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Abstract. Interest in characterizing the role of impaired insulin actions in Alzheimer’s disease (AD) and vascular dementia is
growing exponentially. This review details what is currently known about insulin, insulin-like growth factor type I (IGF-I) and
IGF-II proteins and their corresponding receptors in the brain, and delineates the major controversies pertaining to alterations in
the expression and function of these molecules in AD. The various experimental animal models generated by over-expression,
mutation, or depletion of genes that are critical to the insulin or IGF signaling cascades are summarized, noting the degrees to which
they reproduce the histopathological, biochemical, molecular, or behavioral abnormalities associated with AD. Although no single
model was determined to be truly representative of AD, depletion of the neuronal insulin receptor and intracerebroventricular
injection of Streptozotocin reproduce a number of important aspects of AD-type neurodegeneration, and therefore provide
supportive evidence that AD may be caused in part by neuronal insulin resistance, i.e. brain diabetes. The extant literature did
not resolve whether the CNS insulin resistance in AD represents a local disease process, or complication/extension of peripheral
insulin resistance, i.e. chronic hyperglycemia, hyperinsulinemia, and Type 2 diabetes mellitus. The available epidemiological
data are largely inconclusive with regard to the contribution of Type 2 diabetes mellitus to cognitive impairment and AD-type
neurodegeneration. A major conclusion drawn from this review is that there is a genuine need for thorough and comprehensive
study of the neuropathological changes associated with diabetes mellitus, in the presence or absence of superimposed AD or
vascular dementia. Strategies for intervention may depend entirely upon whether the CNS disease processes are mediated by
peripheral, central, or both types of insulin resistance.
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1. Insulin and insulin-like growth factor regulate
brain development and function

Insulin and insulin-like growth factor type 1 (IGF-
I) are important modulators of growth and metabolic
function in the central nervous system (CNS), and cor-
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respondingly, their receptors are abundantly expressed
in the brain. Insulin and IGF-I are neurotropic since
they can support neuronal growth, survival, and dif-
ferentiation in the absence of other growth factors,
and they promote neurite outgrowth, migration, pro-
tein synthesis, neuronal cytoskeletal protein expres-
sion, and nascent synapse formation [1–5]. In ad-
dition, IGF-I regulates oligodendrocyte survival, de-
velopment, and myelination [6], while insulin regu-
lates food intake, glucose homeostasis, growth, and
metabolic activity [7].
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Previous studies demonstrated insulin immunoreac-
tivity in CNS neurons distributed in the hippocampus,
thalamus, hypothalamus, and amygdale of experimen-
tal animal [7] and human [8] brains by immunohisto-
chemical staining, and insulin peptide in human brain
homogenates by radioimmunoassay [8]. Data regard-
ing the source of brain insulin is limited and some-
what inconclusive as to whether the immunoreactivity
reflects transport and uptake from the blood, endoge-
nous production, or both [7]. Although experimen-
tal evidence indicates that insulin can be transported
through the blood-brain barrier into cerebrospinal fluid
via receptor-mediated uptake [9], its subsequent local-
ization in CNS neurons and glial cells was not demon-
strated in those same studies. However, recent evidence
suggests that the brain may utilize insulin from both
locally produced and peripheral (pancreatic) sources
for different functional requirements including cogni-
tion [10]. IGF-I and IGF-II are expressed in various re-
gions of fetal [6,11] and adult brains [12]. IGF-I is de-
velopmentally regulated such that peak levels coincide
with neuronal proliferation and neurite outgrowth [6,
13,14], whereas IGF-II is mainly expressed in cells of
mesenchymal and neural crest origin [6].

Insulin and IGF-I receptors are expressed in neurons
throughout the CNS, but they are most abundantly dis-
tributed in the olfactory bulbs, cerebral cortex, cere-
bellar cortex, hippocampus, thalamus, hypothalamus,
brainstem nuclei, spinal cord, and retina [12,15,16].
IGF-I and IGF-II receptors are widely distributed in
both fetal [6,11] and adult [12] brains, and previous
studies showed that expression of these molecules is
not modulated during development [6,13]. The co-
expression of intracellular molecules that are critical for
transmitting insulin and IGF-I stimulated signals [12,
15] indicates that both immature and mature CNS neu-
rons are equipped to respond to insulin and IGF-I stim-
ulation [12].

2. Insulin receptor substrate molecules

Insulin and IGF-1 mediate their effects on cell
growth, survival, homeostasis, glucose transport, and
energy metabolism by signaling downstream through
insulin receptor substrate (IRS) molecules. IRS sub-
types 1–4 have similar organizational structures in that
each has a highly conserved N-terminus and a less
conserved C-terminus that contains multiple tyrosine
phosphorylation sites responsible for transmitting in-
sulin and IGF-1 stimulated signals downstream to me-

diate a diverse array of cellular functions. The N-
terminus contains three important functional domains
including, one pleckstrin homology (PH) region, and
two regions homologous to a phosphotyrosine bind-
ing (PTB) domain [17,18]. The PH domain mediates
IRS interactions with Janus tyrosine kinase Tyk-2, and
may also be important for linking IRS to signal trans-
duction pathways that involve interactions with G pro-
teins and phospholipids [18]. The PTB domain inter-
acts with theβ-subunit of the insulin and IGF-1 recep-
tors. The C-terminal regions of IRS molecules func-
tion by interacting with src homology 2 (SH2) domain-
containingproteins. The specificity of signals transmit-
ted through IRS molecules is mediated by differential
interactions between the PTB domain and the insulin
or IGF-1 receptor, and variability in the structure of the
C-terminal region which enables selective interactions
between IRS molecules and SH2 domain-containing
proteins that mediate particular cellular responses [18].
In addition, selective insulin and IGF-1 signaling re-
sponses are mediated by tissue-specific expression of
the different IRS subtypes.

