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The symmetric interaction combinators are a variant of Lafont’s interaction combinators.

They enjoy a weaker universality property with respect to interaction nets, but are

equally expressive. They are a model of deterministic distributed computation, sharing

the good properties of Turing machines (elementary reductions) and of the λ-calculus

(higher-order functions, parallel execution). We introduce a denotational semantics for

this system, inspired by the relational semantics for linear logic, proving an injectivity

and full completeness result for it. We also consider the algebraic semantics defined by

Lafont, and prove that the two are strongly related.

1. Introduction

Interaction nets (Lafont, 1990) are a model of distributed deterministic computation.
Based on graph-rewriting, they can be seen as a generalization of multiplicative linear
logic proof-nets (Girard, 1987b; Danos and Regnier, 1989; Lafont, 1995).

Interaction nets are interesting for several reasons:

— They are highly expressive: Turing machines, cellular automata, and a number of
word or term rewriting systems can all be seen as special instances of interaction
nets. By this we mean more than just the existence of some (maybe impractical)
encoding: in many cases, interaction nets are able to “implement” a computational
model preserving its fundamental properties (like sequentiality, parallelism, complex-
ity, etc.). Two interesting examples of such translations (Turing machines and cellular
automata) are given by Lafont (Lafont, 1997).

— They have been shown to be the “true” syntax underlying Girard’s Geometry of
Interaction (Girard, 1989; Gonthier et al., 1992). This is potentially of great theo-
retical interest, since the geometry of interaction is a semantics which attempts to
give a mathematical meaning to the execution of a program, rather than just to its
final result; therefore, it may offer a powerful instrument to study the dynamics of
computation, like its complexity, etc.

— From a more applicative point of view, they can be seen as a programming paradigm,



Damiano Mazza 2

and can be turned into a practical (typed or untyped) programming language,
in which important properties (like deadlock-freeness) are automatically checked
through similar techniques to those used in linear logic (i.e., correctness criteria (La-
font, 1990)).

Among all interaction net systems, the interaction combinators (Lafont, 1997) stand
out as particularly interesting, because they are universal, in the sense that all other
interaction net systems can be “compiled” in them; again, this compilation process pre-
serves the basic properties of parallelism and complexity of the original system.

As a consequence, the interaction combinators can be seen as a computational model of
its own, combining in some sense the good properties of Turing machines (local execution,
transitions of elementary complexity, strong determinism) with those of the λ-calculus
(higher-order functional programming, possibility of “parallelizing” the execution).

From this it would appear that studying a denotational semantics for the interaction
combinators may be, at least in principle, as interesting as studying the denotational
semantics of the λ-calculus. And yet to this day there have been very few efforts in this
direction; the only work dealing directly with the semantics of the interaction combi-
nators is Lafont’s original paper, in which a path semantics for nets of combinators is
introduced, and an interpretation in terms of stack automata is given. Another contri-
bution of semantical flavor is that of Maribel Fernández and Ian Mackie (Fernández and
Mackie, 2003), in which the fundamental operational equivalences for the interaction
combinators are obtained as an application of more general results.

Our work aims precisely at deepening the semantical study of the interaction combi-
nators. In a previous paper (Mazza, 2006), we have analyzed the notion of observational
equivalence for nets of combinators. A congruence analogous to βη-equivalence is de-
fined, and an internal separation result similar to Böhm’s Theorem is proved for it. This
paper takes this result as a basis for developing a denotational semantics, i.e., we find a
mathematical structure in which βη-equivalence becomes an equality.

More precisely, our semantics is inspired by the relational semantics for linear logic:
nets are interpreted as subsets of a certain domain D, called interaction sets, which do not
need to have any particular structure apart from the existence of two bijections between
D ×D and D itself, verifying a certain condition. As expected, this semantics is proved
to be injective with respect to βη-equivalence, i.e., two nets are βη-equivalent if and only
if they have the same semantical interpretation. Moreover, we prove a full-completeness
result with respect to a certain class of subsets, called balanced, which is reminiscent of
a similar result proved by Michele Pagani for multiplicative proof-nets (Pagani, 2006).

