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Abstract—In this paper, we investigate the suitability of embed-
ding Internet hosts into a Euclidean space given their pairwise
distances (as measured by round-trip time). Using the classical
scaling and matrix perturbation theories, we first establish the
(sum of the) magnitude of negative eigenvalues of the (doubly-
centered, squared) distance matrix as a measure of suitability of
Euclidean embedding. We then show that the distance matrix
among Internet hosts contains negative eigenvalues oflarge
magnitude, implying that embedding the Internet hosts in a
Euclidean space would incur relatively large errors. Motivated by
earlier studies, we demonstrate that the inaccuracy of Euclidean
embedding is caused by a large degree oftriangle inequality
violation (TIV) in the Internet distances, which leads to negative
eigenvalues of large magnitude. Moreover, we show that the TIVs
are likely to occur locally, hence the distances among these close-
by hosts cannot be estimated accurately using aglobal Euclidean
embedding. In addition, increasing the dimension of embedding
does not reduce the embedding errors. Based on these insights,
we propose a new hybrid model for embedding the network
nodes using only a 2-dimensional Euclidean coordinate system
and small error adjustment terms. We show that the accuracy of
the proposed embedding technique is as good as, if not better,
than that of a 7-dimensional Euclidean embedding.

Index Terms—Euclidean Embedding, Triangle Inequality, Suit-
ability

I. I NTRODUCTION

Estimating distance (e.g., as measured by round-trip time or
latency) between two hosts (referred as nodes hereafter) onthe
Internet in an accurate and scalable manner is crucial to many
networked applications, especially to many emerging overlay
and peer-to-peer applications. One promising approach is the
coordinate (or Euclidean embedding) based network distance
estimationbecause of its simplicity and scalability. The basic
idea is to embed the Internet nodes in a Euclidean space
with an appropriately chosen dimension based on the pairwise
distance matrix. The idea was first proposed by Nget al [2].
Their scheme, called GNP (Global Network Positioning),
employs the least square multi-dimensional scaling (MDS)
technique to construct a low dimensional Euclidean coordinate
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system, and approximate the network distance between any
two nodes by the Euclidean distance between their respective
coordinates. To improve the scalability of GNP, [3] and [4]
propose more efficient coordinate computation schemes using
Principal Component Analysis (PCA). Both schemes are in
a sense centralized. Methods for distributed constructionof
Euclidean coordinate systems have been developed in [5], [6].
In addition, [5] proposes to use height vector to account for
the effect of access links, which are common to all the paths
from a host to the others.

While most studies have focused on improving the accuracy
and usability of the coordinate based distance estimation
systems, other have demonstrated the potential limitations of
such schemes. For example, [7] shows that the amount of
the triangle inequality violations (TIVs) among the Internet
hosts are non-negligible and illustrates how the routing policy
produces TIVs in the real Internet. Theyconjecturethat TIVs
make Euclidean embedding of network distances less accurate.
[8] proposes new metrics such as relative rank loss to evaluate
the performance and show that such schemes tend to perform
poorly under these new metrics. A brief survey of various
embedding techniques is found in [8]. In addition, [9] claims
that the coordinate based systems are in general inaccurate
and incomplete, and therefore proposes a light weightactive
measurement scheme for finding the closest node and other
related applications.

In spite of the aforementioned research on the coordi-
nate based network distance estimation schemes regardlessof
whether they advocate or question the idea, no attempt has
been made to systematically understand thestructuralproper-
ties of Euclidean embedding of Internet nodes based on their
pairwise distances: what contributes to the estimation errors?
Can such errors be reduced by increasing the dimensionality
of embedding? More fundamentally, how do we quantify the
suitability of Euclidean embedding? We believe that such a
systematic understanding is crucial for charting the future
research directions in developing more accurate, efficientand
scalable network distance estimation techniques. Our paper is a
first attempt in reaching such an understanding, and proposes
a simple newhybrid model that combines global Euclidean
embedding with local non-Euclidean error adjustment for more
accurate and scalable network distance estimation.

The contributions of our paper are summarized as follows.
First, by applying the classical scaling and matrix perturbation
theory, we establish the (sum of the) magnitude ofnegative
eigenvalues of an appropriately transformed, squared distance
matrix as a measure of suitability of Euclidean embedding.
In particular, existence of negative eigenvalues with large
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magnitude indicates that the set of nodes cannot be embedded
well in a Euclidean space with small absolute errors.

Second, using data from real Internet measurement, we
show that the distance matrix of Internet nodes indeed contains
negative eigenvalues of large magnitude. Furthermore, we es-
tablish a connection between the degree of triangle inequality
violations (TIVs) in the Internet distances to the magnitude of
negative eigenvalues, and demonstrate that the inaccuracyof
Euclidean embedding is caused by a large degree of TIVs in
the network distances, which leads to negative eigenvaluesof
large magnitude. We also show that TIVs cause the embedding
schemes to be sub-optimal in that the sum of estimation errors
from a host are either positive or negative (far from 0), which
means that the estimations are biased.

Third, we show that a majority of TIVs occur due to the
nodes that are close-by. By clustering nodes based on their dis-
tances, we find that while the distances between the nodes in
the different clusters (theinter-clusternode distances) can be
fairly well-approximated by the Euclidean distance function,
the intra-cluster node distances are significantly morenon-
Euclidean, as manifested by a much higher degree of TIVs and
the existence of negative eigenvalues with considerably larger
magnitude. Based on these results, we conclude that estimating
network distances using coordinates of hosts embedded in a
globalEuclidean space is rather inadequate for close-by nodes.

As the last (but not the least) contribution of our paper,
we develop a new hybrid model for embedding the network
nodes: in addition to a low dimensional Euclidean embedding
(which provides a good approximation to the inter-cluster node
distances), we introduce a locally determined (non-metric)
adjustment term to account for the non-Euclidean effect within
the clusters. The proposed hybrid model is mathematically
proved to always reduce the estimation errors in terms of
stress(a standard metric for fitness of embedding). In addition,
this model can be used in conjunction with any Euclidean
embedding scheme.

The remainder of the paper is organized as follows. In Sec-
tion II, we provide a mathematical formulation for embedding
nodes in a Euclidean space based on their distances, and apply
the classical scaling and matrix perturbation theories to estab-
lish the magnitude of negative eigenvalues as a measure for
suitability of Euclidean embedding. In Section III, we analyze
the suitability of Euclidean embedding of network distances
and investigate the relationship between triangle inequality
violations and the accuracy. Section IV shows the accuracy
of various Euclidean embedding schemes over various real
measurement data sets. We show the clustering effects on the
accuracy in section V. We describe the new hybrid model for
the network distance mapping in Section VI and conclude the
paper in Section VII.

II. EUCLIDEAN EMBEDDING AND CLASSICAL SCALING

In this section we present a general formulation of the prob-
lem of embedding a set of points (nodes) into ar-dimensional
Euclidean space given the pairwise distance between any two
nodes. In particular, using results from classical scalingand
matrix perturbation theories we establish the (sum of the)

magnitude of negative values of an appropriately transformed,
squared distance matrix of the nodes as a measure for the
suitability of Euclidean embedding.