3. Insulin and IGF-I signaling mechanisms

The stimulatory effects of insulin and IGF-I are me-
diated through complex intracellular signaling path-
ways, beginning with ligand binding to the correspond-
ing receptors and activation of the intrinsic receptor ty-
rosine kinases [19]. Insulin and IGF-I receptor tyrosine
kinases phosphorylate a number of cytosolic molecules,
including their major substrates, IRS proteins [20,21].
IRS signaling mechanisms are activated by tyrosine
phosphorylation of specific motifs located in the C-
terminal regions of the molecules. Tyrosine phospho-
rylated (TP) IRS proteins [17,18] transmit intracellular
signals that mediate growth, metabolic functions, and
viability by interacting with downstream molecules that
contain SH2 domains [17,18], including the growth-
factor receptor-bound protein 2 (Grb2), SHPTP-2 pro-
tein tyrosine phosphatase, and the p85 regulatory sub-
unit of phosphatidylinositol-3 kinase (PI3 kinase) [22].
The binding of TP-IRS to Grb2 results in sequential ac-
tivation of p21ras, mitogen-activated protein kinase ki-
nase (MAPKK), and Erk MAPK [18]. Erk MAPK acti-
vation directly contributes to insulin- and IGF-I stimu-
lated mitogenesis, neuritic sprouting, and gene expres-
sion [23–25].

Binding of TP-IRS to p85 stimulates glucose
transport [26] and inhibits apoptosis by activating
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Akt/Protein kinase B [27–31] and inhibiting glycogen
synthase kinase-3β (GSK-3β) [32]. Akt kinase in-
hibits apoptosis by phosphorylating GSK-3β [32,33]
and BAD [34], rendering them inactive. Low levels
of Akt kinase and high levels of GSK-3β activity or
activated BAD are associated with increased neuronal
death [31,35,36]. BAD inactivates anti-apoptotic Bcl-
family proteins, rendering the mitochondrial membrane
more susceptible to pro-apoptotic molecules that pro-
mote membrane permeability, cytochrome c release,
and caspase activation [37]. Perturbations in mitochon-
drial membrane permeability increase cellular free rad-
icals that cause mitochondrial DNA damage, impair
mitochondrial function, and activate pro-apoptosis cas-
cades [38,39]. Although insulin and IGF-I have vir-
tually identical signaling cascades, their functions are
overlapping but not entirely duplicative, and the corre-
sponding receptors are expressed in different cell pop-
ulations in the developing, mature, and aging CNS.

4. Experimental animal models of insulin receptor,
IGF-I receptor, and insulin receptor substrate
gene over-expression or depletion

The roles of insulin and IGF-I signaling in relation to
CNS growth, development, and function were divulged
in part by the analysis of transgenic and knockout
mouse models. Targeted gene mutation studies demon-
strated that IGF-I and IGF-II both stimulate prenatal
brain growth, whereas only IGF-I stimulates postnatal
brain growth [40]. During fetal development, insulin
stimulated signaling via its own receptor appears to
be uncoupled and instead, the insulin receptor is ac-
tivated by IGF-II [40]. Therefore, using the targeted
mutation approach, IGF-II was demonstrated to be a
bi-functional ligand capable of activating both insulin
and IGF-I signaling mechanisms in the immature brain,
although IGF-II is not as effective as insulin for mediat-
ing growth, energy metabolism, glucose homeostasis,
survival, and cognition [40].

Transgenic mice that over-express IGF-I have sig-
nificantly larger brains due to increased populations
of neurons and oligodendrocytes, as well as increased
myelin content [2,6,11,41]. In contrast, genetic deple-
tion of IGF-I or the IGF-I receptor, or over-expression
of IGF 1 binding proteins (IGFBPs) that inhibit the
actions of IGF-I, severely retards and impairs brain
growth and development. These abnormalities are as-
sociated with reduced populations of neurons, deficien-
cies in myelination [2,4,6,42,43], and increased neu-

ronal apoptosis [44] in the CNS. Homozygous knock-
out of the insulin receptor gene is lethal due to the
severe diabetic ketoacidosis that develops during the
early postnatal period; however, hemizygous knockout
of the insulin receptor produces diabetes in 10% of the
affected adults [45–48]. CNS depletion of the gene
that encodes the neuronal insulin receptor results in in-
creased food intake,obesity, and insulin resistance [45].
In that context, the CNS neuronal insulin resistance is
associated with reduced activation of Akt, increased
activation of GSK-3β, and hyper-phosphorylation of
tau [49], similar to findings in AD and other neurode-
generative diseases.

Genetic depletion of the IRS-1 gene results in re-
tarded somatic growth due to IGF-1 resistance. In ad-
dition, IRS-1 knockout mice exhibit substantial reduc-
tions in the masses of skeletal muscle, heart, and liver,
and relatively small reductions in brain weight [50].
The relative sparing of brain was attributed to intact
IGF-I stimulated brain growth [51], indicating that
other IRS molecules can transmit IGF-I signals in the
CNS. IRS-2, which mediates peripheral insulin actions
and beta cell function in the pancreatic islets, is essen-
tial for glucose homeostasis. Depletion of the IRS-2
gene causes diabetes due to reduced beta cell mass. In
addition, genetic depletion of IRS-2 impairs neuronal
proliferation during development, and promotes accu-
mulation of phosphorylatedtau containing neurofibril-
lary tangles in the hippocampi of affected old mice [52,
53]. Therefore, this model links insulin resistant dia-
betes mellitus to AD-type neurodegenerative lesions in
the brain. Genetic depletion of IRS-3 or IRS-4 does
not produce an obvious phenotype [45].

5. Diabetes mellitus nomenclature

Diabetes mellitus is a metabolic disorder associated
with chronic hyperglycemia. The various subtypes of
diabetes mellitus differ with respect to etiology, patho-
genesis, and insulin availability,but share the same con-
sequences of chronic hyperglycemia and impaired in-
sulin actions. Type 1 diabetes mellitus is caused by de-
struction (usually autoimmune) of pancreatic islet beta
cells and attendant insulin deficiency. Type 2 diabetes,
the most common form, is caused by insulin resistance
in peripheral tissues, and is most frequently associated
with aging, a family history of diabetes, obesity, and
failure to exercise. Individuals with Type 2 diabetes
have hyperglycemia and hyperinsulinemia. The patho-
genesis of insulin resistance in Type 2 diabetes is not
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completely understood. However, evidence suggests
that the insulin resistance is partly mediated by reduced
levels of insulin receptor expression (down regulation),
insulin receptor tyrosine kinase activity, IRS-1 expres-
sion, and/or PI3 kinase activation in skeletal muscle and
adipocytes [52]. Gestational diabetes develops during
pregnancy, and usually is associated with insulin de-
ficiency and hyperglycemia. Although gestational di-
abetes resolves postpartum, it places the affected in-
dividuals at risk for later developing Type 2 diabetes.
Other less common causes of diabetes mellitus include:
genetic defects in beta cell function or insulin action,
diseases of the exocrine pancreas, e.g. pancreatitis or
cystic fibrosis, endocrinopathies, drug or chemical tox-
icity, infection, and genetic syndromes, e.g. Down syn-
drome.

