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Abstract—In this paper, we investigate the suitability of embed-
ding Internet hosts into a Euclidean space given their painise
distances (as measured by round-trip time). Using the clagsal
scaling and matrix perturbation theories, we first establis the
(sum of the) magnitude of negative eigenvalues of the (doubly-
centered, squared) distance matrix as a measure of suitaity of

system, and approximate the network distance between any
two nodes by the Euclidean distance between their resgectiv
coordinates. To improve the scalability of GNP, [3] and [4]
propose more efficient coordinate computation schemeg usin
Principal Component Analysis (PCA). Both schemes are in

Euclidean embedding. We then show that the distance matrix a sense centralized. Methods for distributed construabibn

among Internet hosts contains negative eigenvalues dfrge
magnitude, implying that embedding the Internet hosts in a
Euclidean space would incur relatively large errors. Motivated by
earlier studies, we demonstrate that the inaccuracy of Euaean
embedding is caused by a large degree dfiangle inequality

violation (TIV) in the Internet distances, which leads to negative
eigenvalues of large magnitude. Moreover, we show that thelVs

are likely to occur locally, hence the distances among these close

by hosts cannot be estimated accurately using global Euclidean
embedding. In addition, increasing the dimension of embeddg

Euclidean coordinate systems have been developed in [5], [6
In addition, [5] proposes to use height vector to account for
the effect of access links, which are common to all the paths
from a host to the others.

While most studies have focused on improving the accuracy
and usability of the coordinate based distance estimation

systems, other have demonstrated the potential limitatain

such schemes. For example, [7] shows that the amount of

does not reduce the embedding errors. Based on these insight the triangle inequality violations (TIVs) among the Intetn
we propose a new hybrid model for embedding the network hosts are non-negligible and illustrates how the routiniicpo

nodes using only a 2-dimensional Euclidean coordinate sysgn
and small error adjustment terms. We show that the accuracy of

the proposed embedding technique is as good as, if not better

than that of a 7-dimensional Euclidean embedding.

Index Terms—Euclidean Embedding, Triangle Inequality, Suit-
ability

I. INTRODUCTION

produces TIVs in the real Internet. Thegnjecturethat TIVs
make Euclidean embedding of network distances less aecurat
[8] proposes new metrics such as relative rank loss to etealua
the performance and show that such schemes tend to perform
poorly under these new metrics. A brief survey of various
embedding techniques is found in [8]. In addition, [9] claim
that the coordinate based systems are in general inaccurate
and incomplete, and therefore proposes a light weagtive

Estimating distance (e.g., as measured by round-trip time'geasurement scheme for finding the closest node and other

latency) between two hosts (referred as nodes hereafteheon

related applications.

Internet in an accurate and scalable manner is crucial tyman " SPite of the aforementioned research on the coordi-
networked applications, especially to many emerging averlnate based network distance estimation schemes regaadless

and peer-to-peer applications. One promising approadheis

Whether they advocate or question the idea, no attempt has

coordinate (or Euclidean embedding) based network distanf€€n made to systematically understandstactural proper-
estimationbecause of its simplicity and scalability. The basii€s of Euclidean embedding of Internet nodes based on their
idea is to embed the Internet nodes in a Euclidean spR@rwise distances: what contributes to the estimatioars?r
with an appropriately chosen dimension based on the paa'rw@a” such errors be reduced by increasing the dimensionality

distance matrix. The idea was first proposed by &l [2].

of embedding? More fundamentally, how do we quantify the

Their scheme, called GNP (Global Network Positioningf”itabi"w_ of Euclidean_empedding? We belieye that such a
employs the least square multi-dimensional scaling (MDSyStematic understanding is crucial for charting the feitur
technique to construct a low dimensional Euclidean coartgin '¢Search directions in developing more accurate, efficent
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scalable network distance estimation techniques. Ourrpsipe
first attempt in reaching such an understanding, and prepose
a simple newhybrid model that combines global Euclidean
embedding with local non-Euclidean error adjustment foreno
accurate and scalable network distance estimation.

The contributions of our paper are summarized as follows.
First, by applying the classical scaling and matrix peratidn
theory, we establish the (sum of the) magnitudenefative
eigenvalues of an appropriately transformed, squaredrdist
matrix as a measure of suitability of Euclidean embedding.
In particular, existence of negative eigenvalues with darg



magnitude indicates that the set of nodes cannot be embedded)nitude of negative values of an appropriately transéokm

well in a Euclidean space with small absolute errors. squared distance matrix of the nodes as a measure for the
Second, using data from real Internet measurement, wuaitability of Euclidean embedding.

show that the distance matrix of Internet nodes indeed guhta

negative eigenvalues of large magnitude. Furthermore,sve &  ¢|assical Scaling

tablish a connection between the degree of triangle inggual . L )

violations (TIVs) in the Internet distances to the magnétad Given only th_e" X symmetnodl_stance matriD = [di-?']

negative eigenvalues, and demonstrate that the inaccunfaqplc a ;et ofn points from some arbitrary space, v_vhefzg IS

Euclidean embedding is caused by a large degree of Tvstiif distancé between two points; and x;, 1 < i,j < n,

the network distances, which leads to negative eigenvames\’ve are |_nterested in the foII_owmg pr_oblem_: can we embed
n points {x1,xa,...,X,} in an r-dimensional space for

large magnitude. We also show that TIVs cause the embeddmgn : )
pme integerr > 1 with reasonably good accurayTo

schemes to be sub-optimal in that the sum of estimation®rr§

from a host are either positive or negative (far from 0), mhicaddress this question, we need to first determine what is the

means that the estimations are biased appropriate dimension to be used for embedding; given

Third, we show that a majority of TIVs occur due to théhus _dteEerTmeNd, we tNhen _netﬁd tod_map (_eachl Emr:ftgto
nodes that are close-by. By clustering nodes based on tiseir § PO!N % = (1, ..., %ir) in the r-dimensional Euclidean

tances, we find that while the distances between the node$HAce to minimize the overall error of embedding with respec

the different clusters (thimter-clusternode distances) can be® é:efrtaln cnteggn of a:ﬁpuraqgl first ask basi
fairly well-approximated by the Euclidean distance fuonti elore we address this problem, we Tirst ask a more basic

the intra-cluster node distances are significantly momen- question: Suppose that the points are actually from an-

Euclidean as manifested by a much higher degree of TIVs a 'mensiona_l E_uclidean space, givenly their Qistancg matri_x
the existence of negative eigenvalues with considerabgeta = — [dis], is it pqssm_lg o find out the _orlgmgl d|m_en3|on
magnitude. Based on these results, we conclude that estgnat and recover their onglnal coprdmates in thalimensional
network distances using coordinates of hosts embedded i pgce? Fortun.ately, th_|s question '(3) alreany answered epy th
global Euclidean space is rather inadequate for close-by nod oy of cIasgcaI scaling [10]'_Lé1) = [d;] be Ehe TQatnx
As the last (but not the least) contribution of our pape?,f squared d|stan_cles (;f thg points. Deﬂﬂg S _5J.D W,
we develop a new hybrid model for embedding the netwo hereJ_ = I —n7"11%, I is the unit matrix andl is an-
nodes: in addition to a low dimensional Euclidean embeddi enspnal cqu_mn vector yvhqse entries are alf 1s called
(which provides a good approximation to the inter-clustesen a ce_nterlng matrix, as multiplying' to a matrix produpes a
distances), we introduce a locally determinetbr{-metrig matrix that has 0 mean coit;mns and rows. Hedte IS a
adjustment term to account for the non-Euclidean effedtiit d0Ubly-centered version ab . A result from the classical
the clusters. The proposed hybrid model is mathematicaﬁ?’“'ng theory gives us the f_ollowmg theorem.
proved to always reduce the estimation errors in terms of |heorem 1:if a set ofn points{x;, Xz, ..., xn} are from

stresg(a standard metric for fithess of embedding). In additioi"! r-dimensional E_uclu;iean space. Théip is sem|.-def|n|te
this model can be used in conjunction with any Euclided’ﬁ'th exactlyr positiveeigenvalues (and all other eigenvalues
embedding scheme are zero). Furthermore, let thedggen decompositioof Bp is

