 (v is assumed greater than zero by convention,
in order to eliminate redundant solutions}. The slanting
solid lines in Fig. 4.1 represent those lines of constant
phase where the perturbation velocities reach their ex-
trema; the direction of the velocity along each of these
lines is indicated by open arrows. These lines are also the
location of the extrema in the pressure field, and are la-
beled as required by (4.10). The perturbation velocities
and pressure are zero along the dashed wave fronts. Equa-
tion (4.9) shows that, when k < 0, m < 0, the extrema in
the buoyancy field lead the extrema in w by 90°. As a
consequence, the buoyancy perturbations achieve their
extremum along the dashed wave fronts. These dashed
lines have been labeled “most buoyant™ or “least buoyant”
using (4.9). Now consider how the situation in Fig. 4.1
will evolve with time. According to (4.4), buoyancy per-
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FiG. 4.1. The instantaneous distribution of velocity, pressure, and buoyancy perturbations in an internat gravity wave. This is a view in the x-
z plane. The phase of the wave is constant along the slanting, dashed, and solid lines. Velocity and pressure perturbations have extrema along the
solid lines; buoyancy perturbations are zero along the solid lines. Buovancy perturbations have extrema, and velocity and pressure perturbations
are zero along the dashed lines. Small arrows indicate the perturbation velocities, which are always parallel to the lines of constant phase. Large
heavy arrows indicate the direction of phase propagation and the group velocity.

turbations develop through the action of vertical advection
on the mean-state stratification. Since w < (} everywhere
within the shaded region in Fig. 4.1, the air within the
shaded region is becoming more buoyant; therefore, the
line of most buoyant fluid must be moving into the shaded
region. Since the wave maintains itself as a coherent
structure, the phase lines associated with the other per-
turbation guantities also propagate down and to the left,
as indicated in Fig. 4.1. Note, for example, how the phase
lines in the horizontal perturbation velocity field will shift
in response to the horizontal pressure gradient. As evident
in Fig. 4.1, the lines of constant phase, or wave fronts,
move perpendicular o the actual air-parcel trajectories.

The total kinetic and potential energy (per unit mass)
associated with the wave perturbations may be expressed
as

Lf ,, ,. b
E=—(u*+w+—=]}. (4.12)

2 N?
The governing equations (4.2)-(4.5) require that E satisfy
dF 8Pu OPw

S +==0.

a x| az —

Thus, the waves transport energy in the direction of the
energy flux vector PV, Examination of the correlation
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between P and V in Fig. 4.1 shows that energy is trans-
ported parallel to the air parcel trajectories and the wave
fronts in the direction indicated by the “group velocity”
vector. The group velocity, defined as ¢; = {(ov/ok, dv/
dm), points in the direction of energy propagation because
it satisfies the relation PV = Ecg, where () denotes an
average over one wavelength. In summary, the preceding
analysis of the structure of an internal gravity wave shows
that the phase speed is perpendicular 1o the energy Slux
(or group velocity) and the energy flux is directed parallel
to the actual air parcel trajectories.

4.3. Application to small-amplitude mountain waves

Several authors have provided thorough discussions of
the linear theory of mountain waves in previous reviews
or textbooks (Queney et al. 1960; Smith 1979; Gill 1982,
Durran 1986b). Therefore, an extended exposition of lin-
ear mountain-wave theory will not be presented in the
following section. Our focus will be on the application of
the theory of section 4.2 to the basic case of a uniform
airstream flowing over an infinite series of sinusoidal
mountains. The generalization of this basic case to situ-
ations with more complex atmospheric structure and iso-
lated topography will be summarized, but not discussed
in detail.

4.3.1. Sinusoidal ridges; constant wind speed and
stability

The most fundamental properties of small-amplitude
mountain waves can be profitably examined by consid-
ering the steady-state, two-dimensional airflow over an
infinite series of periodic ridges of the form

h(x) = h, coskx. (4.14)

The two-dimensional assumption is appropriate if the
mountains extend indefinitely in the direction parallel to
the ridge. As further simplifications, the Rossby number
governing the flow (uok/f) is assumed large, so Coriolis
accelerations may be neglected, and the atmosphere is
assumed inviscid and Boussinesq. Then, if the mean hor-
izontal wind speed u, is a constant, the dynamics of the
problem are governed by equations identical to (4.2)-
(4.5), except that each time derivative 9/ Jt is replaced
by an advection term o0/ 0x. After two integrations with
respect to x (the integration constants are zero because w
has no mean or linear trend ), the equation corresponding
to (4.6) reduces to

?w  *w N2
Ix'? 5;2-+——2w=0 (4.15)
Solutions to (4.15) may be written in the form
w= R {de/kxtms) 1 Belx-m} - (4.16)
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where R denotes the real part, 4 and B are complex coef-
ficients, and

m = (N*ug® — k*)'/2. (4.17)

In (4.16), redundant solutions are eliminated by choosing
the positive root for m and requiring k > 0.

The coefficients 4 and B are determined by the bound-
ary conditions. At the lower boundary, the velocity normal
to the topography must vanish. This condition can be
approximated, to the same order of accuracy as the lin-
earized equations, by

a
w(x,0) = tp 'aThc = —upkh,, sinkx. (4.18)

Substitution of (4.16) into (4.18) yields the conditions
R{A} +R{B} =0, {4} +I{B} = uohmk,
(4.19)

where S denotes the imaginary part. A second boundary
condition is imposed as z —> co. The nature of this
boundary condition depends on the vertical structure of
the solution, which depends on the relative magnitudes
of ugk and N. When wupk > N, the solution (4.16) may
be written

w = R {de 7™ + Bere™*}, (4.20)
where, according to (4.17), u is a real number equal to
(k® — N?/ug?)'/?. In this Boussinesq system, it is physi-
cally unreasonable for the wave amplitude to grow ¢x-
ponentially without bound as z — 0, 50 the upper
boundary condition requires that B = 0. Then from
(4.19), R{A} = 0 and J{4} = tighmk; the complete
solution appears in (4.23).

Now consider the case where wok < N, then m is real
and both 4 and B are coefficients of waves that are
bounded as z = co. Instead of a simple condition on the
boundedness of the solution, the appropriate upper
boundary condition for this linear steady-state problem
is the “radiation condition,” which requires that all waves
at an arbitrarily great height above the mountain must be
transporting energy away from the mountain. In general,
the imposition of a radiation boundary condition as z —>
oo is justified whenever all processes that could generate
waves (such as nonlinear wave-wave interactions or re-
flections from regions where there is a rapid change in
atmospheric structure) are contained within some finite
height of the topography. In order to impose the radiation
condition, it is necessary to determine the direction of
the energy transport by each wave in {4.16). One ap-
proach, due to Eliassen and Palm (1960), is to determine
the vertical energy flux Pw. The perturbation pressure
associated with each wave may be evaluated from the
horizontal momentum equation, the continuity equation,
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and (4.16). In the wave with coeflicient A4 {the upstream
tilting wave, whose vertical velocity will be denoted w, ),

Py = D2 R{ el (421)
In the downstream tilting wave
Py = = R { Be s} (4.22)

It follows that P,w, > 0, so the upstream tilting wave is

associated with upward energy flux. Similarly, Pf@ <,
and the downstream tilting wave is associated with down-
ward energy flux. The radiation boundary condition is
thus imposed by requiring B = 0. Then using {4.19),
R{A4d} =0and F{A4} = wph,.k.

