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Abstract. Why is a given point in a dataset marked as an outlier by an off-the-
shelf detection algorithm? Which feature(s) explain it the best? What is the best
way to convince a human analyst that the point is indeed an outlier? We provide
succinct, interpretable, and simple pictorial explanations of outlying behavior in
multi-dimensional real-valued datasets while respecting the limited attention of
human analysts. Specifically, we propose to output a few pictures (focus-plots,
ie., pairwise feature plots) from a few, carefully chosen feature sub-spaces. The
proposed LOOKOUT makes four contributions: (a) problem formulation: we
introduce an “analyst-centered” problem formulation for explaining outliers via
focus-plots, (b) explanation algorithm: we propose a plot-selection objective
and the LOOKOUT algorithm to approximate it with optimality guarantees, (c)
generality: our explanation algorithm is both domain- and detector-agnostic, and
(d) scalability: LOOKOUT scales linearly with the size of input outliers to ex-
plain and the explanation budget. Our experiments show that LOOKOUT per-
forms near-ideally in terms of maximizing explanation objective on several real
datasets, while producing fast, visually interpretable and intuitive results in ex-
plaining groundtruth outliers.

1 Introduction

Given a multi-dimensional dataset of real-valued features, e.g., sensor measurements,
and a list of outliers (identified by an off-the-shelf “black-box” detector or any other
external mechanism), how can we explain the outliers to a human analyst in a succinct,
effective, and interpretable fashion?

Outlier detection is a widely studied problem. Numerous detectors exist for point
data [1,5,19], time series [12], as well as graphs [2,3]. However, the literature on out-
lier explanation or description is perhaps surprisingly sparse. Given that the outcomes
(alerts) of a detector often go through a “vetting” procedure by human analysts, it is ex-
tremely beneficial to provide explanations for such alerts which can empower analysts
in sensemaking and reduce their efforts in troubleshooting and recovery. Moreover, such
explanations should justify the outliers succinctly in order to save analyst time.

Our work sets out to address precisely the above outlier explanation problem. Con-
sider the following example situation: Given performance metrics from hundreds of
machines within a large company, an analyst could face two relevant scenarios.



!Name ! ! !Score!
!****************** ! !********!
!Skilling,!Jeff ! !0.893!
!Lay,!Kenneth ! !0.761!
!Fastow,!Andrew !0.442!
!Mark,!Rebecca !0.429!
!Smith,!John ! !0.331!
!Cooper,!Stephen !0.308!
!Tomson,!Mary! !0.232!
!... ! ! ! !...!

TradiMonal:!
!!"verbal"
"!"lengthy"
"!"no"explana1on"

Proposed:!
!!"visual"
"!"succinct"
"!"interpretable"

(a) traditional (b) proposed

Fig. 1: Compared to traditional ranked list output (a: wordy, lengthy, no explanation),
LOOKOUT produces simpler, more interpretable explanations (b: visual, succinct, inter-
pretable). LOOKOUT explains Enron founder/CEO “Ken Lay” and COO “Jeff Skilling”
by two “focus-plots” in which they are most salient.

– Detected outliers: For monitoring, s/he could use any “black-box” outlier detector
to spot machines with suspicious values of metric(s). Here, we are oblivious to
the specific detector, knowing only that it flags outliers, but does not produce any
interpretable explanation.

– Dictated outliers: Alternatively, outlying machines may get reported to the analyst
externally (e.g., they crash or get compromised).

In both scenarios, the analyst would be interested in understanding in what ways the
pre-identified outlying machines (detected or dictated) differ from the rest.

In this work, we propose a new approach called LOOKOUT, for explaining a given
set of outliers, and apply it to various, relational and non-relational, settings. At its
heart, LOOKOUT provides interpretable pictorial explanations through simple, easy-to-
grasp focus-plots (Definition 1), which “incriminate” the given outliers the most. We
summarize our contributions as follows.

– Outlier Explanation Problem Formulation: We introduce a new formulation that
explains outliers through “focus-plots”. In a nutshell, given the list of outliers from
a dataset with real-valued features, we aim to find a few 2D plots on which the total
“blame” that the outliers receive is maximized. Our emphasis is on two key aspects:
(a) interpretability: our plots visually incriminate the outliers, and (b) succinctness:
we show only a few plots to respect the analyst’s attention; the analysts can then
quickly interpret the plots, spot the outliers, and verify their abnormality given the
discovered feature pairs.