) . i i — T _ 1/2 1/2\T _ i

The remainder of the paper is organized as follows. In Segven byBp = Q_AQ - QA_ (QAY7) _,whereA u [./\Z] IS
tion I, we provide a mathematical formulation for embect‘tplinal d|agqnal matrlx. whose diagonal conS|s_ts of the e|g_ensalue
nodes in a Euclidean space based on their distances, and aWJIBD in decreasing crrderbDenotedthe d;]ag]?nal maltrlx of the
the classical scaling and matrix perturbation theoriesstale Irst r positiveeigenva ues Wi, an Q.* the 'rSt.T columns

: easure %IQ Then the coordinates of the})omts are given by the
. . 1/2 . .

suitability of Euclidean embedding. In Section III, we aresl 7 * " coordinate matrixt” = QA" In particular,y” is a
the suitability of Euclidean embedding of network distamcéra”5|at'c_’” and rotation of the original coordinate mafkof
and investigate the relationship between triangle inétwalthe" points. L
violations and the accuracy. Section IV shows the accuracy1€nce the above theorem shows that ipoints are from a
of various Euclidean embedding schemes over various r&dclidean space, then we can determine precisely the afigin
measurement data sets. We show the clustering effects on4ffgension and recover their coordinates (up to a translatio
accuracy in section V. We describe the new hybrid model tgpd rotation). Thesontrapositiveof the above theorem states

the network distance mapping in Section VI and conclude tiaat if Bp is not semi-definite, i.e., it hasegativeeigenvalues,
paper in Section VII. then then points arenot originally from an Euclidean space.

A natural question then arisedoes the negative eigenvalues
of Bp tell us how well a set of. points can be embedded in
Il. EUCLIDEAN EMBEDDING AND CLASSICAL SCALING a Euclidean space™ other words, can they provide an ap-

In this section we present a general formulation of the proBropriate measure fauitability of Euclidean embedding? We
lem of embedding a set of points (nodes) inte-dimensional formalize this question as follows. Suppose th@oints are

Euclidean space given the pairwise distance between any twp . . .
d | ticul . Its f | ical Hn We assume that the distance functidg, ) satisfy d(z,z) = 0 and
nodes. In particular, using results from classical scaing d(z,y) = d(y,z) (symmetry), but may violate thériangle inequality

matrix perturbation theories we establish the (sum of the(,z) < d(z,y) + d(y, 2); henced may not bemetric
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Fig. 1. Scree plots of the eigenvalues on data sets. Randarts @e generated id-dimensional Euclidean space. The noise is computeghasse,, =
dzy + dzy X f, where f, the noise factor, is uniformly randomly selected from ageaof [0, p). p = 0.05 andp = 0.1 are used.

from anr-dimensional Euclidean space, but the actual distangi®z|| 7). In other words, they are less amenable to Euclidean
cZij between two points; andx; is “distorted” slightly from embedding.
their Euclidean distancé;;, e.g., due to measurement errors. In this derivation, we useotal error, . However, the
Hence, intuitively if the total error is small, we should Hdea total error can be from only a few distance estimations so
to embed the: points into anr-dimensional Euclidean spacethat eigenvalue analysis can wrongfully conclude that the
with small errors. Using the matrix perturbation theorythe Euclidean embedding is not good for this distance matrix.
following we show thatin such a case the (doubly centeredpctually, the meaning ofjood fittingdepends on the objectives
squared distance matrix must have small negative eigeagaluof the embedding. Typical objective functions usually toy t
Formally, we assume thaifj = d; + eij, wherele;;| < minimize the total sum osquaredabsolute errors or relative
¢/n for somee > 0. Hence D? := [Jgj] = D®@ 4 g, errors. In such case, even if only a few distances happen to
where E := [e;;]. A frequently used matrix norm is thehave really high error terms, the errors are distributed to a
Frobenius norm || B||z:=, /3", Z_j leij|2 < e. ThenBp = large number of points because these objective functiars te
1R@ T 1 to prefer many small errors rather than a fevy large errors.
3JDJ = Bp + B, where By := —3JEJ. It can  ag 5 consequence, when the total error is high (regardless
be shown that|Bp||r < e Fori = 1,2,...,n, let \; and o \whether it is from a few sources or many sources), the
Ai be theith eigenvalue ofB;, and By respectively, where empedding is difficult to find the original positions of the
At 2 -2 A and A > - > A, Then the Wiedlandt- points in the Euclidean space. So the eigenvalue analysis is
Hoffman Theorem [11] states thaf " ; (\; —\i)* < [|BEl|%-  useful to measure the suitability of the Euclidean embegidin
SinceA; > 0, we have computed by the embedding schemes of which objective

. . L functions are to minimize the total (sum of squared) error.
DUINPS DT () <) S (N—X)? < ||Bellf < €.
{i:X; <0} {i:A; <0} i=1 B. lllustration
Hence the sum of the squared absolute values ohdgative  We now generate some synthetic data to demonstrate how
eigenvalues is bounded by the squared Frobenius norm of thessical scaling can precisely determine the originaledim
(doubly-centered) error matri{Br||%, which is the sum of sionality of data points that are from a Euclidean space.
the (doubly-centered) squared errors. In particular, bsplute First, we generate 360 random points in a unit hyper cube
value of any negative eigenvallik;| is bounded byj|Bz||». with different dimensions and compute the corresponding
Hence if the total error (as reflected ByBg||%) is small distance matrix for each data set. Fig. 1(a) showssttree
and bounded by, then the negative eigenvalues Bf, are plot of the eigenvalues obtained using classical scaling. The
also small and their magnitude is bounded dyHence the eigenvalues are normalized by the largest value (This vell b
magnitudeof negative eigenvalues (and their sum) providesthe same for the rest of the paper). We see from Fig. 1(a)
measure of theuitability of Euclidean embedding: if a setof that the eigenvalues vanish right after the dimensionality
points can be well-approximated by a Euclidean space with ah the underlying Euclidean space where the data points
appropriate dimension, then their associated doublyecedt are from, providing an unambiguous cut-off to uncover the
squared distance matrix only has negative eigenvaluesalf snoriginal dimensionality. We now illustrate what happensewh
magnitude, if any. On the other hand, the contrapositivdef tdistances among data points are not precisely Euclidegn (e.
above proposition leads to the following observation: due to measurement errors). We add noise to the synthgticall
Theorem 1:If the doubly-centered squared distance matrigenerated Euclidean data sets as follows: the noise compone
of a set ofn points has negative eigenvalueslafge mag- in the data isd x (1 + f), whered is the original Euclidean
nitude, then the set ofi points cannot be embedded intalistance andf is a randomly selected number frofap, p).
a Euclidean space with a small total error (as measured W usep = 0.05 andp = 0.1 for the illustration below. We