In summary, the perturbation vertical velocity field in
waves forced by the sinusoidal terrain profile (4.14) can
be written

upk > N,

_ (4.23)
—tphmk sin(kx + mz), upk < N.

—tgh ke sinkx,
wix, z) =

The difference between these two wave structures is il-
lustrated in Fig. 4.2. In the case uk > N (Fig. 4.2a), the
waves decay exponentially with height (evanescent waves)
and the wave crests are aligned vertically. In the case uk
< N (Fig. 4.2b), the waves propagate vertically without
loss of amplitude and the wave crests tilt upstream with
height. The waves decay away from the forcing when the
intrinsic frequency exceeds the Brunt-Vdiisild frequency
(tok > N) because, as discussed in section 4.2, there is
no way for buoyancy restoring forces to support the os-
cillation. On the other hand, when the intrinsic frequency
is less than the Brunt-Viisilid frequency, vertical propa-
gation occurs because buoyancy restoring forces can sup-
port air-parcel oscillations along a path slanted off the
vertical at an angle ¢ = cos™! (#9k/N). In steady mountain
waves ¢ is the angle at which lines of constant phase tilt
off the vertical (see the dashed line in Fig. 4.2b}. A sche-
matic diagram of the perturbation velocity, pressure, and
density fields in Fig. 4.2b would be identical to that in
Fig. 4.1, However, since there is a mean flow in the
mountain-wave problem, the actual air-parcel trajectories
do not follow the slanted paths in Fig. 4.1, but rather the
wavy lines shown in Fig. 4.2.

4.3.2. Isolated mountain; constant wind speed and
stability

The mountain-wave solution (4.23) applies only to an
airstreamn with constant basic-state wind speed and sta-
bility flowing across an endless series of sinusoidal ridges.
If more realistic terrain profiles and atmospheric structures
are considered, other linear solutions can be obtained that
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{a)

(b)

FIG. 4.2, Streamlines in steady airflow over an infinite series of si-
nusoidal ridges when (a) ugk > N, or {b) 1ok < N. The dashed line (b)
shows the upstream tilt of the lines of constant phase. Unless otherwise
stated, the airflow in this and all subsequent figures is from left to right.

strongly resemble observed mountain waves. In the re-
mainder of this section, we will describe how the wave
response is influenced by isolated topography and vertical
variations in atmospheric wind speed and stability. In or-
der to focus on the physical results, the mathematical der-
ivations will be omitted; they can be found in Smith
(1979) or Queney et al. (1960).

Suppose that the mountain contour consists of a single
ridge, so that the terrain elevation drops to some reference
level at all distances sufficiently far upstream and down-
stream. Just as Fourier series can be used to represent a
wide variety of periodic functions with an infinite sum of
sines and cosines, the isolated mountain can generally be
constructed from periodic functions by the use of Fourier
transforms. The Fourier transform (F) of a real function
¢ and its inverse (F~') may be defined:

S 1 [ .
3 = Flot) =+ [ otmeedx, a2

8) = F 1300 = % [ deoensdk.
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The Fourier transform is particularly useful in this ap-
plication because it has the property that F(3"¢/dx")
= (ik)"p.

When N and 4, are constant, each component of the
Fourier transformed vertical velocity w(k, z} must satisfy
the Fourier transform of the governing equation (4.15),
*w N? -
?-+(;?—k2)w= 0. (4.25)
The solution to (4.25), subject to appropriate upper and
lower boundary conditions, is

Wk, z) = ikugh(k} exp[{( N/ uo® — K2)'?z], k> 0.
(4.26)

Equation (4.26) is just the complex analog of (4.23);
therefore, each component W(k, z) of the transformed
vertical velocity is identical to the velocity forced by an
infinite series of sinusoidal ridges having wavenumber k
and amplitude h(k). Thus, the solutions obtained in sec-
tion 4.3.1. are also applicable to the case of isolated to-
pography. The only complication arises from the require-
ment that after w(k, z) is determined, the total vertical
velocity w(x, z) must be obtained by computing an in-
verse Fourier transform. According to (4.26), the relative
weight attached to each individual wavenumber in the
composite solution is determined by Fourier transform
of the terrain profile.

(a)
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Queney (1948) calculated solutions for the waves gen-
erated in a fluid, with constant N and uo, flowing over
the “Witch of Agnesi” terrain profile:

h,.a>

hx) = s

(4.27)
where A, is the maximum mountain height and a deter-
mines the mountain width. For a very narrow mountain,
wa~' > N; the profile is dominated by wavenumbers
greater than N/uo, and the mountain primarily forces
evanescent waves (Fig. 4.3a; cf. Fig. 4.2a). For a wide
mountain, #a~' € N; the dominant wavenumbers are
less than N/, and the waves propagate vertically with
lines of constant phase tilting upstream (Fig. 4.3b; cf. Fig.
4.2b). The wide mountain limit, being equivalent to the
hydrostatic limit, eliminates the dependence of vertical
structure on the horizontal wavenumber in (4.26). Asa
result, the mountain profile is reproduced at every level
that is an integral multiple of 2wt/ N. This result is in-
dependent of the shape of the mountain contour. It should
be emphasized that if an isolated mountain is sufficiently
wide that it only forces hydrostatic waves (but not so wide
that Coriolis forces become important), there will only
be one wave crest in the air flowing over the mountain.
Additional crests do not appear downstream from the
mountain unless nonhydrostatic effects are significant.
The most obvious way that nonhydrostatic effects man-
ifest themselves is in the development of trapped lee waves,
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FIG. 4.3. Streamlines in steady airflow over an isolated bell-shaped ridge when (a) ua~t » N, or(b) upa™ < N.
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4.3.3. Vertical variations in wind speed and stability

Now consider the effects of vertical variations in the
mean atmospheric structure. The most important varia-
tions are those that occur in w5 and V. Vertical variations
in #o and N can support a new qualitatively different type
of wave—the trapped lee wave. The airflow in a series of
trapped lee waves (also known as resonant lee waves) is
shown in Fig. 4.4; most of the wave activity is confined
to the lower troposphere on the lee side of the mountain.
Scorer (1949) used linear theory to show that trapped
waves arise as a result of vertical variations in N(z) and
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w 9w
A i 2., = .
a2 + Fw =0, (4.28)
where [ is the Scorer parameter, defined as
Nt | d%u,
2.1 2
! 3 pa (4.29)

Scorer considered the case where / was constant within
each of two layers. (Note that a discontinuity in / does
not require a discontinuity in either 6, or tp.) Scorer
showed that a necessary condition for the existence of
trapped waves in the two-layer problem is that

7

#y(z). These variations introduce an additional term in 2= 12> 11'_2 (4.30)
the governing equation, so that (4.15) becomes 4H*" ’
ﬁ .
/\ et

HEIGHT (km)

0o
-12 0

] ]

12 24 36

CROSS-MOUNTAIN DISTANCE (km)

FIG. 4.4. Streamlines in steady airflow over an isolated ridge when the vertical variation in the Scorer parameter permits trapped waves,
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In the preceding paragraphs, /;; and /; are the Scorer pa-
rameters in the upper and lower layers, and H is the depth
of the lower layer. As implied in Eq. (4.30), the difference
in wave propagation characteristics in the two layers must
exceed a certain threshold before the waves can be
“trapped.”

