Homotopy types of algebraic varieties

Bertrand Toén

These are the notes of my talk given at the conference Theory of motives, homotopy theory of
varieties, and dessins d’enfants, Palo Alto, April 23-26, 2004.

1 Introduction

Let k£ be a field. To any smooth and projective algebraic variety X over k one can associate cer-
tain geometric cohomology spaces E*(X ), which are finite dimensional verctor spaces over some
coefficients field K. For example H (X, Q) (the l-adic cohomology of X := X @y k*P), Hj p(X)
(the algebraic de Rham cohomology of X when e.g. k= C), H} . .(X) (the cristalline cohomology
of X when k is of positive characteristic) .... These geometric cohomology theories H " are the
so-called Weil cohomology theories. They encode geometric properties of X, and are not suppose
to see the arithmetic properties of the base field k. More precisely, the arithmetic nature of the
base field k is not reflected in the spaces H (X)) themselves but rather appears as the existence of
natural additional structures on them. For example, H,(X,Q;) comes equiped with a continuous
action of the Galois group Gal(k*P/k), H},z(X) is endowed with a pure Hodge structure, H} , (X)
has a structure of an F-isocristal over k .... The Tannakian formalism tells us furthermore that
these additional structures are encoded in an action of a pro-algebraic group! H on the space
" (X). The group H of course depends on the cohomology theory one chose, and in the example
above is the foundamental group of the Tannakian categories of continuous finite dimension [-adic
representations of Gal(k*P/k), of pure Hodge structures, of F-isocristals over k .... From these

observations one extracts the following general principle.

Principle 1: In algebraic geometry, (geometric) cohomology theories take their values in the
category of linear representations of a certain pro-algebraic group H.

This principle can serve as the foundation of the theory of motives, as the category of motives
is supposed to be the universal geometric cohomology theories for which H is the so-called motivic
Galois group.

If we beleive that the (co)homology of an algebraic variety is only the abelian part of a more
general homotopy type, it becomes very natural to extend the above principle to the following one.

'Sometimes these groups are not really groups but are rather gerbes, as for example in the case of cristalline
cohomology. I will not make any difference in these notes and will do as if these gerbes were all trivial.



Principle 2: For any Weil cohomology theory H", and any smooth projective variety X, there
exists a functorial geometric homotopy type h(X), of X with respect to the theory H . This ho-
motopy type h(X) (whatever it is) comes equiped with a natural action of the group H, in such a
way that the induced action on its cohomology H*(h(X)) gives back the linear representation H (X).

This last principle is mathematically very imprecise, but its meaning is rather clear: the addi-
tional structures one finds on the cohomology of smooth projective varieties already exist naturally
on a much richer object, their homotopy type. The group H being a pro-algebraic group, one sees
that the object h(X), whatever it is, should not be discrete unless the action of H would not be
interesting at all (an algebraic action of an algebraic group on a discrete set necesseraly factors
throught the group of connected component, e.g. is trivial if that group is connected). In particular,
one does not expect h(X) to be a topological space, a simplicial set or even a pro-simplicial set.
One should rather look for a definition of A(X) in such a way that its homotopy groups 7;(h(X))
are for example themselves pro-algebraic group over K.

Purpose of this note: Ezxplain the kind of structure E(X ) really is, and show that principle 2
is satisfied in general.

2 Stacks

Let C be a Grothendieck site, and SPr(C') be the category of simplicial presheaves (i.e. presheaves
of simplicial sets) on C. We refer to the talk of R. Jardine for the description of the local model
structure on SPr(C), for which the equivalences are the morphisms inducing isomorphisms on
every homotopy sheaves.

Definition 2.0.1 The (homotopy) category of stacks is the category Ho(SPr(C)).

Recall that for a stack F' € Ho(SPr(C)), one can define its sheaf of connected component
mo(F'), which by definition is the sheaf on C' associated to the presheaf X +— 7o(F(X)). In the
same way, for an object X € C' and a 0-simplex s € F(X) one can define the sheaf 7;(F, s), as the
sheaf on C/X associated to the presheaf (u:Y — X) — m;(F(Y),u*(s)).

A stack F' is called n-truncated, if for all choice of X € C and s € F(X) one has 7;(F,s) =0
for all 4 > n. One can easily show that the full sub-category of O-truncated stacks in Ho(SPr(C))
is equivalent to the category of sheaves of sets on C. In the same way, the full sub-category of
1-truncated stacks is seen to be equivalent to the (homotopy) category of stacks in groupoids on C
in the sense of Grothendieck (see R. Jardine’s lecture). Keeping this in mind, an n-stack is simply
an n-truncated object in Ho(SPr(C)), and general objects in Ho(SPr(C)) can be thought as an
oo-stack. This justifies the terminology stack to designe objects in Ho(SPr(C)).