Data Set| Nodes Date Data Set| Ng02 | King2305 | King462 | Planetlab
King462 ([12]) 462 | 8/9/2004 fraction | 0.116 0.233 0.118 0.131
King2305 ([13]) 2305 2004
PlanetLab ([14])] 148 | 9/30/2005 TABLE Il
Ng02 ([15]) 19 | May 2001 THE FRACTION OFTIV S OVER ALL TRIPLES OF NODES
TABLE |

THE DATA SETS USED IN OUR STUDYTHE NUMBER OF NODES IS CHOSEN
TO MAKE THE MATRIX COMPLETE AND SQUARE
A. Eigenvalue Analysis
First, we perform eigenvalue analysis of the doubly-

centered, squared distance mat®p = —JD®?J. Fig. 2
observe in Fig. 1(b) that the first eigenvalues are positive,shows the scree plot of the resulting eigenvalues, noredliz
and are nearly the same as in the case without noise, Wheﬂ@] the eigenvalue of the largest magnityde|, in decreasing
represents the actual dimension of the data set. Beyond thesder in the magnitude of the eigenvalues. We see that each of
eigenvalues, we observe only small negative eigenvaluss. #he data sets has one or more negative eigenvalues of edyativ
the noise increases, the magnitudes of negative eigesvaligge magnitude that are at least about 20% (up to 100%)
increase slightly. It is clear that as the data set deviates f of [M\1], and the negative eigenvalue of largest magnitude is
Euclidean more, the magnitudes of the negative eigenvalugfiong the second and fourth largest in terms of magnitude).

become larger. This suggests that the network distances are somewhat less
suitable for Euclidean embedding. Hence it is expected that
I1l. SUITABILITY OF EUCLIDEAN EMBEDDING embedding the nodes in a Euclidean space would produce

- . . considerable amount of errors.
To understand the suitability of Euclidean embedding oto

network distances, in this section we perform eigenvalue ,
analysis of the distance matrices and investigate how tRe 1!V Analysis
triangle inequality violations (T1Vs) affect the accuraufythe Motivated by earlier studies (e.g., [7]), which show that
embedding, and thus the suitability of Euclidean embedditere is a significant amount of TIVs in the Internet distance
for a wide range of data sets. measurement, and attribute such TIVs to Internet routing

To be specific, we apply eigenvalue analysis to show that thelicies’, here, we investigate how the amount of TIVs in
(doubly-centered, squared) distance matrices of the dusa $he data sets affect the suitability and accuracy of Eualide
contain negative eigenvalues of relatively large magmititle €mbedding of network distances. In particular, we establis
then attribute existence of the negative eigenvalues afivel a strong correlation between the amount of TIVs and the
large magnitude to the large amount of triangle inequaliffagnitude of negative eigenvalues of the associated distan
violations existing in the data sets by showing: i) embegdirmatrix. First we analyze the amount of TIVs in the four data
a subset of nodes without triangle inequality violationsain sets. For each data set, we take a triple of nodes and check
Euclidean space produces higher accuracy, and the assbcigthether they violate triangle inequality. We then comptie t
distance matrix also contains only negative eigenvalues fection of such TIVs over all possible triples. Table Il si®
much smaller magnitude; and ii) by increasing the degree € results for the four data sets. We see that the fraction of
TIVs in a subset of nodes of theamesize, the performance TIVs in theKing2305data set is about 0.23, while for the other
of Euclidean embedding degrades and the magnitude of theee data sets, it is around 0.12. Hence the triangle ifiégua
negative eigenvalues also increases. violations are fairly prevalent in the data sets.

We use four different data sets, which we refer to as To investigate how the amount of TIVs affect the suitability
King462, King2305.and PlanetLabh and Ng02 as listed in and accuracy of Euclidean embedding — in particular, its
Table 1. TheKing462data set is derived from the data set use@hpact on the magnitude of negative eigenvalues, we start
by Dabek et al. [12] after removing the partial measuremientswith a subset of nodes without any triangle inequality \iiola
derive a162 x 462 complete and square distance matrix amor{ye refer to such a subset of nodes aBld-free set). Ideally
462 hosts from the original000 DNS server measurementsWe would like this subset to be as large as possible, namely,
Using the same refinement over the data set used in [1@ptain themaximal TIV-free (sub)setUnfortunately, finding
we derive theKing2305 data set, which is 2305 x 2305 the maximal TIV-free subset is NP-hard, as is stated in the
complete and square distance matidanetLabis derived following theorem (the proof of which is delegated to the
from the distances measured among the Planetlab nodesaprendix).

Sep 30th 2005 [14]. We chose the minimum of thé Theorem 2:Finding the maximal TIV-free set problem is
measurement (one measurement per 15 minutes) data poftscomplete.

for each measurement between node pairs. After removingience we have to resort heuristics to find a large TIV-free
the hosts that have missing distance information, we olatairpet. Here we describe three heuristic algorithms. The basic
148 x 148 distance matrix amongi8 nodes. ThéNg02data set algorithm (referred to aglgo 0 is to randomly choose:

is obtained from [15] that contains1® x 19 distance matrix. hodes from a given set of nodes and check whether any
Even though the number of hosts is small in this data set, wg _ _ : _

have chosen this data et in order to compare with the resugdarious; 7l shous e e Ho Potao Routng poloane irpiy

in other papers. that private peering between small ASes is another sourde\&f.



1 : ‘ ‘ that violates triangle inequality with and any two nodes in
P}L"’i‘ﬂgﬂgg A. We pick the node that has the smallest such number, add
05 King2305 it to A and remove it fronC'. We then purge all the nodes in
: Ng02 C that violate the triangle inequality withand any two nodes
§ : in A. We repeat the above process uidtilbbecomes empty.
‘é 0 For the data set®Planetlah King462 and King2305 (the
g Ng02 data set is not used since it is too small), the size of
05 largest TIV-free sets found using the three heuristic allgors
is shown in Fig. 3. For each data set, Algo 0 only finds a TIV-
free set of about 10 nodes. Algo 2 finds the largest TIV-free
-1

sets for theKing462 and King 2305data sets, while Algo 1
finds the largest TIV-free set for tHdanetlabdata set. For the
following analysis, we use the largest TIV-free set found fo
Fig. 2. The eigenvalue scree plot of network distance mesric each data set. Fig. 4(a) shows the scree plot of the eigezsalu
for the associated (doubly-centered, squared) distan¢gxma
of the TIV-free node sets. We see that they all have only a