– Succinct Quantifiable Explanation Algorithm LOOKOUT: We propose the LOOK-
OUT algorithm to solve our explanation problem. Specifically, we develop a plot
selection objective, which quantifies the ‘goodness’ of an explanation and lends
itself to monotone submodular function optimization, which we solve efficiently
with optimality guarantees. Figure 1 illustrates LOOKOUT’s performance on the
Enron communications network, where it discovers two focus-plots which maxi-
mally incriminate the given outlying nodes: Enron founder “Ken Lay” and CEO
“Jeff Skilling.” Note that the outliers stand out visually from the normal nodes.

– Generality: LOOKOUT is general in two respects: it is (a) domain-agnostic, mean-
ing it is suitable for datasets from various domains, and (2) detector-agnostic,



meaning it can be employed to explain outliers produced by any detector or identi-
fied through any other mechanism (e.g., crash reports, customer complaints, etc.)

– Scalability: We show that LOOKOUT requires time linear on (i) the number of
plots to choose explanations from, (ii) the number of outliers to explain and (iii)
the user-specified budget for explanations (see Lemma 5 and Fig. 5).

We experiment with several real-world datasets from diverse domains including e-
mail communications and astronomy, which demonstrate the effectiveness, interpretabil-
ity, succinctness and generality of our approach.

Reproducibility: Our datasets are publicly available (See Section 5.1) and LOOK-
OUT is open-sourced at https://github.com/NikhilGupta1997/Lookout.

2 Related Work

Properties vs. Methods
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Quantifiable explanations 4 4 4 4 4
Budget-conscious 4 4
Visually interpretable 4
Scalable 4 4 4 4

Fig. 2: Comparison with other outlier description
approaches, in terms of four desirable properties.

While there is considerable prior
work on outlier detection [6,3,12],
literature on outlier description
is comparably sparse. Several
works aim to find an optimal
feature subspace which distin-
guishes outliers from normal
points. [14] aims to find a sub-
space which maximizes differ-
ences in outlier score distribu-
tions of all points across sub-
spaces. [17] instead takes a con-
straint programming approach
which aims to maximize dif-
ferences between neighborhood
densities of known outliers and
normal points. An associated problem focuses on finding minimal, or optimal feature
subspaces for each outlier. [15] aims to give “intensional knowledge” for each outlier
by finding minimal subspaces in which the outliers deviate sufficiently from normal
points using pruning rules. [7,8] use spectral embeddings to discover subspaces which
promote high outlier scores, while aiming to preserve distances of normal points. [20]
instead employs sparse classification of an inlier class against a synthetically-created
outlier class for each outlier in order to discover small feature spaces which discern
it. [16] proposes combining decision rules produced by an ensemble of short decision
trees to explain outliers. [4] augments the per-outlier problem to include outlier groups
by searching for single features which differentiate many outliers.

All in all, none of these works meet several key desiderata for outlier description: (a)
quantifiable explanation quality, (b) budget-consciousness towards analysts (returning
explanations which do not grow with size of the outlier set), (c) visual interpretability,
and (d) a scalable descriptor, which is sub-quadratic on the number of nodes and at worst
polynomial on (low) dimensionality. Fig. 2 shows that unlike existing approaches, our

https://github.com/NikhilGupta1997/Lookout


LOOKOUT approach is designed to give quantifiable explanations which aim to max-
imize incrimination, respect human attention-budget and visual interpretability con-
straints, and scale linearly on the number of outliers.

3 Preliminaries and Problem Statement

3.1 Notation

Let V be the set of input data points, where each point v ∈ V originates from Rd and
n = |V| is the total number of points. Here, d = |F| is the dimensionality of the dataset
and F = {f1, f2, . . . , fd} is the set of real-valued features (either directly given, or
extracted, e.g., from a relational dataset). The set of outlying points given as input is
denoted by A ⊆ V , |A| = k. Typically, k � n.

3.2 Intuition & Proposed Problem

The explanations we seek to generate should be simple and interpretable. Moreover,
they should be easy to illustrate to humans who will ultimately leverage the explana-
tions. To this end, we decide to use focus-plots (Definition 1) for outlier justification,
due to their visual appeal and interpretability. A formal definition is given below.