The existence of the model structure on SPr(C') implies several nice properties of the category
Ho(SPr(C)), as for example existence of homotopy limits and homotopy colimits?. One can also
show that Ho(SPr(C)) possesses internal Hom’s, or in other words that stacks of morphisms exist.
From a general point of view, SPr(C) is a model topos, in the sense that it satisfies homotopy

2These are not really properties of Ho(SPr(C)), but rather additional structures. They are in any case properties
of the homotopy theory of stacks.



analogs of Giraud’s axioms characterizing categories of sheaves (see [HAGI]). This implies that
the theory of stacks works in a very similar fashion than the theory of sheaves, and I will use this
implicitely in the sequel of this note.

3 Schematic homotopy types

For this section I fix K a base field. The category of affine K-schemes will be denoted by Af fk.
The category Af fi is endowed with the faithfully flat and quasi-compact topology, and gives rise
to a Grothendieck site Af f};f 9. The homotopy category of stacks over Aff {{f ¢ will be simply
denoted by Ho(SPr(K)).

Definition 3.0.2 A schematic homotopy type (over K) is a stack F' € Ho(SPr(K)) satisfying the
following three conditions.

° 7T0(F) = *,

e For any field extension K C L, and any point s € F (L), the sheaf 71 (F,s) is represented by
an affine group scheme over L.

e For any field extension K C L, any point s € F(L), and any i > 1, the sheaf m;(F,s) is
represented by a unipotent affine group scheme over L.

The full sub-category of Ho(SPr(K)) consisting of schematic homotopy types will be denoted
by SHT/K.

The homotopy theory of schematic homotopy types behave well, in the sense that one can define
homotopy fiber products, cohomology (with local coefficients), Postnikov decomposition, obstruc-
tion theory .... The standard properties and constructions of homotopy theory has reasonable
analogs in SHT /K. We refer to [Tol, Ka-Pa-To| for more details on the general theory.

Let us now assume that K is of characteristic zero. Any schematic homotopy type F' possesses
a Levy decomposition, defined in the following way. For simplicity we assume that F' has a global
point * — F'. We can then consider the maximal pro-reductive quotient

71 (F, %) — 1 (F, %)™
as well as the induced morphism in SHT/K
T F — K(m(F,*), 1) — K(mi(F,%)",1).

The homotopy fiber of the map 7 is denoted by F'° and is the universal reductive covering of F.
The natural morphism F° — F' induces isomorphisms on all 7; for ¢ > 1, and on the level of
fundamental groups 1 (F°) is identified with the unipotent radical of 71 (F, ). In particular, all of
the homotopy sheaves m;(F°) are unipotent.

The importance of the object F'° comes from the existence of a Curtis spectral sequence

E?q = 7TP—(I(FO)7



for which the term E}*? only depends on the cohomology vector spaces H'(F°,G,) := [F°, K(G, )],
and the differential d; only depends on the cup products in cohomology. This is a schematic analog
of the Curtis spectral sequence in topology, relating homology and homotopy for nilpotent spaces.
The existence of this spectral sequence is one of the most interesting feature of schematic homotopy

types.

4 Schematic homotopy theories

We come back to our base field k, and we let SmPr/k the category of smooth and projective
geometrically connected algebraic varieties over k.

Definition 4.0.3 A schematic homotopy theory (over k and with coefficients in the field K) is a
functor
h:SmPr/k — SHT/K

which satisfies the following two conditions.
1.
mi(h(Spec k)) =0V i > 1.
2. The natural morphism
m1(h(X)) — m1(h(Spec k))

18 surjective.

The first condition on h is equivalent to say that h(Spec k) is a gerbe that will be denoted by H.
As T have already mentioned before I will do as if this gerbe were trivial (though in some example
it is not), and therefore consider it simply as a pro-algebraic group over k. If H now denotes this
group, then the condition on the functor h can also be written

h(Spec k) ~ K(H,1).

Let us fix a schematic homotopy theory h as in Def. 4.0.3. For any X € SmPr/k, one can
consider the natural morphism X — Speck, which induces a morphism in SHT /K

h(X) — K(H,1).