Earlier in this section it was emphasized that vertically
propagating waves are permitted when upk < N. The ap-
propriate generalization of this result to an environment
with vertical wind shear is the condition that k < /. The
horizontal wavenumber of any resonant lee wave in the
two-layer system satisfies /; > k > Iy, implying that the
wave propagates vertically in the lower layer and decays
exponentially with height in the upper layer. As shown
in Fig. 4.4, trapped waves have no tilt, even though they
can propagate vertically in the lower layer. The reason
for this is that wave energy is repeatedly reflected, without
loss of amplitude, from the upper layer and the flat ground
downstream from the mountain. As a result, the down-
stream disturbance is the superposition of equal-amplitude
upward and downward propagating waves, a combination
that has no tilt.

Vertical variations in / not only provide a way of sup-
porting trapped waves, they can also modify the amplitude
of long-wavelength hydrostatic waves that propagate ver-
tically through both layers. The influence of rapid changes
in / on vertically propagating waves will be discussed in
the following section on downslope windstorms.

4.4. Downslope windstorms

Every few years the eastern slope of the Colorado Front
Range (part of the Rocky Mountains) experiences a dam-
aging windstorm, with peak gusts as high as 60 m s~
These storms have received considerable attention in the
atmospheric science community due, in part, to the high
concentration of meteorologists living in Boulder, Colo-
rado who are exposed to the storms. Similar winds are
also observed along the lee slopes of many other mountain
barriers. The local names for these winds include the Al-
pine foehn, the Rocky Mountain chinook, the Yugosla-
vian bora, and the Argentine zonda. Over the last ten
years there has been considerable debate over the relative
merits of three different mechanisms that had been pro-
posed to account for the development of strong downslope
winds. Recently, evidence has begun to accumulate sup-
porting the idea that there is a fundamental dynamical
analog between the flow of water over an obstacle in a
hydraulic jump and flow of air over a ridge in a downslope
windstorm. In this section we will examine the three
mechanisms that have been proposed to explain the
downslope wind phenomena, and the recent work that
appears to support the hydraulic analog.
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4.4.1. Three explanations for the production of severe
downslope winds

The oldest of the three conceptual models was proposed
by Long (1953a) over 35 years ago. Long suggested that
there is a fundamental similarity between downslope
windstorms and hydraulic jumps—essentially the same
theory that is currently enjoying a resurgence in popular-
ity. In order to better understand Long’s hypothesis, let
us consider the dynamics of a homogeneous fluid flowing
over a ridgelike obstacle. Assume that the flow is in hy-
drostatic balance and bounded by a free surface. Then, if
there are no variations in the coordinate direction parallel
to the ridge axis, the steady-state behavior of the system
is governed by the shallow-water momentum and conti-
nuity equations:

du D oh

ua+ga+ga=0, (4.31)
oub =0. (4.32)
dx

Here x is the coordinate direction oriented perpendicular
to the ridgeline, u is the velocity in the x direction, D is
the thickness of the fluid, and # is the height of the obstacle.
Using (4.32) to substitute for du/dx in (4.31}, one obtains:

D+ h Fe]

(—Fny 22D %33

ax ox

where the Froude number Fr, defined as

2
u
Fri=— .34

r 2D’ (4.34)

is the ratio of the fluid velocity to the speed of propagation
of linear shallow-water gravity waves. According to (4.33),
the free surface can either rise or fall as the fluid encounters
rising bottom topography, depending on the magnitude
of Fr. The case Fr > 1 (supercritical flow) is shown in
Fig. 4.5a; the fluid thickens and slows down as it crosses
the top of the obstacle, reaching its minimum speed at
the crest. The accelerations experienced by the fluid are
qualitatively similar to those experienced by a hockey
puck traversing a frictionless mound of ice. The case Fr
< 1 (subcritical flow) shown in Fig. 4.5b seems counter-
intuitive in that the fluid thins and accelerates as it crosses
the top of the obstacle, reaching its maximum speed at
the crest.

Why does the fluid accelerate as it encounters rising
topography in Fig. 4.5b7 Why does the dependence on Fr
appear in (4.33)? The steady-state momentum equation
(4.31) requires a three-way balance between nonlinear
advection ( the first term ), pressure gradient forces arising
from changes in the fluid depth (the second term), and
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(a)

__""'I-._-____-_—___._—
(b)

| (c)

Fig. 4.5. Behavior of shallow water flowing over an obstacle: (a) everywhere supereritical flow,
() everywhere subcritical flow, (¢) hydraulic jump,
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work done per unit horizontal
displacement moving against

ravity alon
the gravity s the sloping topog-

raphy (the third term). Using (4.32) one can show that

(+2) (+%2) = (v (FE250) - =

(4.35)
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Thus, advection always opposes the pressure gradient due
to changes in fluid depth. Furthermore, Fr? is the ratio
of the magnitude of nonlinear advection to the magnitude
of the pressure gradient generated by changes in the fluid
depth. In supercritical flow (Fr > 1) nonlinear advection
dominates the pressure gradient term and the three-way
balance in (4.31) is satisfied when fluid parcels are ac-
celerated in the same direction as the gravitational force.
Consequently, as a fluid parcel ascends the obstacle, it
slows, converting kinetic energy (KE) to potential energy
(PE); after passing the crest, it reaccelerates as PE is con-
verted back to KE (Fig. 4.5a). On the other hand, in
subcritical flow (Fr < 1) the pressure gradient term dom-
inates advection and (4.31) is balanced when fluid parcels
accelerate in the direction opposite the gravitational force.
Then, as shown in Fig. 4.5b, a fluid parcel ascending the
obstacle accelerates as the free surface drops and PE is
converted to KE; after passing the crest it decelerates as
KE is converted back to PE. The disturbance centered
over the obstacle in Fig. 4.5b is a stationary surface gravity
Wwave,

The flow regime that Long proposed as a model for
downslope windstorms is shown in Fig. 4.5c. If there is a
sufficient acceleration in the stationary gravity wave; i.€.,
a sufficient increase in velocity and decrease in thickness
as the fluid ascends toward the crest, a transition from
suberitical to supercritical flow occurs at the top of the
obstacle (Fig. 4.5¢). Since the flow along the lee slope is
supercritical, the fluid continues to accelerate as it falls
down the mountain; it eventually recovers to the ambient
downstream conditions in a turbulent hydraulic jump.
Very high velocities are produced along the lee slope be-
cause PE is converted to KE during the entire time that
a fluid parcel traverses the mountain. The deceleration
that would otherwise occur in the lee-side portion of the
gravity wave is disrupted when the flow becomes super-
critical. Further discussion of the hydraulic model may
be found in Long (1954) and Houghton and Kasahara
{1968).