6. Possible relationship between diabetes mellitus
and clinically detectable AD

Diabetes mellitus, regardless of subtype or etiology,
is associated with a number of pathophysiological dis-
orders including vascular disease, renal disease, pe-
ripheral neuropathy, and retinopathy, in part due to in-
jury and functional impairment in the microvascula-
ture supplying the correspondingorgans and structures.
The consequences of diabetes mellitus with respect to
CNS function and disease have not yet been determined
due to the lack of systematic and detailed clinical-
pathological correlative study. Although in previous
literature reviews, some authors attempted to draw an
association between diabetes mellitus and dementia,
the supporting epidemiological data were weak, since
the studies that examined peripheral gluco-regulation in
AD produced largely inconsistent results. While small
percentages of patients with AD were found to have
modest or moderate impairments in insulin sensitivity,
the degrees of those abnormalities paled in comparison
with the defects typically observed in Type 2 diabetes
mellitus. In a retrospective study, a diagnosis of dia-
betes mellitus was recorded in 63 of 839 (7.5%) hos-
pital records in which a clinical diagnosis of dementia
had been rendered. Subsequent investigations demon-
strated reduced blood glucose levels and increased in-
sulin levels in patients with late onset AD relative to
aged controls or patients with vascular dementia. Al-
though the authors concluded that the findings did not
support an association between diabetes and AD [54,
55], the same data were re-interpreted as reflecting an
increased prevalence of insulin resistance in AD. The

latter conclusion contradicts the finding that glucose
administration could both increase plasma insulin lev-
els and improve cognition in AD. Working under the
assumption that increased insulin rather than glucose
was responsible for the improvements in memory, fur-
ther studies were used to demonstrate that the admin-
istration of either insulin or somatostatin significantly
improved memory performance in early AD. In con-
trast, increases in plasma glucose that were not accom-
panied by increases in insulin levels were ineffective
for improving memory/cognition [56,57].

The Rotterdam Study was one of the first epidemi-
ological surveys to provide convincing evidence for
a relationship between diabetes mellitus and demen-
tia by demonstrating a significantly higher prevalence
of dementia in patients with insulin-dependent (Type
1) diabetes mellitus relative to non-diabetic aged con-
trols. The cause of dementia in diabetics was said to be
mainly vascular in origin, but the prevalence of AD was
also significantly higher than in the control group [58].
Further analysis of the data showed that diabetes melli-
tus doubled the risk for AD, particularly in individuals
who required insulin [59]. One caveat regarding the in-
terpretation of these results is that the Rotterdam Study
was entirely based on clinical findings, and was partic-
ularly flawed because follow-up reports demonstrating
accuracy of diagnosis were not published. The impor-
tance of conducting a thorough longitudinal analysis of
the cases is underscored by the failure to detect a sig-
nificant correlation between AD and diabetes mellitus
in a recent retrospective postmortem study [60].

The possible association between diabetes melli-
tus/insulin resistance and degree of hippocampal and
amygdalar atrophy was investigatedin vivo by magnetic
resonance imaging. Vascular morbidity was taken into
account based on the presence and severity of carotid
atherosclerosis, white matter lesions, and cerebral in-
farcts. The study showed that: 1) individuals with dia-
betes mellitus had greater degrees of hippocampal and
amygdalar atrophy compared with subjects who did not
have diabetes mellitus; and 2) severity of insulin resis-
tance correlated with degree of amygdalar atrophy [61].
Unfortunately, the conclusion that diabetes mellitus is a
causal factor in AD could not be substantiated because
cognitive function was not assessed, and cerebral mi-
croangiopathy, the likely vascular lesion produced by
diabetes mellitus, was not detectable with the methods
employed. Moreover, the study did not exclude the
co-occurrence of vascular dementia.

The inability to convincingly and consistently
demonstrate a correlation between diabetes mellitus
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and AD, or find evidence that diabetes mellitus causes
AD pathology, led to the alternative hypothesis that
diabetes may serve as a co-factor in the pathogenesis
of dementia and possibly AD. In this regard, epidemi-
ological studies showed that hyperinsulinemia in pa-
tients with an ApoE4-negativegenotype was correlated
with AD-type dementia, whereas in the absence of di-
abetes, an ApoE4+ genotype was also correlated with
AD [62–64], suggesting that ApoE4 genotype and di-
abetes mellitus contribute independently to the patho-
genesis of AD. Quite different results were obtained in
another study in which a greater than two-fold higher
risk for developing AD was detected in subjects who
had diabetes mellitus and an ApoE4 allele compared
with individuals who had an ApoE4 allele but who
did not have diabetes. Correspondingly, postmortem
studies showed that individuals with diabetes mellitus
and an ApoE4 genotype had significantly more abun-
dant Abeta deposits and neurofibrillary tangles com-
pared with diabetics who did not have an ApoE4 al-
lele [65]. Together, these results suggest that diabetes
mellitus may represent a risk factor for AD by acting
synergistically with ApoE4.

Problems documenting the relationship between di-
abetes mellitus or insulin resistance and AD stemmed
in part from the poor reliability of clinically distin-
guishing AD from vascular dementia. Diabetes mellitus
causes microvascular disease resulting in sclerosis and
luminal narrowing of arterioles and capillaries. There-
fore, diabetes-associated microangiopathy could cause
chronic cerebral ischemia due to hypoperfusion, lead-
ing to permanent tissue injury and dementia [66]. Sim-
ilarly, multi-focal micro-ischemic injury and infarcts
caused by hypertensive cerebrovascular disease or vas-
cular occlusions could also contribute to the clinical
deterioration and the pathological changes in AD [67].
Another missing component of the equation is a thor-
ough characterization of the CNS pathology produced
by long-standing diabetes mellitus, in the presence or
absence of AD. Until such information becomes avail-
able, the correlations among diabetes mellitus, CNS
pathology, and dementia will remain confusing.