The homotopy fiber of this morphism will be denoted by h(X), and is called the geometric part of
the homotopy type h(X). Our condition 4.0.3 (2) insure that h(X) is a schematic homotopy type
over K. Furthermore, h(X) comes equiped with a natural action of H, and h(X) can be identified
with the homotopy quotient (i.e. the quotient stack)

h(X) ~ [h(X)/H].
This gives another way of considering the schematic homotopy theory h, as being a functor
h:SmPr/k — H— SHT/K,

from SmPr/k to the homotopy category of H-equivariant schematic homotopy types over K. Giving
h or h is equivalent.



5 Some examples

There exists a general procedure in order to construct schematic homotopy theories, based on an
un-published homotopy version of Tannakian duality in which schematic homotopy types appear as
Tannakian dual of certain Tannakian model categories. Rather than trying to explain this general
process, I will rather describe some examples without mentioning how they are actually constructed.

I will need the notion of a local system on a schematic homotopy type F'. By this I will mean a
K-linear representation of the pro-alegbraic group 71(F)3. Furthermore, for any such local system
L on F, one can define H*(F, L), the cohomology of F' with local coefficients (see [Tol] for details).
5.1 Hodge theory

In this part we let £k = C and K = Q.

Recall that for any smooth and projective complex algebraic variety X, there exists a tensor
category V.M HS(X), of variations of rational mixed Hodge structures on X. Moreover, VM HS(X)
is the heart of a triangulated category with t¢-structure Dy (X), of (bounded) mixed Hodge
complexes on X. Recall that for an object V€ VM HS(X), the absolute Hodge cohomology of X
with coefficients in V' is defined by

H:lbs(Xv V) = HomDMH(X)(17 V[n])

Theorem 5.1.1 For any X € SmPr/C, there exists a functorial schematic homotopy type h(X) €
SHT/Q satisfying the following two conditions.

1. There exists a natural equivalence of tensor categories

{Local systems on h(X)} ~VMHS(X).

2. For any local system L on h(X), corresponding through the equivalence above to an object
V e VMHS(X), there exists a natural isomorphism

H*(h(X), L) ~ H}, (X, V),
compatible with extra structures such as cup products . ...

The schematic homotopy type h(X) of theorem 5.1.1 is called the absolute Hodge homotopy
type of X. Both conditions of Thm. 5.1.1 can also be stated together as an equivalence of tensor
traingulated categories with t-structures

DMH(X) ~ DParf(h(X))v

where Dpq,¢(h(X)) is a certain derived category of perfect complexes of O-modules on the stack
h(X).

30nce again, sometimes m1(F) is only a gerbe, and the expression linear representation has then to be interpreted
as vector bundle.



It is not hard to see using conditions (1) and (2) of Thm. 5.1.1 that one has
h(SpecC) ~ K(H,1)

where H is the Tannakian dual of the tensor category of rational mixed Hodge structures. Therefore,
the functor X — h(X) does define a schematic homotopy theory in the sense of Def. 4.0.3. The
schematic homotopy type h(X) is now the geometric Hodge homotopy type of X, and comes equiped
with an action of H. Furthermore, for any local system L on h(X), considered as a local system
on h(X), the cohomology H*(h(X), L) is isomorphic to the Betti cohomology H*(X'P L) of the
corresponding local system. The action of H induced on H*(h(X), L) corresponds to a mixed Hodge
structure on H*(X'P, L). Therefore, the object h(X), together with the action of H recover the
Hodge theory on the cohomology of X. In the same way, one can extract from h(X) the nilpotent
completion of the fundamental group of X, together with its mixed Hogde structure. In a way, the

equivariant schematic homotopy type h(X) encodes all of the usual Hodge theoretic invariants of
X.
5.2 Other classical theories

Let me mention that theorem 5.1.1 has analogs for other classical theories, such as [-adic cohomology
or cristalline cohomology theory. The reader can reconstruct the statement by himself, simply by
replacing variations of mixed Hodge structures by mixed [-adic sheaves, or F-isocristals. For details
see [Tol, Ol].

5.3 Motivic theory ?

Among all schematic homotopy theories, it is expected that there exists a universal one, the motivic
schematic homotopy theory. Of course, it seems rather difficult to construct it without assuming
certain usual conjectures (standard conjectures, vanishing conjectures ...) (thought one can always
construct something in a formal way). The expected statement is the following motivic version of
theorem 5.1.1.

