
328

A Tablet Based Immersive
Architectural Design Tool

Ross Tredinnick
Lee Anderson
Brian Ries
Victoria Interrante
University of Minnesota
D’Nardo Colucci, Ph.D
The Elumenati, llc, Minneapolis, MN

Abstract

In this paper we describe a SketchUp VR system in which we create a hybrid two-dimensional
/ three-dimensional immersive architectural design system. This system combines a tablet PC, an
optically tracked room, a display wall, a SpaceTraveler motion controller, and stereographic eyewear
to allow immersive conceptual design and walkthrough using a version of SketchUp that has been
enhanced with Ruby plug-ins. The tablet PC provides a ”sketchpad” type of user interface for SketchUp,
while the tracked space and display wall enable the designer simultaneously to design at full (or any
other) scale in an immersive (VR) environment.

Introduction

Traditional 3D modeling applications
provide a screen-based paradigm,
whereby an architectural model exists
within a window on a flat display screen.
More recently, advancements in virtual
environment technology have triggered the
emergence of a new paradigm, known as
immersive architectural design (Anderson
2003). Immersive architectural design
programs utilize virtual reality hardware,
such as a HMD, to place the designer’s
viewpoint inside of the model. Geometry
creation and manipulation takes place by
way of a three-dimensional input device.

Both traditional and immersive design
paradigms have their advantages and
disadvantages that will be discussed prior
to describing our hybrid system.

A typical modeling application includes
viewing tools that facilitate designing
at a wide range of scales. To place new
geometry in the environment at a distant
location from the current viewpoint, a
camera pan tool quickly shifts the center
of design to the necessary location. On
the other hand, designers can modify tiny
details of an intricate model by zooming in
and focusing the center of design on small
areas of a model.

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 329

Despite this practical functionality
for changing views, some downfalls exist
for the desktop design paradigm. The
designer using a modeling application
is performing a highly integrative act,
attempting to create an environment
with a strong physical three-dimensional
presence. Designing with the inherently
two-dimensional desktop interface, limits
the design process. Modeling applications
effectively limit the viewing angle and
provide only limited screen resolution,
which tends to objectify the design space,
leading to a focus on external form rather
than inhabitable space. The design may be
also be negatively affected by the display
screen, with and its strong vertical and
horizontal edges and fixed aspect ratio.

The emergence of virtual reality
technology introduced a new possibility
for architectural design. Immersive
architectural design places the designer
within the environment of the model,
giving a realistic sense of scale and
presence. This design method has the
potential for overcoming several of the
negative aspects of the desktop paradigm.
For example, a dynamically changing
viewpoint exists, often with stereo viewing,
which leads to a greater sensation of
presence of the inhabitable space being
designed. Although immersive modeling
may seem more beneficial than traditional
desktop based programs, problems
emerge here as well. First of all, navigation
becomes more of an issue. Placing new
geometry in the model at a distant
location from the current focus requires
an intuitive, easy form of navigation. Also,
the modification of small details may
require additional viewing tools to zoom
in on locations, which may feel unintuitive
within a head mounted display. Small detail

changes requiring precise movements
may be difficult with a three-dimensional
input device. Finally, a three-dimensional
user interface must be considered to
avoid awkwardly re-introducing a two-
dimensional user interface into a supposed
three-dimensional environment.

In this paper, we introduce SketchUp
VR, which attempts to combine the better
features of the screen-based and virtual-
based design paradigms. The system joins
several pieces of virtual environment
hardware together with a tablet PC to
create a hybrid system for design. We build
the software system upon the popular
SketchUp modeling application. SketchUp
contains a built-in Ruby application
programming interface, which we use
to extend SketchUp to be an immersive
design application. The user employs
SketchUp on a tablet PC to create designs,
while simultaneously being immersed
in virtual environment. All changes to
the SketchUp model are simultaneously
changed in the virtual environment.