One uncertainty associated with the application of the
hydraulic model to the atmosphere is that.the atmosphere
is not bounded by a free surface. The presence of a free
surface (or in different formulations, a rigid lid) prevents
energy transport through the upper boundary of the hy-
draulic layer; however, internal gravity waves can trans-
port energy vertically to great heights in the unbounded
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continuously stratified atmosphere. In at least some in-
stances, it appears that this energy can be removed in the
upper atmosphere without significantly affecting the low-
level wave structure. Thus, the hydraulic model may be
too limited for application to the atmosphere. Further-
more, as indicated by the variation in spacing between
streamlines in Figs. 4.2b and 4.3b, the surface wind speed
distribution in vertically propagating internal gravity
waves is asymmetric about the crest, with a maximum
along the lee slope. The preceding observations suggest
an alternative to hydraulic theory, which better accounts
for the possibility of vertical energy transport, namely that
downslope windstorms are produced by large-amplitude
vertically propagating mountain waves. Eliassen and Palm
(1960) showed that when an upward propagating linear
gravity wave encounters a region in which the Scorer pa-
rameter changes rapidly, part of its energy can be reflected
back into a downward propagating wave. Klemp and Lilly
(1975) extended the results of Eliassen and Palm, and
Blumen { 1965), to the case of smali-amplitude hydrostatic
waves in a multilayer atmosphere with constant stability
and wind shear in each layer. Klemp and Lilly suggested
downslope windstorms occur when the atmosphere is
tuned so that the partial reflections at each interface pro-
duce an optimal superposition of upward and downward
propagating waves. They found that, in practice, the most
important tuning requirement is that the tropopause be
located one-half vertical wavelength above the ground.
The third explanation for the development of strong
downslope winds was proposed on the basis of simulations
performed with a comprehensive numerical model. In a
series of papers Clark and Peltier (1977, 1984), Peltier
and Clark (1979, 1983), and Clark and Farley (1984)
found significant increases in the lee-slope surface winds
occurred after vertically propagating waves became stat-
ically unstable and “broke.” The wave-breaking region
was characterized by strong mixing and a local reversal
of the cross-mountain flow. They proposed that this
“wave-induced critical layer” acts as a boundary, reflecting
upward propagating waves back toward the mountain.
The terminology “wave-induced critical layer” derives
from the idea that the wave overturning region influences
the underlying flow in a manner similar to a turbulent
(i.e., low Richardson number ') mean-state critical layer.
A critical layer (or critical level) occurs where the phase
speed of the wave is equal to the mean flow velocity. In
the case of stationary mountain waves, a critical level oc-
curs where the mean flow is zero. If the Richardson num-
ber at the critical layer is less than 4, nonlinear waves
encountering 2 critical layer are believed to reflect from

| The Richardson number, Ri = N*/(U.)? is a measure of the ratio
of the buoyancy restoring force to the shear.
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that layer without significant loss in amplitude. Using lin-
ear theory to describe the reflection process, Peltier and
Clark suggested that if the depth of the cavity between
the self-induced critical layer and the mountain is suitably
tuned, the reflections at the critical layer should produce
a resonant wave that amplifies linearly with time and ul-
timately produces very strong surface winds. Additional
numerical studies by many different researchers have re-
peatedly verified the importance of wave breaking in the
development of strong surface winds in both the 11 Jan-
uary 1972 Boulder windstorm and in cases with constant
upstream values of N and 1.

4.4.2. A comparison of the hydraulic and the vertically
propagating wave theories

The linear theory of vertically propagating waves pre-
dicts that some enhancement of the lee-side surface winds
will be produced by arbitrarily small mountains and that
the strength of the horizontal wind perturbation will scale
linearly with the height of the mountain. In contrast, hy-
draulic theory suggests that strong downslope winds will
only occur if the mountain height exceeds the threshold
required to force a transition to supercritical flow. This
fundamental difference in amplitude dependence can be
used to test each theory. Consider first the simple case
when the upstream profiles of 1, and NV are constant with
height. Then, within the accuracy of the Boussinesq ap-
proximation, the finite-amplitude response can be cal-
culated analytically from Long’s equation ( Long 1953b).
As shown by Lilly and Klemp (1979), these finite-am-
plitude solutions are both qualitatively and quantitatively
similar to the solutions obtained from linear theory. Thus,
on the basis of the constant N and #, case, one might
suppose that linear theory provides a satisfactory descrip-
tion of finite-amplitude mountain waves, However, as
noted by Smith (1977), the assumption of constant
and W places a special constraint on the nonlinear inter-
actions possible in steady flow, and caution should be
exercised in generalizing from the constant 4 and N case
to more realistic atmospheric profiles.

A slightly more complex atmospheric structure was
studied by Durran ( 1986a), who used a numerical model
to examine the effects of nonlinearity on the partial re-
flection of vertically propagating mountain waves in a
mean state with constant wind speed and a two-layer sta-
bility structure where the Brunt-Viisilid frequency was
constant within each layer. In each case, a measure of the
amplitude of the wave response was obtained by calcu-
lating the pressure drag exerted on the mountain by the

flow
©  Gh
J‘-mpadx. (4.36)
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The drag was normalized by wpN_ tigh,,.> /4, the drag pro-
duced by linear hydrostatic waves on a Witch of Agnesi
mountain [see Eq. (4.27)] in a single-layer atmosphere
with constant wind speed and stability equal to that in
the lowest layer, This normalization emphasizes the effects
of atmospheric structure and nonlinearity on the drag.
According to the linear theory of hydrostatic mountain
waves, when the thickness of the lower layer is one-half
vertical wavelength (wo/ N, ), the normalized drag (D,)
is Ny/Nz. When the thickness of the lower layer is one-
quarter vertical wavelength, the effect of the layering re-
verses and D, = N /Ny.

Durran considered the four basic configurations shown
in Fig. 4.6. In Figs. 4.6a,b the more stable layer (N = 0.02
s~!) is on the bottom; in Figs. 4.6¢,d the less stable layer
(N =0.01 53"} is on the bottom; in all cases uy = 20 m
s~!. The depth of the lowest layer is set to one-quarter or
one-half vertical wavelength, so that linear theory predicts
values for D, of 2.0 in the cases in panels 4.6a,d and 0.5
for those in panels 4.6b,c. Numerical simulations con-
ducted with a maximum value of Nh,,/ 1 = 0.001 con-
firmed that the model was capable of reproducing the
linear result in circumstances where nonlinear effects are
genuinely insignificant. When ( NA,,,/ ) max Was increased
to 0.6, nonlinear processes had a significant influence on
the solution, The amplification predicted in the linear
limit in panels 4.6a,d disappeared in the finite-amplitude
simulations as D, dropped to values less than or equal to
1. The most dramatic differences between linear theory
and the finite-amplitude simulations appeared in Fig, 4.6b,
where D, increased from a linear value of 0.5 to a non-
linear value of 2.9. Although there are quantitative dif-
ferences, the waves in Figs. 4.6a,c,d are qualitatively sim-
ilar to the vertically propagating waves described by linear
theory. On the other hand, the situation in panel 4.6b is
very different: it is the only finite-amplitude case associated
with high drag (and high surface winds) and the lower-
layer flow qualitatively resembles a hydraulic jump.