A. Classical Scaling

Given only then×n, symmetricdistance matrixD = [dij ]
of a set ofn points from some arbitrary space, wheredij is
the distance1 between two pointsxi and xj , 1 ≤ i, j ≤ n,
we are interested in the following problem: can we embed
the n points {x1,x2, . . . ,xn} in an r-dimensional space for
some integerr ≥ 1 with reasonably good accuracy? To
address this question, we need to first determine what is the
appropriate dimensionr to be used for embedding; givenr
thus determined, we then need to map each pointxi into
a point x̃i = (x̃i1, . . . , x̃ir) in the r-dimensional Euclidean
space to minimize the overall error of embedding with respect
to certain criterion of accuracy.

Before we address this problem, we first ask a more basic
question: Suppose that then points are actually from anr-
dimensional Euclidean space, givenonly their distance matrix
D = [dij ], is it possible to find out the original dimension
r and recover their original coordinates in ther-dimensional
space? Fortunately, this question is already answered by the
theory of classical scaling [10]. LetD(2) = [d2

ij ] be the matrix
of squared distances of the points. DefineBD := − 1

2JD(2)J ,
whereJ = I − n−1

11
T , I is the unit matrix and1 is a n-

dimensional column vector whose entries are all 1.J is called
a centering matrix, as multiplyingJ to a matrix produces a
matrix that has 0 mean columns and rows. HenceBD is a
doubly-centered version ofD(2). A result from the classical
scaling theory gives us the following theorem.

Theorem 1:If a set ofn points{x1,x2, . . . ,xn} are from
an r-dimensional Euclidean space. ThenBD is semi-definite
with exactlyr positiveeigenvalues (and all other eigenvalues
are zero). Furthermore, let theeigen decompositionof BD is
given byBD = QΛQT = QΛ1/2(QΛ1/2)T , whereΛ = [λi] is
a diagonal matrix whose diagonal consists of the eigenvalues
of BD in decreasing order. Denote the diagonal matrix of the
first r positiveeigenvalues byΛ+, andQ+ the firstr columns
of Q. Then the coordinates of then points are given by the
n × r coordinate matrixY = Q+Λ

1/2
+ . In particular,Y is a

translation and rotation of the original coordinate matrixX of
the n points.

Hence the above theorem shows that ifn points are from a
Euclidean space, then we can determine precisely the original
dimension and recover their coordinates (up to a translation
and rotation). Thecontrapositiveof the above theorem states
that if BD is not semi-definite, i.e., it hasnegativeeigenvalues,
then then points arenot originally from an Euclidean space.
A natural question then arises:does the negative eigenvalues
of BD tell us how well a set ofn points can be embedded in
a Euclidean space?In other words, can they provide an ap-
propriate measure forsuitability of Euclidean embedding? We
formalize this question as follows. Suppose then points are

1We assume that the distance functiond(·, ·) satisfy d(x, x) = 0 and
d(x, y) = d(y, x) (symmetry), but may violate thetriangle inequality
d(x, z) ≤ d(x, y) + d(y, z); henced may not bemetric.
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Fig. 1. Scree plots of the eigenvalues on data sets. Random points are generated ind-dimensional Euclidean space. The noise is computed asdnoisexy =
dxy + dxy × f , wheref , the noise factor, is uniformly randomly selected from a range of [0, p). p = 0.05 andp = 0.1 are used.

from anr-dimensional Euclidean space, but the actual distance
d̃ij between two pointsxi andxj is “distorted” slightly from
their Euclidean distancedij , e.g., due to measurement errors.
Hence, intuitively if the total error is small, we should be able
to embed then points into anr-dimensional Euclidean space
with small errors. Using the matrix perturbation theory, inthe
following we show thatin such a case the (doubly centered)
squared distance matrix must have small negative eigenvalues.

Formally, we assume that̃d2
ij = d2

ij + eij , where |eij | ≤

ǫ/n for some ǫ > 0. Hence D̃2 := [d̃2
ij ] = D(2) + E,

where E := [eij ]. A frequently used matrix norm is the

Frobenius norm, ||E||F :=
√

∑

i

∑

j |eij |2 ≤ ǫ. Then BD̃ :=

− 1
2JD̃(2)J = BD + BE , where BE := − 1

2JEJ . It can
be shown that||BE ||F ≤ ǫ. For i = 1, 2, . . . , n, let λ̃i and
λi be theith eigenvalue ofBD̃ and BD respectively, where
λ̃1 ≥ · · · ≥ λ̃n and λ1 ≥ · · · ≥ λn. Then the Wiedlandt-
Hoffman Theorem [11] states that

∑n
i=1(λ̃i−λi)

2 ≤ ||BE ||
2
F .

Sinceλi ≥ 0, we have

∑

{i:λ̃i<0}

|λ̃i|
2≤

∑

{i:λ̃i<0}

(−λ̃i+λi)
2 ≤

n
∑

i=1

(λ̃i−λi)
2 ≤ ||BE ||

2
F ≤ ǫ2.

Hence the sum of the squared absolute values of thenegative
eigenvalues is bounded by the squared Frobenius norm of the
(doubly-centered) error matrix||BE ||

2
F , which is the sum of

the (doubly-centered) squared errors. In particular, the absolute
value of any negative eigenvalue|λ̃i| is bounded by||BE ||F .
Hence if the total error (as reflected by||BE ||

2
F ) is small

and bounded byǫ, then the negative eigenvalues ofB̃D are
also small and their magnitude is bounded byǫ. Hence the
magnitudeof negative eigenvalues (and their sum) provides a
measure of thesuitabilityof Euclidean embedding: if a set ofn
points can be well-approximated by a Euclidean space with an
appropriate dimension, then their associated doubly-centered
squared distance matrix only has negative eigenvalues of small
magnitude, if any. On the other hand, the contrapositive of the
above proposition leads to the following observation:

Theorem 1:If the doubly-centered squared distance matrix
of a set ofn points has negative eigenvalues oflarge mag-
nitude, then the set ofn points cannot be embedded into
a Euclidean space with a small total error (as measured by

||BE ||F ). In other words, they are less amenable to Euclidean
embedding.

In this derivation, we usetotal error, ǫ. However, the
total error can be from only a few distance estimations so
that eigenvalue analysis can wrongfully conclude that the
Euclidean embedding is not good for this distance matrix.
Actually, the meaning ofgood fittingdepends on the objectives
of the embedding. Typical objective functions usually try to
minimize the total sum ofsquaredabsolute errors or relative
errors. In such case, even if only a few distances happen to
have really high error terms, the errors are distributed to a
large number of points because these objective functions tend
to prefer many small errors rather than a few large errors.
As a consequence, when the total error is high (regardless
of whether it is from a few sources or many sources), the
embedding is difficult to find the original positions of the
points in the Euclidean space. So the eigenvalue analysis is
useful to measure the suitability of the Euclidean embedding
computed by the embedding schemes of which objective
functions are to minimize the total (sum of squared) error.