Related Work

Advancements of virtual environment
technology triggered a change in the way
we can interact with a software program.
Virtual environment researchers adhere to
this important idea everyday by designing
systems that allow three-dimensional
immersive interaction. Architectural design
has become a very popular area in terms
of immersive technologies and many
immersive modeling systems have been
designed and tested (Butterworth 1992),
(Donath and Regenbrecht 1996), (Mine
1997a), (Mine et al. 1997b), (Forsberg
et al. 1998), (Donath et al. 1999), (Hill
et al. 1999), (Regenbrecht et al. 2000),

ACADIA 2006: Synthetic Landscapes Digital Exchange
Digital Dissemination: Dissemination and Representation330

(Dave 2001), (Anderson et al. 2003). In
addition, much research has gone into
understanding how digital technology
advancements can benefit the conceptual
design stage in architecture (Campbell and
Wells 1994), (Bowman 1996), (Bridges
and Charitos 1997), (Bowman et al. 1998),
(Kukimoto et al. 1999), (Lau and Maher
2000), (Schnable et al. 2001), (de Vries et al.
2001), (Schnable 2002).

There has been a fair amount of
literature about combining the two-
dimensional design metaphor into the
three-dimensional virtual environment.
The majority of previous work done in
this area combines a tracked clipboard
or drawing pad with a tracked pen stylus.
The 3Draw system introduced such a user
interface (Sachs et al. 1991). Their system
allowed three-dimensional sketching
of splines to model objects. Unlike our
system, their work was not immersive,
and interaction occurred through a plain
desktop monitor. Since then, various
systems have combined a tracked
clipboard and pen within a head mounted
display environment (Angus and Sowizral
1995), (Bowman et al. 1998), (Schmalsteig
et al. 1999), (Chen et al. 2004). Our
work differs from this work in two main
respects: first of all, our system runs on
a projection-based display rather than a
head mounted or workbench display; and
secondly, interaction occurs through an
actual tablet PC running windows and
SketchUp rather than a tracked clipboard.
Another piece of significant work that has
some commonalities with our system is
the worlds in miniature system (Stoakley
et al. 1995). Like their system, our
tablet PC contains a de-coupled camera
viewpoint from the display wall and
manipulation of objects may occur through

SketchUp. Unlike their system and also like
previous differences, our work renders
through a projection-based display rather
than a head mounted display.

The Hardware System

Our hybrid system combines several
pieces of virtual environment technology
to create an immersive design area.
The total system consists of an optical
tracking system, a curved display wall,
three PCs, one tablet PC, a 3D Connexion
SpaceTraveler, and Crystal Eyes 3D stereo
glasses, two stereo emitters. I will discuss
how each feature fits into the system
below. The system is shown in action in
figure 1.

Tracking System

The room that holds our project
contains a Hi-Ball 3000 wide area optical
tracker (Welsh et al. 1999). We mount the
ceiling of our room with several infrared
light emitting diode strips that allow a
HiBall sensor to calculate position and
orientation. The total amount of tracked
space roughly measures thirty feet by
twenty four feet. The system provides

Figure 1. A student works on an apartment model
using the system.

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 331

updates to a Hi-Ball sensor at a rate of
500-800 Hz. We mount a Hi-Ball sensor on
top of a basic white construction helmet
that the designer wears. The tracking
system provides position and orientation
information for our software system and
dynamically updates the layout of the
virtual scene based on current position
and view direction toward the screen. The
HiBall sensor transmits information over
wire to a CIB box that knows the layout
of the system on the ceiling and converts
the data to a point that represents
position and a quaternion that represents
orientation. To transfer tracking data
between the CIB and our software system,
we interface with the VRPN software
library (Taylor II et al, 2001). Figure two
shows a picture containing a portion of
the tracking system.

Display Wall

The room contains a curved display
wall, back projected by three Christie
Mirage 4000 stereoscopic projectors. The
wall measures eight feet tall by twenty four
feet wide and has a total display area of
thirty feet by eight feet. The wall viewing
angle measures roughly 128 degrees. Three

AMD Athlon 64 X2 Dual Core 3800+ PCs
with 1 gigabyte of RAM compliment the
three projectors. Each PC holds a NVidia
Quadro FX 4500 graphics card with 512
MB of video memory. The graphics cards
are supplemented with NVidia gSync
cards to enable proper stereo viewing.
Figure three shows the display wall. The
display wall provides the immersive three-
dimensional stereoscopic display of the
architectural design system.

Tablet PC

We run the SketchUp program
and our accompanying software on a
Toshiba Portégé tablet PC. The tablet PC
contains an Intel Pentium M 2.00 gigahertz
processor with 1 gigabyte of RAM. The
user interfaces with the tablet PC by
directly applying its accompanying pen
stylus to the screen. The use of a tablet
PC provides mobility within the immersive
environment.

