
pcube: Primitives for network data plane
programming

Rinku Shah*, Aniket Shirke*, Akash Trehan*, Mythili Vutukuru, Purushottam Kulkarni
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{rinku, anikets, atrehan, mythili, puru}@cse.iitb.ac.in

Abstract—P4 is a domain specific language to configure packet
processing pipelines in programmable dataplane switches, and is
a powerful idea towards realizing the goal of flexible software-
defined networks. This paper presents pcube, a framework
that provides a set of primitives to simplify the development of
P4-based dataplane applications. pcube provides primitives for
loops, summations, and other common operations on indexed
state variables, which can be embedded within P4 code and
unrolled by the pcube preprocessor. pcube also provides primi-
tives to synchronize state variables across switches in distributed
dataplane applications, which are automatically translated into
P4 code to send and receive synchronization messages across
multiple switches by pcube. We build example dataplane appli-
cations such as a distributed load balancer in our framework,
and show that using pcube reduces the programming effort (in
term of lines of code) significantly—by a factor of up to 5.4x.

Index Terms—programmable data plane, P4, programming
API

I. INTRODUCTION

Recent advances in Software Defined Networking (SDN)
have expanded the scope of software control on network
devices by enabling programmability in the data plane. Re-
search on programmable data planes has come up with new
forwarding plane architectures that enable programmability
at line rate [1], [2] and languages that can be used to
easily program such dataplanes [3], [4]. Researchers have
demonstrated that several applications can be significantly
accelerated using programmable dataplanes, e.g., key-value
caches [5], [6], load balancers [7], [8], network monitoring [9],
consensus protocols [10], performance diagnosis [11] and
heavy hitter detection [12]. Across all such applications, P4 [3]
has emerged as the most popular language for specifying
packet processing pipelines on programmable dataplanes. P4
programmers write code to customize packet parsing and
the logical flow of packets through match-action tables, all
while being agnostic to the hardware platform on which the
dataplane will be run. P4 compilers (e.g., [13]) then compile
the target-independent P4 code to run on multiple hardware
and software programmable dataplane platforms. Several re-
searchers have looked at the problem of optimizing P4-based
dataplanes, e.g., by using hardware accelerators to optimize the
packet processing pipeline [14], and by caching match-action
rules of flows [15]. The key observation of our work is that the
problem of easing software development using P4 itself has

* Student authors with equal contribution.

received lesser attention. ClickP4 [16] proposed a modular
approach for P4 programming, using a library of reusable
modules that can be easily composed to reduce development
time. However, there exists significant scope for automating
P4 development effort in dataplane applications.

To understand the problem better, consider a simple load
balancing application that assigns incoming flow requests
to one of the application backend servers by rewriting the
destination IP address of packets. If this application were to
be implemented in a programmable dataplane switch, each
switch would maintain per-server state (e.g., count of flows
currently assigned to the server), and for every incoming
request, picks a backend server based on a policy (e.g., the
least loaded server). We found that writing P4 code for such
an application involves significant repetition of code patterns.
For example, P4 does not have an easy way to loop over a
set of indexed state variables (e.g., load at the set of backend
servers) for initialization or updates. P4 also has no support
to perform operations such as summations or finding the
minimum/maximum across a set of indexed variables. Further,
if the simple load balancer application described above were
to be distributed across multiple switches for scalability, the
switches would need to exchange information about server
load levels amongst themselves in order to balance load
suitably. P4 currently has no easy way to synchronize state
across switches, and developers must manually write code to
generate and process messages to exchange such information.
Because P4 can be compiled to a wide variety of platforms,
including hardware switches that run at line rate, the language
has a minimal set of abstractions that can be supported, and
does not support loops and other primitives with unknown
execution time. However, the absence of such abstractions
to manipulate and synchronize indexed state variables makes
P4 code development tedious and prone to manual errors,
especially when the number of variables involved is large.
Note that the problems described above are not specific to
the load balancer application, and similar code patterns are
found across a wide range of dataplane applications like heavy-
hitter detection, congestion control, and INT (In-band network
telemetry).