B. Illustration

We now generate some synthetic data to demonstrate how
classical scaling can precisely determine the original dimen-
sionality of data points that are from a Euclidean space.
First, we generate 360 random points in a unit hyper cube
with different dimensions and compute the corresponding
distance matrix for each data set. Fig. 1(a) shows thescree
plot of the eigenvalues obtained using classical scaling. The
eigenvalues are normalized by the largest value (This will be
the same for the rest of the paper). We see from Fig. 1(a)
that the eigenvalues vanish right after the dimensionality
of the underlying Euclidean space where the data points
are from, providing an unambiguous cut-off to uncover the
original dimensionality. We now illustrate what happens when
distances among data points are not precisely Euclidean (e.g.,
due to measurement errors). We add noise to the synthetically
generated Euclidean data sets as follows: the noise component
in the data isd × (1 + f), whered is the original Euclidean
distance andf is a randomly selected number from(−p, p).
We usep = 0.05 and p = 0.1 for the illustration below. We
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Data Set Nodes Date
King462 ([12]) 462 8/9/2004

King2305 ([13]) 2305 2004
PlanetLab ([14]) 148 9/30/2005

Ng02 ([15]) 19 May 2001

TABLE I
THE DATA SETS USED IN OUR STUDY. THE NUMBER OF NODES IS CHOSEN

TO MAKE THE MATRIX COMPLETE AND SQUARE.

observe in Fig. 1(b) that the firstr eigenvalues are positive,
and are nearly the same as in the case without noise, wherer
represents the actual dimension of the data set. Beyond these
eigenvalues, we observe only small negative eigenvalues. As
the noise increases, the magnitudes of negative eigenvalues
increase slightly. It is clear that as the data set deviates from
Euclidean more, the magnitudes of the negative eigenvalues
become larger.

III. SUITABILITY OF EUCLIDEAN EMBEDDING

To understand the suitability of Euclidean embedding of
network distances, in this section we perform eigenvalue
analysis of the distance matrices and investigate how the
triangle inequality violations (TIVs) affect the accuracyof the
embedding, and thus the suitability of Euclidean embedding
for a wide range of data sets.

To be specific, we apply eigenvalue analysis to show that the
(doubly-centered, squared) distance matrices of the data sets
contain negative eigenvalues of relatively large magnitude. We
then attribute existence of the negative eigenvalues of relative
large magnitude to the large amount of triangle inequality
violations existing in the data sets by showing: i) embedding
a subset of nodes without triangle inequality violations ina
Euclidean space produces higher accuracy, and the associated
distance matrix also contains only negative eigenvalues of
much smaller magnitude; and ii) by increasing the degree of
TIVs in a subset of nodes of thesamesize, the performance
of Euclidean embedding degrades and the magnitude of the
negative eigenvalues also increases.

We use four different data sets, which we refer to as
King462, King2305,and PlanetLab, and Ng02, as listed in
Table I.TheKing462data set is derived from the data set used
by Dabek et al. [12] after removing the partial measurementsto
derive a462×462 complete and square distance matrix among
462 hosts from the original2000 DNS server measurements.
Using the same refinement over the data set used in [13],
we derive theKing2305 data set, which is a2305 × 2305
complete and square distance matrix.PlanetLab is derived
from the distances measured among the Planetlab nodes on
Sep 30th 2005 [14]. We chose the minimum of the96
measurement (one measurement per 15 minutes) data points
for each measurement between node pairs. After removing
the hosts that have missing distance information, we obtaina
148×148 distance matrix among148 nodes. TheNg02data set
is obtained from [15] that contains a19× 19 distance matrix.
Even though the number of hosts is small in this data set, we
have chosen this data set in order to compare with the results
in other papers.

Data Set Ng02 King2305 King462 Planetlab
fraction 0.116 0.233 0.118 0.131

TABLE II
THE FRACTION OFTIV S OVER ALL TRIPLES OF NODES

A. Eigenvalue Analysis

First, we perform eigenvalue analysis of the doubly-
centered, squared distance matrixBD = −JD(2)J . Fig. 2
shows the scree plot of the resulting eigenvalues, normalized
by the eigenvalue of the largest magnitude|λ1|, in decreasing
order in the magnitude of the eigenvalues. We see that each of
the data sets has one or more negative eigenvalues of relatively
large magnitude that are at least about 20% (up to 100%)
of |λ1|, and the negative eigenvalue of largest magnitude is
among the second and fourth largest in terms of magnitude).
This suggests that the network distances are somewhat less
suitable for Euclidean embedding. Hence it is expected that
embedding the nodes in a Euclidean space would produce
considerable amount of errors.

B. TIV Analysis

Motivated by earlier studies (e.g., [7]), which show that
there is a significant amount of TIVs in the Internet distance
measurement, and attribute such TIVs to Internet routing
policies2, here, we investigate how the amount of TIVs in
the data sets affect the suitability and accuracy of Euclidean
embedding of network distances. In particular, we establish
a strong correlation between the amount of TIVs and the
magnitude of negative eigenvalues of the associated distance
matrix. First we analyze the amount of TIVs in the four data
sets. For each data set, we take a triple of nodes and check
whether they violate triangle inequality. We then compute the
fraction of such TIVs over all possible triples. Table II shows
the results for the four data sets. We see that the fraction of
TIVs in theKing2305data set is about 0.23, while for the other
three data sets, it is around 0.12. Hence the triangle inequality
violations are fairly prevalent in the data sets.

To investigate how the amount of TIVs affect the suitability
and accuracy of Euclidean embedding – in particular, its
impact on the magnitude of negative eigenvalues, we start
with a subset of nodes without any triangle inequality violation
(we refer to such a subset of nodes as aTIV-freeset). Ideally
we would like this subset to be as large as possible, namely,
obtain themaximal TIV-free (sub)set. Unfortunately, finding
the maximal TIV-free subset is NP-hard, as is stated in the
following theorem (the proof of which is delegated to the
appendix).

Theorem 2:Finding the maximal TIV-free set problem is
NP-complete.

Hence we have to resort heuristics to find a large TIV-free
set. Here we describe three heuristic algorithms. The basic
algorithm (referred to asAlgo 0) is to randomly choosek
nodes from a given set ofn nodes and check whether any

2In particular, [7] shows that the Hot Potato Routing policy and the interplay
between inter-domain and intro-domain routing can cause TIVs. It also shows
that private peering between small ASes is another source ofTIVs.
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three nodes of these randomly selectedk nodes violates the
triangle inequality. If the triangle inequality is violated, the
process is repeated again by randomly selecting another setof
k nodes. If we find a TIV-free set of sizek, we increasek
by one and try again to attempt to find a larger set. Otherwise
the algorithm terminates after a pre-specified number of failed
tries, and returns the TIV-free set of sizek − 1.

The second heuristic algorithm (Algo 1) is as follows.
We start with a TIV-free set (initialized with two randomly
selected nodes). From the remaining node setC (initially
with n − 2 nodes), we then randomly pick a new node and
check to see whether it violates the triangle inequality with
any two nodes in the existing TIV-free set. If yes, this node
is removed from the remaining node setC. Otherwise it is
added to the TIV-free set (and removed from the remaining
node set). The process is repeated until the remaining node
set becomes empty.