Spacetraveler

We optionally accompany the system
with a 3D Connexion SpaceTraveler.
The SpaceTraveler interfaces with the

Figure 2. A picture of the diode strips for the optical
HiBall tracking system mounted on the ceiling in our lab. Figure 3. The curved immersive display wall.

ACADIA 2006: Synthetic Landscapes Digital Exchange
Digital Dissemination: Dissemination and Representation332

display wall to provide three-dimensional
navigation within the design environment.
The SpaceTraveler connects to the tablet
PC. Updates of position and orientation
are sent to the display wall through the
networking of our software system.

Stereo Glasses

We use CrystalEyes three-dimensional
stereo shutter glasses and place two
stereo emitters within range of the display
wall. Combining this with stereo rendering
on the display wall gives a significant three-
dimensional presence while modeling using
the tablet PC. The user is still able to view
the tablet PC while wearing the stereo
glasses because the screen on the tablet
PC contains a plastic layer that re-polarizes
the light. Without this plastic layer, the
tablet PC screen would disappear while
wearing the stereo shutter glasses.

Software System

We have built a unique software
system on top of the commercially
available SketchUp design program. The
software system contains three basic
pieces: the SketchUp Ruby interface, the
networking software written using basic
windows sockets in C++, and a C++
OpenGL-based rendering engine of the
SketchUp environment for the display wall.
We describe the three portions of the
software system in this section.

SketchUp Ruby API

Ruby is an interpreted scripting
language developed by Yukihiro Matsumoto
for quick and easy object oriented
programming tasks. The SketchUp

Ruby API gives any designer access to
most aspects of the SketchUp program
through a collection of Ruby classes.
Documentation for these classes
accompanies the SketchUp program. Ruby
commands may be issued by way of a
simple Ruby input console in SketchUp.
For example, a user can modify the
default front color of a face by typing the
following command into the Ruby console:
Sketchup.active_model.rendering_options
[“FaceFrontColor”] = Color.new (255,
0, 0). In addition to changing rendering
details, the Ruby API contains classes for
building unique tools, creating fly-through
animations, and adding new user interface
buttons and menus for custom purposes.

One critical factor in the SketchUp
Ruby API that allows the extension of
SketchUp to a virtual environment is its
built-in animation class. The animation class
acts as a template to allow a background
loop to run within the SketchUp design
environment. A user may run an animation
within the SketchUp environment by
creating a Ruby class that contains
the necessary nextFrame method of
the Ruby API. The nextFrame method
would then modify the viewpoint of the
camera over some period of time. In our
implementation, we ignore modifying the
viewpoint and instead make use of the
animation loop in a different manner.

A second important feature of the
SketchUp Ruby API intrinsic to our
system is the attribute dictionary class.
An attribute dictionary is a collection
of arbitrary features that attach to a
SketchUp entity. An entity is the term
SketchUp adopts for a piece of geometry,
such as a face or edge. An attribute
dictionary acts as a basic hash table,
therefore allowing both fast assignment

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 333

and retrieval of extra information about a
piece of geometry. Attribute dictionaries
greatly extend the functionality of the
SketchUp design program. For example,
suppose extra information concerning
cost and manufacturing date need to
be retained for a group of building
components. Each extra piece of
information could be read into an attribute
dictionary and displayed in a report
detailing that information in the current
SketchUp model.

We have written a Ruby script that
incorporates these two features of the
SketchUp Ruby API. The script acts as
an updating loop for controlling when
and what information is sent across our
network. The script runs a background
loop in SketchUp and maintains various
attributes about the current geometry
within a SketchUp model. On each frame,
the script loops through all current entities
of the model, checking to see whether the
entity has been sent across our network.
If we have not sent the entity across
the network yet, we transmit a message
containing geometrical and material data
about the entity. If we had previously
sent the entity across the network, our
program checks to see if either an entity’s
visual attribute or physical location has
changed within the model. If so, we re-send
a message across the network containing
updated information about the entity.
Upon running the program, and before
beginning our updating loop, we write out
a basic text file containing initial model
data to a network folder so that the three
PCs controlling the wall can parse the file
and prepare to render the initial scene.
This pre-process creates an initial scene
on the wall faster than if we were to send
all data over the network.