We propose pcube, Primitives for improving P4 Produc-
tivity, a preprocessor that reduces P4 development effort
by providing primitives for easily accessing, manipulating,
and synchronizing a set of indexed state variables across

distributed programmable dataplane devices. pcube provides
abstractions such as loops, min/max computation, summation,
and conditional statements over a set of state variables, which
are unrolled into regular P4 code by the preprocessor. Further,
pcube provides abstractions to synchronize variables across
switches, both across a multicast group or with specific
switches. Our framework takes the network topology as input,
and automatically expands the synchronization primitives into
P4 code to send/receive synchronization messages to other
switches based on network topology. P4 code generated by
the pcube preprocessor is then compiled and deployed on to
programmable switches much like regular P4 code.

The main contributions of our work are as follows: (i) the
design and implementation of pcube, a preprocessor that
provides primitives to ease the development of P4 applications
(§II), (ii) evaluation of the benefits of pcube using sample
dataplane applications, showing that our framework leads to
up to 5.4x reduction in developer effort (§III), and (iii) an
opensource codebase of pcube and it’s use cases [17].

II. PCUBE DESIGN AND IMPLEMENTATION

A. The pcube framework

pcube provides primitives for P4 developers to enable them
to write more concise P4 code. Figure 1 shows the overall
framework for designing data plane applications with pcube.
P4 programmers write dataplane applications using both P4
and pcube constructs. This script, along with network topology
information (#switches, #hosts, link information, and switch
connection information) is the input to the pcube preprocessor.
The preprocessor unrolls the pcube primitives such as loops
and converts the user source code to P4 code. In addition
to simple unrolling, the preprocessor also creates headers,
tables, and actions for pcube synchronization primitives. These
headers are used to carry synchronization information between
switches, whereas the actions specify the action to be taken
upon the receipt of such messages. In addition to P4 code,
the preprocessor also generates runtime commands for switch
related setup and configuration. If the data plane application
runs on multiple switches, we generate separate code for each
switch, by considering the topology information as input. The
translated P4 code, including logic specified via pcube prim-
itives is then translated to a target specific binary using a
standard P4 compiler. The runtime configuration is transferred
to the switch via the controller interfaces.

The macro-like framework of pcube is non-intrusive to
the basic P4 functionality, and provides various additional
abstractions to build custom data plane logic (especially
related to event-based inter-switch communication). While
an enhancement to P4 itself to support some primitives of
pcube is possible, this would require changes to the P4
language specification and the compiler, and is subject to
its acceptance across a wide variety of backends that P4
compiles to. The focus of this work is to demonstrate the use
of the new primitives and the integration of these features
in to the P4 specification is a complimentary effort. Our
pcube preprocessor is written in python, and spans around

Fig. 1: The pcube framework for data plane programming.

TABLE I: List of pcube primitives.

Type Annotation Purpose
Loop @pcube for Iterate over indexed variables
Summation @pcube sum Summation over indexed variables
Minmax @pcube minmax Determine the minimum or maxi-

mum value from an input list and
choose corresponding action

Conditional @pcube cmp Conditional test over indexed vari-
ables

Sync-multicast @pcube sync Share state with multiple switches
Sync-unicast @pcube echo Share state with a specific switch

850 lines of code. pcube is compatible with P4-14, and we
are in the process of porting it to P4-16.

Table I shows the list of pcube primitives, which can be
classified as: (i) primitives that simplify P4 code within a
single switch, (ii) primitives that simplify inter-switch state
synchronization. We discuss each of these classes below.

B. pcube primitives within a single dataplane

We now describe pcube primitives that can be used to
compress repetitive P4 code that accesses a set of similar
(indexed) state variables.
Loops. A loop primitive is useful when a set of P4 state-
ments are repeated with different index values. For example,
initializing values of switch state, construction of new headers,
initialization of arguments, construction of multiple similar
tables, and applying the same data plane action on multiple
arguments can all be simplified with loops.

Listing 1: The loop primitive.
Syntax
@pcube_for (<iterator_var>) (<start>,<end>,<step>)
// P4 code to be repeated

@pcube_endfor
pcube example
header_type meta_t {
fields {

@pcube_for (i) (1,4,1)
var_counter$i : 32;

@pcube_endfor
}

}
pcube preprocessor output
header_type meta_t {
fields {

var_counter1 : 32;
...
var_counter3 : 32; //loop unrolled by pcube

}
}

Listing 1 shows an example of using the pcube loop
primitive to initialize counters that maintain backend server
state in the load balancer.
Summation. The summation primitive is useful when the sum
of a list of state variables is required. Listing 2 shows code
where the switch drops a packet when the cumulative load on
the servers exceeds threshold.