7. Evidence for impaired insulin responsiveness in
AD

Some of the earliest work on senile dementia, which
probably corresponded to AD, vascular dementia, or a
combination of both, documented the development of
altered brain metabolism soon after the onset of clini-

cal symptoms. The metabolic abnormalities consisted
of impaired glucose utilization and energy metabolism,
with features that resemble Type 2 diabetes melli-
tus [68]. In addition, several studies demonstrated that
cerebral metabolism declined prior to the deterioration
in cognitive function,suggesting that energy failure was
one of the earliest reversible hallmarks of AD. These
observations led to the hypothesis that AD-associated
abnormalities in energy metabolism were caused by in-
sulin resistance or reduced insulin action in the brain,
i.e. brain diabetes [69–72].

7.1. Glucose regulatory defect in AD

Glucose, transported from peripheral blood, is the
major fuel for oxidative metabolism and function in the
CNS. Although previous studies suggested a role for
astrocyte-derived lactate as a major energy source for
neurons [73], subsequent research casts doubt on the
relative importance of this concept [74,75]. Glycemic
index studies demonstrated that AD patients had sig-
nificantly higher levels of plasma glucose [76], and
that non-diabetics with either vascular dementia or late-
onset AD, had significantly elevated fasting plasma in-
sulin and glucose levels relative to controls [77]. Al-
though this profile of hyperglycemia plus hyperinsu-
linemia resembles Type 2 diabetes mellitus, investi-
gators reported that glucose administration improved
memory due to facilitation of acetylcholine synthesis
and release in the brain [78]. However, further studies
demonstrated that patients with very early AD, but not
those in the late stages of disease, exhibited significant
improvements in memory following a rapid therapeu-
tic increase in plasma glucose to 225 mg/dl, with an
accompanying increase in plasma insulin [79,80]. To-
gether, these observations suggest that in early AD, the
prominent gluco-regulatory abnormalities in the brain
may be responsive to peripheral glucose administration
at levels that drive insulin release into the plasma.

7.2. Evidence for insulin resistance in AD

Initial evidence that abnormalities in insulin action
or insulin receptor expression/functionwere features of
AD stemmed from the findings that individuals in the
early stages of AD had 45% lower levels of cerebral
glucose utilization, and 17–18% reductions in cere-
bral blood flow and cerebral metabolic rate of oxy-
gen relative to controls. However, in the late stages
of AD, the major metabolic/physiological abnormal-
ity was markedly reduced (55–65%) cerebral blood
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flow [81]. Subsequent research confirmed the finding
that brain glucose metabolism was reduced in AD, and
also showed that cerebrospinal fluid (CSF) amino acid
and ammonia levels were markedly increased in pa-
tients with early-onset AD [82]. The authors inter-
preted the increased CNS protein catabolism as reflect-
ing a compensatory response to the 44% reduction in
glucose metabolism [82].

7.3. Controversies and inconsistencies

Initial studies designed to examine CSF and plasma
levels of insulin in AD demonstrated increased CSF
insulin levels after an overnight fast, and increased
plasma insulin levels after oral glucose administra-
tion [83]. However, subsequent studies failed to find
a correlation between increased CSF insulin levels and
AD [84], or detect significant alterations in plasma in-
sulin levels in AD following intravenousadministration
of glucose [85]. Moreover, other investigators detected
lower CSF insulin, higher plasma insulin, and reduced
CSF-to-plasma insulin ratios in AD relative to normal
controls, with larger differences detected in the late
stages of AD [86]. In other studies, hyperinsulinemia
was detected in AD, but the abnormality was attributed
to their significantly larger mean body masses [87,88]
and significantly greater food intake [88], suggesting
that hyperinsulinemia in AD could be explained on the
same basis that it occurs in Type 2 diabetes mellitus.

8. Potential mediators of impaired insulin
responsiveness in AD

8.1. Growth factor deficiency as a mechanism of
neurodegeneration

Impaired insulin responsiveness or insulin resis-
tance in AD could be caused by reduced local CNS
levels of insulin. The possibility that AD-type neu-
rodegeneration represents a neuroendocrine disorder
with major abnormalities centered in the hippocam-
pus and hypothalamus was investigated nearly two
decades ago. In 1986, it was suggested that some
of the AD-associated clinical and pathological abnor-
malities were due to global defects in CNS and en-
docrine somatostatin, somatostatin-regulated growth
hormone, thyroid-stimulating-hormone, somatomedin
and insulin, with associated impairments in glucose
metabolism [89]. Immunohistochemical staining stud-
ies demonstrated increased IGF-I immunoreactivity in

astrocytes of AD brains [90], and higher intensities of
insulin and c-peptide immunoreactivity in pyramidal
neurons of AD relative to control brains, despite aging-
associated reductions in insulin and c-peptide concen-
trations. However, radioimmunoassay studies demon-
strated similar mean levels of somatostatin and IGF-I
in AD and control CSF samples, and biochemical stud-
ies detected similar levels of insulin and c-peptide in
AD and normal aged brains [91,92]. Additional evi-
dence favoring the concept that AD represents a neu-
roendocrine disorder was provided by the finding that
plasma IGF-I levels were significantly reduced in fa-
milial AD associated with the Swedish amyloid pre-
cursor protein mutation [93]. The lack of consistency
in results obtained from different studies made it diffi-
cult to champion the concept that AD may represent a
neuroendocrine disease.