0 5 10 15 20 25 30 35
eigenvalue number

90

Algo 0 —— ‘ ‘ small number of negative eigenvalues and the magnitude of
80 1 Algol i T all the negative eigenvalues is also fairly small. Commarin
g 70f AlGO 2 ot 1 with Fig. 2, either the number or the magnitude of negative
@ 60 - 1 eigenvalues is significantly reduced.
“E 50 1 The embedding accuracy of the TIV-free data sets is shown
E 40t 1 in Fig. 4(b). The relative errors, which are defined pregisel
° 30t . ] in Section IV-A, are relatively small. For example, for the
S 20! P ] Planetlab data set, in almost 98% of the cases, the relative
10 — | j | errors are less than 0.2. We see that the Euclidean embedding
| [: ‘ [ 1. of the TIV-free sets has a fairly good overall accuracy. How-
Planetlab King462 King2305 ever, Fig. 4(b) still shows non negligible errors for the TIV
data sets free data sets. Since multidimensional scaling methods asic
GNP can actually embed Euclidean data set without any error,
Fig. 3. Performance of the 3 heuristic algorithms. this means that the errors of the TIV-free data set embedded

by GNP are truly from the non-Euclidean characteristics of
_ Internet routing. Actually, it is well known that the non-
three nodes of these randomly selectedodes violates the gyclideanmetric space such as the shortest path routing is

triangle inequality. If the triangle inequality is violatethe hard to embed into a low-dimensional Euclidean space withou
process is repeated again by randomly selecting anothef segjistortions or errors ([16]).

k nodes. If we find a TIV-free set of sizk, we increase:

by one and try again to attempt to find a larger set, Otherwiae Correlation between Negative Eigenvalues and Amount of
the algorithm terminates after a pre-specified number tédai TIIVs

tries, and returns the TIV-free set of size- 1. .

The second heuristic algorithmAlgo 1) is as follows. ~ Next, we show how the amount of TIVs in a data set
We start with a TIV-free set (initialized with two randomlycontributes to the magnitude of negative eigenvaluesghyer
selected nodes). From the remaining node Ge(initially the sgltabll|ty and accuracy of Euclidean embedding. We use
with 7 — 2 nodes), we then randomly pick a new node anipe King2305data set as an egample._The largest TIV-free set
check to see whether it violates the triangle inequalityhwitVe found has 81 nodes. We fix the size of the node sets, and
any two nodes in the existing TIV-free set. If yes, this nod@ndomly selecsix other node sets with exactly 81 nodes,
is removed from the remaining node 6t Otherwise it is Put With varying amount of TIVs. The scree plots of the
added to the TIV-free set (and removed from the remainifgggenvalues for the six node sets are shown in Fig. 5(a), and

node set). The process is repeated until the remaining ndgé cumulative relative error distributions of the corresping
set becomes empty. Euclidean embedding are shown in Fig. 5(b). We see that

The third heuristic algorithm Algo 2 is slightly more with the increasi_ng amount of TI.VS’ both the magn_itl_Jde and
sophisticated, and works in a similar fashionfdgo 1, except number of negative eigenvalues increase. Not surprisitigty

that we do not choose nodes randomly for consideration. \R/gerall accuracy of the Euclidean embedding degradesctn fa
start with an initial TIV-free setd of two nodes. where the W€ can mathematically establish a relation between the amou
two nodes are chosen such that the pair of nodes has the I&;s-lilvs and the sum of squared estimation errors as follows.

number of TIVs with nodes in the remaining node GetGiven Lemma 1:1f the distances,, ,, t. among 3 nodes violate

this pair of nodes, we remove all nodes in the remaining npoe triangle inequality, i.et. > t, +1, the minimum squared

setC that violate the triangle inequality with this pair of nodeses'{im";‘tion error of any metric (thus Euclidean) embeddig o

i . Etcftaft )2
For each node in C, we compute the number of nodesdh the 3 nodes i .
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Theorem 3:The sum of squared estimation errors

of any Euclidean embedding ofi nodes is at least
ﬁ_ZteV (t_c —tq - tp)?, whereV is the set of triples
that violate triangle inequalityt,, t¢,, and t. are the 3
distances of a triple € V, andt. > t, + t;.

The proofs are delegated to the appendix. Theorem 3 shows
that as the amount of TIVs increases, the sum of the squared

estimation errors also increases. A similar result can héso
established for the sum of squanethtive errors, the details of

which are omitted here. As an aside, we note that this theorem_
holds not only for Euclidean distance function, but also for

any metric distance function where the triangle inequality

property is required. However, it should be noted that the
lower bound computed in Theorem 3 is loose in some cases.

For example, the lower bound for the TIV-free data set is
0, but the embedding has non-negligible errors. Nonethgles

Theorem 3 sheds new lights on the relationship between the

accuracy and the amount of TIVs.

IV. EUCLIDEAN EMBEDDING OF NETWORK DISTANCES

In this section, we examine the accuracy of Euclidean
embedding of network distances for a wide range of data sets.
We consider five different metrics that we believe are useful ®

for a variety of delay sensitive applications.

A. Metrics for Goodness-of-Embedding

We consider four performance metrics, namstyess (cu-
mulative) relative errorsrelative rank loss (RRL.)andclosest

neighbor loss (CNL}hat have been introduced across various

studies in the literature (e.g., [2], [3], [4], [8]), as welk
a new fifth metricskewnessve introduce in this paper to

gauge whether an embedding is more likely to over- or under-
estimate the distances between the nodes. These five metrics

are formally defined as follows:

e Stress: This is a standard metric to measure the overall

fithess of embedding, originally known &tress-110]:

Aoy — day)?
Stress-1= o1 = Zz’y(#7 @
Zz,y dzy

Planetlab —— 1
King462
King2305 -

0.4 0.6 0.8 1
relative error

0 0.2

(b) Relative Errors

whered,, is the actual distance betweenandy, and
d., is the estimated one.

Relative error [2]: This metric is introduced in [2] that
is defined as follows: for each pair of nodesand y,

the relative error in their distance embedding is given by

_dsu=des|_ Note that the denominator is the

min(dry,dAry) '
minimum of the actual distance and the estimated®one
Thecumulative distributiorof relative errorsye,,’s, pro-
vides a measure of the overall fitness of the embedding.
Relative rank loss (RRL) [8]: RRL denotes the fraction
of pair of destinations for which their relative distance
ordering, i.e., rank in the embedded space with respect
to a source has changed compared to the actual distance
measurement. For example, for a given source node, we
take a pair of destinations and check which one is closer
to the source in the real distances and the estimated
distances. If the closest one is different, then the redativ
rank is defined to be lost. We compute the fraction
of such relative rank losses for each source, and plot
the cumulative distribution of such rank losses among
all sources as a measure of the overall fithess of the
embedding.

Closest neighbor loss (CNL) [8]: For each source, we
find the closest node in the original data set and the
embedded space If the two nodes are different, the closest
neighbor is lost. TheCNL metric is then defined as the
fraction of sources that have the closest neighbor lost.
As an extension to the original CNL metric in [8], we
introduce a margin parametér if the closest neighbor
nodes in the original data set and the embedded space are
different, but the distance between the two nodes in the
embedded space is withinms, we consider it as a non-
loss; only if the distance between the two is more that
ms, we consider it as a closest neighbor loss. Hence with
0 = 0, we have the original CNL. We expect that &s
increases, the CNL metric decreases.