Conjecture 5.3.1 Let k be any field. There exists a schematic homotopy theory
h:SmPr/k — SHT/Q
satisfying the following properties.
1. There is an equivalence of tensor categories
{Local systems on h(X)} ~ MM(X),
where MM(X) is the tensor category of lisse mixed motivic sheaves on X.

2. For any local system L on h(X), corresponding through the equivalence above to an object
Ve MM(X), there exists a natural isomorphism

H*(h(X),L) ~ Hy;(X,V),

where Hy (X, V) is the motivic cohomology of X with coefficients in the motivic sheaf V.



From this conjecture one sees that h(Speck) should be of the form K (H,1), for H a certain
motivic Galois group (it is actually a gerbe) which is the Tannakian dual to the category MM (k) of
mixed motives over k. For any X € SmPr/k, one would then get a geometric part h(X), endowed
with an action of H, which encodes the motivic cohomological behaviour of X.

6 Perspectives

To finish with I will present a context of possible application of schematic homotopy theories.

Let k£ be any field, and let us suppose that we are given a schematic homotopy theory h and
a smooth projective variety X. From the functoriality of h one gets by formal arguments a well
defined map
7 X (k) — mo(h(X)™),

where h(X)H is the simplicial set of homotopy fixed points of H on h(X) defined for ‘example as
the mapping space Map(*, h(X)) in the category of H-equivariant stacks. The set mo(h(X)™) can
also be considered as the set of sections of the natural morphism

h(X) — h(Speck)
up to homotopy.
Definition 6.0.2 The non-abelian Abel Jacobi map (with respect to the theory h) is the map
72 X (k) — mo(A(X)™)
defined above.

One interesting feature of the map ~ is that it sends the set of rational points of X, which is a
set without any structure, to the set 7o (h(X)™) which can be expressed in purely homotopical data
of X and seems therefore more structured than X (k). Indeed, using a Postnikov decomposition of
h(X) one constructs a natural spectral sequence

Ey? = HP(H, mg(h(X))) = mq—p(R(X)"),

from the Hochschild cohomology of the group scheme H to the homotopy groups of hA(X)™. This
spectral sequence induces a kind of filtration on the set mo(h(X)™), which by pull back along v
induces a kind of filtration on the set X (k).

Precisely, for any integer n > 0, there exists an equivalence relation ~,, on X (k), in such a way
that ~, is finer than ~,_;. By definition, for two rational point z and y in X (k), one has z ~,, y

if and only if the image of v(z) and ~(y) by the projection

mo(R(X)®) — mo((R(X)<n)")

are the same (here h(X)<, is the n-th Postnikov truncation of h(X)). Furthemore, for any n > 1,
if x ~,, y, then there exists a natural obstruction

Sn(z,y) € H"HH, 71,41 (M(X)))



in order for x ~, 1 y to be satisfied. This can interpreted by saying that the filtration on X (k) is
such its n-th graded peice injects into H" M (H, m,11(h(X))).

We get this way a sequence of invariants d,,(z,y), where 6, (x,y) is defined if ¢;(z,y) = 0 for all
1 < n, and as far as I know these invariants are new. Of course, an important question is to know
whether or not the filtration on X (k) is exhaustive, or in other words if v is injective. In general it
is not, as v would factor throught R-equivalence 4. Still the following seems to me an interesting
question.

Problem 6.0.3 Find examples of algebraic varieties X and schematic homotopy theories h such
that the map B
72 X (k) — mo(A(X)™)

is injective (resp. surjective, resp. bijective).

Remark 6.0.4 1. Tt seems rather clear that the case where h is the motivic theory would be
the most interesting one.

2. When X is a curve, Problem 6.0.3 is closely related to Grothendieck’s section conjecture,
that have been discussed several time during this conference. I suggest Problem 6.0.3 as a
generalization of Grothendieck’s section conjecture for higher dimensional varieties.

Finally, let me also mention the existence of a commutative diagram

X (k) mo(R(X)")

| |

CHy(X) — mo(C(X)H),

cycle

where CHy(X) is the Chow groups of 0-cycles on X, C,(X) is the homology of h(X), and cycle is
the cycle class map. The spectal sequence

ES? = HP(H, Hy(h(X))) = Wq—p(é*(X)H)a

induces a filtration on 7o(C, (X)), and the pull back by the cycle class map of this filtration
induces a filtration on C'Hy(X) which gives rise to the so called higher Abel Jacobi maps (see e.g.
[Ral]). The existence of the commutative diagram above justifies the name non-abelian Abel Jacobi
map for the map ~.
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