The Network

In order to transfer SketchUp data to
the PCs controlling the display wall, we
wrote our own networking software to
transfer the entity information from the
tablet PC to the three PCs controlling
the wall projectors. We implement a
basic client server model to achieve
proper transmission of data. In our
model, the tablet PC acts as a server
and communicates with a total of four
clients, itself, and the three PCs running
the wall. The tablet PC must communicate
with itself in order to obtain SketchUp
information. At the time of this paper,
although the Ruby scripting language has a
useful networking class, the class is unable
to load within the SketchUp Ruby API
context. To work around this, we adopted
a built-in SKSocket module provided
with the SketchUp software. The module
provides very basic socket communication,
only allowing communication through a
single socket at a time. This eliminated
our proposed option of communicating
from the Ruby API directly to the
three wall PCs. We therefore have the
SketchUp Ruby script send data to a C++
networking program that simultaneously
executes on the tablet PC, so that the
information can be queued and forwarded
to the three PCs controlling the display
wall.

To transfer entity information we have
developed a simple, yet effective, message
system that allows variable length packets
of data to be sent across the network.
We create a method to pack data into a
character string for each entity type in
SketchUp. The string contains first, a single
character signifying the type of entity,
followed by material and physical location

ACADIA 2006: Synthetic Landscapes Digital Exchange
Digital Dissemination: Dissemination and Representation334

data. On each frame we store all current
updates in an array and, after checking all
current entities, create a packet containing
the total length of the updates followed
by a string containing all of the new
information. The tablet PC forwards the
packet to the three PCs that parse the
data and update the rendering context.

Rendering

The final portion of our software
system retrieves SketchUp data from the
network and re-displays it on the curved
display wall. The SketchUp design program
contains a sketchy, non-photorealistic
display style to emphasize the program as
a conceptual stage design tool. We have
mimicked their rendering style as closely
as possible to maintain equivalent visual
information between the tablet PC and the
wall. We implement the system in C++ via
the OpenGL graphics library for rendering
and via the Win32 API for windowing. The
rendering consists of two sided lighting,
texturing, basic triangular polygons, and
lines for highlighting edges of objects,
which add to the non-photorealistic feel
of the program. We have the ability to
render our scenes with stereo viewing for
increased three-dimensional realism and
presence.

We implement a hierarchical display
list system in order to render the various
entities of the SketchUp program.
The SketchUp entity system contains
three basic primitives: faces, edges, and
component instances. A component
instance is a group of edges, faces,
and possibly other nested component
instances. Component instances are
saved in separate files from the current
SketchUp model. They serve as miniature

models that designers can insert into
their model from a built-in component
browser. All entities within the SketchUp
program possess a unique identifier called
an entityID whose value may be accessed
through the Ruby API. The entityID is
included in messages we send across
the network and provides a convenient
key for a hash table that we maintain to
display objects. After a wall PC retrieves
a SketchUp message from the network,
we store its data and generate a single
display list, if the entity is a face or edge.
If the entity is a component instance, we
generate a hierarchical display list. The
hierarchy resembles a tree whereby the
root represents the outer most parent
component, each inner node represents
a nested component, and each leaf of the
tree is a collection of faces and edges.
Each inner node compiles its own display
list whose call is then compiled into the
display list of the root component. The
display list structure of our rendering
system allows for fast rendering speeds,
and smooth interaction between
SketchUp entities on the tablet PC and
corresponding data on the display wall.

To accurately render the SketchUp
data on the curved wall surface, we
borrowed previously used techniques
for rendering to curved display surfaces;
however, unlike this earlier work, our
techniques do not calibrate the screen
with cameras (van Baar et al 2003).
Instead, we generate a mesh representing
the screen using our optical tracking
system. We mount a HiBall 3100 sensor
onto a HiBall stylus and augment the
stylus with a metal pointing rod. We click
points on aligned grids displayed by the
three projectors to record points in
tracker space. With the tracker space

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 335

input points, we generate splines to
approximate the surface shape of the
screen. We then projectively texture the
scene onto the approximated mesh using
graphics hardware. We render a seamless
image by using three different viewing
frustums whose parameters depend on
the person’s currently tracked position
and view direction toward the screen. We
are working on improving the blending at
the boundaries of the projected images. A
summary diagram of the whole system is
shown below in figure four

System Features

By combining a tablet PC based display
with an immersive display wall, we have
formed a virtual environment system with
several unique features. The following
sections will discuss each of these features
in turn.

