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Abstract 
In TRECVID 2022, we participated in two types of the Disaster Scene Description and 

Indexing (DSDI) task, i.e., LADI-based task (L task) and LADI + others task (O task), which are 

supported by the LADI (Low Altitude Disaster Imagery) dataset. In the L task, we proposed a two-

stream approach considering both image and video, which consists of data cleaning, disaster-related 

feature extraction, and prediction score fusion. In the data cleaning stage, confident learning was 

applied to revise or discard the incorrect labels with the preliminarily trained models. In the disaster-

related feature extraction stage, two modules were applied to fully take the advantage of both the 

image and video data in the training dataset, i.e., a pre-trained Swin-ViT model for image features, 

a C3D module for video features, with the ASL loss function to cope with the characteristics of the 

long-tailed distribution of LADI. In the prediction score fusion stage, the final prediction score of a 

test video was obtained by merging the prediction scores of multiple image/video models and then 

was utilized for retrieval. In the O task, the model structure remains the same, and extra data were 

collected on 16 categories, including flood, rubble, etc. Additional data for each category was used 

to train a model separately, and only the output of these corresponding categories participated in 

model ensemble. Our proposed approach achieved mAP scores of 46.8 in the L task and 50.1 in 

the O task, and the official evaluations showed that our proposed approach ranked 1st in both L 

and O tasks. 

1 Overview 
In TRECVID 2022[1], we participated in the Disaster Scene Description and Indexing (DSDI) 

task and submitted 8 runs in total: 4 for the LADI-based (L) training type and 4 for the LADI + 
Others (O) training type. The official evaluation results are shown in Table 1, and the illustration of 
our approach is shown in Figure 1. Moreover, the explanation of the brief descriptions in Table 1 is 
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given in Table 2, expounding the methods and the details of ensembled models. In both subtasks, 
i.e., L and O, our team ranks 1st.  

 

Figure 1: Framework of our approach for the 8 submitted runs. 
 

Table 1: Results of our 8 submitted runs. Mi stands for different Models. 

Type ID mAP Brief description 

L 

L_PKU_WICT_1 0.4653 M11 
L_PKU_WICT_3 0.4678 M1+M12 
L_PKU_WICT_6 0.4680 M1+M2+M4+M7-10+M12 
L_PKU_WICT_8 0.4227 M1-3+M8+M12 

O 

O_PKU_WICT_2 0.4995 Run6+S+T 
O_PKU_WICT_4 0.4819 Run8+S 
O_PKU_WICT_5 0.4287 Run6+S 
O_PKU_WICT_7 0.5006 Run8+S+T 

 
Table 2: Description of our methods. 

Abbreviation Description 
A Asymmetric loss 
C C3D pre-fusion model 
R Revising-based label cleaning 
D Discarding-based label cleaning 
V Reconstructed Video labels 
S Single category O-finetuned models 
T Thirty-two categories O-finetuned model 
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In the L-type runs, only the official development dataset, Low Altitude Disaster Imagery 
(LADI), and past DSDI video testing sets were used for training. Since the annotation of the LADI 
dataset is crowd-sourced, several strategies[3] were adopted to eliminate noise in the dataset and 
correspondingly trained models for the ensemble. In detail, labels found to be problematic are either 
revised or directly discarded, noted as “R” or “D.” Besides the image-label pairs provided by the 
LADI dataset, images were further re-grouped into video frames regarding their metadata to 
construct video-label pairs, noted as “V”. Overall, first the cleaned image-label pairs were used to 
refine the image classifier, then the cleaned video-label pairs were used to supervise the additional 
model with video frames as input, which is implemented by a 3D CNN (i.e., C3D) and noted as “C.”  

 
Figure 2: Pipeline of our approach. 

The pipeline of our approach is shown in Figure 2, which consists of a C3D pre-fusion model 
and a SwinViT [2] as the video or image classifiers. We built a basic image classifier, model 1, without 
any tricks other than asymmetric loss noted as “A.” Models 2 to 5 were also image classifiers but 
with different image-level data cleaning procedures, including setting the ratios between “R” and 
“D” as 1:0, 3:7, 7:3, and 5:5. Based on model 3 to 5, we involved “C” and trained it on the past 
DSDI video testing sets to build model 6 to 8. Finally, “V” was involved in models 9 to 12, and thus 
all procedures mentioned above were gathered so far. Every L-type run took at least one of models 
9 to 12, while in Run 3, 6, and 8, several pure image classifiers were also ensembled. 
In the O-type runs, we resorted to 6 external remote sensing datasets as well as data crawled from 
the Internet to address the data imbalance issue between different categories in the LADI dataset. 
These additional data were used to finetune the models used in L-type runs. Specifically, we 
implemented 2 types of finetuning patterns, noted as “S” or “T.” Notation “S” means that only 
additional data of one single category was used for training, and the final model only predicted 
labels of this specific category. “T” means that additional data from all thirty-two categories were 
used for training, and the final model predicted multi-labels of all 32 categories together. By 
expanding two L-type runs, i.e., Runs 6 and 8, with “S” and “T”, we got four O-type runs. 