A detailed look at the effects of nonlinearity on the drag
and surface wind speed in a two-layer atmosphere similar
to that shown in Fig. 4.6b is provided in Fig. 4.7. The
normalized drag D, is relatively independent of mountain
height for Ny A,/ ug < 0.2 and N A,/ 14y > 0.6. In between
these two limits, there is a rapid transition between low
and high drag regimes. Linear theory predicts that the
mountain drag should vary as 4,2, and this amplitude
dependence is removed when the drag is normalized.
Thus, the vanation of D, with N, A,/ 1y is due exclusively
to nonlinear effects. The amplitude dependence revealed
in Fig. 4.7 is qualitatively similar to the increase in drag
that occurs in hydraulic theory as the height of the obstacle
becomes sufficient to force a transition from subecritical
to supercritical flow. The finite-amplitude results shown
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FIG. 4.6. Isentropes in a two-layer atmosphere
maximum value of NA./u is 0.6. (a) interface at i
wavelength, N = $Ny; (d) interface at ! wavelength, V.

in Fig. 4.7 deviate significantly from linear theory, even
when the mountain is very small. For example, when
Nphw/us = 0.3, D, is more than double its true linear
value; however, as shown by Lilly and Klemp (1979), if
N and u, were everywhere constant and Nh,./uy was 0.3,
there would be very little quantitative difference between
the linear drag and the drag in the finite-amplitude so-
lution. Thus, the sensitivity of the solution to nonlinear
processes is greatly enhanced by the presence of the in-
terface.

60
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flowing over an isolated mountain at a nondimensional time uetfa = 20. In each case, the
vertical wavelength, Np = 2Ny;
= LNy, (From Durran 1986a.)

(b) interface at § wavelengih, Ny = 2Nuy; (¢) interface at §

Further similarities between the two-layer solutions and
hydraulic theory are shown in Fig. 4.8, in which the
mountain height is fixed and the depth of the lowest, most
stable layer is varied. As the depth of the lower layer in-
creases, the flow in the lower layer first assumes a form
similar to everywhere supercritical flow (Fig. 4.8a), then
it resembles a propagating jump (Fig. 4.8b), a stationary
jump (Fig. 4.8¢), and finally, everywhere subcritical flow
(Fig. 4.8d). The same dependence of the flow on fluid
depth is observed in hydraulic theory ( Houghton and Ka-
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FIG. 4.7. Pressure drag (solid} and maximurn surface wind speed perturbation ( dashed ) as a function of nondimensional mountain height Neha!
1y for a two-layer atmosphere with N, = 2.5Ny. The drag is normalized by xpNugh,2/4 and the wind speed by Nh,,/2 where p, 1, and N are

evaluated at the surface. (From Durran 1986a.)

sahara 1968). In summary, Durran’s (1986a) results sug-
gest that the partial reflection of vertically propagating
waves from a layer interface is strongly dependent on wave
amplitude. Furthermore, in those cases associated with
high surface wind speeds and high drags, the influence of
the interface on the nonlinear solution is qualitatively
similar to that of a free surface in hydraulic theory.

4.4.3. A comparison of the hydraulic and the wave-
breaking mechanisms

Evidence from observations (Smith 1987) and numer-
ical models (Clark and Peltier 1977, and many others)
suggests that wave breaking plays an important role in
many downslope windstorms. Clark and Peltier (1977)
suggested that after the isentropes in a mountain wave
overturn, a resonant cavity forms between the terrain and
the wave-breaking region, and the wave within that cavity
amplifies dramatically. Peltier and Clark’s (1983) math-
ematical model of wave amplification in this resonant

cavity is based on linear theory and the physical assump-
tion that the wave-overturning region behaves like a crit-
jcal level where the Richardson number is less than 3.
Smith (1985a), and Smith and Sun (1987), have offered
another mathematical model of the wave-breaking am-
plification process, beginning with the same fundamental
assumption used by Clark and Peltier: that the breaking
region imposes an effective upper boundary condition
that traps energy within the underlying flow. Smith’s
mathematical treatment of the upper boundary is based
on the identification of a hypothetical “dividing stream-
line” separating the laminar flow beneath the wave-
breaking region from the turbulent flow above. Smith ob-
tained an upper boundary condition stating that the cross-
mountain wind speed is constant along the dividing
streamline, by postulating that 1) the turbulent flow in
the breaking region is well mixed, and 2) pressure per-
turbations at the top of the well-mixed region are negli-
gible. Note that the presence of Clark and Peltier’s low-
Richardson-number critical layer is implicitly used in the
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FiG. 4.8. Isentropes for the airflow in a two-layer atmosphere at ut/a = 25, when Nph./u = 0.5 and the interface is at (a) up/Ny;
(b) 2.5uof Ny; (¢) 3.5ug/ Nyp; (d) du/ Ny (From Durran 1986a.)

derivation of Smith’s upper boundary condition, since
without the critical layer, pressure perturbations would
not be negligible at the top of the well-mixed region (unless
the well-mixed region was unrealistically deep).
Although the theories of Peltier and Clark, and of Smith,
might both be considered theoretical descriptions of the
flow beneath a low-Richardson-number (Ri < }) critical
layer, significant differences in the mathematical formu-
lation of each theory lead to very different results. Peltier
and Clark (1983 ) solved the time-dependent linear wave

equations subject to a linearized free-surface condition
(i.., a fixed horizontal boundary that reflects all incoming
waves with a 180° phase shift), whereas Smith solved
Long’s equation for the finite-amplitude steady-state flow
beneath a deformable upper boundary along which the
wind speed was constant. Peltier and Clark’s results imply
that a low-Richardson-number critical layer will produce
amplification only when it is positioned approximately
L4 n/2,n=0,1, ... vertical wavelengths above the
topography. On the other hand, Smith’s results suggest



DALE R. DURRAN

amplification is possible over the entire range of critical-
layer heights between (4 + n) and (2 + n) vertical wave-
lengths. Given the presence of a suitably located low-
Richardson-number critical level, the amplification pro-
cess proposed by Peltier and Clark is independent of
mountain height. { Note, however, that when the critical
level is “self-induced” by wave breaking, the development
of the critical level, and hence the basic structure of the
total flow, can be very sensitive to mountain height.) In
contrast, the results of Smith are explicitly dependent on
mountain height in a manner similar to conventional,
shallow-water hydraulic theory.

Durran and Klemp (1987) and Bacmeister and Pier-
rehumbert (1988) used these differences to conduct a se-
ries of numerical experiments testing each theoretical
model of the wave-breaking process. These investigators
examined the response of air flowing over a mountain to
changes in the mountain height and changes in the height
of a critical layer in the mean flow. In most of the cases
examined by Durran and Klemp, and Bacmeister and
Pierrechumbert, a local region of turbulent flow forms over
the mountain where the mountain wave interacts with
the mean-state critical layer. (To be specific, Durran and
Klemp found that significant regions of Ri < ; developed
above the mountain in all simulations with the critical
layer located between 4 and 3 vertical wavelengths above
the ground, whenever NA/U exceeded 0.2.) Thus, al-
though the wave-breaking theories of Peltier and Clark,
and of Smith, were originally formulated to describe the
flow field beneath a region of wave breaking, they should
also apply to the cases with a mean-state critical layer
studied by Durran and Klemp, and Bacmeister and Pier-
rchumbert.