Retaining SketchUp Tools

By building a system on top of a
popular, commercially available software
product, we retain the convenient design
tools inherent to the SketchUp program

De-coupled Viewing

The system de-couples the camera
viewpoint on the tablet PC from the
viewpoint on the immersive display wall.
This feature allows users to design on
the tablet PC from a traditional desktop
based viewpoint, while at the same time
to become immersed in their creation
through a viewpoint realistically positioned
in the model. Designers can freely walk
about a limited space of the environment
by way of our tracking system. The

SpaceTraveler quickly transforms the
position and orientation of the viewpoint
on the display wall to navigate to a distant
location. The viewpoint on the tablet
PC can be separately orbited, panned,
zoomed or set to a specific location by
way of the various camera tools inherent
to SketchUp. In this way, the tablet PC
viewpoint can zoom in and manipulate
small details on a SketchUp model, while
users can critique the effects of the
changes on the whole object by looking
at the display wall. Executing minutely
detailed changes in a regular immersive
environment poses more challenges due
to the need to manipulate overly sensitive
three-dimensional input devices. An
example of the de-coupled viewpoints is
shown in figures five and six.

Scale

The SketchUp program also includes
tools for accurately measuring distances
and angles through a tape measure and
a protractor tool. Additionally, SketchUp
contains an inferencing system that
allows easy creation of specifically sized
geometric primitives in relation to other
current primitives in the model. The
system snaps tools to specific points in
space such as the midpoint of an edge
or a line perpendicular to the corner of
a box. These two features easily allow
the creation of designs to detailed scales.
With a desktop-based program, such
drawings still do not achieve a true sense
of scale, since we view the model through
a window on a small screen display. With
our tracked display system, we have the
ability to accurately create geometrical
objects of specific sizes on the tablet PC
and then view these objects at real scale

ACADIA 2006: Synthetic Landscapes Digital Exchange
Digital Dissemination: Dissemination and Representation336

Figure 4: A summary diagram of the Ruby updating loop, the networking and the layout of our display wall. The Ruby
script runs on our tablet PC and messages are sent to its C++ networking code. The tablet PC forwards the messages
onto the display PCs.

Figure 5. A screenshot of a SketchUp apartment model. Figure 6: The model displayed on our wall from an
interior viewpoint.

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 337

on our wall display. This introduces an
element whereby the designer can quickly
critique various portions of a model at life-
size scale directly after modeling it on the
tablet PC.

Portability

As is, our system is not completely
portable; however, it is possible that the
SketchUpVR system could be constructed
on a different virtual environment
hardware setup. Since our program
communicates with our tracking system
via VRPN, a publicly available program for
obtaining tracking data over a variety of
virtual reality tracking devices, the system
could work with a multitude of trackers.
The networking system could easily be
modified to communicate with a different
number of PCs. The part of our system
that would potentially require the most
modification is the rendering system.
The rendering system would have to be
changed to adhere to a different display
setup. Nonetheless, with the proper
software, the SketchUpVR system could
be displayed on a four, five, or six-sided
CAVE or any form of curved or dome
projection-based display (Cruz-Neira et al,
1993).

Conclusions / Future Work

We have created a hybrid two-
dimensional / three-dimensional tablet
based design tool for immersive
architectural design and walkthrough.
The tool retains the advantages of
desktop based CAD programs, as well
as immersive architectural modeling
programs. The system combines a high
level object-oriented interpreted scripting

language, Ruby, with traditional C++
based, networking software and OpenGL
rendering system. We utilize graphics
hardware to projectively texture a
SketchUp model onto the mesh acquired
with our optical tracking system. Our
curved wall provides an immersive
stereoscopic display environment. The
desktop portion of the system builds
upon a popular commercially available
CAD program and retains many of its
valuable features. The tablet PC works well
because it retains the pencil and paper-
based architectural design metaphor and
communicates over a local ethernet with
the display PCs. SketchUp’s ability to insert
a wide variety of component models
could ease virtual environment creation
for research or application purposes. The
ability to port the system to a different
virtual reality setup is not out of the
question.