2 Our Approach 

2.1 Data Cleaning 
Since the LADI dataset contains noise, confidence learning[3] (CL) was applied to clean the 

dataset. The model was first finetuned on the DSDI-2020 and DSDI-2021 testing sets and then 

performed the CL-based denoising on the LADI dataset. During the training stage, 3 different types 



 4 

of strategies were performed according to the confidence level: revise, discard, and hybrid. The 

meanings of each are described as follows: 
1. Revise: The samples with low confidence in the training set are revised, i.e., converted between 

0 and 1. 
2. Discard: The samples with low confidence in the training set are discarded directly. 
3. Hybrid: A portion of the samples with the lowest confidence are revised, while the rest of them 

are directly discarded. 

2.2 Disaster-related Feature Extraction 

2.2.1 Image Feature Extraction 

The backbone model plays an important role in the performance of the DSDI task, and thus 
three different models were first tested to choose the most appropriate model, including 
EfficientNet-B5[4], ViT[5], and SwinViT[2]. The models were trained with the LADI dataset and 
evaluated on the DSDI-2021 testing set. The mAP results of each model are reported in Table 3. 
Since SwinViT is observed to own significant advantages compared to other models, it was adopted 
as our image backbone in the subsequent procedures. 

Table 3: The mAP results of different backbones. 
Backbone mAP 

EfficientNet-B5 23.62 
ViT 25.49 

SwinViT 27.97 

2.2.2 Video Feature Extraction  

 
Figure 3: Pipeline of video-level feature extraction. 

Our approach performed video-level feature extraction based on the image backbone, i.e., 

SwinViT, as shown in Figure 3. An intuitive idea for video classification is a bottom-up approach 

composed of two steps, classifying each extracted frame independently and integrating all frame-

level results by pre-defined rules into one shot-level final result. However, since it takes the 

correlation between frames or temporal information under little consideration, it might miss some 

implicit clues to understand the video. To compensate for the deficiency while keeping its inherent 

superiority, a pre-fusion module was designed and attached ahead of the image classifier in the 

proposed approach, which fused the high-level visual features of frames with a neural network. 

Since frames are aligned by ascending time order before being concatenated for fusion, the temporal 

information can also be implicitly embedded. Specifically, the module was implemented by a 3D-

CNN[6], i.e., C3D, that consists of two 3D convolutional layers of which output channel numbers 
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are 64 and 1, respectively. The activation maps were squeezed along the channel axis and down-

sampled by a 3D average pooling layer before inputting into the image classifier. 

2.2.3 Loss Function 

 Since the LADI dataset shows a long-tail distribution, an appropriate loss function potentially 

alleviates the problem of unbalanced sample distribution in the dataset. ASL Loss[7] considers the 

sparsity of positive samples and pays more attention to positive samples in the training process, it 

was adopted in our proposed approach: 

𝐿𝐿+ =  (1− 𝑝𝑝)𝛾𝛾+ × log(𝑝𝑝) (1) 

𝐿𝐿− =  𝑝𝑝𝑚𝑚
𝛾𝛾−  ×  log(1 − 𝑝𝑝𝑚𝑚) (2) 

where 𝑝𝑝  is the network’s output probability, and 𝑝𝑝𝑚𝑚 = max (𝑝𝑝 −𝑚𝑚, 0) . (1 − 𝑝𝑝)𝛾𝛾+  and 

𝑝𝑝𝑚𝑚
𝛾𝛾−  reduce the weight of the loss function on the high confidence samples, while hyperparameters 

𝛾𝛾+ and 𝛾𝛾− act as smoothing factors. Therefore, the model pays more attention to the samples that 

are difficult to classify. 

2.3 Prediction Score Fusion 
After training models with different structures (i.e., image-level or video-level), confident 

learning settings (i.e., dropping-based or flipping-based), and hyper-parameters (i.e., learning rates 

and weight decay), their output probabilities were fused to achieve a more balanced effect across 

the 32 categories. Specifically, each model was assigned a weight among {0, 1, 2}. Before summing 

them up, the linear normalization was conducted to make sure the output of different models was in 

the same range of 0 to 1. The normalization is at two granularities: one is for the prediction of all 

32 categories, and another is for every single category.  