Definition 1 (Focus-plot). Given a dataset of points V , a pair of features fx, fy ∈ F
(where F is the set of real-valued features) and an input set of outliers A, focus-plot
p ∈ P is a 2-d scatter plot of all points, with fx on x-axis, fy on y-axis, ‘drawing
attention’ to the set of “maxplained” (maximally explained) outliers Ap ⊆ A best
explained by this feature pair.

Intuitively, our pictorial outlier explanation is a set of focus-plots, each of which
“blames” or “explains away” a subset of the input outliers, whose outlierness is best
showcased by the corresponding pair of features. That is, we consider

(
d
2

)
= d(d−1)

2
2-d spaces by generating all pairwise feature combinations. Within each 2-d space, we
then score the points in A by their outlierness (Section 4.1).

Let us denote the set of all
(
d
2

)
focus-plots byP . Even for small values of d, showing

all the focus-plots would be too overwhelming for the analyst. Moreover, some outliers
could redundantly show up in multiple plots. Ideally, we would identify only a few
focus-plots, which could “blame” or “explain away” the outliers to the largest possible
extent. In other words, our goal would be to output a small subset S of P , on which
points in A receive high outlier scores (Section 4.2).

Given this intuition, we formulate our problem:

Problem 1 (Outlier Explanation).
– Given (a) a dataset on points V consisting of real-valued features F ,

(b) a list of outliers A ⊆ V , either (1) detected by an off-the-shelf detector or (2)
dictated by external information, and

(c) a fixed budget of b focus-plots,
– find the best such focus-plots S ⊆ P , |S| = b
– to maximize the total maximum outlier score of outliers that we can “blame”

through the b plots.



Table 1: Symbols and Definitions

Symbol Definition
V Set of data points, |V| = n
A Input set of outliers, |A| = k
F Set of features, |F| = d
P Set of focus-plots, |P| = d(d− 1)/2 = l
si,j Outlier score of ai ∈ A in plot pj ∈ P
S Subset of selected focus-plots

f(S) Explanation objective function
∆f (p | S) Marginal gain of plot p w.r.t S

b Budget, i.e., maximum cardinality of S

4 Proposed Algorithm LOOKOUT

In this section, we detail our approach for scoring the input outliers by focus-plots, our
plot selection objective and algorithm for choosing focus-plots, the overall complexity
analysis of LOOKOUT, and conclude with discussion.

4.1 Scoring by Feature Pairs

Given all the points V , with marked outliers A ⊆ V , and their given (or extracted)
features F ∈ Rd, our first step is to quantify how much “blame” we can attribute to
each input outlier in R2. As previously mentioned, 2-d spaces are easy to illustrate
visually with focus-plots. Moreover, outliers in 2-d are easy to interpret: e.g., “point
a has too many/too few y=dollars for its x=number of accounts”. Given a focus-plot,
an analyst can easily discern the outliers visually and come up with such explanations
without any further supervision.

We construct 2-d spaces (fx, fy) by pairing the features ∀x, y = {1, . . . , d}, x 6= y
(order does not matter). Each focus-plot pj ∈ P corresponds to such a pair of features,
j = {1, . . . ,

(
d
2

)
}. For scoring, we consider two different scenarios, depending on how

the input outliers were obtained.
If the outliers are detected by some “black-box” detector available to the analyst,

we can employ the same detector on all the nodes (this time in 2-d) and thus obtain the
scores for the nodes in A.

If the outliers are dictated, i.e. reported externally, then the analyst could use any
off-the-shelf detector, such as LOF [5], DB-outlier [15], etc. In this work, we use the
Isolation Forest (iForest) detector [19] for two main reasons: (a) it boasts constant train-
ing time and space complexity (i.e., independent of n) due to its sampling strategy, and
(b) it has been shown empirically to outperform alternatives [9] and is thus state-of-the-
art. However, note that none of these existing detectors has the ability to explain the
outliers, especially iForest, as it is an ensemble approach.

By the end of the scoring process, each outlier receives |P| = l =
(
d
2

)
scores.



4.2 Plot Selection Objective

While scoring in small, 2-d spaces is easy and can be trivially parallelized, presenting
all such focus-plots to the analyst would not be productive given their limited attention
budget. As such, our next step is to carefully select a short list of plots that best blame
all the outliers collectively, where the plot budget can be specified by the user.

While selecting plots for justification, we aim to incorporate the following criteria:
– incrimination power; such that the outliers are scored as highly as possible,
– high expressiveness; where each plot incriminates multiple outliers, so that the

explanation is sublinear in the number of outliers, and
– low redundancy; such that the plots do not explain similar sets of outliers.