We have several possible additions
and utilizations for the system. We plan
to obtain a user study of the system
to determine its effectiveness when
compared to other forms of three-
dimensional immersive design. We also plan
to incorporate the system for studying
the effects of scale on conceptual design
in architecture. We also plan to compare
the effectiveness of our hybrid system to
desktop and immersive 3d design alone.
We plan to explore the possibility of
adding different rendering styles to our re-
creation of the SketchUp model. Improving
graphics to achieve photorealistic quality
or modifying the rendering for different
non-photorealistic painterly styles may
introduce different effects on the design
process. Adding shadows to introduce an
extra depth cue is also on the horizon. We
also plan to implement a lighting system by

ACADIA 2006: Synthetic Landscapes Digital Exchange
Digital Dissemination: Dissemination and Representation338

way of component models.
Now that we have a base networking

system setup, we may explore the
possibilities of extending this to a
collaborative design tool. By adding
multiple tablet PCs designers could
collaboratively create and simultaneously
view SketchUp models in three-
dimensional stereo. We have recently
added a sound system to our display wall
and we may add sound to the software
to enhance the sense of presence for
research purposes. Another possible
direction to explore with the system is
to attach a tracker to the tablet PC itself,
and update the view of the tablet PC
based on user location in our tracked
room; however, this would affect the ability
to view the total scene on the tablet
PC. A final direction we would like to
explore is to substitute the SpaceTraveler
with a different, perhaps smaller, three-
dimensional navigation device that could
possibly attach to the tablet PC. In the
ideal situation, the system would be
completely wireless. However, although
wireless communication between the
tablet PC and display PCs is something we
hope to achieve soon, the tracking system
and SpaceTraveler still would prevent
the system from completely wireless
operation.
References

Anderson, L. (1992). Virtual Graffti:
Three-Dimensional Paint Tools for
Conceptual Modeling in Upfront.
Mission -Method - Madness [ACADIA
Conference Proceedings / ISBN 1-
880250-01-2], 127-133.

Anderson, L., J. Esser, and V. Interrante.
(2003). A Virtual Environment for
Conceptual Design in Architecture.

9thEurographics Workshop on Virtual
Environments / 7th International
Workshop on Immersive Projection
Technology, 57-63.

Angus, I. and H. Sowizral (1995).
Embedding the 2D interaction
metaphor in a real 3D virtual
environment. In Proceedings of SPIE,
Stereoscopic Displays and Virtual Reality
Systems. 2409: 282-293.

Bridges, A. and D. Charitos. (1997). On
Architectural Design in Virtual
Environments. Design Studies 18:143-
154.

Butterworth, J., A. Davidson, S. Hench, and
T. M. Olano. (1992). 3DM: A Three-
dimensional Modeler Using a Head-
Mounted Display. ACM Symposium on
Interactive 3D Graphics, 135-138.

Bowman, D. (1996). Conceptual design
space.beyond walkthrough to
immersive design. In Designing Digital
Space, ed. Bertol D., 225-236. Wiley:
New York.

Bowman, D., L. Hodges, and J. Bolter.
(1998). The Virtual Venue:
User-Computer Interaction
in Information-RichVirtual
Environments. Presence: Teleoperators
and Virtual Environments 7(5): 478-493.

Bowman, D., J. Wineman, L. Hodges, and
D. Allison. (1998). Designing Animal
Habitats Within an Immersive VE.
IEEE Computer Graphics & Applications
18(5): 9-13.

Campbell, D.A. and M. Wells. (1994).
A Critique of Virtual Reality in
the Architectural Design Process.
University of Washington HITL Technical
Report R-94-3, http://www.hitl.
washington.edu/publications/r-94-3/.

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 339

Chen, J., D. Bowman, J. Lucas, and C.
Wingrave. (2004). Interfaces for
Cloning in Immersive Virtual
Environments. Proceedings of the
Eurographics Symposium on Virtual
Environments, 91-98.

Cruz-Neira, C., D. J. Sandin, T. A. DeFanti,
R. V. Kenyon, and J.C. Hart. (1992).
The CAVE: AudioVisual Experience
Automatic Virtual Environment.
Communications of the ACM 35:67-72.

Dave, B. (2001). Immersive Modelling
Environments, Reinventing the
Discourse: How Digital Tools
Help Bridge and Transform
Research, Education and Practice in
Architecture. Proceedings of the 21st
Annual Conference of ACADIA, ed. W
Jabi, 242-247.