The third heuristic algorithm (Algo 2) is slightly more
sophisticated, and works in a similar fashion asAlgo 1, except
that we do not choose nodes randomly for consideration. We
start with an initial TIV-free setA of two nodes, where the
two nodes are chosen such that the pair of nodes has the least
number of TIVs with nodes in the remaining node setC. Given
this pair of nodes, we remove all nodes in the remaining node
setC that violate the triangle inequality with this pair of nodes.
For each nodec in C, we compute the number of nodes inC

that violates triangle inequality withc and any two nodes in
A. We pick the nodec that has the smallest such number, add
it to A and remove it fromC. We then purge all the nodes in
C that violate the triangle inequality withc and any two nodes
in A. We repeat the above process untilC becomes empty.

For the data setsPlanetlab, King462 and King2305 (the
Ng02 data set is not used since it is too small), the size of
largest TIV-free sets found using the three heuristic algorithms
is shown in Fig. 3. For each data set, Algo 0 only finds a TIV-
free set of about 10 nodes. Algo 2 finds the largest TIV-free
sets for theKing462 and King 2305data sets, while Algo 1
finds the largest TIV-free set for thePlanetlabdata set. For the
following analysis, we use the largest TIV-free set found for
each data set. Fig. 4(a) shows the scree plot of the eigenvalues
for the associated (doubly-centered, squared) distance matrix
of the TIV-free node sets. We see that they all have only a
small number of negative eigenvalues and the magnitude of
all the negative eigenvalues is also fairly small. Comparing
with Fig. 2, either the number or the magnitude of negative
eigenvalues is significantly reduced.

The embedding accuracy of the TIV-free data sets is shown
in Fig. 4(b). The relative errors, which are defined precisely
in Section IV-A, are relatively small. For example, for the
Planetlab data set, in almost 98% of the cases, the relative
errors are less than 0.2. We see that the Euclidean embedding
of the TIV-free sets has a fairly good overall accuracy. How-
ever, Fig. 4(b) still shows non negligible errors for the TIV-
free data sets. Since multidimensional scaling methods such as
GNP can actually embed Euclidean data set without any error,
this means that the errors of the TIV-free data set embedded
by GNP are truly from the non-Euclidean characteristics of
Internet routing. Actually, it is well known that the non-
Euclideanmetric space such as the shortest path routing is
hard to embed into a low-dimensional Euclidean space without
distortions or errors ([16]).

C. Correlation between Negative Eigenvalues and Amount of
TIVs

Next, we show how the amount of TIVs in a data set
contributes to the magnitude of negative eigenvalues, thereby
the suitability and accuracy of Euclidean embedding. We use
theKing2305data set as an example. The largest TIV-free set
we found has 81 nodes. We fix the size of the node sets, and
randomly selectsix other node sets with exactly 81 nodes,
but with varying amount of TIVs. The scree plots of the
eigenvalues for the six node sets are shown in Fig. 5(a), and
the cumulative relative error distributions of the corresponding
Euclidean embedding are shown in Fig. 5(b). We see that
with the increasing amount of TIVs, both the magnitude and
number of negative eigenvalues increase. Not surprisingly, the
overall accuracy of the Euclidean embedding degrades. In fact,
we can mathematically establish a relation between the amount
of TIVs and the sum of squared estimation errors as follows.

Lemma 1: If the distancesta, tb, tc among 3 nodes violate
the triangle inequality, i.e.,tc > ta + tb, the minimum squared
estimation error of any metric (thus Euclidean) embedding of
the 3 nodes is(tc−ta−tb)

2

3 .
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Fig. 4. Performance of embedding the TIV-free node sets using GNP.

Theorem 3:The sum of squared estimation errors
of any Euclidean embedding ofn nodes is at least

1
3(n−2)

∑

t∈V (tc − ta − tb)
2, where V is the set of triples

that violate triangle inequality,ta, tb, and tc are the 3
distances of a triplet ∈ V , andtc > ta + tb.

The proofs are delegated to the appendix. Theorem 3 shows
that as the amount of TIVs increases, the sum of the squared
estimation errors also increases. A similar result can alsobe
established for the sum of squaredrelativeerrors, the details of
which are omitted here. As an aside, we note that this theorem
holds not only for Euclidean distance function, but also for
any metric distance function where the triangle inequality
property is required. However, it should be noted that the
lower bound computed in Theorem 3 is loose in some cases.
For example, the lower bound for the TIV-free data set is
0, but the embedding has non-negligible errors. Nonetheless,
Theorem 3 sheds new lights on the relationship between the
accuracy and the amount of TIVs.

IV. EUCLIDEAN EMBEDDING OF NETWORK DISTANCES

In this section, we examine the accuracy of Euclidean
embedding of network distances for a wide range of data sets.
We consider five different metrics that we believe are useful
for a variety of delay sensitive applications.

A. Metrics for Goodness-of-Embedding

We consider four performance metrics, namely,stress, (cu-
mulative) relative errors, relative rank loss (RRL), andclosest
neighbor loss (CNL)that have been introduced across various
studies in the literature (e.g., [2], [3], [4], [8]), as wellas
a new fifth metricskewnesswe introduce in this paper to
gauge whether an embedding is more likely to over- or under-
estimate the distances between the nodes. These five metrics
are formally defined as follows:

• Stress: This is a standard metric to measure the overall
fitness of embedding, originally known asStress-1[10]:

Stress-1= σ1 =

√

∑

x,y
(dxy − d̂xy)2

∑

x,y
d2

xy

, (1)

wheredxy is the actual distance betweenx and y, and
d̂xy is the estimated one.

• Relative error [2]: This metric is introduced in [2] that
is defined as follows: for each pair of nodesx and y,
the relative error in their distance embedding is given by

rexy :=
|dxy−d̂xy|

min(dxy,d̂xy)
. Note that the denominator is the

minimum of the actual distance and the estimated one3.
Thecumulative distributionof relative errors,rexy ’s, pro-
vides a measure of the overall fitness of the embedding.

• Relative rank loss (RRL) [8]: RRL denotes the fraction
of pair of destinations for which their relative distance
ordering, i.e., rank in the embedded space with respect
to a source has changed compared to the actual distance
measurement. For example, for a given source node, we
take a pair of destinations and check which one is closer
to the source in the real distances and the estimated
distances. If the closest one is different, then the relative
rank is defined to be lost. We compute the fraction
of such relative rank losses for each source, and plot
the cumulative distribution of such rank losses among
all sources as a measure of the overall fitness of the
embedding.

• Closest neighbor loss (CNL) [8]: For each source, we
find the closest node in the original data set and the
embedded space If the two nodes are different, the closest
neighbor is lost. TheCNL metric is then defined as the
fraction of sources that have the closest neighbor lost.
As an extension to the original CNL metric in [8], we
introduce a margin parameterδ: if the closest neighbor
nodes in the original data set and the embedded space are
different, but the distance between the two nodes in the
embedded space is withinδ ms, we consider it as a non-
loss; only if the distance between the two is more thatδ
ms, we consider it as a closest neighbor loss. Hence with
δ = 0, we have the original CNL. We expect that asδ
increases, the CNL metric decreases.