We also consider interaction sets with a minimum of algebraic structure, namely that
of a monoid. These structures, called interaction monoids, have the property of naturally
inducing an algebraic semantics for the combinators, which is a model of the geometry
of interaction described by Lafont. In this semantics, a net µ is interpreted as a pair
of monoid endomorphisms (u, σ), where σ = 0 (the everywhere-zero endomorphism)
means that µ is in normal form. In case σ 6= 0, and if µ does have a normal form, the
endomorphism interpreting it can be computed by means of Girard’s execution formula
Ex(u, σ).
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The denotational and algebraic semantics are tightly connected to each other: we prove
in fact that, if µ is a net admitting a normal form, given (u, σ), the denotational semantics
of µ is equal to the submonoid of the fixpoints of Ex(u, σ); conversely, the denotational
semantics of µ defines the endomorphism interpreting its normal form.

There is an important technical point which must be clarified though: the semantics we
discuss here does not deal with the interaction combinators, but with a slightly different
variant, which we call the symmetric combinators. This interaction net system, also
introduced by Lafont (Lafont, 1997), is not universal in the same sense as the interaction
combinators, but is just as expressive. In particular, every application of the interaction
combinators found so far (for instance Mackie and Pinto’s encoding of linear logic and
the λ-calculus (Mackie and Pinto, 2002)) can be reformulated with virtually no change
using the symmetric combinators. Of course, our work mentioned above on observational
equivalence also applies mutatis mutandi to this system.

By the way, the symmetric combinators are tightly connected to the directed combina-
tors (Lafont, 1997), which are an extension of multiplicative linear logic proof-structures,
and may therefore have interesting logical properties.

Contents of the paper. Section 2 contains the introductory material necessary to develop
the rest of the paper. The exposition is as self-contained as possible, so even a reader
completely unfamiliar with interaction nets should be able to follow the technical con-
tents. In particular, in Sect. 2.4 we give an explicit proof of the expressiveness of the
symmetric combinators, by encoding the SK combinators in them, and in Sect. 2.5 we
briefly recall the main results of the above mentioned paper (Mazza, 2006), which we use
later in one of our proofs.

Section 3 is the heart of the paper, and contains the definition of our denotational
semantics, together with the injectivity and full completeness proofs. In Sect. 4 we in-
troduce interaction monoids, and develop the algebraic semantics described in Lafont’s
original paper, proving the relationship between this and our denotational semantics.

Section 5 concludes the paper with a discussion on the technical reasons behind our
choice of the symmetric combinators instead of the “standard” interaction combinators,
and gives some hints on future work.

2. The symmetric interaction combinators

2.1. Cells, wires, nets

The symmetric interaction combinators, or, more simply, the symmetric combinators, are
the three following cells:

δ ε ζ

Each cell has a number of ports; δ and ζ have three, ε has only one. The fundamental
property of cells is that exactly one of their ports is principal (drawn at the bottom in
the above graphical representation), the others being auxiliary.
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The auxiliary ports of the two binary combinators are ordered; to distinguish them,
we call one the left port and the other the right port. Of course it is arbitrary which one
is “left” and which one is “right”, as long as the convention is set once and for all. In this
paper, we use this terminology in reference to the picture above: when cells are drawn
like this, left ports are actually on the left, and right ports actually on the right. Notice
however that if a cell is drawn “upside-down” with respect to the above representation,
its left port will be on the right of the picture, and vice versa.

Ports may be used to plug cells† together by means of wires to form nets, as in the
following example:

δ

δ ζ ζ

ζ

ζ

δ

ε

ε

ε ε

Wires can have one or both of their extremities not connected to any cell, in which case
the net has a free port, principal or auxiliary (or neither) depending on the nature of
the port of the cell connected to the other extremity of the wire. The net above has for
example 7 free ports, of which 1 is principal and 4 are auxiliary. The free ports of a net
are referred to as its interface. The set of all ports of all cells contained in a net µ, with
the addition of its free ports, is denoted Ports(µ).