8.2. Altered receptor binding in AD

Another potential cause of impaired insulin or IGF-1
responsiveness is reduced binding of the ligand to its
receptor due to lowered affinity, insufficient availability
of ligand (see above), or decreased receptor expression.
Initial studies utilized radioimmunoassays to assess the
role of impaired growth factor receptor expression and
function in relation to AD. 125I-IGF-I binding studies
using postmortem brain tissue demonstrated increased
IGF-I binding in the cerebral cortex of AD relative to
control subjects, suggesting that IGF-I receptors were
up-regulated due to reduced local levels of IGF-I [94,
95]. However, in subsequent studies, similar IGF-I
binding kinetics and receptor abundances were mea-
sured in AD and control brains [96,97], although in-
creased IGF-I binding was observed in neuritic plaques
which were more abundant in AD [96]. Commercial
availability of insulin and IGF-I receptor antibodies en-
abled receptor expression to be characterized in histo-
logical sections. In one study, a selective reduction in
insulin receptor expression was detected in the substan-
tia nigra of Parkinson’s disease cases relative to other
diseases and normal aging [98]. Immunohistochemi-
cal staining studies demonstrated aging-associated re-
ductions in insulin receptor expression in the brain,
but in AD, insulin receptor expression was increased
while IGF-I receptors were unchanged relative to con-
trol brains [8,99]. Despite the increased insulin recep-
tor expression, tyrosine kinase activity was reduced in
AD [8,99]. One mechanism proposed for the increased
insulin receptor expression and reduced tyrosine ki-
nase activity was Abeta-induced insulin resistance with
compensatory up-regulation of the receptor [100].
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8.3. Impaired signaling through insulin stimulated
pathways in AD brains

Much of the discussion concerning the role of im-
paired insulin signaling in AD has been focused on in-
sulin resistance, meaning that CNS cells respond poorly
or not at all to physiological levels of insulin. With
the lack of consistent results regarding possible alter-
ations in growth factor and growth factor receptor ex-
pression in AD, attention was refocused on detecting
abnormalities in the functional activation of insulin and
IGF-I signaling mechanisms. Studies in experimen-
tal animals demonstrated aging-associated reductions
in insulin stimulated tyrosine phosphorylation of both
the insulin receptor and Shc, and reduced associations
of Shc with Grb2 in the forebrain cortex and cerebel-
lum. In addition, progressive aging was found to be
associated with reduced expression of SHP protein ty-
rosine phosphatase-2 (SHP2), which negatively regu-
lates insulin signaling [101]. Presumably, this obser-
vation reflects a compensatory/homeostatic response to
the aging associated reduction in tyrosine kinase ac-
tivity. Studies of human postmortem brains demon-
strated reduced levels of tyrosine kinase activity in late
onset AD relative to aged controls [8,99]. Potential
consequences of impaired insulin signaling in AD in-
clude, reduced glucose utilization, increased GSK-3β
activation, deficits in energy production, increased ox-
idative stress, reduced neuronal survival, and advanced
glycation of proteins [102].

9. Insulin and IGF-I signaling and mal-signaling
in the brain: Contributions to AD-pathology

9.1. Role in tau phosphorylation and
hyper-phosphorylation

Insulin and IGF-1 promote neuronal survival, stim-
ulate energy metabolism, provide neuroprotection, and
support neuronal cytoskeletal function via phosphory-
lation of its subunit proteins. Phosphorylation oftau is
a normal physiological process required for cytoskele-
ton assembly and stabilization.In vitro experiments
demonstrated thattau phosphorylation is normally reg-
ulated by insulin and IGF-I [103]. The major kinases
responsible for physiological phosphorylation oftau
include: Erk MAPK and cyclin dependent kinase 5
(Cdk-5), both of which are activated by insulin and
IGF-1 [104–106]. However, impaired insulin or IGF-
1 signaling can result in the hyper-phosphorylation of

tau due to reduced activation of PI3 kinase and Akt
and attendant increased levels of GSK-3β activity [49,
53]. In addition, GSK-3β can be activated through
inhibition of insulin/IGF-1 signaling through the Wnt
pathway [107], which is not dependent on PI3 kinase
or Akt phosphorylation. Impairments in Wnt signal-
ing mechanisms have been linked to several of the key
molecular abnormalities in AD [108–112].

GSK-3β is a multifunctional serine/threonine kinase
that regulates many intracellular signaling pathways,
including receptor tyrosine kinases, G-protein-coupled
receptors, and responses to Wnt. GSK-3β is func-
tionally important for regulating glycogen metabolism,
cell cycle kinetics, proliferation, survival, and cell mi-
gration. These effects are mediated by growth fac-
tor stimulated phosphorylation and attendant inhibi-
tion of GSK-3β activity [107]. Intact insulin signaling
is important for promoting neuronal survival and en-
ergy metabolism, whereas impaired insulin signaling
in CNS neurons results in increased GSK-3β activity,
which leads totau hyper-phosphorylation. In addi-
tion, GSK-3β can be activated by hypoxic, ischemic,
or metabolic injury, irrespective of growth factor stim-
ulation [113,114]. Hyper-phosphorylatedtau fails to
be transported into axons and instead accumulates and
aggregates in neuronal perikarya, and thereby promotes
further oxidative stress [115] which can cause cell death
mediated by apoptosis, mitochondrial dysfunction, or
necrosis. The neuronal cytoskeletal lesions that corre-
late with dementia in AD contain hyper-phosphorylated
tau.

Although the mechanisms of increased GSK-3β ac-
tivation in AD can be readily explained on the ba-
sis of impaired insulin/IGF-1 signaling, the increased
levels of Erk MAPK [116], Akt [117,118], and Cdk-
5 [119] detected in AD brains cannot be attributed to
these abnormalities. However, as noted above, GSK-
3β can also be activated by oxidative stress. Review
of the literature revealed that in addition to growth
factor stimulation, Erk MAPK [120–122], Akt [121,
123,124], and Cdk-5 [113,114] activities also can be
increased in response to oxidative stress. Therefore,
the apparently paradoxical increases in the activities of
these kinases in AD, most likely reflect either chronic
or perimortem oxidative injury. In essence, impaired
insulin/IGF-1 signaling mechanisms could lead to neu-
ronal oxidative stress with attendant activation of the
kinases that principally contribute to pathogenictau
hyper-phosphorylation.
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9.2. Role in amyloid precursor protein and amyloid
beta processing and pathology

Insulin affects the metabolism of amyloid beta
(Abeta) peptide, the main constituent of the amy-
loid deposits that accumulate in brains with aging or
AD, by accelerating betaAPP/Abeta trafficking to the
plasma membrane from the trans-Golgi network, where
it is generated. In addition, insulin increases extra-
cellular levels of Abeta by promoting its secretion
and inhibiting its degradation by insulin-degrading en-
zyme. These effects of insulin on betaAPP metabolism
are mediated by downstream signaling through Erk
MAPK [125,126]. Therefore, impaired insulin signal-
ing can disrupt the normal physiological processing
of betaAPP. At the same time, Abeta can adversely
affect insulin signaling by competing with and in-
hibiting insulin binding or reducing the affinity of in-
sulin binding to its own receptor [100,127]. This sug-
gests that Abeta accumulations can promotetau hyper-
phosphorylation and the formation of the AD demen-
tia associated paired helical filament-containing neu-
ronal cytoskeletal lesions (neurofibrillary tangles, neu-
ritic plaques, and neuropil threads) through functional
impairment of the insulin signaling cascade, leading to
increased levels of GSK-3β activity.