• Skewness: We introduce a new metricskewnessto gauge
whether an embedding is more likely to over- or under-

3In some literature, instead ofmin(dxy , d̂xy), dxy is used. This usually
produces smaller relative errors.
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Fig. 5. Eigenvalue scree plots and cumulative distributions of relative errors of node sets with increasing fraction ofTIVs.

estimate the distances between the nodes. For each node
x, we define theskewnessof embedding with respect to
nodex as follows: sx =

∑

y 6=x(dx,y − d̂x,y)/(n − 1),
where n is the total number of nodes. In other words,
sx is the average of the embedding errors between the
real distances and the estimated distances between node
x to all the other nodes. Clearly, whensx is a large
positive, the embedding method tends to under-estimate
the distances between nodex to other nodes, and if it
is a large negative, it tends to over-estimate the distances
between nodex to other nodes. Note thatsx = 0 does not
mean that there is no error, but that the under-estimates
and over-estimates are “balanced”, i.e., canceled out. The
distribution of skewnesses of all nodes then provides us
with a measure whether a given embedding method tends
to under- or over-estimate the real distances among the
nodes.

B. Performance of Euclidean Embedding

We apply three most commonly used embedding methods
proposed in the literature – namely, GNP [2], Virtual Land-
mark [3], [4] and Vivaldi [5] – to the four data sets, and
compute their corresponding embedding errors as measured
using the aforementioned five metrics. Following the results
in [2], [3], [4], we choose 7 as the dimension of Euclidean
embedding for the three embedding methods: GNP, Virtual
Landmark (VL) and Vivaldi. More specifically, for the GNP
and VL embedding methods, we use 20 landmarks randomly
selected from the data set for computing the 7-dimensional
Euclidean embedding. For the Vivaldi embedding methods, for
each node, 20 neighbors are randomly selected and used for
computing the 7-dimensional Euclidean embeddingplus the
height vector4. For the purpose of comparison and to eliminate
the effect of landmark selection in the Virtual Landmark
embedding method, we also useall the nodesas landmarks
to compute the 7-dimension Euclidean embedding5 – this is
referred to asVL-ALL in the figures that follow.

4We used the Vivaldi implementation from [17]
5Using all the nodes as landmarks (or “neighbors” in the case of Vivaldi) is

only computationally feasible for the Virtual Landmark embedding method,
not for GNP and Vivaldi!

Fig. 6(a) shows the resulting overall stress of embedding
using the four embedding methods, GNP, VL, VL-ALL and
Vivaldi. Except for theKing2305 data set, we see that the
overall stress ranges from 0.2 to 0.5, which indicates that on
the average the estimations deviate from the original distances
from 20 % to 50%. For theKing2305 data set, the overall
stress is much larger (above 0.9) for all three methods. Thisis
possibly due to the fact that in theKing2305data set, there are
quite a few links with more than 90 seconds RTT which may
produce many outliers that can significantly affect the overall
stress – this is a major shortcoming of the stress metric 1. Note
that as theNg02data set has only 19 nodes, the result for VL
and Vivaldi are not available since there are fewer nodes than
the required number of landmarks and neighbors (20 nodes).
Fig. 6(b) and Fig. 6(c) show the cumulative distributions of
relative errors using GNP, VL, VL-ALL and Vivaldi for the
data setsKing462 and PlanetLab, respectively. We see that
all the embedding methods produce a relative error less than
0.5 for more than 75% (up to 90% in the case of GNP and
Vivaldi) of the estimates.

Fig. 7(a) and Fig. 7(b) show the cumulative distributions
of relative rank losses using GNP, VL, VL-ALL and Vivaldi
for the data setsKing462andPlanetlab, respectively. We see
that for all the four methods, more than 70% of the sources
have a fraction of relative rank losses (RRL) less than 0.3 – in
other words, with respect to these sources, fewer than 30% of
destination pairs have a different rank order in the embedded
space from that in the original data set.

In term of the CNL metric, from Fig. 8(a) and Fig. 8(b)
we see that as the margin parameterδ increases, the fraction
of closest neighbor losses (CNL) improves for all embedding
methods: embedding the Planetlab nodes in a Euclidean space
using GNP, 60% to 70% of the sources have a different closest
neighbor node in the embedded space (i.e., whenδ = 0), but
for only about 20% of the sources, the closest neighbor node
in the original data set is more than 15ms (i.e.,δ = 15 ms)
away from the closest neighbor node in the embedded space.
The CNLs of VL, VL-ALL, and Vivaldi lie above that of GNP.

Finally, to compare the skewness of the embedding methods,
we use theKing462data set as a representative example. Fig. 9
shows the results for three embedding methods: GNP, VL-ALL
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Fig. 6. Performance Embedding. The number of dimensions is 7.

and Vivaldi (to avoid cluttering, we did not include the result
for VL in the figure, as it has slightly worse performance than
that of VL-ALL). To plot the distribution of the skewnesssx’s,
we use bins of size of 10ms that are centered at multiple of
10ms, such as [-15, -5), [-5, 5), and [5, 15). As can be seen in
the figure, the GNP and Vivaldi embedding method have the
best performance, as the highest fraction of skewness values of
the nodes fall within [-5, 5), and the majority of the values are
within the interval [-5, 15). In contrast, however, the skewness
values of VL-ALL are more widely spread, indicating that for
a fraction of nodes, it tends to either under- or over-estimate
their distances to other nodes.
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Fig. 7. The cumulative distribution of Relative Rank Loss.

V. L OCAL NON-EUCLIDEAN EFFECT

In this section, we dissect the data set further to find out
whether the inherent clustering structure of Internet hosts
contribute to the errors in the Euclidean embedding – in
particular, what kind of nodes are likely to contribute to the
higher degree of TIVs, and whether increasing the dimension
of the embedding helps improve the embedding performance.

The hosts in the Internet are clustered due to many factors
such as geographical location, network topology and routing
policies. This clustering causes many hosts to have short
distances among themselves, while far longer distances to
other hosts. To investigate the effect of host clustering on
embedding accuracy, we first identify clusters within the
network distances. For this, we apply the spectral clustering
algorithm [18] to theKing462 data set with the outliers6

removed. In this experiment, 28 nodes out of 462 are removed.
The algorithm7 obtainsfour clusters for theKing462data set.
We use agray scaleplot to show the existence of the clusters
in the King462data set with the outliers removed.

6Outliers are defined as those nodes, the distance of which to the 8th nearest
nodes are larger than a threshold. The reason to choose 8th node is because
we want the node to have at least a certain number of neighbors(in this paper,
the number is 8) within the threshold.

7The algorithm takes as input a parameterK, the number of clusters, and
producesup to K as a result. We have experimented withK = 3 to 7, and
the algorithm in general produces 3-4 “relatively big” clusters for the three
data setsKing462, King2305and PlanetLab.
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The square image in Fig. 10 is a graphical representation
of the King462 distance matrix. In the square image, the
vertical axis represents the source nodes and the horizontal
axis represents the target nodes. The nodes are sorted by their
clusters in such a way that the nodes in cluster 1 appear first,
followed by the nodes in cluster 2, and so on. The nodes in the
vertical and horizontal axes are in the same order. Each point,
(x, y), represents the distance between the corresponding two
nodes,x andy.