We next introduce our objective criterion which satisfies the above requirements.

Fig. 3: LOOKOUT with k=4 outliers,
l=3 focus-plots, and budget b=2. p1
is picked first due to maximum total
incrimination (sum of edge weights =
2.9). Next p3 is chosen over p2, due to
its higher marginal gain (0.4 vs 0.2).

Objective function At this step of the pro-
cess, we can conceptually think of a com-
plete, weighted bipartite graph between the k
input outliers A = {a1, . . . , ak} and l focus-
plotsP = {p1, . . . , pl}, in which edge weight
si,j depicts the outlier score that ai received
from pj , as illustrated in Fig. 3.

We formulate our objective to maximize
the total maximum outlier score of each out-
lier amongst the selected plots:

maximize
S⊆P,|S|=b

f(S) =
∑
ai∈A

max
pj∈S

si,j (1)

Here, our objective function, f(S), can be
considered the total incrimination score given
by subset S. Since we are limited with a bud-
get of plots, we aim to select those which
explain multiple outliers to the best extent.
Note that each outlier receives their maxi-
mum score from exactly one of the plots among the selected set (excluding ties), which
effectively partitions the explanations and avoids redundancy. In the example from Fig.
3, focus-plots p1 and p3 “explain away” outliers {a1, a2, a3} and {a4} respectively,
where the maximum score that each outlier receives is highlighted in red font.

Concretely, we denote by Ap the set of maxplained (maximally explained) outliers
by focus-plot p, i.e., outliers that receive their highest score from p, i.e. Ap = {ai|p =
argmaxpj∈S si,j}, where we break ties at random. Note that Ap ∩Ap′ = ∅, ∀ p, p′ ∈
P . In depicting a plot p to the analyst, we mark the set of maxplained outliersAp in red
and the rest in A\Ap in blue – see Fig. 1.

4.3 Approximation Algorithm LOOKOUT



Algorithm 1 LOOKOUT

Input: dataset of points V , outliers A, set of all possible focus-plots P , budget b
Output: pictorial outlier explanation S, which is a set of focus-plots

1: for pj ∈ P do
2: Dj ← iForest constructed using V and the two features used in plot pj
3: for ai ∈ A do
4: si,j ← anomaly score given by detector Dj to point ai
5: end for
6: end for
7: initialize S ← ∅
8: while |S| < b do
9: recompute marginal gain ∆f (p | S) ∀ p ∈ P \S using Eq. (4) / lines 9-10 can be

10: p∗ ← argmaxp∈P\S ∆f (p | S) efficiently implemented using
11: S ← S ∪ {p∗} lazy greedy heuristic (e.g., [18])
12: end while
13: return S

Having defined our plot selection objective, we need to devise a subset selection
algorithm to optimize Eq. (1), for a budget b. Notice that the optimal subset selection is
a combinatorial task which we can show to be NP-hard.

Lemma 1. The focus-plot selection problem in Eq. (1) is NP-hard.

Proof. We sketch the proof by a reduction from the Maximum Coverage (MaxCover)
problem, which is known to be NP-hard [10]. An instance of MaxCover involves an
integer k and a collection of sets {S1, . . . , Sl} each containing a list of elements, where
the goal is to find k sets such that the total number of covered elements is maximized.
The MaxCover problem instance maps to an instance of our problem, where each set Sj

corresponds to a focus-plot pj , each element ei maps to an outlier ai, and the elements
(outliers) inside each set has the same unit score (si,j = 1 for ei ∈ Sj) while the others
outside the set has score zero (si,j = 0 for ei /∈ Sj) on the corresponding focus-plot.
Since MaxCover is equivalent to a special case of our problem, we conclude that Eq. (1)
is at least as hard as MaxCover. �

Therefore, our aim is to find an approximation algorithm to optimize Eq. (1).

Properties of our objective Fortunately, our objective f(·) exhibits three key proper-
ties that enable us to use a greedy algorithm with an approximation guarantee. Specif-
ically, our objective f : 2|P| → R+ ∪ {0} is (i) non-negative, since the outlier scores
take non-negative values, often in [0, 1], e.g., using iForest [19], (ii) non-decreasing (see
Lemma 2) and (iii) submodular (see Lemma 3).