Skewness: We introduce a new metslewnesso gauge
whether an embedding is more likely to over- or under-

Ty 1=

3In some literature, instead ohin(dyy,dxy), dzy is used. This usually
produces smaller relative errors.
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Fig. 5. Eigenvalue scree plots and cumulative distrib@tionrelative errors of node sets with increasing fractionT bfs.

estimate the distances between the nodes. For each nodeig. 6(a) shows the resulting overall stress of embedding
x, we define theskewnes®f embedding with respect to using the four embedding methods, GNP, VL, VL-ALL and
nodez as follows:s, = > (dsy — dz,y)/(n — 1), Vivaldi. Except for theKing2305data set, we see that the
wheren is the total number of nodes. In other wordspverall stress ranges from 0.2 to 0.5, which indicates tinat o
s, is the average of the embedding errors between ttiee average the estimations deviate from the original niists
real distances and the estimated distances between nfsden 20 % to 50%. For th&King2305data set, the overall

x to all the other nodes. Clearly, whet) is a large stress is much larger (above 0.9) for all three methods. iEhis
positive, the embedding method tends to under-estimaessibly due to the fact that in théng2305data set, there are
the distances between nodeto other nodes, and if it quite a few links with more than 90 seconds RTT which may
is a large negative, it tends to over-estimate the distanqga@®duce many outliers that can significantly affect the aller
between node to other nodes. Note tha; = 0 does not stress — this is a major shortcoming of the stress metric e No
mean that there is no error, but that the under-estimatbat as theNg02data set has only 19 nodes, the result for VL
and over-estimates are “balanced”, i.e., canceled out. Téwed Vivaldi are not available since there are fewer nodes tha
distribution of skewnesses of all nodes then provides tise required number of landmarks and neighbors (20 nodes).
with a measure whether a given embedding method terfeig. 6(b) and Fig. 6(c) show the cumulative distributions of
to under- or over-estimate the real distances among treative errors using GNP, VL, VL-ALL and Vivaldi for the

nodes. data setsKing462 and PlanetLaly respectively. We see that
all the embedding methods produce a relative error less than
B. Performance of Euclidean Embedding 0.5 for more than 75% (up to 90% in the case of GNP and

We apply three most commonly used embedding methodialdi) of the estimates.
proposed in the literature — namely, GNP [2], Virtual Land- Fig. 7(a) and Fig. 7(b) show the cumulative distributions
mark [3], [4] and Vivaldi [5] — to the four data sets, anddf relative rank losses using GNP, VL, VL-ALL and Vivaldi
compute their corresponding embedding errors as measut@dthe data set&ing462andPlanetlal) respectively. We see
using the aforementioned five metrics. Following the resulthat for all the four methods, more than 70% of the sources
in [2], [3], [4], we choose 7 as the dimension of Euclideahave a fraction of relative rank losses (RRL) less than 018 — i
embedding for the three embedding methods: GNP, Virtuaiher words, with respect to these sources, fewer than 30% of
Landmark (VL) and Vivaldi. More specifically, for the GNPdestination pairs have a different rank order in the embedde
and VL embedding methods, we use 20 landmarks randongigace from that in the original data set.
selected from the data set for computing the 7-dimensionalln term of the CNL metric, from Fig. 8(a) and Fig. 8(b)
Euclidean embedding. For the Vivaldi embedding methods, fo/e see that as the margin parameténcreases, the fraction
each node, 20 neighbors are randomly selected and useddfglosest neighbor losses (CNL) improves for all embedding
computing the 7-dimensional Euclidean embeddihgs the methods: embedding the Planetlab nodes in a Euclidean space
height vectat. For the purpose of comparison and to eliminatésing GNP, 60% to 70% of the sources have a different closest
the effect of landmark selection in the Virtual Landmarkeighbor node in the embedded space (i.e., when0), but
embedding method, we also ua# the nodesas landmarks for only about 20% of the sources, the closest neighbor node
to compute the 7-dimension Euclidean embedtlinghis is in the original data set is more than 15ms (i@~ 15 ms)

referred to asvL-ALL in the figures that follow. away from the closest neighbor node in the embedded space.
. - _ The CNLs of VL, VL-ALL, and Vivaldi lie above that of GNP.
We used the Vivaldi implementation from [17] Finally, to compare the skewness of the embedding methods,

5Using all the nodes as landmarks (or “neighbors” in the césévaldi) is . . .
only computationally feasible for the Virtual Landmark esdiding method, we use thEng462data set as a representative example. Fig. 9

not for GNP and Vivaldi! shows the results for three embedding methods: GNP, VL-ALL
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V. LocAL NON-EUCLIDEAN EFFECT

In this section, we dissect the data set further to find out
whether the inherent clustering structure of Internet iost
contribute to the errors in the Euclidean embedding — in
particular, what kind of nodes are likely to contribute t@ th
higher degree of TIVs, and whether increasing the dimension
of the embedding helps improve the embedding performance.

The hosts in the Internet are clustered due to many factors
such as geographical location, network topology and rgutin
policies. This clustering causes many hosts to have short
distances among themselves, while far longer distances to
other hosts. To investigate the effect of host clustering on
embedding accuracy, we first identify clusters within the
network distances. For this, we apply the spectral clusgeri

and Vivaldi (to avoid cluttering, we did not include the rigsualgorithm [18] to theKing462 data set with the outliefs
for VL in the figure, as it has slightly worse performance thafémoved. In this experiment, 28 nodes out of 462 are removed.

that of VL-ALL). To plot the distribution of the skewness'’s,

The algorithni obtainsfour clusters for theking462data set.

we use bins of size of 10ms that are centered at multiple \bfe use agray scaleplot to show the existence of the clusters
10ms, such as [-15' -5), [-5, 5), and [5’ 15) As can be Seenllihthe Klng462data set with the outliers removed.
the figure, the GNP and Vivaldi embedding method have the

best performance, as the highest fraction of skewnesssafue

8Qutliers are defined as those nodes, the distance of whitte 8th nearest
nodes are larger than a threshold. The reason to choose 8éhisidecause

th_e nOdeS _fa” within [-5, 5), and the majority of the valuee a e want the node to have at least a certain number of neigfgiootisis paper,
within the interval [-5, 15). In contrast, however, the skess the number is 8) within the threshold.
values of VL-ALL are more widely spread, indicating that for "The algorithm takes as input a paramef€ér the number of clusters, and

a fraction of nodes, it tends to either under- or over-edeém

their distances to other nodes.

roducesup to K as a result. We have experimented with= 3 to 7, and
he algorithm in general produces 3-4 “relatively big” ¢krs for the three
data setKing462, King2305and PlanetLab
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for the King462 data set.

cl c2 c3 c4
cl| 62.099| 154.287| 254.469| 212.538
c2 | 154.287| 60.681| 376.146| 321.508
c3 | 254.469| 376.146| 61.194| 238.938
c4 | 212.538| 321.508| 238.938| 61.950

Fig. 10. Distances between each pair of nodes in King462 settaafter
removing outliers. White represents distance 0 and blagkesents 95th
percentile or higher distances. Median distances (in mg)ngnthe nodes
of the intra and inter clusters are shown in the table.

represents distance 0 and black color represents the clistan
larger than the 95th percentile distance. The interval betw

0 and the 95th percentile distance is divided into 10 gray
scales (with a total of 11 gray scales), with increasing desk
from white to black (beyond the 95th percentile distanceg. W
can clearly see théour white blocks on the diagonal, each
of which represents the distance matrix of each cluster. The
table in Fig. 10 shows the median distances between the nodes
within and across thdour clusters in a numeric form. As

is expected, the intra-cluster median distances shownén th
diagonal entries of the table are much smaller than the-inter
cluster median distances.