The distance is represented in a gray scale: white color

> 95th

0

c1 c2 c3 c4
c1 62.099 154.287 254.469 212.538
c2 154.287 60.681 376.146 321.508
c3 254.469 376.146 61.194 238.938
c4 212.538 321.508 238.938 61.950

Fig. 10. Distances between each pair of nodes in King462 dataset after
removing outliers. White represents distance 0 and black represents 95th
percentile or higher distances. Median distances (in ms) among the nodes
of the intra and inter clusters are shown in the table.

represents distance 0 and black color represents the distance
larger than the 95th percentile distance. The interval between
0 and the 95th percentile distance is divided into 10 gray
scales (with a total of 11 gray scales), with increasing darkness
from white to black (beyond the 95th percentile distance). We
can clearly see thefour white blocks on the diagonal, each
of which represents the distance matrix of each cluster. The
table in Fig. 10 shows the median distances between the nodes
within and across thefour clusters in a numeric form. As
is expected, the intra-cluster median distances shown in the
diagonal entries of the table are much smaller than the inter-
cluster median distances.

To illustrate the characteristics of the individual clusters, in
Fig. 11, we show the eigenvalue scree plots of the distance
matrices obtained from the 4 clusters in the King462 data
set. Compared to Fig. 2, we see that the magnitudes of the
negative eigenvalues of the clusters are larger than those of
the whole data set. The “non-Euclidean-ness” amplifies within
each cluster. It suggests that the intra-cluster distancesare
much harder to embed into the Euclidean space. This can
be easily observed by looking at the relative errors of the
embedding. Fig. 12 shows the relative errors in a gray scale
matrix for theKing462 data set, where VL-ALL is used for
the embedding. The pure black color represents the relative
error of 1.0 or larger, and 10 gray scales are used for relative
errors between 0 and 1. We see that the relative errors of the
intra-cluster estimations are larger than those of inter-cluster
estimations.

We next examine which nodes are more likely to contribute
towards the TIVs. As we shall illustrate next, the high errors in
the intra-cluster distance estimation and the large magnitudes
of the negative eigenvalues can be explained by the varied
number of TIVs over the different distances. Intuitively, aTIV
is likely to occur if the distance between two nodes is very
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> 1

0

Fig. 12. Relative errors between each pair of nodes in King462 data set
without outliers. White represents relative error 0 and black represents relative
error 1 or larger. Virtual Landmark method with 7 dimension is used.

short or very large compared to the other two distances for a
given triple of three nodes. Using this intuition we proceed
with our data analysis as follows: we divide the distances
into 6 intervals:[0ms, 25ms), [25ms, 50ms), [50ms, 100ms),
[100ms, 200ms), [200ms, 400ms), and [400ms,∞). We
group all the pairs of nodes by their distance intervals. Then,
for each pair of nodes, we compute the fraction of TIVs in
conjunction with the rest of the nodes, i.e. we count how many
nodes violate triangle inequality with the given pair. Finally,
we compute the average of the fractions of all the pairs in each
interval. Fig. 13 shows the average fraction of TIVs in each
distance interval. We observe that higher fractions of TIVs
occur in the intervals[0, 25ms) and [400,∞) compared to
other intervals. Since the fractions of pairs in[400,∞) are
quite small in all the data sets, reducing the errors in short
distance estimations is thus much more crucial for the overall
performance of embedding.

The above analysis illustrated that the distances among the
inter-cluster nodes are more likely to be better approximated
by their Euclidean coordinates, whereas Euclidean embedding
of nodes within a cluster would likely provide a poor esti-
mate of their distances. This seems to suggest that there is
much strongerlocal “non-Euclidean effect” on the network
distances. By local non-Euclidean effect, we mean that the
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embedding of local (short) distances into a Euclidean spaceis
much harder than global (long) distances.

The “local non-Euclidean” effect can be also illustrated
using the skewness metric. For each node, we compute its
skewness to the nodes within the intervals mentioned in
the previous sections. Then we plot the 30th percentile, the
median, and the 70th percentile of the skewness measures of
all nodes using GNP, VL-ALL and Vivaldi. As can be seen in
Fig. 14, more skewnesses exist in the intervals[0, 25ms) and
[400,∞) compared to other intervals. Furthermore, for short
distances, the skewness measures are likely to be negative and
for large distances, the skewness measures are likely to be
positive. Since each of the embedding methods tries to embed
the nodes of TIVs in a Euclidean space by minimizing an
error function, it is natural to lengthen the short distances and
to shorten the long distances. This observation is also evident
in the proof of Lemma 1 using the stress error function.

Furthermore, we have examined the impact of increasing
dimension and using non-Euclidean distance functions such
as the Minkowskip-norm on the accuracy of the estimation.
Similar to the result in other papers such as [2], increasing
dimension does not increase the accuracy and the Minkowski
p-norm does not help, either. We omit the result due to the
page limitation.
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VI. A H YBRID MODEL FORLOCAL ADJUSTMENT

The results from previous sections show that the existence
of TIVs highly affects the accuracy of the Euclidean embed-
ding (for that matter, anymetric embedding). In particular,
Euclidean embedding is fairly good at estimating network dis-
tances between nodes that are relatively far away (in different
clusters), whereas it is rather poor at estimating local network
distances (distance between nodes within a cluster). These
observations inspire us to develop a hybrid embedding model
which incorporates a (non-Euclidean) localized adjustment
term (LAT) into the distance estimation. We show that using
only a 2-dimensional Euclidean embedding plus the localized
adjustment terms, we can obtain better performance than a
pure Euclidean embedding with 7 dimensions.

A. The Hybrid Model

The basic ideas behind our hybrid model are as follows:
we first embed the network distances in a Euclidean space
of d dimensions, and then for each node we compute an
adjustment term to account for the (local) non-Euclidean
effect. Hence in our hybrid model, each nodex has ad-dim
Euclidean coordinate,(x1, x2, . . . , xd), and a (non-Euclidean)
adjustmentex: we use(x1, x2, . . . , xd; ex) to denote the total
“coordinate” of nodex. The distancedxy between two nodes
x and y is then estimated bŷdxy := dE

x,y + ex + ey, where

dE
x,y =

√

∑d
k=1(xk − yk)2 is the Euclidean distance between

x andy in the embeddedd-dim Euclidean space. At the first
glance,ex may look similar to the height vector in Vivaldi
system [5], but actually it is quite different as will be discussed
later in this section. The key question in this model is how
to define and determineex for each nodex. Ideally, we
would like ex to account for the “non-Euclidean” effect on
the distance estimation errors to nodes within its own cluster.
However, this requires us to know which cluster nodex is in as
well as the other nodes in its cluster. For simplicity, we derive
ex using all nodes as follows. We first computeǫx, which
minimizes the error functionE(x) =

∑

y(dxy − (dE
xy + ǫx))2,

wheredxy is the actual distance betweenx and y. It can be
shown that the optimalǫx is given by the average error in
estimation:

ǫx =

∑

y(dxy − dE
xy)

n
. (2)

We then setex to the half of ǫx, namely,ex = ǫx/2. In
other words,d̂xy can be re-written asdE

x,y + (ǫx+ǫx)
2 . In short,

we adjust the Euclidean estimation by the average of the
two error terms ofx and y. We have the following theorem
that establishes the advantage of the hybrid model. The proof
sketch is provided in the appendix.