Lemma 2 (Monotonicity). f is non-decreasing, i.e., for any S ⊆ T , f(S) ≤ f(T ).

Proof. f(S) =
∑

ai∈A
maxpj∈S si,j ≤

∑
ai∈A

maxpj∈T si,j = f(T ) �



Lemma 3 (Submodularity). f is submodular, i.e., for any two sets S ⊆ T and a
focus-plot pj∗ ∈ P \ T , f(S ∪ {pj∗})− f(S) ≥ f(T ∪ {pj∗})− f(T ).

Proof. f(S ∪ {pj∗})− f(S) =
∑
ai∈A

[
max

pj∈S∪{pj∗}
si,j −max

pj∈S
si,j

]
=
∑
ai∈A

(
si,j∗ −max

pj∈S
si,j

)
· I
[
si,j∗ > max

pj∈S
si,j

]
≥
∑
ai∈A

(
si,j∗ − max

pj∈T
si,j

)
· I
[
si,j∗ > max

pj∈S
si,j

]
(2)

≥
∑
ai∈A

(
si,j∗ − max

pj∈T
si,j

)
· I
[
si,j∗ > max

pj∈T
si,j

]
(3)

= f(T ∪ {pj∗})− f(T )

where I [·] is the indicator function and Eq. (2) and Eq. (3) follow from the fact that
maxpj∈S si,j ≤ maxpj∈T si,j whenever S ⊆ T . �

Proposed LOOKOUT algorithm Submodular functions which are non-negative and
non-decreasing admit approximation guarantees under a greedy approach identified by
Nemhauser et al. [22]. The greedy algorithm starts with the empty set S0. In iteration
t, it adds the element (in our case, focus-plot) that maximizes the marginal gain ∆f in
function value, defined as

∆f (p|St−1) = f(St−1 ∪ {p})− f(St−1) (4)

That is,
St := St−1 ∪ { argmax

p∈P\St−1

∆f (p|St−1) } .

This leads to LOOKOUT explanation algorithm, given in Algorithm 1. Its approximation
guarantee is given in Lemma 4.

Lemma 4 (63% approximation guarantee). Given A,P and budget b, let Ŝ be the
output of LOOKOUT (Algorithm 1). Suppose S∗ = argmaxS⊆P,|S|=b f(S) is an opti-
mal set of focus-plots. Then:

f(Ŝ) ≥
(
1− 1

e

)
f(S∗) (5)

Proof. This follows from [22] since by design, our plot selection objective f is non-
negative, non-decreasing and submodular. �

4.4 Computational Complexity Analysis

Lemma 5. LOOKOUT total time complexity is O(l log n′(k + n′) + klb), for sample
size n′ < n, and is sub-linear in total number of input points n.



Proof. We study complexity in two parts: (1) scoring the given outliers (Section 4.1)
and (2) selecting focus-plots to present to the user (Section 4.2).

(1) For each focus-plot, we train an iForest model [19] in 2-d. Following their rec-
ommended setup, we sub-sample n′ points and train t (100 in [19]) randomized isola-
tion trees. The depth of each tree is O(log n′), where each point is evaluated at each
level for the threshold/split conditions. Therefore, training iForest with t trees takes
O(tn′ log n′). Then, scoring |A| = k outliers takes O(tk log n′). Total complexity of
training and scoring on all plots is O(lt log n′(k + n′)). Note that this can also be done
per plot independently in parallel to reduce time.

(2) At each iteration of the greedy selection algorithm, we compute the marginal
gain for each yet-unselected plot of being added to our select-set in O(kl). Marginal
gain per plot can also be computed independently in parallel. Among the remaining
plots, we pick the one with the largest marginal gain. Finding the maximum among all
gains takes O(l) via a linear scan. We repeat this process b times until the budget is
exhausted. Total selection complexity is thus O(klb).

The overall complexity of both parts is effectively O(l log n′(k + n′) + klb), since
t is a constant. �

Notice that the total number of focus-plots, l=d2, is quadratic in number of features.
Typically, d is small (<100). In high dimensions, we could either use parallelism (multi-
core machines are commodity), or drop features with low kurtosis as done earlier [19]
or other feature selection criteria [13].