2.2. Interaction rules

The distinction between principal and auxiliary ports comes into play when defining
the dynamics of nets. As a matter of fact, when two cells are connected through their
principal ports, they form an active pair, and they may be replaced by another subnet
according to the appropriate interaction rules.

There are six interaction rules, one for each possible active pair. Interaction rules are
divided into two groups: the annihilations, describing what happens when two cells of
the same kind form an active pair, and the commutations, describing what happens if
the active pair is composed of two cells of different kinds.

If we put α ∈ {δ, ζ}, the six rules can be condensed into four basic schemes: the
annihilations

→
ε

ε

→

α

α

† Here, and all throughout the rest of the paper, we shall make systematic confusion between cells and
occurrences of cells.
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and the commutations

→
ε

α

ε ε→

ζ

ζ ζ

δ δ

δ

When a net µ′ is obtained from µ after the application of one of the above rules, we say
that µ reduces in one step to µ′, and we write µ → µ′. We can then define the reduction
relation →∗ as the reflexive-transitive closure of →. We write µ 'β µ′ iff there exists µ′′

such that µ →∗ µ′′ and µ′ →∗ µ′′.
Notice that interaction rules are purely local; if we add to this the fact that cells have

exactly one principal port, we immediately obtain

Proposition 2.1 (Strong confluence). The relation → is confluent, i.e., if µ, µ1, µ2

are three nets such that µ → µ1 and µ → µ2, then there exists µ′ such that µ1 → µ′ and
µ2 → µ′.

Proposition 2.1 means that the reduction process, i.e., the relation →∗, is strongly con-
fluent. Confluence implies that 'β is an equivalence relation, and that the system is
deterministic in the sense that each net has at most one normal form. Strong confluence
reinforces this determinism, because it implies that also the computation is unique, up
to permutation of rules.

We remark here a substantial difference with respect to the λ-calculus, which is the
absence of a meaningful concept of strategy, at least as far as the efficiency of reduction
is concerned. All reductions leading from a net to its normal form have the same length
and require the same work; in particular, if a net is normalizable, then it is strongly so.

2.3. Basic nets

Vicious circles and cut-free nets. A net may contain configurations which cannot be
removed through interaction, like

ζ

ζ

ζ

ζ

in which clearly no cell can interact first (there is a sort of deadlock). The following case
is yet simpler:
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Deadlocked configurations like those above are called vicious circles.

Definition 2.1 (Straight path). Let µ be a net, let i, j ∈ Ports(µ), and let p be a path
from i to j in the graph-theoretical sense. We say that p is straight iff whenever p enters
a cell through one of its auxiliary ports, it exits it by its principal port, and whenever p

enters a cell through its principal port, it exits it by one of its auxiliary ports.

Notice that the last requirement implies that a straight path can never “bounce back”
out of an ε cell.

Definition 2.2 (Vicious circle). A vicious circle is a cyclic straight path never crossing
two principal ports in a row.

A net containing no active pair and no vicious circle is said to be cut-free (or reduced
in Lafont’s terminology). A net admitting a cut-free form through reduction (necessarily
unique by confluence) is said to be total.

Cut-free nets are the “true” normal forms of the reduction; they can be seen as the
final result of a computation. On the other hand, non-total nets represent error-bound
computations, either diverging or leading to a deadlock.

Usually, when one translates classical computational models (e.g. Turing machines, the
λ-calculus, etc.) into the interaction combinators (or more genrally into interaction nets),
the encoding is such that vicious circles never arise through reduction. An example is the
encoding of the SK-combinators we give in Sect. 2.4. The reader acquainted to linear
logic will see that vicious circles are a legacy of proof-structures: incorrect proof-structures
may reduce to nets containing cuts which are not reducible according to the standard
cut-elimination procedure (for example an axiom whose conclusions are premises of a cut
rule). This is indeed the reason behind our “cut-free” terminology.

Wirings. A net containing no cells but just wires will be called a wiring. We shall repre-
sent the generic wiring as

ω

. . .

