
RUSTY: A Fuzzing Tool for Rust
Mohammadreza Ashouri

research@ashoury.de
Berlin, Germany

Introduction

Rust is known as one of the most popular programming languages
on the Stack Overflow website in 2020, indicating that many
programmers have had the opportunity to use Rust in different
projects. There are many reasons for this success, mostly due to
its performance and safety. Rust is a friendly compiler with useful
error messages, which provides excellent documentation with an
integrated package manager. Furthermore, it is memory-efficient
and fast without a garbage collector. Hence, the Rust compiler can
power performance-critical services run on embedded devices.
Likewise, due to Rusts rich type system and ownership model,
it guarantees memory-safety and thread-safety enabling the
end-users to reduce various bug types at compile-time.

However, even though all the advantages come with Rust, we
found there are still various security issues in this ecosystem that
can compromise the safety of Rust programs. To perform our
security analysis, we created RUSTY that perform bug fuzzing
based on the combination of concolic testing and property-based
testing. is also the first kind of its own for the Rust ecosystem. Our
preliminary evaluation collected multiple trendy Rust projects on
GitHub, and RUSTY could successfully identify various memory
security issues in this benchmark suite.

Contributions:
1. In RUSTY’s design, property-based testing allows us to test

those specific properties of given code hold for arbitrary inputs.
If a failure is found, RUSTY automatically finds the minimal
test case to reproduce the problem. In our method, input
generation is determined based on value instead of type,
making our tool much more adaptable.

2. After identifying errors in the target code, RUSTY creates
concrete exploits to build reproducible proof-of-concept (POC)
exploits. For implementing the automatic exploit generation
unit, RUSTY leverages a concolic execution engine based on
the Z3 SMT solver [1].

Fuzzing Approach

Fuzzing and property testing include generating random inputs
and then verifying if a program fails on those inputs. Fuzzing
is commonly a black-box method, meaning we do not attempt
to inform it too much on how to go about making these inputs.
Randomized property testing, on the other hand, requires
extensive familiarity with the code under test. More precisely, it
works by testing an executable predicate (a property) on a stream
of randomly generated inputs [3,4]. Hence, manual specification
is required both the properties to test and define a rough "form"
of inputs that are "unusual". The main benefit of property testing
is that it works faster and more precisejust like unit tests.

However, some properties are conditioned on the input
satisfying demanding semantic invariants that are not the results
of its syntactic structure. E.g., an input list must be sorted or have
no duplicates. Most randomly generated inputs fail to satisfy prop-
erties with such inadequate preconditions and so are discarded.
Consequently, much of the target system may go untested.

In this work, we address this issue with our novel bug fuzzing
system called "RUSTY". Our system indeed is a coverage guided,

property-based testing fuzzing tool inspired by the related area
of coverage guided fuzzing [5], exemplified by tools like AFL [2].
Thus, instead of generating a fresh random input at each iteration,
RUSTY can also produce new inputs by mutating previous ones
using type-aware, generic mutation operators. The target program
is instrumented to track which control flow branches are executed
during a run, and inputs whose runs expand control-flow coverage
are preserved for future mutations.

This means that, when light conditions in the target program are
satisfied, and new coverage is observed, the input that triggered
them will be maintained and used as a springboard to go further.
We have implemented RUSTY and a concolic execution engine
(based on Z3 SMT solver) to produce concrete exploit values for
discovered bugs for rust programs. Figure 1 show the overview
architecture of RUSTY.

Figure 1: Overview structure of RUSTY.

Preliminary Evaluation

To evaluate the effectiveness of RUSTY, we tested it on Rust’s
vulnerable libraries. Table 1 shows some of the identified
vulnerabilities by fuzzing tool in our benchmark suite.

Table 1: Vulnerabilities detected by RUSTY

Detected Vulnerability M
em

or
y

Le
ak

D
en

ia
lo

fS
er

vi
ce

B
uf

fe
rO

ve
rfl

ow

H
ea

p
O

ve
rfl

ow

In
te

ge
rO

ve
rfl

ow

In
se

cu
re

D
es

er
ia

liz
at

io
n

C
od

e
E

xe
cu

tio
n

S
id

e
C

ha
nn

el

Fo
rm

at
S

tr
in

g

CVE-2017-1000430 7 7 3 7 7 7 7 7 7

CVE-2018-1000622 7 7 7 7 7 7 3 7 7

CVE-2018-1000810 7 7 3 3 7 7 7 7 7

CVE-2019-1010299 3 7 7 7 7 7 7 7 7

CVE-2019-15544 7 3 7 7 7 7 7 7 7

CVE-2020-25016 3 7 7 7 7 7 7 7 7

CVE-2020-25791 7 7 3 7 7 7 7 7 7

CVE-2020-25792 7 7 3 7 7 7 7 7 7

CVE-2020-25793 7 7 3 7 7 7 7 7 7



References

[1] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[2] Peter Gutmann. Fuzzing code with afl. login:, 41(2), 2016.
[3] Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce.

Coverage guided, property based testing. Proceedings of the ACM
on Programming Languages, 3(OOPSLA):1–29, 2019.

[4] Rohan Padhye, Caroline Lemieux, and Koushik Sen. Jqf: coverage-
guided property-based testing in java. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 398–401, 2019.

[5] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han
Liu, Xibin Zhao, and Jiaguang Sun. Safl: increasing and accelerating
testing coverage with symbolic execution and guided fuzzing. In
Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, pages 61–64, 2018.

2