In accordance with Smith’s theory, Durran and Klemp,
and Bacmeister and Pierrehumbert found a high ampli-
tude response could be obtained if the critical layer was
located anywhere between § and 2 vertical wavelengths
above the ground. They also found a dependence on
mountain height closely paralleling the predictions of
Smith. A representative example of these simulations is
shown in Fig. 4.9. In the case illustrated in Fig. 4.9, the
mean stability is constant everywhere, and the wind speed
is constant between the ground and 5 km, and zero in
the region above 7 km. The two regions of constant wind
speed are connected by a layer with linear wind shear
between 5 and 7 km. The mean Richardson number in
the shear layer is 1.1; however, in both cases a region of
stagnant flow develops over the mountain in which the
local Richardson number is less than 3. :

Following Peltier and Clark, the critical layer in Fig.
4.9 would be estimated to lie 55 of a vertical wavelength
above the ground. This is far from the resonant level of
+5 vertical wavelength, and thus should not permit the
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development of a large-amplitude response. Nevertheless,
as shown in Fig. 4.9D, a large response does develop when
Nhp,fug = 0.4, Turning to Smith’s theory, a reasonable
choice for the height of the dividing streamline would be
the middle of the shear layer, or % of a vertical wavelength
above the ground. Smith’s theory predicts that, if the di-
viding streamline is fixed at this location and the mountain
height is gradually increased, the flow should undergo a
change from weak waves to a large-amplitude response
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when Nh,,/ iy exceeds a critical value between 0.3 and
0.4; a result that agrees with the numerical simulations
shown in Figs. 4.9a,b. Other simulations, conducted by
Durran and Klemp, and Bacmeister and Pierrehumbert
over a wide variety of different situations, confirm the
ability of Smith’s theory to adequately describe topo-
graphically disturbed flow in an airstream with a mean
critical layer. These simulations do not support the linear
resonance mechanism of Clark and Peltier.

The most significant aspect of the recent work by Smith,
Durran and Klemp, and Bacmeister and Pierrehumbert
is not a demonstration of the importance of wave break-
ing, which had been previously provided by Ciark and
Peltier, but an elucidation of the connection between wave
breaking and the hydraulic amplification mechanism.
Durran and Klemp (1987) have shown that Smith’s so-
lution satisfies

gD+ h) _ %
(1-F )——ax PP (4.37)
where
g2 = 1 = (N8:/u) Sin(ND/ th) (4.38)

1 — cos(ND/uy)

Here D(x) is the total depth of the fluid between the di-
viding streamline and the topography, d.(x) is the dis-
placement of the dividing streamline from its undisturbed
height upstream, and NV and %, represent the constant
values of Brunt-Viisilid frequency and cross-mountain
wind speed below the critical-level in the undisturbed up-
stream flow. The parameter F is analogous to the con-
ventional shallow-water Froude number; in particular it
renders (4.37) equivalent to (4.33), and both ¥ = 1 and
Fr = 1 imply that the phase speed of the most rapidly
propagating linear gravity wave in each respective system
is equal to the speed of the mean flow. However, the dy-
namics that determine ¥ (x) and Fr(x) are somewhat dif-
ferent. As a consequence, the shallow-water system does
not provide an exact model of Smith’s stratified flow, even
when D(—co) and A(x) are identical and F(—c0)
= Fr(—o0); i.e., the two fluids will not undergo exactly
the same thickness change, D(x), as they traverse the
obstacle. However, as discussed by Durran and Klemp,
there is reasonable quantitative agreement between the
two systems when the depth of the stratified flow is less
than one-half vertical wavelength. At larger values of D
the internal perturbations in the stratified fluid can pro-
duce significant quantitative differences, but a qualitative
similarity remains. '

In order to use Smith’s hydraulic theory to predict the
steady-state flow over a mountain, it is necessary to specify
the initial height of the dividing streamline, D(—o0). In
a case with a mean-state critical layer, Durran and Klemp
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(1987) and Bacmeister and Pierrehumbert { 1988) have
shown that gocd results can be obtained by setting D(—0)
equal to the height of the critical layer. However, in the
case of breaking waves and wave-induced critical layers,
no height for the dividing streamline can be specified a
priori. Consequently, the application of the hydraulic
model to breaking waves is limited to a posteriori diag-
nosis; it cannot be used to predict the final steady state
or the flow evolution. Nevertheless, the successful a pos-
teriori application of hydraulic theory to the case of
breaking waves allows one to construct a simple unified
model for the creation of high lee-slope fluid velocities in
a wide range of geophysical flows, including the flow of
water over a rock, the flow of a multilayered airstream
over a mountain ( without wave breaking}, the flow of a
single-layered airstream over a mountain when breaking
waves are present, and cross-mountain flow bounded
above by a mean-state critical layer. That simple unified
model consists of a two-part amplification process. In the
first part of the amplification process, high fluid velocities
are produced near the obstacle’s crest as pressure gradient
forces in a standing gravity wave dominate the force bal-
ance on fluid parcels in the upstream flow. Fluid near the
crest experiences a net acceleration and a net elevation
gain (as in subcritical shallow-water flow). The second
part of the amplification process only occurs if the obstacle
is sufficiently high, in which case the gravity-wave-induced
acceleration becomes so great that it is impossible to de-
velop a lee-side pressure gradient capable of decelerating
the flow (as in supercritical shallow-water flow}. In this
circumstance, the flow undergoes a transition; the force
balance on a fluid parcel is dominated by gravity, and
very high velocities develop as the fluid accelerates down
the lee slope like a hockey puck descending a mound
of ice.

4.4.4. Forecasting downslope winds

As discussed in the preceding sections, there appears to
be a fundamental dynamical similarity between the de-
velopment of downslope winds in the atmosphere and the
development of supercritical flow in a hydraulic jump.
This is not a new idea, nor is it one that has provided
much practical assistance to forecasters in the past. Indeed,
one might suppose that if the simple hydraulic analog
introduced by Long in the early 1950s had led to a set of
highly successful forecasting guidelines, the alternative
mechanisms proposed to explain the development of
strong downslope winds would not have enjoyed much
popularity.

One problem with any attempt to apply shallow-water
hydraulic theory directly to the problem of downsiope
wind forecasting is that there appear to be at least three
rather different circumstances in which the atmosphere
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can undergo a transition from subcritical to supercritical
flow. These three circumstances are:

1) Wave breaking: as in an atmosphere with constant
N and u, where the mountain is large enough to force
breaking waves (Clark and Peltier 1977).

2} Scorer-parameter layering: as in an atmosphere with
constant 4, and a two-layer structure in N where the
mountain is too small to force breaking waves { Durran
1986a).

3) Capping by a mean-state critical layer: as in an at-
mosphere with constant N and u, below a critical layer,
where in the absence of the critical layer, the mountain
is too small to force breaking waves (Smith 1985a).

Until more detailed guidance is developed, the forecaster
might do well to examine the observed or forecast at-
mospheric sounding for factors that would promote the
development of atmospheric hydraulic jumps through the
action of one of the preceding three processes.