4.5 Discussion

Here we answer some questions that may be in the reader’s mind.
1. How do we define “outlier?” We defer this question to the off-the-shelf outlier de-
tection algorithm (iForest [19], LOF [5], etc.). Our focus here is to succinctly and inter-
pretably explain what makes the pre-selected items stand out from the rest.
2. Why focus-plots? Using focus-plots for justification is an essential, concious choice
we make for several reasons: (a) scatterplots are easy to look at and quickly interpret
(b) they are universal and non-verbal, in that we need not use language to convey the
outlierness of points – even people unfamiliar with the context of Enron will agree that
the point “Jeff Skilling” in Fig. 1 is far away from the rest, and (c) they show where the
outliers lie relative to the normal points – the contrastive visualization of points is more
convincing than stand-alone rules.
3. How do we choose the budget b? We designed our objective function to be budget-
conscious, and let the budget be specified by the analyst (user). If not specified, we use
b=7, since humans have a working memory of size “seven, plus or minus two” [21].
4. Why not decision trees to separate outliers from the rest? While arguably inter-
pretable, decisions trees are not easy to visualize the points when higher than depth
3. Moreover, they try to find balanced splits which would try to cluster the outliers –
which is unlikely for outliers. Also, decision trees are not budget-conscious, i.e. they
would not necessarily produce the minimum description. Finally, they do not provide
any quantifiable explanations, i.e. incrimination per outlier like our si,j scores – the
splits are binary.



Table 2: Datasets with labeled outliers (that we explain) studied in this work.

Dataset Type # points # features Description

ENRON1 graph 151 12 e-mail communications
DBLP2 graph 1.3M 12 co-authorship
HTRU3 feature 17.9K 8 pulsar identification
GLASS4 feature 213 9 glass composition

5 Experiments

In this section, we empirically evaluate LOOKOUT on three, diverse datasets. Our ex-
periments were designed to answer the following questions:
[Q1] Quality of Explanation: How well can LOOKOUT “explain” or “blame” the

given outliers?
[Q2] Scalability: How does LOOKOUT scale with the input graph size and the number

of outliers?
[Q3] Discoveries: Does LOOKOUT lead to interesting and intuitive explanations on

real world data?
These are addressed in Sec. 5.3, 5.4 and 5.5 respectively. Before detailing our empirical
findings, we describe the datasets used and our experimental setup.

5.1 Dataset Description

To illustrate the generality of our proposed domain-agnostic pictorial outlier explana-
tions algorithm LOOKOUT, we select our datasets from diverse domains: - e-mail com-
munication (ENRON), co-authorship (DBLP), pulsar identification (HTRU), and glass
composistion (GLASS). All datasets are publicly available and the first two are uni-
partite, directed and undirected resp., time-evolving graph datasets. The latter two are
multi-feature datasets consisting of continuous values. A brief description is given be-
low and a summary is provided in Table 2.
ENRON: This dataset consists of 19K emails exchanged between 151 ENRON employ-
ees during the period surrounding the scandal5 (May 1999-June 2002). The communi-
cations are on daily granularity.
DBLP: This dataset contains the co-authorship network of 1.3M authors over 25 years
from 1990 to 2014. The networks are collected at yearly granularity.
HTRU: This dataset describes a sample of 17.9K pulsar (rapidly rotating neutron star)
candidates collected during the High Time Resolution Universe Survey. Radio emis-
sions have been binary classified as either background noise or as pulsar radiation.
Features are extracted from the radio emission pattern curves and profiles.
GLASS: This dataset consists of a multiclass classification of 213 glass samples with
element-wise composisions of each sample as features. There are a total of seven classes

1
http://networkdata.ics.uci.edu/netdata/html/EnronMailUSC1.html

2
http://konect.uni-koblenz.de/networks/dblp_coauthor

3
https://archive.ics.uci.edu/ml/datasets/Glass+Identification

4
https://archive.ics.uci.edu/ml/datasets/HTRU2

5
https://en.wikipedia.org/wiki/Enron_scandal

http://networkdata.ics.uci.edu/netdata/html/EnronMailUSC1.html
http://konect.uni-koblenz.de/networks/dblp_coauthor
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
https://archive.ics.uci.edu/ml/datasets/HTRU2
https://en.wikipedia.org/wiki/Enron_scandal


which are clustered into two distinct types: (Classes 1-4) window glass and (Classes 5-
7) non-window glass.