Listing 2: The summation primitive.
Syntax
@pcube_sum (<start>,<end>,<step>) (<iterator_var>)
pcube example
if ((@pcube_sum(1,4)(var_counter$i)) > 10000){
apply(drop);

}
pcube preprocessor output
if ((var_counter1 + var_counter2 + var_counter3) > 10000){
apply(drop);

}

Minmax. This primitive is useful in cases when the minimum
or maximum from a set of switch state arguments has to be
determined, and a corresponding action has to be applied if
the condition is satisfied. The programmer specifies the desired
operator (< | <= | > | >=), and specifies the action for each
argument that can potentially satisfy the min-max condition.
For example, Listing 3 shows load balancer code where the
switch determines the least loaded server (i.e., the one with
the minimum var counter$i) upon arrival of a new flow, and
forwards the packet to that server.

Listing 3: The minimax primitive.
Syntax
@pcube_minmax (<relop>)
@pcube_case (<var$1>):

//code to be executed if var$1 is min or max
@pcube_endcase
... //code for ‘i’ other cases

@pcube_endminmax
pcube example
@pcube_minmax (<=)
@pcube_case var_counter1:

apply(tab_server1);
@pcube_endcase
...
@pcube_case var_counter3:

apply(tab_server3);
@pcube_endcase

@pcube_endminmax
pcube preprocessor output
if(var_counter1 <= var_counter2 and

var_counter1 <= var_counter3){
apply(tab_server1);

}
else
if(var_counter2 <= var_counter1 and

var_counter2 <= var_counter3){
apply(tab_server2);

}
else
if(var_counter3 <= var_counter1 and

var_counter3 <= var_counter2){
apply(tab_server3);

}

Multi-condition. This primitive is useful to test the same
condition across a set of switch state variables. Listing 4
shows an example of the load balancer application, where the
switch drops an incoming packet if it finds that all the servers
are overloaded (beyond 1000 connections in this example).
We compare a set of variables provided as argument with

a constant variable using the specified relational operator,
the condition is applied for all variables in the set, and
all conditions are concatenated using the and/or logical
operator.

Listing 4: The multi-condition primitive.
Syntax
@pcube_cmp(<start>,<end>,<step>)(<relop>)(<logop>)(<

loop_argument>,<constant>){
//code

}
pcube example
if (@pcube_cmp (1,4,1)(>=)(and)(var_counter$i,1000)){
apply(drop);

}
pcube preprocessor output
if (var_counter1 >= 1000 and var_counter2 >= 1000 and

var_counter3 >= 1000){
apply(drop);

}

C. pcube primitives for distributed dataplanes

Multiple switches in a distributed dataplane application
frequently need to communicate with each other, in order to
exchange state variables, or reply to requests. We envisage
two modes of communication between switches: a multicast
synchronization mode, where a switch broadcasts a sync
message to a subset of switches in order to request or provide
some state information, and a unicast mode where a switch
communicates with one other switch.
Multicast synchronization. To automatically generate P4
code to synchronize a set of state variables using pcube, the
developer specifies the condition to trigger the synchroniza-
tion, the state variables to be synchronized/communicated to
other switches, and a custom/unused packet header field that
can be used to identify these special synchronization messages.

Listing 5: Multicast synchronization primitive.
Syntax
if (<condition>){
@pcube_sync(<custom_header_field>,<field_value>)
<sync_var$1>
...
<sync_var$n>

@pcube_endsync
}
pcube example
if (var_counter < THRESHOLD){
@pcube_sync(pkt.type,2) //pkt.type=2: sync_update packet
var_counter

@pcube_endsync
}
pcube preprocessor output
if (var_counter < THRESHOLD){
apply(sync_tab); //@pcube_sync replaced