In vitro experiments demonstrated that Abeta can be
neurotoxic [128], and that Abeta-induced toxic death
of cultured hippocampal neurons can be prevented by
pre-treatment with IGF-1>> IGF-II [129,130]. In
this context, the neuro-protective actions of IGF-I are
produced by increased signaling through PI3 kinase-
Akt and suppression of GSK-3β activity [131]. How-
ever, the neuroprotective actions of IGF-1 are not spe-
cific to Abeta-induced neuronal injury and death, since
similar effects occur with ethanol-induced neurotox-
icity, which impairs insulin signaling and mitochon-
drial function [132,133]. Neuronal rescue from these
adverse effects of ethanol is also mediated by IGF-1
activation of PI3 kinase-Akt and inhibition of GSK-
3β [134]. Thus, the neuroprotective actions and po-
tential therapeutic benefits of IGF-I in relation to both
Abeta-induced neurotoxicity and impaired insulin sig-
naling have been well documented.

9.3. Potential role of insulin degrading enzyme in the
amyloid precursor protein/amyloid beta (Abeta)
peptide processing

The study of amyloid-beta (Abeta) peptides and their
potential role in neurodegeneration has overwhelm-

ingly dominated research on the pathogenesis of AD.
This tidal wave of investigation was unleashed by the
characterization and cloning of amyoid precursor pro-
tein (APP) in 1984 by Glenner and Wong [135]. How-
ever, since the vast majority of AD cases do not ex-
hibit strong genetic inheritance patterns and are not
associated with mutations in the APP gene, research
efforts have been re-directed toward understand the
mechanisms of aberrant cleavage and processing of
APP that could result in the accumulation of neuro-
toxic forms of Abeta. In addition, experimental mod-
els have been extensively utilized to identify poten-
tial mechanisms by which Abeta exerts its neurotoxic
effects [129,136]. One popular theory is that prote-
olytic enzymes known as secretases malfunction or
exhibit altered expression patterns, resulting in aber-
rant APP cleavage and local accumulations of neuro-
toxic Abeta peptides [128]. More recently, investiga-
tors demonstrated that Abeta(1-40) and Abeta(1-42),
the main physiological C-terminal cleavage products
of APP, reduced insulin binding and insulin receptor
auto-phosphorylation due to reduced affinity of insulin
binding to its own receptor [100]. Although corre-
sponding human brain data are lacking, these findings
have been used to support the argument that Abeta ac-
cumulation impairs insulin signaling in AD. The mech-
anism requires validation, and additional information
is needed to determine if Abeta has agonist or antag-
onist properties in relation to the insulin receptor and
insulin-degrading enzyme.

Insulin degrading enzyme (IDE) catalyzes insulin
degradation and thereby negatively regulates insulin
signaling. Recent studies demonstrated that IDE can
also degrade soluble Abeta [137], and therefore may be
important for regulating extracellular levels of soluble
Abeta [138–141]. In this regard, in situ tissue based
studies demonstrated increased IDE immunoreactivity
around senile plaques [142], and reduced IDE expres-
sion in AD hippocampi [143]. Moreover, transgenic
mice that over-express mutant IDE have hyperinsuline-
mia, glucose intolerance, and increased levels of Abeta
in the brain. These observations provided additional
evidence supporting a role for impaired insulin signal-
ing in the pathogenesis of Abeta accumulations in the
brain. Objectively speaking, if accumulated Abeta in-
terfered with IDE function, one would predict the out-
come to be increased rather than decreased insulin ac-
tions in the CNS. On the other hand, if Abeta accu-
mulation reduced the affinity of insulin for its receptor,
that phenomenon could contribute to insulin resistance
in AD brains.



S.M. de la Monte and J.R. Wands / Brain insulin resistance in AD 53

In a rat model of Type 2 diabetes mellitus, a small
chromosomal region containing a mutant IDE allele
was shown to be associated with hyperinsulinemia and
glucose intolerance. In addition, the partial loss of IDE
function was associated with increased neuronal Abeta
secretion, although Abeta did not accumulate in the
CNS. The authors concluded that the otherwise nor-
mal brain can compensate for defects in Abeta secre-
tion [144]. However, in mice that had homozygous
deletions of the IDE gene, Abeta degradation in both
the brain and cultured cortical neurons was reduced by
at least 50%, endogenous Abeta levels were increased
in the brain, and the animals exhibited hyperinsuline-
mia and glucose intolerance. In addition, the mice had
elevated levels of the intracellular signaling domain of
APP, which is ordinarily degraded by IDE [145]. In
contrast, overexpression of IDE and APP together in
CNS neurons, resulted in significantly reduced levels
of Abeta, reduced formation of Abeta-positive plaques,
and rescue of premature lethality in the APP transgenic
mice [146].

The finding that Abeta degradation was mediated
by IDE prompted human genetic studies to determine
if familial AD was linked to mutations or polymor-
phisms in the IDE gene, which is located on Chro-
mosome 10. Initial studies using parametric and non-
parametric analyses demonstrated a significant linkage
between familial late-onset AD and markers that map
near the IDE gene (D10S1671, D10S583, D10S1710,
and D10S566) [147]. In addition, the authors claimed
to have found evidence for an allele-specific associ-
ation between the putative disease locus and marker
D10S583, which maps within 195 kB of the IDE
gene [147]. However, those findings could not be con-
firmed by an independent gene linkage analysis [148],
and in another study, although a linkage of late onset
AD with D10S583 was demonstrated, the linkage was
not related to the IDE gene [149]. Finally, single nu-
cleotide polymorphisms and mutations in the IDE gene
were not found to be linked to late onset AD [150].