5.2 Experimental Setup

Graph feature extraction: We extract the following intuitive and easy-to-understand
features from our graph datasets (ENRON, DBLP) in order to generate pictorial explana-
tions: (1) indegree and (2) outdegree for the number of unique in- and out- neigh-
bors of every node, (3) inweight-v and (4) outweight-v for the total weight of
in- and out- edges incident on each node, (5) inweight-r and (6) outweight-r
for the count of in- and out- edges (including repetitions) incident on each node, (7)
average-IAT, (8) IAT-variance, (9-11) minimum-IAT, median-IAT, and
maximum-IAT to capture various statistics of inter-arrival time (IAT) between edges
and finally, (12) lifetime- for the time gap between the first and the last edge
[11,23,2].

Groundtruth: To obtain “ground-truth” outliers for LOOKOUT input, we use the
iForest [19] algorithm on given or extracted features. This yields a ranked list of points
with scores in [0, 1] (higher value suggests higher abnormality), from which we pick the
desired top k. Analogously, we use iForest for computing the outlier score in each focus-
plot. We note that the analyst is free to choose any outlier detector(s) for both/either of
the above stages, making LOOKOUT detector-agnostic. However, it is recommended
that the same methods be used for both stages to ensure ranking similarities.

Evaluation metric: We quantify the quality of explanation provided by a set of
plots S using its incrimination score which is a normalized form of our objective:

incrimination(S) = 1

C
· f(S) (6)

where C is the normalization constant equal to the maximum achievable objective (see
Eq. (1)) when all plots are selected, i.e., C = f(P).

Baselines: Due to the lack of comparable prior works, we use a naı̈ve version of our
approach, called LOOKOUT-NAÏVE which ignores the submodularity of our objective.
Instead, LOOKOUT-NAÏVE assigns a score to each plot by summing up scores for all
given outliers and chooses the top b plots for a given budget b. For the sake of compar-
ison, we compare both LOOKOUT and LOOKOUT-NAÏVE with a RANDOM baseline in
which random b plots are chosen for the given budget b.

All experiments were performed on an OSX personal computer with 16GB memory.
RANDOM baseline incrimination scores and runtimes were averaged over 10 trials.

5.3 Quality of Explanation

Fig. 4 compares the incrimination scores of both LOOKOUT-NAÏVE and LOOKOUT on
the ENRON, HTRU and GLASS datasets for several choices of k and b. The red dotted
line indicates the ideal value, incrimination(P) = 1, i.e., the highest achievable incrim-
ination (by selecting all plots). Fig. 4 shows that LOOKOUT consistently outperforms
LOOKOUT-NAÏVE and rapidly converges to the ideal incrimination with increasing
budget. Results on DBLP were similar, but excluded for space constraints.



(a) ENRON (b) ENRON

(c) HTRU (d) GLASS

Fig. 4: Comparison of explanation capability of LOOKOUT with other baselines. Re-
sults shown on ENRON (a-b) with k = {10, 20} outliers (left to right), HTRU (c) with
32 outliers and GLASS (d) with 28 outliers.

5.4 Scalability

We empirically studied how LOOKOUT runtime varies with (i) number of focus-plots l
and (ii) the number of outliers k.

To study the variation of runtime with the number of focus-plots, we vary the num-
ber of features which are taken into consideration. Fig. 5 (left) illustrates linear scaling
with respect to number of focus-plots for the GLASS dataset.

We also study the variation of runtime with the number of outliers, as feature extrac-
tion incurs a constant overhead on each dataset. Fig. 5 (right) illustrates linear scaling
with respect to number of outliers for a DBLP subgraph with 10K edges.

5.5 Discoveries

In this section, we present our discoveries using LOOKOUT on all four real world
datasets. Scoring in 2-d was performed using iForest with t = 100 trees and sample
size ψ = 64 (ENRON, HTRU, GLASS) and ψ = 256 (DBLP). We use dictated outliers
for ENRON, HTRU and GLASS, and detected outliers for DBLP dataset to demonstrate
performance in both settings.



Fig. 5: LOOKOUT scales linearly with (left) number of focus-plots to consider and
right) number of outliers.

(a) (b)

Fig. 6: Discoveries using LOOKOUT on detected outliers: LOOKOUT partitions and
explains outlier detection results from iForest on DBLP (a-b).

ENRON (CEO & CFO explained by large outdegree)
We used two top actors in the ENRON scandal, Kenneth Lay (CEO) and Jeff Skilling
(CFO) as dictated outliers for LOOKOUT and sought explanations for their abnormality
based on internal e-mail communications. With b = 2, LOOKOUT produced the focus-
plots shown in Fig. 1 (right). Explanations indicate that Jeff Skilling had an unsually
large IAT-max for the number of employees he communicated with (outdegree).
On the other hand, Kenneth Lay sent emails to an abnormally large number of employ-
ees (outdegree) given the time range during which he emailed anyone (lifetime).

