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Abstract. The possibility that a database with biometric data is com-
promised is one of the main concerns in implementing biometric identifi-
cation systems. In this paper we present a method of hashing fingerprint
minutia information and performing fingerprint identification in a new
space. Only hashed data is transmitted and stored in the server data-
base, and it is not possible to restore fingerprint minutia locations using
hashed data. We also present a performance analysis of the proposed
algorithm.

1 Introduction

The problem we are dealing with is well described in section 9.7 of Handbook
of Fingerprint recognition[1]. Plaintext passwords can be hashed, and only hash
values are stored in the database and transmitted across networks. Password
authentication requires comparison of the hashed values and not original pass-
words. If database with hash values is ever compromised, all persons can be
reenrolled using different passwords or different hash function.

Situation is different when using biometric data for person authentication.
Due to the difficulty of devising hashing functions for biometric data biometric
templates are usually stored unprotected in a central database. Even if stored
templates are encrypted, matching is still performed using decrypted templates,
and decryption process can be compromised as well. If the biometric database is
compromised and an intruder obtains a person’s biometric template, using this
biometric will be impossible for the rest of person’s life.

In this work we want to devise a method for biometric data, in particular
fingerprint data, to be hashed, and the biometric identification to be performed
using hashed biometric data. Hashing functions are one-way functions, and given
the hash values it is impossible to reconstruct original template. Only the hash
values are transmitted over the network and stored in the biometric database. In
case the hash values are compromised, person will be re-enrolled using new hash
function. The original biometric(e.g. fingerprint) is safe and never compromised.

Figure 1 presents a diagram of a system using proposed hashing algorithm.
Fingerprints are obtained by the scanner, minutia locations are found and hashes
of minutia subsets are constructed. Finding minutiae and hashes can be incor-
porated into scanner. Only hashes are transmitted and stored in the database.
During verification stage new hash values are produced by the scanner and are
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Fig. 1. Application of the proposed hashing algorithm.

matched with those stored in the database. Matching can be performed either
on the client or on the server.

2 Related Work

The hashing functions for text passwords usually completely change hash values
even if a single character in a password is changed. Is it possible to construct
a person authentication algorithm if we allow the password to change slightly?
Error correcting codes [2] are designed to deal with such situations of recovering
changed data and their use might be appropriate here. Indeed, Davida et al.[3]
presented an authentication algorithm based on error correcting codes. In this
algorithm, error-correcting digits are generated from the biometric data and
some other verifying data, and stored in the database. During authenticating
stage, possibly changed biometric data is combined with stored error-correcting
digits and error correction is performed. The amount of correction required serves
as a measure of the authentication success. This algorithm was later modified as
fuzzy commitment scheme in the work of Juels and Wattenberg[4] and some of
its properties were derived.

Fingerprint data with minutia positions as features presents additional chal-
lenges for designing hashes. Minutia sets of two fingerprints usually do not co-
incide, it is nearly impossible to introduce some order in minutia set, and global
transformation parameters are usually present between corresponding minutiae.
A fuzzy vault algorithm (Juels and Sudan [5]) improves upon fuzzy commit-
ment scheme in trying to solve first two challenges and also uses error-correcting



codes. The security of the algorithm relies on the addition of chaff points, or,
in the case of fingerprint vault, false minutia points. The attacker would try
to find a subset of points well intersecting with non-chaff point set. Thus more
chaff points provides better security, but arguably worse vault unlocking per-
formance. The application of fuzzy vault to fingerprint identification appeared
in the work of Clancy et al.[6]. That paper showed realistic expectations on the
numbers of chaff points and associated attack complexity. The algorithm used
the assumption that fingerprints are aligned, and corresponding minutiae had
similar coordinates.

To address the frequent impossibility to properly align fingerprint images,
Uludag and Jain [7] proposed to use features independent of global rotation and
translation. It is still unclear if their approach will work.

Soutar et al. [8] took another approach to secure fingerprint biometrics. The
algorithm operates on images by constructing special filter in Fourier space en-
coding key data. The data can be retrieved only by presenting similar fingerprint
image to the decoder. The matching procedure is correlation based, thus trans-
lations of images are possible but not rotations.

In our work we use ideas similar to [9] to combine results of localized match-
ings into the whole fingerprint recognition algorithm. In that work localized
matching consists in matching minutia triplets using such features as angles
and lengths between minutia points. For each minutia feature vector of length 3
(z,y,0) and its two nearest neighbors, a secondary feature vector of length 5 is
generated which is based on the Euclidean distances and orientation difference
between the central minutia and its nearest neighbors. Matching is performed
on these secondary features. In contrast, for localized matchings in this work we
keep only limited information about matched neighborhoods, so that minutia
positions can not be restored. Global matching is essentially finding a cluster
of localized matchings with similar rotation(r) and transformation(¢) parame-
ters. It seems that proposed algorithm of Uludag and Jain[7] might also use this
2-stage technique. Unlike fingerprint vault algorithm[6] our algorithm performs
hashing of not only enrolled fingerprint, but of test fingerprint also. Thus hash-
ing can be incorporated into scanner, and original fingerprint data will never be
transmitted nor stored in the database.