}

For example, Listing 5 depicts example code to synchronize
the server load variables across a set of switches in our
simple load balancer example, with the synchronization being
triggered only if a switch perceives that its utilization falls
below a threshold. When the pcube preprocessor encounters
this primitive, it generates P4 code to lookup a special sync
action table that is generated by pcube (and must be included
in the P4 code by the developer). The default action in this
sync action table creates a special sync message by cloning the
received packet, and pushes multiple header fields that embed

the state variables that must be communicated to the other
switches. This action code also sets the header field to identify
this packet as a special sync message, using the field indicated
for this purpose by the programmer. Whenever the condition to
trigger synchronization occurs at runtime, the code generated
by pcube takes care of automatically generating synchroniza-
tion messages to multiple switches. pcube takes the network
topology identifying the multicast group of switches as input,
and generates runtime configuration for creation of multicast
identifiers, handles and their associations, which ensures that
the sync message is delivered to specific switches in the
multicast group.
Unicast synchronization. This primitive is similar to the mul-
ticast synchronization primitive, except that the state values
are shared as response only to the source node that requested
the synchronization (hence the name “echo”). Listing 6 shows
an example from our simple load balancer, where a switch
sends its state variables as response when it receives a request
message from another switch. The implementation of this
primitive in pcube is similar to that of the multicast primitive,
with the difference that a response packet is sent back only
to the source by adding a runtime command mirroring the
packets back to the source.

Listing 6: Unicast synchronization primitive
Syntax
if (<condition>){
@pcube_echo(<custom_header_field>,<field_value>)
<sync_var$1>
...
<sync_var$n>

@pcube_echosync
}
pcube example
if (pkt.type == 1){ //pkt.type=1: echo_request packet
@pcube_echo(pkt.type,2) //pkt.type=2: echo_update packet
var_counter

@pcube_endecho
}

pcube preprocessor output
if (pkt.type == 1){
apply(echo_tab); //@pcube_echo replaced

}

D. Nesting of pcube primitives
pcube allows nesting of the pcube primitives. The

pcube preprocessor is designed as a multi-pass program
and performs four passes on an input pcube program. The
pcube primitives are converted to corresponding P4 code
according to the following order, where primitives later in the
order can nest the primitives preceding it: loops, summation,
multi-condition/minmax, and sync/echo synchronization prim-
itives. The parsing order is decided to enable useful nesting
of pcube primitives. Listing 7 shows the nested pcube code
for the example code in Listing 3.

Listing 7: Nested Pcube example
@pcube_minmax (<=)
@pcube_for (i) (1,4,1)

@pcube_case var_counter$i:
apply(tab_server$i);

@pcube_endcase
@pcube_endfor

@pcube_endminmax

(Load Balancer)

Switch 3

Servers

(Load Balancer)

Switch 1

(Load Balancer)

Switch 2

Servers

Ingress traffic Ingress traffic

Ingress traffic

Servers

Fig. 2: Load balancer application: example topology.

III. USE CASES

We now evaluate pcube by implementing two sample appli-
cations in our framework: a simple distributed load balancer,
and a heavy hitter detection application. We evaluate two
aspects of our framework: the number of lines of code that
can be saved using pcube primitives, and the correctness of
our primitives.

A. Load Balancer

Our load balancer application runs at multiple dataplane
switches. It assigns new incoming flows to one of the multiple
backend servers, and the switches hosting the load balancer
application rewrite the destination IP addresses of packets to
redirect them to the selected backend. For scalability, the pool
of backend servers is distributed amongst the switches. A
switch assigns new flows to one of the servers in its “local”
pool as long as these servers are not overloaded. Our load
balancer keeps track of the current number of flows processed
as the load for each server. When a new flow request arrives,
the server with minimum flow count is allocated, and server
flow counter is updated. When all local servers of a switch are
overloaded, it proceeds to assign flows to one of the remote
servers. We maintain a table that stores the flow hash and the
server allocated for the flow, so that all the packets of the
same flow are forwarded to the same server. If the switch
receives the last flow packet, the route table entry for the
corresponding flow is deleted, and the server flow counter is
updated. Figure 2 illustrates our simple load balancer, where
three switches manage of a pool of two local servers each,
and hosts generate traffic to the servers.

In order to learn about the load levels of remote servers
for efficient load balancing, the switches in our application
synchronize the load levels of their local pool of servers with
other switches in two cases: (i) if a switch finds that all
its local servers are overloaded, it generates a sync message
requesting the load levels from other switches, so that it can
find a lightly loaded remote server for future flows, and (ii)
if a switch finds that it is very lightly loaded, it sends a sync
message advertising its low load levels to other switches, so
that they may redirect flows to its local pool. The threshold
load levels at which these synchronization messages are sent
are configured by the P4 programmer at runtime. Note that

we avoid continuous synchronization of load levels of all
servers across all switches in order to limit the amount of
synchronization traffic.