In a case where there is a deep cross-mountain flow
and no mean-state critical layer (as in most of the Boulder,
Colorado and Owens Valley, California windstorms), ob-
servational evidence suggests that conditions favorable for
downslope winds occur when:

(i) The wind is directed across the mountain (roughly
within 30° of perpendicular to the ridgeline) and the wind
speed at mountaintop level exceeds a terrain dependent
value of 7to 15 ms™",

(ii) The upstream temperature profile exhibits an in-
version or a layer of strong stability near mountaintop
level (Colson 1954; Brinkmann 1974).

These factors would favor the development of strong
winds by creating conditions similar to situation 2). In
addition they promote the development of larger ampli-
tude mountain waves and thereby increase the chances
for breaking waves; i.e., situation 1). Breaking waves are
also favored when the upper-tropospheric winds are not
excessively strong. Thus, cross-mountain wind speeds of
30 to 40 m s~' may be more likely to produce strong
downslope winds than the higher values observed near
the axis of the jet stream.

In cases where there is a mean-state critical layer in the
flow above mountaintop level (e.g., many Yugoslavian
boras and “canyon winds™ on the western side of the
Wagsatch Front in Utah), criterion (i) still applies. There
is likely to be an inversion near the critical level, but the
critical level itself appears to be more important than the
inversion in the generation of strong-downslope winds.
However, even when a mean-state critical level is present
it may not be the feature that is primarily responsible for
the development of downslope winds. Klemp and Durran
(1987) conducted numerical simulations suggesting that
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the 15 April 1982 bora, observed during ALPEX (the
Alpine Experiment), was produced by simple wave
breaking below a mean-state critical layer [i.e., situation
1)] and that the development of strong surface winds was
not inhibited by the absence of the mean-state critical
layer.

Additional factors that may influence the strength of a
given wind event are the terrain shape, atmospheric hu-
midity, and the time of day. Long mountain ridges with
gentle windward slopes and steep lee slopes are most fa-
vorable for the generation of strong downslope winds
(Smith 1977; Lilly and Klemp 1979; Hoinka 1985). High
relative humidity in the lower troposphere appears to re-
duce the strength of windstorms (Barcilon et al. 1979;
Durran and Klemp 1983). Climatological studies of
windstorms in Boulder, Colorado show a distinct tendency
for the highest winds to occur in the nighttime or the early
morning { Whiteman and Whiteman 1974; Brinkmann
1974). This diurnal signal is probably due to a diurnal
modulation of boundary-layer friction. Although they did
not investigate diurnal effects, Richard et al. (1989) re-
cently demonstrated the importance of surface friction by
showing that its inclusion in a numerical model eliminates
the unrealistic tendency of models with a free-slip lower
boundary to form a layer of high surface wind that
propagates indefinitely downstream (as in Figs. 4.8b
and 4.9b).

In a case with no mean-state critical layer, the forecaster
might also examine the relationship between the tropo-
pause height and the vertical wavelength of hydrostatic
mountain waves. Klemp and Liilly (1975) found the
strongest downslope wind events occurred in Boulder
when a one-half wavelength phase shift was present be-
tween the ground and the tropopause. The theoretical
support for this relationship rests on the partial reflection
mechanism of linear theory; however, as discussed in sec-
tion 4.4.2, the application of this theory to finite-amplitude
waves can produce misleading results. It is therefore not
entirely clear why the phase-shift correlation is as high as
it seems. Although the strongest Boulder windstorms seem
to exhibit the half-wavelength phase shift, exclusive reli-
ance on phase shift and wind speed /direction criteria can
lead to the prediction of windstorms when none actually
occur. Bower and Durran ( 1986) discuss a nonwindstorm
event that did satisfy the half-wavelength phase shift cri-
teria, along with appropriate conditions on the wind speed
and direction. Unlike other windstorm cases, the lower
tropospheric stability in the nonwindstorm case was very
weak and there was no significant inversion near moun-
taintop level. On the basis of the climatologies of Brink-
mann { 1974) and Colson ( 1954 ) one might suppose that
the absence of low-level stability was responsible for the
failure of a downslope wind to develop in Bower and
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Durran’s “well-tuned” cross-mountain flow. Further
support for the idea that lower tropospheric stability plays
an important role in Boulder windstorms has been pro-
vided by numerical simulations of the 11 January 1972
windstorm. Durran (1986a) showed that the development
of the windstorm (including wave breaking in the upper
troposphere ) was triggered by the formation of a hydrau-
lic-jump-like disturbance in an elevated inversion near
mountaintop level. As shown in Figs. 4.10a,b, no wind-
storm developed when the numerical simulation was re-
peated using a modified upstream sounding from which
the elevated inversion had been removed. In summary,
it is possible that the half-wavelength criteria may be a
necessary condition for the strongest Boulder windstorms,
but it does not appear to be a sufficient criteria for even
a moderate storm.

4.4.5. Gustiness near the surface in downslope winds

In many downslope windstorms, the surface wind is
very gusty. An example of this gustiness is shown in Fig.
4.11, the anemometer trace recorded at the National
Center for Atmospheric Research during the onset of the
17 January 1982 Boulder windstorm. Gusts in excess of
210 km h~' (58 m s~) with lulls of less than 15 km h™"'
(4 m s 1) are evident after the onset of this severe storm
(time reads right to left in Fig. 4.11). Fluctuations with
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a period of slightly more than one minute appear to dom-
inate the surface wind observations. In addition to the
surface data, observations of the gust structure a few
hundred meters above the surface have recently been ob-
tained by Neiman et al. (1988) using a pulsed Doppler
lidar; an example of their analysis appears in Fig. 4.12.
These observations, taken during a moderate Boulder,
Colorado windstorm, show a series of gusts forming at
the upwind edge of the observation area and maintaining
their coherence as they propagate downstream at the ap-
proximate speed of the mean winds. The dominant period
of these fluctuations is approximately 4 minutes; the
maximum and minimum velocities are roughly 34 and
16 m s~'. The gustiness observed above the surface by
Neiman et al. is less extreme than that recorded in the
preceding surface anemometer trace. Some of the differ-
ence can be attributed to differences in the strength of the
two windstorms; however, an additional enhancement in
the surface gustiness is probably produced by surface fric-
tion.

Clark and Farley (1984) investigated gustiness in the
11 January 1972 windstorm using two- and three-dimen-
sional numerical models. The two-dimensional simula-
tions did not appear to produce gusty surface winds. The
three-dimensional simulations were nominally similar to
those in two-dimensions, because there were no variations
in the topography or the mean atmospheric structure

HEIGHT (km)

60 80

X (km)

FIG. 4.10. (a) Isentropes form a simulation of the 11 January 1972 Boulder windstorm using the upstream conditions observed at Grand Junction,
at a model time of 12 000 s. (b) As in (a), except that the upstream sounding has been modified to remove the elevated inversion. (From Durran

1986a.)
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along the direction parallel to the ridge. Clark and Farley
tested the stability of two-dimensional flow to three-di-
mensional perturbations by applying a small random
three-dimensional forcing to the potential temperature
field in the three-dimensional simulations. They found
that the three-dimensional flow was stable with respect to
these perturbations until the waves began to overturn. In
the wave-breaking region, the random three-dimensional
forcing triggered unstable disturbances that eventually
penetrated to the surface and produced gusty winds along
the lee slope. Clark and Farley suggested that this gustiness
is produced by a competition between wave buildup via
forced gravity wave dynamics and wave breakdown via
convective instability. Figure 4.13 provides an example
of the surface wind variation at one point on the lee slope
in Clark and Farley’s three-dimensional simulation. The
dominant period of these fluctuations is approximately 8
minutes; the maximum and minimum velocities during
the gusty period are approximately 70 and 50 m s~!. Clark
and Farley have hypothesized that better numerical res-
olution would reduce the period of the gusts in their sim-
ulation, which could bring it into closer agreement with
the measurements of Nieman et al. (1988).