The following is an example of wiring:

We also allow the free ports of a wiring to belong to ε cells, in which case we speak of
an ε-wiring and we use the notation ω̃. The following is an example of ε-wiring:

ε ε
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Trees. Trees are defined inductively as follows. The wiring

is a tree with one leaf (it is arbitrary which of the two extremities is the root and which
is the leaf). If τ1 and τ2 are two trees with resp. n1 and n2 leaves, then we can define a
tree τ with n1 + n2 leaves as

τ

τ1 τ2

α

=

. . .

. . . . . .

where α ∈ {δ, ζ}.
It is not hard to verify that any cut-free net ν with n free ports can be decomposed in

terms of trees and ε-wirings as follows:

ω̃

τ1 τn
. . .

. . . . . .

. . .

ν =

Principal nets, tests, packages. A principal net of arity n is either a single wire (in which
case n = 1), or a cut-free net with n free auxiliary ports and 1 free principal port. If
n = 0 (resp. n = 1), we say that the net is a package (resp. a test). Principal nets can
be seen as “compound” cells, and will be drawn just like ordinary cells.

Notice that trees are special examples of principal nets. A particular family of principal
nets of arity n ≥ 0, the members of which are denoted Zn, and which are trees for n ≥ 1,
is defined as follows:

=Z0 ε

Zn

ζ

. . .

Zn+1

. . .

=Z1 =

The reader can check that Zn trees have the following annihilation property:

Zn

→∗

. . .

. . .

. . .

. . .

Zn
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2.4. Expressive power

In spite of their great simplicity, the symmetric combinators are Turing-complete. This
is a consequence of the following more general result:

Theorem 2.2 (Universality, Lafont (Lafont, 1997)). Any polarized interaction net
system can be translated into the symmetric combinators.

The symmetric combinators are a particular example of non polarized interaction net
system; their polarized version is what Lafont calls the directed combinators (Lafont,
1997).

The definition of generic and polarized interaction net systems, and of translation from
an interaction net system to another are beyond the scope of this paper. To understand
the amplitude of Theorem 2.2, it is enough for the reader to know that Turing machines,
one-dimensional cellular automata, the SK combinators, linear logic proof-nets and the
λ-calculus can all be seen as polarized interaction net systems (for the latter two, see for
example Lafont’s survey (Lafont, 1995), the work of Ian Mackie and Jorge Pinto (Mackie
and Pinto, 2002), and the work of Sylvain Lippi (Lippi, 2002)).

Even though Theorem 2.2 will not be proved here, and its meaning left to the intuition
of the reader, we shall nevertheless give a direct proof of the expressive power of the
symmetric combinators. As a matter of fact, in the remaining part of the section we shall
see how the call-by-name SK combinators can be encoded inside this system.

First of all, let us introduce a fundamental construction due to Lafont (Lafont, 1997).
Take a generic package π containing n δ cells; we can always write π as

δ δ
. . .

π′

=π

where π′ contains no δ cell. We want to “abstract” the δ cells contained in π, forming a
package !π which does not contain δ cells, but from which π can be recovered.

Using the notations introduced above, we define

Zn Zn

Zn

. . .

. . . . . .

. . .

π′

=∂π
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Then, we put

Z4

δ

!π

∂π

= =
Z4

D

The reader can check that we have

!π

D

π→∗

The package !π is called the code of π, and the principal net D is called the decoder.

The following lemma is not hard to prove:

Lemma 2.3 (Erasure and duplication). Let π be a package, and π′ a package con-
taining no δ cells. Then, we have

π′

π′ π′→∗

δ

π

ε

→∗

As a consequence, a package of the form !π can be erased and duplicated.

Now we build the two packages

Z3

D ε

=K

and
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S

δ

Z4

Z4

Z4

ζ

ζ

ζ

D

=

and we define the translation [·] from SK-terms to nets:

[K] = K [S] = S [xy]

[x]

![y]

ζ=

If x, y are SK-terms, we write x Â y if x reduces to y through call-by-name reduction.
For example, K(KSK)S Â KSK, but K(KSK)S 6Â KSS.