The weighted average of all models was calculated as the final output. In this way, different 

models complemented each other and improved the accuracy of the final prediction. Figure 4 shows 

the mAP results on each category of L-type runs, while categories 3, 4, 9 and 13 are omitted, for 

there are no samples in the official testing set this year. 

3 LADI + Others (O)  

The strategy for O task is based on the pipeline in the L task, which shares the same data 

cleaning and disaster-related feature extraction models. The L-type and O-type runs differ mainly 

in the dataset and prediction score fusion. Figure 5 shows mAP on each category of O-type run. For 

the data used in O task, images other than the provided LADI dataset were collected from two 

resources, i.e., public datasets and the Internet, which were annotated to form training data for our 

type O methods. Figure 6 shows the comparison of mAP results between the best O-type run, i.e., 

Run 7, and its corresponding L-type run, i.e., Run 8. Robust improvements can be observed in most 
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categories, verifying the effectiveness of using the additional data adopted and processed. 

 
Figure 4: The mAP results on each category of L-type runs. 

 

 

Figure 5: The mAP results on each category of O-type runs. 
 

 

Figure 6: Comparison of mAP between the best L-type and O-type runs. 
(1) Other Public Datasets 

There are 32 different categories in the LADI dataset this year, while the numbers of images in 

different categories are severely imbalanced. This uneven data between categories is harmful to the 

accuracy of the deep models. Thus 6 external remote sensing datasets, UC Merced Land Use[8], 

NWPU-RESISC45[9], RSI-CB[10], AID[11], Massachusetts Building[12], and WHU-RS19[13][14], were 

resorted to acquire supplementary training data. 

The image categories in the above remote sensing datasets are not exact matched in the LADI 

dataset. To address this issue, the data that matches each category separately were selected to 

compensate for the data deficiency in the LADI dataset. The additional data of the Top 5 categories 

with the least image numbers in LADI are presented in Table 4. 

(2) Web Image Crawling 

In addition to public remote sensing datasets, there are large quantities of images on the Internet 

that are easy to acquire. According to the official definitions of different categories, several 

keywords were utilized for each category to collect web images by Bing1, one of the widely-used 

 
1 https://www.bing.com 
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search engines. After removing noisy images, there are about 300 images collected for categories 

that are not covered in the previous remote sensing datasets, such as landslide, washout, and rubble. 
Table 4: The data addition of the Top-5 categories with least image numbers in LADI. 

Categories in LADI Image Numbers in LADI Image Addition Numbers 

snow/ice 115 2533 

aircraft 142 360 

pipe 481 198 

railway 584 1660 

water tower 594 2007 

For the O task, three settings were applied to utilize the LADI dataset with the extra data, 

including all LADI data, randomly selecting the same amount of LADI data as the extra data, and 

using confidence learning to filter LADI data. Then the selected LADI data and the extra data were 

used to finetune a model for the corresponding category. 

We had three models for every 16 categories in the O task, and each model only predicted the 

corresponding category's probability. Also, another model with all collected extra data was applied, 

which predicted probabilities of all 32 categories. The O models described above were ensembled 

with the averaged L model which outputs probabilities for all 32 categories. 

Table 5: The weights of models for 16 categories in the O track. 

Category L Model O Model for 32 Categories O Model for Single Category 

Flood 1 0 1 

Rubble 1 0 1 

Rock 1 1 1 

Sand 1 1 1 

Shrubs 1 0 1 

Snow ice 1 1 1 

Bridge 1 0 1 

Dam levee 1 0 1 

Pipe 1 1 1 

Utility line 1 1 1 

Railway 1 1 1 

Boat 1 0 1 

Cat 1 1 1 

Truck 1 0 1 

Lake 1 1 1 

Ocean 1 1 1 

For each category, five weights were needed to be determined, including the weights of the L 

model, the O model for all categories, and the three O models for the single category. They were set 
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to 1 or 0, indicating to be fused or dropped. After the weights were determined, each model was 

weighted over the output of the category. The details of the weight settings for the 16 categories are 

shown in Table 5. 

4 Conclusion 

In TRECVID 2022, we participated in the Disaster Scene Description and Indexing (DSDI) 

task and ranked 1st in two subtasks. This paper presents our proposed approach and the official 

evaluation of its effectiveness. For alleviating the noise in the development set, several data-cleaning 

strategies were adopted. As for extracting visual features, a powerful image backbone, SwinViT, 

with a pre-fusion module, C3D, was adopted. Moreover, in dealing with the long-tail distribution of 

LADI, the asymmetric loss function (ASL) and additional data (only in O-type runs) were adopted.  
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