10. Chemical depletion of insulin-responsive cells
in the CNS: Relevance to AD

Reflection on some of the earlier findings in AD,
including the impaired glucose utilization, mitochon-
drial dysfunction, reduced ATP production, and en-
ergy shortage, prompted consideration of the hypothe-
sis that these abnormalities were mediated by desensiti-
zation of the neuronal insulin receptor [151–154]. The

stated metabolic abnormalities, as well as several of
the classical histopathological lesions of AD, could be
attributed in part to reduced insulin levels and reduced
insulin receptor function in AD. Hoyer was among the
first to suggest that reduced levels of brain insulin may
precipitate a cascade resulting in disturbances in cellu-
lar glucose, acetylcholine, cholesterol, and ATP levels,
impaired membrane function, accumulation of amy-
loidogenic derivatives, and hyper-phosphorylation of
tau, i.e. that AD may represent a brain form of Type 2
diabetes mellitus [155,156].

Streptozotocin (2-Deoxy-2 [methyl-nitrosoamino)
carbonyl] amino D-glucopyranose), is a glucose analog
that is metabolized to a cytotoxic compound. Strep-
tozotocin (STZ) is particularly cytotoxic to beta cells
in the pancreatic islets, and consequently it is used to
generate experimental models of diabetes mellitus. In-
tracerebroventricular injection of STZ chronically re-
duces glucose and glycogen metabolism by 10–30%
in the cerebral cortex and hippocampus [157]. These
effects are associated with significantly reduced brain
glucose utilization and oxidative metabolism [158], in-
hibition of insulin receptor function despite increased
binding [159], and impaired learning [160]. The STZ
injected rats exhibit long-term and progressive deficits
in learning, memory, cognitive behavior, cerebral en-
ergy balance [161]. Therefore, this model provides
a close match with the biochemical and physiological
abnormalities observed in AD.

11. Potential therapeutic role for insulin
sensitizers in the treatment of AD

A major risk factor for developing Type 2 diabetes
in obese subjects is the accumulation of lipids in non-
adipose tissues, including skeletal muscle. Peroxisome
proliferator-activated receptors (PPARs) are nuclear
transcription factors that regulate lipid metabolism.
Ligand activation of PPARs can enhance insulin signal-
ing and reduce tissue accumulations of lipids. PPAR-
α is a member of the steroid hormone superfamily
of ligand-inducible transcription factors, involved in
glucose and lipid metabolism. Thiazolidinediones are
PPAR ligands that improve insulin sensitivity, reduce
lipid content in skeletal muscle and other non-adipose
tissues, and reduce peripheral glucose levels in patients
with Type 2 diabetes mellitus [162]. In a rat model
of Type 2 diabetes, PPAR ligand treatment resulted in
reduced body weight and intracellular lipid content,
and increased insulin sensitivity [163]. One potential
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Fig. 1. Proposed Mechanisms Linking Impaired Insulin Signaling and Insulin Resistance in the CNS to the Pathogenesis of AD. Our proposed
model puts insulin resistance and impaired insulin (and probably IGF-1) signaling in the CNS at the core of the disease process leading to
neurodegeneration. A major consequence of impaired insulin signaling is increased GSK-3β activity which results in both increased oxidative
stress andtau hyper-phosphorylation. Oxidative stress can result in increased Cdk-5 and MAPK activities, which also contribute totau
hyper-phosphorylation. Severe or sustained oxidative injury leads to mitochondrial DNA damage, mitochondrial dysfunction, and apoptosis, and
the attendant cell loss and impaired neuronal function lead to dementia. Abeta accumulation and toxicity can be linked to cellular metabolic
disturbances caused bytau hyper-phosphorylation or impaired insulin signaling which disrupts processing and secretion of Abeta. Abeta
accumulation can inhibit insulin actions and binding, and can also be neurotoxic. CNS microvascular disease caused by impaired insulin signaling
or insulin resistance (either related to peripheral diabetes mellitus or intrinsic CNS disease), Abeta deposition, or systemic hypertension, could
contribute to AD dementia due to chronic cerebral hypoperfusion and micro-ischemic injury. Finally, since insulin actions contribute to synapse
formation and synaptic function, impaired insulin signaling could result in loss of synapses and thereby contribute to dementia. Hereditary gene
mutations and polymorphisms can serve as primary transducers at various points within this cascade, but these factors account for a relatively
small percentage of the cases. In sporadic disease which accounts for the vast majority of cases, aberrant expression of genes that impair insulin
signaling in the CNS, aging, environmental exposures, and systemic disease, e.g. Type 2 diabetes or hypertension, are likely to have contributory
or combined causal roles in the pathogenesis of AD. This model predicts that the most effective therapeutic intervention would be produced by
alleviating the CNS insulin/IGF resistance and impaired insulin/IGF signaling rather than at the level of any single or particular downstream
abnormality.

mechanism of impaired energy metabolism and glu-
cose utilization in AD is insulin resistance secondary to
altered PPAR expression. In this regard, genetic analy-
sis identified two polymorphisms located in Exon 5 and
Intron 7 of the PPAR-α gene. These polymorphisms
have already been investigated for their possible asso-
ciation with AD and for their effect in carriers of an
insulin gene polymorphism (INS-1). The PPAR-α C
→ G polymorphism in Exon 5 (L162V) was associated
with AD, in that the V-allele was more frequent in AD
patients than in healthy subjects. Further analysis re-

vealed an increased risk for AD among carriers of the
PPAR-α L162V V-allele or INS-1 allele [143].