Donath, D., E. Kruijiff, and H. Regenbrecht.
(1999). Spatial Knowledge
Implications During Design Review
in Virtual Environments. ACADIA
Conference Proceedings, 332-333.

Donath, D., and H. Regenbrecht. (1996).
Using virtual reality aided design
techniques for three-dimensional
architectural sketching. Design
Computation, Collaboration, Reasoning,
Pedagogy. ACADIA Conference
Proceedings, 201-212.

Donath, D. and H. Regenbrecht. (1999).
Using Immersive Virtual Reality
Systems for Spatial Design in
Architecture. AVOCAAD ‘99
Conference Proceedings, Brussels, 307-
318.

de Vries, B., A. J. Jessurun, and J. J. van Wijk.
(2001). Interactive 3D Modeling in
the Inception Phase of Architectural
Design. Eurographics Short
Presentations 4(7): 265-271.

Forsberg, A. S., J.J. LaViola Jr., and R.C.
Zeleznik. (1998). ErgoDesk: A
Framework for Two- and Three-
Dimensional Interaction at the
ActiveDesk. Proceedings of the 2nd
International Immersive Projection
Technology Workshop.

Hill, L.C., C. Chiu-Shui, and C. Cruz-Neira.
(1999). Virtual Architectural Design
Tool (VADeT). Proceedings of the
3rd International Immersive Projection
Technology Workshop, 231-241.

Kukimoto, N., K. Toizumi, S. Kitsuki, T.
Oda, and T. Iwasaki. (1999). Virtual
Environment for Graphic Thinking
for Architectural Design. Proceedings
of the Virtual Reality Society of Japan,
Second Annual Conference, 323-326.

Lau, K. H. and M. L. Maher. (2000).
Architectural Design and Virtual
Worlds. Architecture Week T7.1-T7.2.

Mine, M. (1997). ISAAC: A Meta-CAD
System for Virtual Environments.
Computer-Aided Design 29(8): 547-553.

Mine, M., F. Brooks and C. Sequin.
(1997). Moving Objects in Space:
Exploiting Proprioception in Virtual-
Environment Interaction. Proceedings
of ACM SIGGRAPH ‘97, 19-26.

Regenbrecht, H., E. Kruijff, D. Donath, H.
Seichter, and J. Beetz. (2000). VRAM
- A Virtual Reality Aided Modeller,
Promise and Reality. eCAADe
Conference Proceedings, 235-237.

Schmalstieg, D., L. M. Encarnacao, and Z.
Szalavari. (1999). Using transparent
props for interaction with the
virtual table (color plate S. 232). In
Proceedings of the Conference on the
1999 Symposium on Interactive 3D
Graphics, ed. Stephen N. Spencer, 147-
154. New York. ACM Press.

ACADIA 2006: Synthetic Landscapes Digital Exchange
Digital Dissemination: Dissemination and Representation340

Schnabel, M. A. (2002). Collaborative Studio
in a Virtual Environment. International
Conference on Computers in Education,
Massey, New Zealand.

Schnabel, M. A., T. Kvan, E. Kruijff, and D.
Donath. (2001). The First Virtual
Environment Design Studio.
Proceedings of the 19th ECAADE
- Education for Computer Aided
Architectural Design in Europe
Conference.

Stoakley, R., M., J. Conway, and R. Pausch.
(1995). Virtual reality on a WIM:
Interactive worlds in miniature. In
Proceedings of ACM CHI ‘95 Conference
on Human Factors in Computing
Systems, 265-272.

Taylor II, R.M., T. C. Hudson, A. Seeger, H.
Weber, J. Juliano, and A. T. Helser.
(2001). VRPN: a device-independent,
network-transparent VR peripheral
system. Proceedings of the ACM
symposium on Virtual reality software
and technology.

van Baar, J., T. Willwacher, S. Rao, and R.
Raskar. (2003). Seamless Multi-
Projector Display on Curved Screens.
Eurographics Workshop on Virtual
Environments (EGVE), 281-286.

Welch, G., G. Bishop, L. Vicci, S. Brumback,
K. Keller, and D. Colucci. (1999). The
HiBall Tracker: high-performance
wide-area tracking for virtual and
augmented environments. Proceedings
of the ACM symposium on Virtual reality
software and technology, 1-ff.

Tredinnick, Anderson, Ries, Interrante, Colucci
A Tablet Based Immersive Architectural Design Tool 341