Theorem 4:The hybrid model using ad-dim Euclidean
space and the adjustment term defined above reduces the
squared stress of a pured-dim Euclidean embedding by

4n
∑

x e2
x + 2n2Var(ex)

∑

x,y d2
xy

≥ 0,

where Var(ex) =
∑

x e2
x/n−

(
∑

x
ex

n

)2

.

Hence the larger the individual adjustment term|ex| (thus
the average estimation error for each nodex using the pure
Euclidean embedding), the more performance gain the hybrid
model attains. It should be noted thatex can be positive or
negative8.

In (2), ex is determined by the measurement to all the other
nodes in the system. In practice, however, this is not feasible
nor scalable. Instead, we computẽex based onsampled
measurements to a small number of randomly selected nodes.
Let S denote the set of randomly sampled nodes. Then

ẽx =

∑

y∈S(dxy − dE
xy)

2|S|
. (3)

Hence in practice the hybrid model works as follows: a) A
number of landmarks are pre-selected and perform distance
measurements among themselves to obtain a distance matrix.
Using either Virtual Landmark or GNP, ad-dim Euclidean
embedding of the landmarks is obtained and their coordinates
are determined. b) Each nodex measures their distance to
the landmarks and computes its d-dim Euclidean coordinate
(x1, x2, . . . , xd); it then measures its distance to a small
number of randomly selected nodes, and computesẽx using
eq. (3).

Note that in a sense the adjustment term is similar to the
“height vector” introduced in Vivaldi [5]. However, there are
several key differences. First of all, the computation of the
local adjustment term is very simple, and does not depend
on the adjustment term of other nodes. Hence it does not
require any iterative process to stabilize the adjustment term.
In contrast, in Vivaldi – partly due to its distributed nature –
a small change in the height vector of a node would affect
the height vectors of the other nodes, and requires an iterative
process to stabilize the height vectors of all nodes. Second, the
local adjustment termsprovably improve the performance of
network distance embedding, as shown in the above theorem.
Another good feature of the local adjustment term is that it
can be used with any other schemes, not just the coordinate
based schemes. As long asdE

xy is the estimated distance based
on the original scheme, the adjustment term can be computed
as described above. In this sense, LAT is anoption that can be
used in conjunction with other schemes rather than a totally
new scheme. Note that LAT can be used even with Vivaldi.

B. Evaluation

We evaluate the performance gain obtained by using the
localized adjustment term (LAT) option in network distance
embedding. For this purpose, we compare the stress of the
VL-ALL method without LAT and the VL-ALL method with
LAT, where the local adjustment term is computed using all
the nodes. We vary the number of dimensions from 2 to 7. As
can be seen in Fig. 15, the use of adjustment term (keys with
LAT) reduces the stress significantly compared to the VL-
All without LAT. In particular, when the original Euclidean
embedding has high stress (large error), the reduction of

8It is possible that the estimated distance is negative due tonegative LAT.
In this case, we use the estimation of the Euclidean part as the estimated
distance.
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Fig. 16. The performance of VL-All method with SLAT onKing462 data set.
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stress is significant, which is expected from Theorem 4. Next,
we evaluate the performance of LAT using only a small
number of randomly selected nodes as in eq.(3); we call
this option “SLAT (Sampled LAT)”. Fig. 15 shows the stress
of embedding using SLAT (keys with SLAT) over different
number of dimensions, where the adjustment term is computed
using the measurement to 10 randomly selected nodes. We see
that the performance between LAT and SLAT are very close.
This is quite expected because the average of a randomly
sampled set is an unbiased estimation of the average of
the entire set. This result indicates that the adjustment term
can actually be computed quickly with a small number of
additional measurements. The results also show that increasing
the dimension of the Euclidean embedding does not help very
much; in fact, a lower dimension Euclidean embedding plus
the local adjustment terms is sufficient to improve the accuracy
of the embedding significantly.

In addition to the improved overall stress, the local ad-
justment terms also improve the relative errors. As an ex-
ample, Fig. 16(a) compares the cumulative distribution of
the relative errors of the VL-ALL with 7 dimensions (de-
noted “VL-ALL,7D”) with that using the same method with
7 dimensions plus SLAT (denoted as “VL-ALL,7D,SLAT”)
and with only 2 dimensionsplus SLAT (denoted as “VL-
ALL,2D,SLAT”) for the King462 data set9. The VL-ALL

9The Euclidean coordinates of the SLAT (2D+1) are the first 2 coordinates
of the Virtual Landmark 7 dimension embedding.

with 2 dimensions plus SLAT attains better performance than
that of the pure VL-ALL with 7 dimensions. For example,
90 percentile relative error of “VL-ALL,2D,SLAT” is less
than 0.6, but that of “VL-ALL,7D” is larger than 1.0. The
performance of “VL-ALL,2D,SLAT’ is even better than that
of “VL-ALL,7D,SLAT”, where 7 dimensions is used. We
conclude that adding a (non-Euclidean) local adjustment term
is far more effective in improving the accuracy of embedding
than adding additional dimensions. More in-depth analysis
demonstrates that the performance gain comes largely from
improved distance estimation for nodes within the same clus-
ter. However, for the metric, CNL, as can be seen in Fig. 16(b),
the performance degrades with SLAT. It means that SLAT
option is not good for choosing the closest node. For the
metric, RRL, the performance with SLAT is a little better than
the one without SLAT as can be seen in Fig. 16(c).

As implied in Theorem 4, a key reason that the hybrid
model improves the performance (in relative error) ofany
Euclidean embedding method lies in the fact that it mitigates
its “imperfect estimation” – namely, over-estimates or under-
estimates – by introducing a (non-Euclidean) local adjustment
term that smoothes out (via averaging) the over- and under-
estimates. This effect can be seen using the skewness metric.
Fig. 17 show the resulting skewness measures of the various
embedding methods with the SLAT option on, when applied
to theKing462data set. Compared with the results in Fig. 9,
we see that the fraction near 0 increases considerably. The
reduction in skewness is common to all the schemes.

However, it should be noted that if an embedding scheme
has large errors but the sum of errors is 0 (not skewed) for all
the nodes, LAT cannot improve the performance of the original
embedding. For example, in equation (3), theẽx can be 0 even
if there are errors. Then, there cannot be any improvement
from the original embedding scheme.

Our results suggest that due to the existence of prevalent
TIVs in the Internet host distance measurement data sets,
instead of attempting to develop more sophisticated Euclidean
(or metric-based) embedding method that minimizes aglobal
error function (such methods are likely to be more expensive
and time-consuming), it is far better to incorporate simpler
and less expensive mechanisms to reduce the inevitable (local)
estimation errors. Clearly, our proposed hybrid model with
localized adjustment terms (LAT) is an example of such a
simple but yet effective mechanism.
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Fig. 17. Cumulative distributions ofsx under various schemes with the
SLAT option. The data set isKing462. The number of dimension is 7.