To illustrate the characteristics of the individual clusten
Fig. 11, we show the eigenvalue scree plots of the distance
matrices obtained from the 4 clusters in the King462 data
set. Compared to Fig. 2, we see that the magnitudes of the
negative eigenvalues of the clusters are larger than thbse o
the whole data set. The “non-Euclidean-ness” amplifiesiwith
each cluster. It suggests that the intra-cluster distamces
much harder to embed into the Euclidean space. This can
be easily observed by looking at the relative errors of the
embedding. Fig. 12 shows the relative errors in a gray scale
matrix for theKing462 data set, where VL-ALL is used for
the embedding. The pure black color represents the relative

The square image in Fig. 10 is a graphical representatierror of 1.0 or larger, and 10 gray scales are used for relativ
of the King462 distance matrix. In the square image, therrors between 0 and 1. We see that the relative errors of the
vertical axis represents the source nodes and the horlzoméra-cluster estimations are larger than those of inkester
axis represents the target nodes. The nodes are sortediby tagtimations.
clusters in such a way that the nodes in cluster 1 appear firstive next examine which nodes are more likely to contribute
followed by the nodes in cluster 2, and so on. The nodes in tfigvards the TIVs. As we shall illustrate next, the high esrior
vertical and horizontal axes are in the same order. Eacft,poe intra-cluster distance estimation and the large mades
(z,y), represents the distance between the corresponding wfothe negative eigenvalues can be explained by the varied
nodes,z andy.

The distance is represented in a gray scale: white colerlikely to occur if the distance between two nodes is very

number of TIVs over the different distances. IntuitivelyT &/



10

1 ‘ . : 0.7 . : :
Cluster 1 —— Planetlab —e—
Cluster 2 0.6 | King2305 i
0 Cluster 3 - King462 -
5 Cluster 4 ) o 05F 1
) =
E .,'g 0.4 1
= 0 L
S £ 03} ™ 1
g = . .
E g
05 | = 02¢ i
0.1 ¢ 1
-1 L L L L L L 0 L L L L L L
0 5 10 15 20 25 30 35 <25 <50 <100 <200 <400 >400
eigenvalue number distance interval of links (ms)

Fig. 11. Scree plot of the eigenvalues of CS on the 4 clustetfsedking462 Fig. 13. Average fraction of TIVs at each distance interval.
data set after removing 28 outliers : Cluster 1 (261 nodef)st&r 2 (92
nodes), Cluster 3 (22 nodes), and Cluster 4 (59 nodes).

g 150 : :
! VOAL
100 7 vivaldi o n
—~ (0]
g 50 =
§ o o Be 2|
c T § @
3 o
Y4 -50 N 7
-100 : : : 1
-150 L— : : : : :
<25 <50 <100 <200 <400 =>400
M distance interval of links (ms)

Fig. 14. The 30th, 50th, and 70th percentiles of the skewnesasures at

Fig. 12. Relative errors between each pair of nodes in Ki@gdéta set each distance interval, The data seKisgd62

without outliers. White represents relative error O andbleepresents relative
error 1 or larger. Virtual Landmark method with 7 dimensisnused.

short or very large compared to the other two distances fore([;lnbeddlng of local (short) distances into a Euclidean sfsce

given triple of three nodes. Using this intuition we proceer(}l1UCh harder than global (long) distances.

with our data analysis as follows: we divide the distances The “local non-Euclidean” effect can be also illustrated
into 6 intervals{0ms, 25ms), [25ms, 50ms), [50ms, 100ms), using the skewness metric.. For each node, we compute .its
[100ms, 200ms), [200ms,400ms), and [400ms,c0). We skewness to the nodes within the intervals mentioned in
group all the pairs of nodes by their distance intervals.riThethe previous sections. Then we plot the 30th percentile, the
for each pair of nodes, we compute the fraction of TIVs ifnedian, and the 70th percentile of the skewness measures of
conjunction with the rest of the nodes, i.e. we count how ma@yl hodes using GNP, VL-ALL and Vivaldi. As can be seen in
nodes violate triangle inequality with the given pair. Ripa Fig- 14, more skewnesses exist in the interya/25ms) and

we compute the average of the fractions of all the pairs it eald00, c0) compared to other intervals. Furthermore, for short
interval. Fig. 13 shows the average fraction of TIVs in eacfistances, the skewness measures are likely to be negative a
distance interval. We observe that higher fractions of TIV@r large distances, the skewness measures are likely to be
occur in the intervald0, 25ms) and [400, co) compared to positive. Since each of the embedding methods tries to embed
other intervals. Since the fractions of pairs [it00, cc) are the nodes of TIVs in a Euclidean space by minimizing an
quite small in all the data sets, reducing the errors in sh&#or function, it is natural to lengthen the short distanaad
distance estimations is thus much more crucial for the dverfp shorten the long distances. This observation is alsceevid
performance of embedding. in the proof of Lemma 1 using the stress error function.

The above analysis illustrated that the distances among théurthermore, we have examined the impact of increasing
inter-cluster nodes are more likely to be better approx@shatdimension and using non-Euclidean distance functions such
by their Euclidean coordinates, whereas Euclidean emhgddas the Minkowskip-norm on the accuracy of the estimation.
of nodes within a cluster would likely provide a poor estiSimilar to the result in other papers such as [2], increasing
mate of their distances. This seems to suggest that theralimension does not increase the accuracy and the Minkowski
much strongeidocal “non-Euclidean effect” on the network p-norm does not help, either. We omit the result due to the
distances. By local non-Euclidean effect, we mean that tpage limitation.
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VI. AHYBRID MODEL FORLOCAL ADJUSTMENT Hence the larger the individual adjustment tefe| (thus

The results from previous sections show that the existerig average estimation error for each nodesing the pure

of TIVs highly affects the accuracy of the Euclidean embedruclidean embedding), the more performance gain the hybrid
ding (for that matter, anynetric embedding). In particular, Model attains. It should be noted that can be positive or

Euclidean embedding is fairly good at estimating netwogk dinegativé. . _

tances between nodes that are relatively far away (in éiffier N (2), ez is determined by the measurement to all the other
clusters), whereas it is rather poor at estimating locakogt nodes in the system. In practice, however, this is not féasib
distances (distance between nodes within a cluster). Th&§ scalable. Instead, we compuée based onsampled
observations inspire us to develop a hybrid embedding mod@gasurements to a small number of randomly selected nodes.
which incorporates a (non-Euclidean) localized adjustmek€t 5 denote the set of randomly sampled nodes. Then

term (LAT) into the distance estimation. We show that using e (duy — dE )

only a 2-dimensional Euclidean embedding plus the locdlize by = —2 2] . ()
adjustment terms, we can obtain better performance than a

pure Euclidean embedding with 7 dimensions. Hence in practice the hybrid model works as follows: a) A

number of landmarks are pre-selected and perform distance
. measurements among themselves to obtain a distance matrix.
A. The Hy.bm.j Model _ . Using either Virtual Landmark or GNP, édim Euclidean

The basic ideas behind our hybrid model are as followgmbedding of the landmarks is obtained and their coordinate
we first embed the network distances in a Euclidean spag@ determined. b) Each node measures their distance to
of d dimensions, and then for each node we compute g |landmarks and computes its d-dim Euclidean coordinate
adjustment term to account for the (local) non-EucIide%hxz’._.’xd); it then measures its distance to a small
effect. Hence in our hybrid model, each nadéas ad-dim number of randomly selected nodes, and compétessing
Euclidean coordinatez;, z2, . .., zq), and a (non-Euclidean) gq. (3).