We implemented this load balancer application using pcube.
We now show snippets of code from our implementation to
illustrate the usefulness of our primitives. Listing 8 shows a
snippet of code where a switch tries to find a local server
that is not overloaded to assign as a backend for a new flow,
failing which it triggers a probe synchronization message to
all servers requesting them to send the load levels of their
local servers as reply. This snippet uses the multi-conditional,
summation, and multicast synchronization primitives. Next,
Listing 9 shows a code snippet where a switch that has
received the probe described above, and replies with its own
load level, illustrating the unicast synchronization primitive.
Once a switch has learnt of the load at remote servers via
replies to its probes, Listing 10 shows how a switch drops
new flows if it finds all servers (including remote ones) to
be overloaded, or directs flows to the least loaded remote
server if any of them is found to be serving a load below
a threshold. This snippet illustrates the loop, min/max, and
multi-conditional primitives. Finally, Listing 11 shows how a
switch with an underloaded pool of servers announces its load
levels to other switches to enable them to direct traffic to it.

Listing 8: Local switch forwarding.
if(@pcube_cmp(0,NUM_SERVERS,1)(<)(or)(flow_count$i,THR1)){
apply(route_to_local_server_table);
if((@pcube_sum(0,NUM_SERVERS,1)(flow_count$i))>THR2)){
apply(probe_table);

}
} else ...
if(probe == 1){ // send sync request
@pcube_sync(pkt.type,1)
@pcube_endsync

}

Listing 9: Process sync request at switch.
if (pkt.type == 1){

@pcube_echo(pkt.type ,2)
@pcube_sum (0,NUM_SERVERS,1)(flow_count$i)

@pcube_endecho
}

Listing 10: Remote switch forwarding.
if (@pcube_cmp(0,NUM_SWITCHES,1)(>=)(and)(flow_count$i,THR3

)){
apply(drop_table);
}else {

@pcube_minmax (<=) // find least loaded switch
@pcube_for (i) (0,NUM_SWITCHES,1)

@pcube_case switch_flow_count$i:
apply(switch$i_route_table);

@pcube_endcase
@pcube_endfor
@pcube_endminmax

}

Listing 11: Send sync update from switch.
// Sync update message
if ((@pcube_sum(0,NUM_SERVERS,1)(flow_count$i))<THR2){

@pcube_sync(pkt.type,2)
@pcube_sum(0,NUM_SERVERS,1)(flow_count$i)

@pcube_endsync
}

}

 0

 500

 1000

 1500

 2000

10 20 30 40 50

L
in

e
s
 o

f
C

o
d

e

Network topology: Number of switches

pcube
P4

Fig. 3: pcube vs P4: Distributed load balancer.

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2 2.5 3

C
u

rr
e

n
t

fl
o

w
 c

o
u

n
t

Time in msec

Generated Load

Local switch

Remote switch 1

Remote switch 2

Fig. 4: Load balancer: 3 switches, switch threshold = 8 flows.

Savings in developer effort. We implement the load balancer
application described above in pcube, and compiled the re-
sulting P4 code to the bmv2 [18] target. We then emulated
a network with varying number of nodes using mininet [19],
and generated flows to our load balancer using scapy [20]. We
varied the network topology by varying the number of nodes
(servers, hosts, and switches) in the network, and generated P4
code using pcube for different network topologies. Figure 3
shows the number of lines in the load balancer application
when using pcube, and when directly writing P4 code. We
find that while the size of the P4 code base increases with
increasing nodes in the network topology, the size of the
pcube code remains constant due to the pcube primitives that
provide an efficient way to access and update indexed state
variables. We see from the graph that we achieve up to 5.4X
reduction in LoC, indicating significant reduction in developer
effort with pcube.
Correctness. We now show that our load balancer is able
to correctly balance load to multiple servers. Specifically,
we evaluate our synchronization primitives and whether the
messages are responses are generated as expected by the
autogenerated pcube code. We consider a topology with 3
switches, 2 local servers per switch and a single host gener-
ating traffic. The lower limit threshold configured is 3 flows,

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6

C
u

rr
e

n
t

fl
o

w
 c

o
u

n
t

In
te

rs
w

it
c
h

 p
a

c
k
e

ts

Time in msec

Flows in the network
Sync request (switch 1)
Sync update (switch 1)

Fig. 5: Interswitch messages generated by the ingress switch.

and the upper limit threshold is configured as 6. The client
generates load at the rate of one new flow every 0.128 seconds
to one of the three switches. We configure the switch to move
from its local pool of servers to start probing other switches
when the cumulative load on its servers crosses a threshold
of 8 flows. Figure 4 shows the timeline of the flow arrivals
and assignments, and Figure 5 shows the synchronization
messages generated by the ingress switch, to which the host
sends traffic. We see from the Figure 5 that once the server
load crosses the configured threshold, probe messages are
automatically generated by pcube, resulting in the switch
learning of the load at the remote servers and diverting traffic
to them.

