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Update on 28 April 2024

This short write-up is superseded by our subsequent work Andriushchenko et al. (2024) which uses
random search to jailbreak many of the leading safety-aligned LLMs, including GPT-4. See the code
https://github.com/tml-epfl/llm-adaptive-attacks for the improved implementation of random
search. The text of the short write-up from December 2023 is presented below without any subsequent
changes.

1 Summary

In a recent announcement,1 OpenAI made the predicted probabilities of their models available via API.2
In this short paper, we use them to implement an adversarial attack on the latest GPT-4 Turbo (gpt-4-
1106-preview) model based on simple random search. We append a short adversarial string to a harmful
request that is by default rejected by the model with high probability due to safety or ethical concerns.
This is sufficient to “jailbreak” the model and make it answer the harmful request. We show examples of
corresponding conversationswithout andwith adversarial suffixes in Figure 1 andFigure 2. Interestingly,
iterative optimization via simple random search is highly effective as illustrated in Figure 3: we can
iteratively increase the probability of a desired starting token from ≈ 1% to above 50%. Finally, we
discuss implications and potential defenses against such attacks. Our code notebook is available at http
s://github.com/max-andr/adversarial-random-search-gpt4.

2 Methodology

Algorithm We use a simple random search algorithm (Rastrigin, 1963) customized for the given task
of jailbreaking a language model. The algorithm proceeds as follows:

■ We append a suffix of certain length to an original request.
■ On every iteration of the algorithm, we try to change a single character in the suffix at a random

position.
■ We accept the change only if it increases the log-probability of the token Sure at the first position of

the response.
We use adversarial suffixes of 10 characters (initializedwith underscores ) andwe perform 1 000
iterations of random search. The usage of suffixes (e.g., instead of prefixes) and the idea of maximizing
the log-probability of the token Sure is inspired by the recent white-box attack of Zou et al. (2023). The
general usage of random search is based on the success of random search for generating score-based
black-box adversarial examples for vision models (Andriushchenko et al., 2020).

Results We illustrate the effectiveness of the attack on two harmful requests in Figure 1 and Figure 2 for
which we performed the generation a few times with the sampling temperature 1 and selected the most
convincing response. We observed that the model answers the requests with high probability only when
adversarial suffixes are appended. Moreover, the optimization progress shown in Figure 3 suggests that
the adversarial suffix is sequentially refined over iterations via relatively small increments. This allows
to optimize the probability of token Sure from ≈ 1% to above 50%.

Note: basic prompting is essential Random search alone does not always suffice to jailbreak the GPT-4
Turbo model. A basic prompting is required to first get the probability of the target token (in our case
Sure) to appear in the top-5, and then make sure that the probability is high enough (e.g., as a rule of
thumb, around 1%).

1https://twitter.com/OpenAIDevs/status/1735730662362189872
2https://platform.openai.com/docs/api-reference/chat/create#chat-create-logprobs
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Figure 1: Request #1 without and with adversarial suffix. OpenAI playground links for these conversa-
tions are available at https://platform.openai.com/playground/p/gEEPak6gtzI4HiMnoKh
ksBc6?mode=chat and https://platform.openai.com/playground/p/0IU3UOP70KoviepEI

jXGBvUU?mode=chat.

3 Discussion

Iterative search is possible on the latest GPT-4 Turbo It is not obvious that such a simple iterative
search should necessarily succeed on a frontier LLM like the latest GPT-4 Turbo. Moreover, it is rather
surprising that such a small number of characters (10) and iterations (1 000) is sufficient to generate a
successful adversarial suffix from scratch. In particular, it implies that the cost for the attacker is low, i.e.,
less than a dollar per adversarial suffix.

Potential defenses The fact that the API returns only top-5 log-probabilities is not a major obstacle
since it is usually easy to make a desired token (such as Sure) appear in the top-5 by simple prompting.
A potentially more significant obstacle is non-determinstic log-probabilities since then random search does
not necessarily have a correct signal to refine the adversarial string. As illustrated in Figure 4, repeating
the same query multiple times leads to different log-probabilities, even when fixing the seed parameter
in the API. Interestingly, the variance is much higher for GPT-4 Turbo compared to GPT-3.5 Turbo. Based
on the shape of the curves, the noise seems to be non-Gaussian and sometimes two API calls can re-
turn exactly the same log-probability vectors. Thus, most likely, this randomness comes a combination
of potential caching and hardware (e.g., from non-deterministic GPU computations). This randomness
makes random search harder to apply, thus a simple defense is to simply add more noise to the returned
log-probabilities (which, however, would lead to a robustness-utility trade-off that might not be desir-
able). Additionally, one can try to simply detect repeated queries which are very similar to each other
and refuse to answer them as suggested in earlier works like Chen et al. (2020).

Implications We believe that the described algorithm can be used to iteratively optimize not only for
jailbreaks, but also for many other types of requests that frontier LLMs tend to prohibit. Although it
is unlikely that much of actual harm can be done in this way with the current LLMs, the possibility of
such iterative optimization is definitely not a desirable behavior which warrants investigations regarding
possible defenses. Finally, the adversarial vulnerability of frontier LLMs is very interesting from the
conceptual point of view: it is clear that scaling data and compute alone is not sufficient to prevent these
attacks, and it is likely that one would need to incorporate a worst-case adversarial training objective for
fine-tuning or even pre-training of frontier LLMs.
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Figure 2: Request #2 without and with adversarial suffix. OpenAI playground links for these conversa-
tions are available at https://platform.openai.com/playground/p/gTciUFzOZiQaYl65G16
frCxT?mode=chat and https://platform.openai.com/playground/p/szF1Vs2IwW5Hr9xUF

M1DL8fb?mode=chat.

Figure 3: Optimization progress of the simple random search attack over iterations.
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Figure 4: The histogram of log-probabilities for the first position in the response using the same query
repeated 250 times. The seed parameter in the API is fixed so it is unable to prevent the random-
ness in the returned log-probabilities.
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