adjustment,: we use(z1,z2,...,z4;€,) to denote the total  Note that in a sense the adjustment term is similar to the
“coordinate” of noder. The distancel,, between two nodes “hejght vector” introduced in Vivaldi [5]. However, thereea

z andy is then estimated by.., := d, + e, + ¢, where several key differences. First of all, the computation aé th
e, = /Zzzl(xk — y1,)2 is the Euclidean distance betweed0cal adjus_,tment term is very simple, and does not depend
x andy in the embedded-dim Euclidean space. At the firston the adjustment term of other nodes. Hence it does not
glance,e, may look similar to the height vector in Vivaldi Féquire any iterative process to stabilize the adjustmemn t
system [5], but actually it is quite different as will be dissed [N contrast, in Vivaldi — partly due to its distributed natus

later in this section. The key question in this model is ho® Small change in the height vector of a node would affect
to define and determine, for each nodez. Ideally, we the height vectors of the other nodes, and requires aniiterat

would like e, to account for the “non-Euclidean” effect onProcess to stabilize the height vectors of all nodes. Sedbed
the distance estimation errors to nodes within its own efust/ocal adjustment termprovably improve the performance of
However, this requires us to know which cluster nads in as network distance embedding, as shown in the above theorem.

well as the other nodes in its cluster. For simplicity, weiver Another good feature of the local adjustment term is that it
e, using all nodes as follows. We first computg, which can be used with any other schemes, not just the coordinate
minimizes the error functio(z) = 3, (duy — (dE, +€))?, based schgmes. As long &8, |s_the estimated distance based
whered,, is the actual distance betweenandy. It can be ©Nn the onglnal scheme, the adjustment_terrr_w can be computed
shown that the optimat, is given by the average error in@S de;crlbeq abo_ve. In_ this sense, LAT isoptionthat can be
estimation: used in conjunction with other schemes rather than a totally
>, (dey —dE) @ new scheme. Note that LAT can be used even with Vivaldi.
€Cp=—""T """

n
We then sete, to the half ofe,, namely,e, = ¢,/2. In B. Evaluation

other words/,., can be re-written agZ  + @ Inshort,  \We evaluate the performance gain obtained by using the
we adjust the Euclidean estimation by the average of thgalized adjustment term (LAT) option in network distance
two error terms ofr andy. We have the following theorem embedding. For this purpose, we compare the stress of the
that establishes the advantage of the hybrid model. Thef prea -ALL method without LAT and the VL-ALL method with
sketch is provided in the appendix. LAT, where the local adjustment term is computed using all
Theorem 4:The hybrid model using al-dim Euclidean the nodes. We vary the number of dimensions from 2 to 7. As
space and the adjustment term defined above reduces dhg be seen in Fig. 15, the use of adjustment term (keys with

squared stress of a pudedim Euclidean embedding by LAT) reduces the stress significantly compared to the VL-
An'S, €2 + 2nVar(e,) All without LAT. In particular, when the original Euclidean
= ) =0, embedding has high stress (large error), the reduction of
ZI,y Yy
2 81t is possible that the estimated distance is negative duesgative LAT.
where Va(e ) — Z e2 /n _ ZI Ca In this case, we use the estimation of the Euclidean part asestimated
* z T n distance.
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Fig. 16. The performance of VL-All method with SLAT dfing462 data set.

05 — ‘ ‘ ‘ ‘ ‘ with 2 dimensions plus SLAT attains better performance than
that of the pure VL-ALL with 7 dimensions. For example,
0.4 t 90 percentile relative error of “VL-ALL,2D,SLAT” is less
than 0.6, but that of “VL-ALL,7D” is larger than 1.0. The
@ 037 performance of “VL-ALL,2D,SLAT’ is even better than that
g _ of “VL-ALL,7D,SLAT”, where 7 dimensions is used. We
n - — . . .
0.2 ¢ Kingfég?\d/f-z,&\lll,ll__ﬂ I conclude that adding a (non-Euclidean) local adjustment te
King462,VL-All, SLAT —=— is far more effective in improving the accuracy of embedding
01r¢ PlanePtllgge\tllﬁPA\n/ll-_-'Aﬁ# ] than adding additional dimensions. More in-depth analysis
o Planetlab, VL-AlLSLAT --a--- demonstrates that the performance gain comes largely from

improved distance estimation for nodes within the same-clus
ter. However, for the metric, CNL, as can be seen in Fig. 16(b)
the performance degrades with SLAT. It means that SLAT
Fig. 15. Stress of Virtual landmarks method over the numbetimensions. Option is not good for choosing the closest node. For the
Both LAT and SLAT options are shown together. metric, RRL, the performance with SLAT is a little bettertha
the one without SLAT as can be seen in Fig. 16(c).

S o As implied in Theorem 4, a key reason that the hybrid
stress is significant, which is expected from Theorem 4. Nextodel improves the performance (in relative error) asfy
we evaluate the performance of LAT using only a smajidean embedding method lies in the fact that it mitigate
number of randomly selected nodes as in eq.(3); we Cgll simperfect estimation” — namely, over-estimates or emd
this option "SLAT (Sampled LAT)". Fig. 15 shows the streésggimates — by introducing a (non-Euclidean) local adjesim
of embedding using SLAT (keys with SLAT) over differenterm that smoothes out (via averaging) the over- and under-

number of dimensions, where the adjustment term is compuielimates. This effect can be seen using the skewness metric
using the measurement to 10 randomly selected nodes. WeSg€ 17 show the resulting skewness measures of the various
that the performance between LAT and SLAT are very closgmpedding methods with the SLAT option on, when applied
This is quite expected because the average of a randomy%ne King462data set. Compared with the results in Fig. 9,

sampled set is an unbiased estimation of the average @f see that the fraction near 0 increases considerably. The
the entire set. This result indicates that the adjustmemt te o4, ction in skewness is common to all the schemes.

g s . HOWET, L shouldbe rted tht f an embeddingscheme
' 0%a has large errors but the sum of errors is 0 (not skewed) for all

the dimension of the Euclidean embedding does not help V&h% nodes, LAT cannot improve the performance of the orlgina

much; in fa.Ct’ a lower dim.ension .Euclidgan embedding pl"é?nbedding. For example, in equation (3), éhecan be 0 even
the local adjustment terms is sufficient to improve the aacyr if there are errors. Then, there cannot be any improvement

of the embedding significantly. Jfom the original embedding scheme.

In addition to the improved overall stress, the local a o it ¢ that due to th ist ¢ lent
justment terms also improve the relative errors. As an e(g)f— ur resufts suggest that gue fo the existence ot prevalen

ample, Fig. 16(a) compares the cumulative distribution HVS in the '”‘erf?et host distance measu_re_ment data_sets,
the relative errors of the VL-ALL with 7 dimensions (de_mstead of attempting to develop more sophisticated Eeatid

noted “VL-ALL,7D") with that using the same method With(or metric-based) embedding method that minimizegadoal

7 dimensions plus SLAT (denoted as “VL-ALL,7D,SLAT")err0r function (such methods are likely to be more expensive

and with only 2 dimensionplus SLAT (denoted as “VL- and time-consuming), it is far better to incorporate simple
ALL,2D,SLAT”) for the King462 data set®. The VL-ALL and less expensive mechanisms to reduce the inevitabkd)(loc
T ' estimation errors. Clearly, our proposed hybrid model with

9The Euclidean coordinates of the SLAT (2D+1) are the first Grdimates challzed adJUStmenF terms (LAT) IS an example of such a
of the Virtual Landmark 7 dimension embedding. simple but yet effective mechanism.