B. Heavy hitter detection

The heavy hitter detection application [21] identifies sources
of traffic that generate huge amounts of traffic and drops
packets from such sources. Implementing this application in
the dataplane of a programmable switch is complicated by
the fact that there is not enough storage to maintain state
for all sources. Therefore, optimizations such as a counting
bloom filter are used to efficiently store counts for heavy
hitter sources without requiring O(n) space. The code for the
counting bloom filter involves computing and updating mul-
tiple hashes and updating the corresponding indices of a data
structure. Such code has significant potential to be compressed
with pcube primitives. We started with a heavy hitter detection
application [21] and rewrote it using pcube primitives. We
found that we could reduce the number of lines of code
from 676 to 191, a reduction of 3.53x, when the bloom
filter bucket size was 50, and a reduction of 1.44x, when
the bloom filter bucket size was 10. This exercise shows that
pcube is very useful in reducing the effort of developing
realistic programmable dataplane applications.

IV. CONCLUSION

This paper presented the design and implementation of
pcube, a preprocessor framework that simplifies the develop-
ment of P4 code by providing primitives for loops, summation,
multi-conditionals, min/max comparisons and abstractions to
synchronize state across multiple switches. Based on the
network topology, pcube primitives are translated to P4 code

and further compiled and deployed on multiple dataplane
switches of a distributed application. We demonstrated the use-
fulness of pcube by implementing a set of sample distributed
data plane applications, and reduce programming effort (in
term of lines of code) significantly—by a factor of 5.4x for
the load balancing application and reduction factor directly
proportional to the granularity of flow categories for heavy
hitter detection application.

As part of future work, we plan to expand the set of
primitives to include handling of dynamic changes to network
topology and network failures.

REFERENCES

[1] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Proc.
of the ACM SIGCOMM Conference, 2013.

[2] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “drmt: Disaggregated programmable switching,” in Proc. of
the Conference of the ACM SIGCOMM Conference, 2017.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Computer Communication Review, July 2014.

[4] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proc. of the ACM
SIGCOMM Conference, 2016.

[5] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proc. of SOSP, 2017.

[6] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “Kv-direct: High-performance in-memory key-value store
with programmable nic,” in Proc. of SOSP, 2017.

[7] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in Proc. of
the SoSR, 2016.

[8] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching asics,” in Proc.
of the ACM SIGCOMM Conference, 2017.

[9] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proc. of the ACM SIGCOMM
Conference, 2017.

[10] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos:
Consensus at network speed,” in Proc. of the ACM SIGCOMM SoSR,
2015.

[11] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of tcp,” in Proc. of the SoSR, 2017.

[12] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
of the SoSR, 2017.

[13] “P4c github page,” https://github.com/p4lang/p4c, 2017.
[14] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M. Kang,

and A. Akella, “P5: Policy-driven optimization of p4 pipeline,” in Proc.
of the SoSR, 2017.

[15] Z. Ma, J. Bi, C. Zhang, Y. Zhou, and A. B. Dogar, “Cachep4: A behavior-
level caching mechanism for p4,” in Proceedings of the SIGCOMM
Posters and Demos, ser. SIGCOMM Posters and Demos, 2017.

[16] Y. Zhou and J. Bi, “Clickp4: Towards modular programming of p4,” in
Proc. of the SIGCOMM Posters and Demos, 2017.

[17] “pcube project,” https://github.com/networkedsystemsIITB/pcube, 2018.
[18] “Behavioral-model,” https://github.com/p4lang/behavioral-model, 2017.
[19] “Mininet,” http://mininet.org/, 2017.
[20] “Scapy github page,” https://github.com/secdev/scapy, 2017.
[21] “SIGCOMM P4 tutorials,” https://github.com/p4lang/tutorials, 2017.