VII. C ONCLUSION

This paper investigated the suitability of embedding Internet
hosts into a Euclidean space given their pairwise distances
(as measured by round-trip time). Using the classical scaling
and matrix perturbation theories, we established that the (sum
of the) magnitude ofnegativeeigenvalues of the (doubly-
centered, squared) distance matrix as a measure of suitability
of Euclidean embedding. Using data sets from real Internet
host distance measurements, we illustrated that the distance
matrix among Internet hosts contains negative eigenvalues
of large magnitude, implying that embedding the Internet
hosts in a Euclidean space would incur considerable errors.
We attributed the existence of these large-magnitude negative
eigenvalues to the prevalence oftriangle inequality violations
(TIVs) in the data sets. Furthermore, we demonstrated that the
TIVs are likely to occurlocally, hence the distances among
these close-by hosts cannot be estimated very accurately using
a global Euclidean embedding. In addition, increasing the
dimension of embedding does not reduce the embedding
errors.

Based on these insights, we proposed and developed a sim-
ple hybrid model that incorporates a localized (non-Euclidean)
adjustment term for each node on top of a low-dimensional
Euclidean coordinate system. Our hybrid model preserves
the advantages of the Euclidean coordinate systems, while
improving their efficacy and reducing their overheads (by
using a small number of dimensions). Through both mathemat-
ical analysis and experimental evaluation, our hybrid model
improves the performance of existing embedding methods
while using only a low dimension embedding. Lastly, our
model can be incorporated into any embedding system (not
necessarily Euclidean embedding).
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APPENDIX

Proof of Theorem 2. First, verifying whether there exists a
maximal TIV-free set of sizek among a set of nodes with a distance
matrix can be done in polynomial time by enumerating all set of size
k and checking the TIVs in a non-deterministic machine. Hencethis
problem isNP .

Now we prove that the problem is NP-hard by reducing the MAX-
CLIQUE problem (namely, finding the maximal clique in a graphG,
a well-known NP-complete problem [19]) to the maximal TIV-free
set problem. LetG be a connected undirected graph withn > 2
nodes. We assume that the size of maximal clique ofG is k > 2.
(The casek = 2 is trivial, as any pair of vertices with an edge is a
maximal clique.) We construct a distance matrixD = (dij) among
the set of vertices ofG as follows, wheredij will be the defined
distance between verticesi andj. For each vertexi, we setdii = 0.
For each edgeeij between verticesi and j, we setdij = 1 and
dji = 1. Note that for any triangle inG, the corresponding distances
in D do not violate triangle inequality. For the pair of verticesi
and j that do not have an edge between them inG, we first set
dij := undefined. Now, we define all the undefineddij as follows.
For an undefineddij , we computec = maxk(dik+dkj) for all k such
that dik anddkj are already defined. If no suchc can be computed
becausedik and dkj are undefined for allk, we setc = 0. Then,
we setdij := dji := c + 1. This transformation takes polynomial
time,O(n3), since there aren2 entries inD and for each entryO(n)
computation is required.

It can be easily shown that that a triple of nodes(i, j, k) in G forms
a triangle if and only ifi, j, andk do not violate triangle inequality
with dij , dik, anddjk in D (we omit the detailed proof for the sake of
space). This means that the maximal TIV-free set with the distances
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defined asD is the maximal clique inG. We conclude that finding a
maximal TIV-free set problem is NP-hard. Since maximal TIV-free
set problem is NP and NP-hard, it is NP-complete.

Proof of Lemma 1. Note thattc > ta + tb. Let (t̂a, t̂b, t̂c) be
a metric embedding of the 3 nodes. Then, they should satisfy the
triangle inequality constraint as follows.

t̂a + t̂b ≥ t̂c, t̂a + t̂c ≥ t̂b, t̂b + t̂c ≥ t̂a (4)

The squared estimation error,e, in this embedding is

e = (ta − t̂a)2 + (tb − t̂b)
2 + (tc − t̂c)

2 (5)

Let k := |ta − t̂a| + |tb − t̂b| + |tc − t̂c|. We now show that
k ≥ (tc − ta − tb). Supposek < (tc − ta − tb). There are 8 cases
based on the signs of(ta− t̂a), (tb− t̂b), and(tc− t̂c). First, consider
the case where(ta > t̂a), (tb > t̂b), and(tc > t̂c). Then,

k − (tc − ta − tb)

= (ta − t̂a) + (tb − t̂b) + (tc − t̂c) − (tc − ta − tb)

= 2(ta + tb) − t̂a − t̂b − t̂c

> 2(t̂a + t̂b) − t̂a − t̂b − t̂c

> t̂a + t̂b − t̂c ≥ 0

So k > (tc − ta − tb), a contradiction. It can be easily shown that
all the other 7 cases contradict, too. So we conclude thatk ≥ (tc −
ta − tb).

Now, for any suchk ≥ (tc−ta−tb), consider another embedding
(t̃a, t̃b, t̃c) such thatt̃a = ta+ k

3
, t̃b = tb+ k

3
, andt̃c = tc−

k

3
. Since

it can be easily shown that (t̃a, t̃b, t̃c) satisfies the triangle inequality
constraint, it is a metric embedding.

Furthermore, for any suchk ≥ (tc − ta − tb), (5) is minimized
with this embedding because

|ta − t̃a| = |tb − t̃b| = |tc − t̃c| =
k

3
(6)

Therefore,e ≥ ( k

3
)2 + ( k

3
)2 + ( k

3
)2 = k2

3
≥ (tc−ta−tb)2

3
.

Proof of Theorem 3 Let E be the sum of squared error ofn

nodes.E =
∑

i
(d̂i − di)

2, wheredi is a distance between a pair
of nodes (calledi) and d̂i is the embedded distance of the pairi.
There aren(n − 1)/2 pairs. Since there aren(n − 1)(n − 2)/6

triples amongn nodes,E can be rewritten by the triples of nodes
as follows.E = 1

n−2

∑

t∈T

(

(t̂a − ta)2 + (t̂b − tb)
2 + (t̂c − tc)

2
)

,
whereT is the set of triples andta, tb, andtc are the three distances of
a triplet, andt̂a, t̂b, andt̂c are the corresponding embedded distances.
Clearly, E ≥ 1

n−2

∑

t∈V

(

(t̂a − ta)2 + (t̂b − tb)
2 + (t̂c − tc)

2
)

,
whereV ⊂ T is the set of TIV triples. From Lemma 1, we have
E ≥ 1

3(n−2)

∑

t∈V
(tc − ta − tb)

2.

Proof of Theorem 4 We just describe a sketchy of the proof.
Let s1 be the stress of using the pure Euclidean based scheme. Let
s2 be the stress of using the pure Euclidean based scheme with the
adjustment term.

s2
1 =

∑

x,y
(dxy − dE

xy)2
∑

xy
d2

xy

(7)

s2
2 =

∑

x,y
(dxy − dE

xy − ex − ey)2
∑

x,y
d2

xy

(8)

Since the denominators are the same, we compute
(
∑

x,y
d2

xy)(s2
1 − s2

2) to computes2
1 − s2

2.

(
∑

x,y

d2
xy)(s2

1 − s2
2)

=
∑

x,y

(dxy − dE
xy)2 −

∑

x,y

(dxy − dE
xy − ex − ey)2

Using (2) and reformatting the formula, the final result can be
easily obtained.
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