2 3 4 5 6 7
number of dimensions
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Fig. 17. Cumulative distributions of, under various schemes with the

SLAT option. The data set iKing462 The number of dimension is 7. [10]

[11]
VIl. CONCLUSION

This paper investigated the suitability of embedding Imégr [
hosts into a Euclidean space given their pairwise distand&$
(as measured by round-trip time). Using the classical rsgali[l"']
and matrix perturbation theories, we established thatghen( [15)
of the) magnitude ofnegative eigenvalues of the (doubly-
centered, squared) distance matrix as a measure of slﬁjltabﬁls]
of Euclidean embedding. Using data sets from real Internet
host distance measurements, we illustrated that the distafi?]
matrix among Internet hosts contains negative eigenvalttfa
of large magnitude implying that embedding the Internet
hosts in a Euclidean space would incur considerable errors.
We attributed the existence of these large-magnitude 'rwegailg
eigenvalues to the prevalencetdfingle inequality violations
(TIVs) in the data sets. Furthermore, we demonstrated ligat t
TIVs are likely to occurlocally, hence the distances among
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APPENDIX

these close-by hosts cannot be estimated very accurafaly uProof of Theorem 2. First, verifying whether there exists a
a global Euclidean embedding. In addition, increasing thmaximal TIV-free set of siz& among a set of nodes with a distance

dimension of embedding does not reduce the embeddifgtrix can be done in polynomial time by enumerating all $etize

errors.

Based on these insights, we proposed and developed a éI)rTN

ple hybrid model that incorporates a localized (non-Ewaial)

k and checking the TIVs in a non-deterministic machine. Hehie
roblem isN P.

ow we prove that the problem is NP-hard by reducing the MAX-

CLIQUE problem (namely, finding the maximal clique in a gragh

adjustment term for each node on top of a low-dimensionalwell-known NP-complete problem [19]) to the maximal Tiéé
Euclidean coordinate system. Our hybrid model preser@g problem. LetG be a connected undirected graph with> 2

the advantages of the Euclidean coordinate systems, w
improving their efficacy and reducing their overheads (

es. We assume that the size of maximal cliqu&Fos & > 2.
e casek = 2 is trivial, as any pair of vertices with an edge is a
aximal clique.) We construct a distance matfix= (d;;) among

using a small number of dimensions). Through both mathemgfe set of vertices of7 as follows, whered;; will be the defined
ical analysis and experimental evaluation, our hybrid nhoddistance between verticésand j. For each vertex, we setd;; = 0.

improves the performance of existing embedding methobigr each edge:; between vertices and j, we setd;; = 1 and

model can be incorporated into any embedding system (npjy

necessarily Euclidean embedding).
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(3]

while using only a low dimension embedding. Lastly, Ouﬁlﬁ = 1. Note that for any triangle id+, the corresponding distances

in,D do not violate triangle inequality. For the pair of vertices
j that do not have an edge between themG@nwe first set
dij = unde fined. Now, we define all the undefined}; as follows.
For an undefined;;, we compute: = max (d;x+dx;) for all k such
that d;, anddy; are already defined. If no suehcan be computed
becaused;, and di; are undefined for alk, we setc = 0. Then,
we setd;; := dj; := c+ 1. This transformation takes polynomial
time, O(n?), since there are? entries inD and for each entr{)(n)
computation is required.

It can be easily shown that that a triple of nodgg, k) in G forms
a triangle if and only ifi, j, andk do not violate triangle inequality
with ds;, dik, andd;, in D (we omit the detailed proof for the sake of

space). This means that the maximal TIV-free set with thtadies



defined asD is the maximal clique irG. We conclude that finding a
maximal TIV-free set problem is NP-hard. Since maximal Tie

set problem is NP and NP-hard, it is NP-complete.

Proof of Lemma 1. Note thatt. > t, + t;. Let (ta, £, tc) be

14

O dz)(st - s3)
z,y
= ) (doy = d5)° =Y (doy — 5y —ea —e,)°

a metric embedding of the 3 nodes. Then, they should satisfy t zy zy
triangle inequality constraint as follows.

totto >ty tatte>t, thtic>t

The squared estimation errer, in this embedding is

e=(ta —ta)” + (to — ) + (te — o)’

the case wherét, > t,), (t» > &), and (¢, > £.). Then,

k

Sok > (tc — ta — tp), @ contradiction. It can be easily shown that

>
>

(te —ta — ty)

(ta —ta) + (ts — o) + (te — o) — (te — ta — ts)
2(tq +tp) — ta — tp — te

2ty + 1) — ty — ty — 1o

lo+1ty—1.>0

(4)

©)

Let k := |tq — ta| + |ty — G| + |te — £c|. We now show that
k > (tc —ta — tp). Supposek < (t; — ta — ts). There are 8 cases
based on the signs ¢, —t.), (to —ts), and(t. —t.). First, consider

all the other 7 cases contradict, too. So we conclude #hat(t. —

ta — tb).

Now, for any suchk > (t. —t. —t5), consider another embedding
ty = ty+ %, andé. = t.— £. Since

(fa, 5, £) such that, =t + £,
it can be easily shown that, t,, t.) satisfies the triangle inequality

constraint, it is a metric embedding.

Furthermore, for any such > (t. — to — t»), (5) is minimized

with this embedding because

- _ . k
lta —ta] = |ty —to] = |te — L] = 3

Therefore,e > (£)2 4 (£)2 4 (£)2 = £ > Ge—ta—tn)®

Proof of Theorem 3 Let E be the sum of squared error of
nodes.E = (d: — d;)?, whered; is a distance between a pair
of nodes (called) and d; is the embedded distance of the pair

%

(6)

There aren(n — 1)/2 pairs. Since there are(n — 1)(n — 2)/6

triples amongn nodes,E can be rewritten by the triples of nodes

as follows.E = 55" | ((ta — ta)® + (i — t)* + (fe — te)?),

whereT is the set of triples and,, ¢;, andt. are the three distances of
atriplet, andt,, ¢, andt, are the corresponding embedded distances.

Clearly, E > 153\ ((fa —ta)® + (£ — t)* + (fe — te)?),
whereV C T is the set of TIV triples. From Lemma 1, we have

1 2
E> 55 Etev (te —ta —tp)°.

Proof of Theorem 4 We just describe a sketchy of the proof."
Let s1 be the stress of using the pure Euclidean based scheme.
s2 be the stress of using the pure Euclidean based scheme with

adjustment term.

s% — Zz,yz(:dwd; dfy)2
zy @2y
2 Ex,y(dzy - dfy —ex—ey)’
S = ny &z,

Since the denominators are the same, we compute

(3., day

)(s? — s3) to computes? — s3.

@)

8)

Using (2) and reformatting the formula, the final result can b
easily obtained.
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