12. Hypothesis (Fig. 1)

Epidemiological and clinicopathological studies de-
signed to demonstrate a role for Type 2 diabetes in
AD or vascular dementia have generated data that are
largely conflicting and inconclusive. On the other hand,
the finding that peripheral administration of glucose or
insulin can improve memory and cognition argues com-
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pellingly in favor of insulin resistance having a causal
role in AD/vascular dementia. Certainly the abundant
expression of insulin, IGF-1, and IGF-II receptors, to-
gether with the molecular machinery required to trans-
mit the corresponding growth factor signals in the CNS
correlate with the experimental evidence that neuronal,
glial, and vascular cells are responsive to insulin, IGF-1,
and IGF-II stimulation. Although it is widely accepted
that IGF-1 and IGF-II are expressed in the brain,contro-
versy remains over the source of insulin. To settle this
issue, we performed real time RT-PCR studies of brain
tissue and cultured neuronal cells and clearly demon-
strated that mRNA transcripts corresponding to all 3
growth factors and their receptors are in fact expressed
in the brain (See Steen, et al. 2005). Local CNS syn-
thesis of insulin is actually not as surprising as it may
seem since all other pancreatic and gut neuroendocrine
polypeptides are also expressed in the brain. Until now,
the only exception was insulin. Although insulin and
IGF-1 can be transported across the blood brain bar-
rier, whether these molecules are actually taken up by
CNS cells has not been established. Nonetheless, the
extra-CNS sources of trophic factors could exert their
effects by modifying the function of cerebral vessels
and the choroid plexus. Correspondingly, withdrawal
of insulin, hyperinsulinemia, or hyperglycemia could
adversely affect the function of cerebral vessels and
the choroid plexus. In this regard, empirical observa-
tions of postmortem human brains suggest that the ma-
jor CNS abnormalities associated with Type 2 diabetes
mellitus consist of cerebral microangiopathy and scle-
rosis of the choroid plexus, whereas AD-type neurode-
generation is not a frequent accompaniment of Type 2
diabetes mellitus. On the other hand, the strong evi-
dence favoring a role for cerebrovascular disease and
hypoxic/ischemic injury in the progression and patho-
genesis of AD, suggests that cerebral micro-angiopathy
caused by Type 2 diabetes and probably also systemic
arterial hypertension contribute to the AD neurodegen-
eration cascade by causing chronic hypoperfusion and
micro-infarcts. At the same time, it is important to real-
ize that AD can and often does occur in the absence of
significant cerebrovascular disease, and many patients
with cerebrovascular disease have no evidence of AD.

Taking all of the information into account, includ-
ing the potential sources of insulin, IGF-I, and IGF-II
and the distributions of their receptors in the brain, we
propose that AD-type neurodegeneration and attendant
cognitive impairment are fundamentally mediated by
CNS insulin/IGF depletion and secondary loss of cells
that are responsive to and dependent upon these growth

factors. As a separate and independent component,
insulin resistance that occurs in Type 2 diabetes im-
pairs cerebral microvascular and choroid plexus func-
tions, leading to chronic hypoperfusion and compro-
mise of the blood-brain and blood-CSF barriers. Both
processes could simultaneously and differentially con-
tribute to the AD neurodegenerationcascade, including
all of the classical histopathological lesions.

The relationship between impaired insulin signaling
and the typical AD-associated neuropathology could
be explained as follows. Impaired insulin signaling in
the brain caused by reduced ligand binding to its recep-
tor, reduced local levels of insulin polypeptide, and/or
reduced auto-phosphorylation and activation of insulin
receptor tyrosine kinase could lead to increased levels
of GSK-3β activity and oxidative stress. Increased ac-
tivation of GSK-3β, as well as other kinases, including
Cdk-5 and MAPKs that respond to oxidative stress and
phosphorylatetau, promote hyper-phosphorylationand
intracellular accumulation oftau in the form of paired
helical filaments. Ubiquitination of these highly insol-
uble protease resistant fibrils results in further oxidative
stress and eventual activation of cell death cascades.
Since insulin is neurotropic and supports both neuronal
viability and nascent synapse formation, impaired in-
sulin signaling with inhibition of the PI3 Kinase-Akt
survival and growth pathways would lead to reduced
viability of neurons and retraction of neurites, i.e. loss
of synapses.

Insulin or IGF-1 activation of Erk MAPK pro-
motes physiological processing and trafficking of be-
taAPP/Abeta to the plasma membrane. Oxidative stress
caused by increased GSK-3β activity and intracellular
accumulation of hyper-phosphorylatedtau, can disrupt
physiological processing and intracellular trafficking
of betaAPP/Abeta, resulting in local accumulations of
Abeta. Impaired function of the CNS microvasculature
can contribute to the defects in Abeta disposal and exac-
erbate its steady accumulation in the brain. High levels
of Abeta cause neurotoxic cell death, and also interfere
with insulin signaling mechanisms by impairing insulin
binding and insulin receptor auto-phosphorylation.

The underlying basis for AD-associated disruptions
in insulin signaling mechanisms is not known. How-
ever, from the above discussion, one might predict that
the taupathies, presenilin gene mutations, and excess
brain accumulations of Abeta that occur in different fa-
milial forms of AD could precipitate or propagate neu-
rodegeneration cascades by promoting oxidative stress
and/or inhibiting insulin actions within the CNS. Sim-
ilarly, other abnormalities in gene expression that re-
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sult in impaired insulin stimulated signaling in neurons,
such as those reported with respect to the Alzheimer-
associated neuronal thread protein [164], in addition
to various environmental exposures, may have impor-
tant roles in precipitating the cascade of neurodegener-
ation in sporadic AD, which accounts for the vast ma-
jority of cases. It is not known why, in these circum-
stances, the AD phenotype is not clearly manifested
until 50–70 years after birth. One potential explana-
tion for this phenomenon is that in young brains, neu-
roprotective signaling mechanisms are ample and re-
dundant, whereas with aging, the scaffolding deterio-
rates due to progressive mitochondrial DNA damage
and attendant mitochondrial dysfunction. With regard
to sporadic AD, which accounts for the vast majority of
cases, the identification and characterization of under-
lying abnormalities that render the brains more sensi-
tive to impairments in insulin signaling require further
study.

This critical review of the literature helps to delin-
eate the existence of two fundamental aging associated
problems related to impaired insulin signaling in AD:
one problem is centered on the cerebral microvascu-
lature, while the other primarily pertains to CNS neu-
ronal function. The importance of this concept is that
the treatment of Type 2 diabetes will not likely prevent
AD, although it may help to slow its progression via
therapeutic actions on the CNS microvasculature. In-
stead, the use of insulin and IGF-1 sensitizers (prefer-
ably ones that are CNS-specific) would probably pro-
vide the best form of therapeutic rescue in the early
and intermediate stages of disease. While treatment
with GSK-3β inhibitors may seem attractive for pre-
ventingtau hyper-phosphorylation [107,165], this ap-
proach may impair the function of vital physiological
targets of GSK-3β, and it also ignores many of the other
critical components of the neurodegeneration cascade
that would be unaffected by this type of therapy. Alter-
natively, the use of stem cells as vehicles for delivering
insulin, IGF-I, and possibly other neurotropic factors
may prove to be beneficial for enhancing neuronal sur-
vival and reducing oxidative stress in the CNS targets of
neurodegeneration, although safety and efficacy issues
must first be resolved.
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