3 Hash Functions of Minutia Points

The main difficulty in producing hash functions for fingerprint minutiae is the
inability to somehow normalize fingerprint data, for example, by finding specific
fingerprint orientation and center. If fingerprint data is not normalized, then the
values of any hashing functions are destined to be orientation/position- depen-
dent. The way to overcome this difficulty is to have hash functions as well as
matching algorithm deal with transformations of fingerprint data.

We represent minutia points as complex numbers {c¢;}. We assume that two
fingerprints of the same finger can have different position, rotation and scale,
coming from possibly different scanners and different ways to put the finger



on scanner. Thus the transformation of one fingerprint to the other can be de-
scribed by the complex function f(z) = rz + t. In our approach we construct
hash functions and corresponding matching algorithm, so that this transforma-
tion function is taken into account. Additionally we cannot set specific order of
minutiae, so we want our hash functions be independent of this order. Thus we
consider symmetric complex functions as our hash functions.

Specifically, given n minutia points {c1,ca, ..., c,} we construct following m
symmetric hash functions

hl(cl’c%""cn):CI+C2+"'+Cn
h2(61,62,...,cn):c?+cg+...+ci n

m m m
hm(cr,co, . yen) =+ 4+ +cp

Suppose that the another image of the fingerprint is obtained through above
described transformation f(z) = rz+t, thus locations of corresponding minutia
points are ¢; = f(¢;) = re¢; + t. Hash functions of the transformed minutiae can
be rewritten as

ro / / / /
hl(claCQa“'an):61+C2+”'+0n

=(rei +t)+ (rea+1t) +--- 4 (ren, + 1)

=r(cr+ea+--+cy)+nt=rhi(cr,co, ... cn) +nt
ho(cy,chyonic)) =2+ 2+ + 2

= (rex +t)> + (rea + 1> + -+ (rep +1)°

=+ G+ +g)+2rt(cr+ e+ +en) + 0t

=r2ha(c1, cay ...y Cn) 4 2rhi(cr, o, ..., cn) + nt?

(2)

Let us denote the hash values of the minutia set of one fingerprint as h; =

hi(c1,ca,. .., cy) and hash values of corresponding minutia set of another finger-
print as h; = h;(c},ch, ..., c),). Equations 2 now become
hy =rhy + nt

hly = 1r2hy + 2rthy + nt?
& = 13hs + 3r°thy + 3rt*hy + nt?

3)

Equations 3 have two unknown variables r and t. If we take into account
errors introduced during fingerprint scanning and minutia search, the relation
between hash values of enrolled fingerprint {h1, ..., h;,} and hash values of test
fingerprint {h},..., k! } can be represented as

hi:fi(rat7h17--~7hn)+6i (4)



The matching between hash values of enrolled fingerprint {hq, ..., h,,} and hash
values of test fingerprint {h},...,h!,} consists in finding r and ¢ that minimize
errors ¢;. During algorithm implementation we considered minimization of error
functions € = Y «;le;|, where weights «; were chosen empirically.

4 Global Fingerprint Matching Using Hash Functions

It turns out that trying to use hash functions with respect to the minutia set
of whole fingerprint is impractical. Even the small difference in minutia sets of
two prints of the same finger will produce significant difference in hash values.
Additionally, the higher order hash values tend to change greatly with the small
change in positions of minutia points.

To overcome these difficulties we considered using hash functions for match-
ing localized sets of minutia, and global matching of two fingerprints as a col-
lection of localized matchings with similar transformation parameters r and ¢.
As in base fingerprint matcher[9] the localized set is determined by a particular
minutia and few of its neighbors. The hashes are calculated for each localized
set. Total hash data extracted from fingerprint is a set of hashes {h; 1,...,him},
1 =1,...,k, where k is the total number of localized minutia sets.

During matching of two hash sets we first perform a match of all localized sets
in one fingerprint to all localized sets in another fingerprint. The matches with
highest confidences are retained. Then, assuming in turn that a particular match
is a correct match, we find how many other matches have similar transformation
parameters. The match score is composed from the number of close matches and
confidences of those matches.

5 Experiments

We carried out experiments with different configurations, using different number
of minutia points(n) and hashing functions(m). We tried out the configurations
as follows

1. n =2, m = 1. For each minutia point we find its nearest neighbor, and the
hash function h(cy, cg) = 95

2. n =3, m = 1. For each minutia point we find two nearest neighbors and the
hash function h(cy, co, c3) = %

3. n =3, m = 2: for each minutia point find three nearest neighbors, and
for each minutia triplet including original minutia point construct two hash
functions using the formula hy,(c1,¢2,...,¢n) = " + c§* + -+ - + ¢} where
m=1,2.