DBLP (high h-index authors explained by large lifetime and high co-authorships)
We obtained ground truth outliers by running iForest on the high-dimensional space
spanned by the extracted graph features. With k = 5, the detected outlying authors
were Jack Dongarra, Thomas S. Huang, Alberto L. Sangiovanni-Vincentelli, H. Vincent
Poor, and Hao Wang. The explanations provided by LOOKOUT with b = 2 are shown
in Fig. 6a-b. Thus, the outlying authors users are partitioned into two groups. The mem-
bers of the first group, Jack Dongarra, Thomas S. Huang, Alberto L. Sangiovanni-
Vincentelli, and H. Vincent Poor are outlying because they had unusually high duration
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Fig. 7: Discoveries using LOOKOUT on dictated outliers: LOOKOUT explains outlier
characteristics on HTRU (a-c) and GLASS (d-f) for budget b = 3.

during which they published papers (lifetime) and total number of co-authorships
(inweight-r). This is consistent with their high h-indices obtained from their re-
spective google scholar pages (see brackets in Fig. 6a). The second group consists of
only Hao Wang, who was also outlying in the first focus-plot, but is best explained by
very high IAT-variance for his inweight-r value, shown in Fig. 6b.

HTRU (pulsars correlated with skewness and extra kurtosis of integrated profile)
The given radio emission samples were classified as either random noise or produced
from a pulsar. We subsampled datapoints from the pulsar class and considered them
as our set of dictated outliers with k = 32. We ran LOOKOUT on this subsampled
dataset with b = 3 and obtained the focus-plots shown in Fig. 7a-c. The explanations



infer high values of skewness and excess kurtosis seem to strongly indicate
a pulsar radio emission. We observe that only the first focus-plot, Fig. 7a, succeeds to
provide a suitable explanation for our set of detected anomalies. This is quantitatively
explained in Fig. 4c where budget b = 1 has a high incrimination score and on further
increasing the budget only a small marginal gain is observed.
GLASS (headlamp glass explained by high Aluminium and Barium content)
The dataset contains seven classes pertaining to different types of glass. Broadly these
seven classes are split into two categories: window based glass (class 1-4) and non-
window based glass (class 5-7). To compare glass composition between these two cat-
egories we stitched together a subset of the original dataset by including only classes
1, 2, 3, 4 & 7. Here class 7 (headlamps) is considered the set of dictated outliers with
k = 28. The explanations provided by LOOKOUT, on the newly constructed dataset,
with b = 3 are shown in Fig. 7d-f. The first two focus-plots Fig. 7d-e reflect higher
aluminium and barium concentrations in headlamps as compared to window glass.
Aluminium is used as a reflective coating and the presence of barium, in the form
of oxides (borosilicate glass), helps induce heat resistant properties – both properties
we expect to find in headlamps. Concurrently, we observe a very low or nearly zero
concentration of potassium in headlamp glass. Potassium is to used to toughen
glass and is found in windows which need to be resistant to adverse weather conditions.

Note that on all datasets, outlying points are visually distinguishable, and often
complementary between focus-plots. This is in line with our desired explanation task,
and achieved as a result of our LOOKOUT subset selection objective and approach.

6 Conclusions

In this work, we formulated and tackled the problem of succinctly and interpretably ex-
plaining outliers to human analysts. We made the following contributions: (a) problem
formulation: we formulate our goal for explaining outliers using a budget of visually
interpretable focus-plots, (b) explanation algorithm: we propose a submodular objec-
tive to quantify explanation quality and propose the LOOKOUT method for solving it
approximately with guarantees, (c) generality: we show that LOOKOUT can work with
diverse domains and any detection algorithm, and (d) scalability: we show theoreti-
cally and empirically that LOOKOUT scales linearly in the number of input outliers as
well as the total number of focus-plots to chose from. We conduct experiments on real-
world datasets: e-mail communication, co-authorship, pulsar identification, and glass
composition and demonstrate that LOOKOUT produces qualitatively interpretable ex-
planations for “ground-truth” outliers and achieves strong quantitative performance in
maximizing our proposed objective.
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