Given the crudeness with which the topography and
boundary processes are represented in their model, and
the fact that they were not attempting to simulate the case
observed by Nieman et al., Clark and Farley’s simulation
appears to provide a qualitatively correct description of
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FIG. 4.13. Time series plot of the horizontal wind speed 9.5 km down-
wind of the ridge crest in a three-dimensional simulation of the 11 January
1972 Boulder, Colorado windstorm. (From Clark and Farley 1984.)
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FIG. 4.14. Horizontal cross-section of the vertical displacement field
in hydrostatic flow over a circular bell-shaped mountain of the form
{4.39). The cross section is at an ¢levation of 1 vertical wavelength.
Shading indicates the topography within a radial distance a from the
peak. (From Smith 1980.)

the gustiness in the flow; however, Scinocca and Peltier
{1989) have recently found that realistic gust structures
can be produced in high resolution simulations of strictly
two-dimensional flow. Kuo ( 1963) has shown that small-
amplitude perturbations in a stably stratified unidirec-
tional shear flow grow most rapidly when the perturba-
tions are two-dimensional, but that when the same flow
is unstably stratified the most rapidly growing modes are
three-dimensional. The basic state in which the gusts ap-
pear to develop in the simulations of Clark and Farley,
and Scinocca and Peltier contains both stably and unstably
stratified subregions. It is therefore not obvious whether
two-dimensional or three-dimensional perturbations
should be expected to grow most rapidly. Further research
is needed to determine the relative importance of two-
dimensional and three-dimensional circulations in gust
generation.

4.5. Flow over isolated mountains

The preceding sections have focused on the case of flow
over an infinitely long mountain barrier, with no varia-
tions in the direction parallel to the ridge axis. Most real
mountains are highly three-dimensional, and unfortu-
nately our current understanding of the flow around three-
dimensional mountains is far from complete. Significant
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progress has been made, however, in one case of relatively
simple three-dimensional geometry—the isolated circular
mountain. A discussion of the airflow over circular
mountains and hills is presented by Carruthers and Hunt,
Chapter 5, and in reviews by Smith (1979) and Queney

et al. (1960). An analysis of the circumstances under
which air diverts around a mountain, instead of flowing
over it, appears in the Appendix to Chapter 5 {Smith).
In the following section we will limit our attention to
some recent results describing the dynamics of flow
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FIG. 4.16. As in Fig. 4.15, except that the streamlines are displayed in the x-» plane and represent the flow on the
surface of the topography. (From Smolarkiewicz and Rotunno 198%.)

around a circular obstacle when the mean wind speed and
stability are constant with height.

Smith (1980) obtained linear solutions for waves in an
atmosphere with constant N and u, flowing over a bell-
shaped circular mountain

P
((x?+yh)/a + 11727

h(x, y)= (4.39)

where A,, and a are the height and horizontal scale of the
mountain. An example of Smith’s solution for the wave-
induced vertical displacement at a level one-quarter
wavelength above the surface is shown in Fig. 4.14. The
flow in Fig. 4.14 is hydrostatic (Na/ug » 1); yet unlike
the hydrostatic waves forced by a two-dimensional
mountain, the disturbance is not confined to the region
directly over the mountain. Instead, the perturbations are



DALE R, DURRAN

concentrated along parabolas extending downstream from
the mountain.

Smith’s solutions are based on linearized equations and
are formally valid only in the limit NA,,/1u, <€ 1. In the
opposite limit, N,/ 153 1 the behavior is similar to two-
dimensional potential flow in a horizontal plane where
all the fluid is diverted laterally around the mountain
(Drazin 1961). Analytic models are not available to de-
scribe the flow when Nh,,/ug is of order unity. Smolar-
kiewicz and Rotunno ( 1989} bridged this theoretical gap
by calculating a series of numerical solutions for the flow
around the circular bell mountain (4.39); their results are
illustrated in Figs. 4.15 and 4.16, which represent steady
or quasi-steady solutions. Streamlines in a vertical cross-
section through the center of the hill are shown in Fig.
4.15. The case Nh,, /1y = 0.45 (Fig. 4.15a) is in quanti-
tative agreement with Smith’s linear theory; qualitative
agreement remains at Nh,,/ iy = 1.5 (Fig. 4.15b). How-
ever, a major change in the flow regime occurs as NA,,/
up is increased to 4.5 (Fig. 4.15¢). The vertically propa-
gating gravity waves evident at Nh,,,/ up = 1.5 are virtually
eliminated and closed circulations develop in the lee of
the mountains. When Nh,,,/ 15 = 18 (Fig. 4.15d), the flow
is largely horizontal. Figure 4.16 shows a plot of the surface
streamlines associated with each of the four cases in Fig.
4.15. Note that as the flow becomes more nonlinear, there
is an increased lateral displacement of the flow around
the mountain. Closed vortices appear in the lee of the
mountain in the two simulations with the highest values
of Nh,./up.

Satellite imagery has revealed vortices downstream of
isolated mountains in the atmosphere. Lee vortices have
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also been observed in laboratory experiments (Hunt and
Snyder 1980). The development of these vortices has tra-
ditionally been explained by analogy with the flow of a
homogeneous fluid past a cylinder, where vorticity is gen-
erated by surface friction in the viscous boundary layer
and advected downstream after the boundary layer sep-
arates from the obstacle. This mechanism cannot be re-
sponsible for the development of the lee vortices in Smo-
larkiewicz and Rotunno’s simulations, however, because
those simulations were conducted without surface friction.
Yet the vorticity apparent in Figs. 4.16¢,d had to be cre-
ated by some process because there was no vorticity in
the upstream flow (N and wu, were constant). Smolar-
kiewicz and Rotunno have suggested that the lee vortices
were generated in their simulations through a three-step
process. First, as the stratified flow is disturbed by the
mountain, horizontal density gradients are produced.
Second, these horizontal density gradients baroclinically
generate horizontal vorticity. Third, the sharply descend-
ing flow in the lee of the mountain redistributes the hor-
izontal vorticity into the vertical by tilting and stretching
the vortex filaments, Since the depth of the surface
boundary layer is often small compared with the height
of a large mountain, it is likely that this inviscid baroclinic
vorticity-generation mechanism is responsible for the
generation of many of the lee vortices observed in the
atmosphere. Smolarkiewicz et al. ( 1988) have successfully
applied the numerical model to the simulation of airflow
around the island of Hawaii.
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