We use similar formulae for directions.

We compared performance with fingerprint matching algorithm developed in
[9] and using same set of fingerprints with identically extracted minutiae points.
Also, since in configurations 1 and 2 we simply get another set of minutia points,



we used matching algorithm of [9] to perform matching. We tested our system
on F'V(C2002’s DB1 database. The dataset consists of 110 different fingers and
8 impressions for each finger. There are a total of 880 fingerprints(388 pixels
by 374 pixels) at 500 dpi with various image quality. We followed the protocols
of FV.C2002 to evaluate the FAR(False Accept Rate) and FRR(False Reject

Rate). For FRR the total number of genuine tests is &+7) 4100 = 2800. For FAR

2
the total number of impostor tests is M = 4950. Currently achieved equal

error rate(EER) of proposed algorithm is ~ 3%. The EER for plain matching
is ~ 1.7%. The ROC characteristics of the baseline system and the different
configurations of our system are shown in figure 2.
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Fig. 2. ROC Curves for the baseline system[9] and the different experimental configu-
rations.

The decrease in the accuracy might be caused by the loss in information
when keeping reduced number of variables based on minutia triplets. For every
three neighboring minutia points we have reduced the number of variables to 4
(2 complex numbers) instead of original 6. It should be also noted that the total
number of hashed values is not reduced in the same proportion since the same
minutia can participate in the production of more than one triplet as described



in figure 3. Thus the total size of stored hash values can be even bigger than
the size of original fingerprint template. There can be additional reasons for
observed performance hit, such as difficulty in matching localized hashed values
and reduced number of matched localized neighborhoods. Determining exact
cause of performance loss and correcting it is one of the future research topics.

Nevertheless, the benefits of securing fingerprint data can easily outweigh the
performance loss in many applications. Performance loss would mean stricter
decisions on matching, and more frequent repeat matching attempts. Arguably
many people will trade off the assurance on their fingerprint template privacy
for the inconvenience of performing repeat fingerprint scan.

6 Security of Proposed Algorithm

The main purpose of the proposed algorithm is to conceal original fingerprint
and minutiae locations from an attacker. Is it possible to reconstruct minutia
positions given stored hash values? Since the number of hash values for each
local minutia set is less than number of these minutiae, it is not possible to get
locations using only information of one local set. On the other hand, it seems
possible to construct a big system of equations involving all hashes (hashes
of only first order might be considered for linearity). The biggest problem in
constructing such system is that it is not known which minutia participated in
the creation of particular hash value.
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Fig. 3. Different number of minutiae(crosses) can participate in the creation of two
triplet centers(circles).

The problem is illustrated in figure 3. Two triplet centers are formed from 4,
5 and 6 minutia points. Thus during constructing an equation system for finding



minutia positions, we have a problem of deciding how many minutiae should be,
in addition to matching minutia to triplet centers.

Hill-climbing type attacks[10] will probably have more difficult time to make
a match since varying minutia position might have effect on few triplets, thus
influencing matching score in a more complex way. Also, we think, that even if
attack succeeded and match is found, the resulting minutiae locations will be
different from original. In this situation, change of hashing algorithm will make
reconstructed fingerprint unmatchable.

7 Future Work

In this paper we presented one method of constructing hash functions. To achieve
a cancellable biometric algorithm we need to provide a way to automatically
construct and use randomly generated hash functions. Presented set of hash
functions is an algebraic basis in the set of polynomial symmetric functions.
Thus, we were able to express hash functions of transformed minutia set through
original set of symmetric functions. This is a clue to constructing other similar
hash functions. Essentially we can take arbitrary algebraic basis of symmetric
polynomials of degree less than or equal to m, {s1,..., $; } as our hash functions.
Then the hash functions of the transformed minutiae, s;(rcy +¢,...,rc, + t),
will still be symmetric functions of the same degree with respect to variables
c1,...,Cy. Thus, hashes of transformed minutia could be expressed using original
hashes, s; = s;(re1 +¢,...,7¢n +t) = Fi(r,t,81,...,8m) for some polynomial
functions Fj. These equations will allow matching localized minutia sets, and
finding corresponding transformation parameters.

In presented algorithm global matching relies heavily on first order hash func-
tions, basically centers of minutia triplets. If we want to use arbitrary symmetric
hash functions, then the global matching algorithm should be modified.

The ROC curves in figure 2 suggest that the algorithm has slightly lesser
accuracy than the baseline system which could be attributed to the fact that by
considering centers of minutia triplets as the features to match, we might lose
some information that the original minutia possess. Currently we are working
on improving the accuracy of the system by possibly learning the parameters
automatically and also trying to possibly use different scoring techniques.

Additional possible area of research is the use of scalar functions. For ex-
ample, it is easy to construct minutia triplet features which are rotation and
translation invariant. But, since algorithm requires estimation of rotation and
translation, these features will not suffice.
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