The translation defined above has the following property:

Theorem 2.4. Let x, y be SK-terms. Then, x Â∗ y implies [x] →∗ [y].

Proof. It is enough to check that, for all terms x, y, z,

[Kxy] →∗ [x]

and

[Sxyz] →∗ [xz(yz)].

The first verification is easy and is left to the reader; Lemma 2.3 is needed for erasing.
Here we shall concentrate on the second, which is more complex.

We have
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ζ

ζ

ζ

=
Z4

![x] ![y] ![z]

S

![x] ![y] ![z]

S

=[Sxyz]

The Z4 tree annihilates with the Z4 tree contained in S (see p. 7), and we obtain

δ

Z4

Z4

ζ

ζ

ζ

D

![z]

![x]

![y]

Now the decoder extracts [x] from its code, and by Lemma 2.3 the code of [z] is duplicated,
so we get
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Z4

![z]

![z]

[x]

Z4

ζ

ζ

ζ

![y]

At this point, the “topmost” Z4 tree annihilates with the Z4 tree inside ![y], and we are
left with

Z4

![z]

![z]

[x]

ζ

ζ

ζ

∂[y]

Remember that ![z] does not contain any δ cell; this means that

![z]

ζ∂[yz]

∂[y]

=

Therefore, the last net obtained is indeed equal to [xz(yz)].



A Denotational Semantics for theSymmetric Interaction Combinators 13

2.5. Observational equivalence

In a recent work (Mazza, 2006), we have shown that there is a notion of observational
equivalence for the symmetric combinators‡ which can be defined directly on the syntax,
and which is maximal on total nets with at least one free port.

We define the relation 'η as the reflexive, transitive, and contextual closure of the
following equations:

ζ

ζ ζδ δ

δ

'η

α

'η 'η

ε ε

α
ε

α

As usual, α ∈ {δ, ζ}. The above rules were already known to Lafont (top-right and
bottom (Lafont, 1997)) and to Fernández and Mackie (top-left (Fernández and Mackie,
2003)). What is interesting is that they define an equivalence relation which is much like
η-equivalence in the λ-calculus (this is the reason behind our notation).

We define 'βη as the transitive closure of 'β ∪ 'η. If θ is a test and π a package,
we write θ[π] for the net with one free port obtained by plugging π into the only free
principal port of θ (or to any free port if θ is a wire).

In the following, ε stands for the package consisting of the sole ε combinator, while δ

stands for the the package containing one δ cell whose auxiliary ports are connected by
a wire.

Theorem 2.5 (Internal separation (Mazza, 2006)). Let π, π′ be two packages such
that π 6'βη π′. Then, there exists a test θ such that θ[π] →∗ ε and θ[π′] →∗ δ, or vice
versa.

The above result, similar to Böhm’s Theorem for the λ-calculus, is of fundamental impor-
tance for the theory of observational equivalence. In particular, it implies the following:

Proposition 2.6 (Maximality). 'βη is the greatest non-trivial congruence on total

‡ Actually our results were originally formulated for the interaction combinators, but they apply without
any problem to the symmetric combinators.



Damiano Mazza 14

nets respecting reduction, i.e., if ≈ is a congruence on total nets such that 'β⊆≈, then
either ≈⊆'βη, or µ ≈ µ′ for all total nets µ, µ′ with the same number of free ports.

Proof. Suppose that ≈6⊆'βη. This means that there exist two total nets µ, µ′, both
with n ≥ 1 free ports, such that µ ≈ µ′ but µ 6'βη µ′. First of all, take any tree τ with
n leaves and build the packages π, π′ by “closing” resp. the cut-free form of µ and µ′.
Since ≈ is a congruence, we have π ≈ π′; moreover, it can be proved that just adding
a tree “below” µ and µ′ does not alter their differences with respect to 'βη, so we still
have π 6'βη π′. Therefore, Theorem 2.5 applies, giving us a test θ such that, for example,
θ[π] →∗ ε and θ[π′] →∗ δ. Since ≈ is a congruence, and since 'β⊆≈, ε ≈ δ. But then
consider the principal net

Zm Zm
. . .. . .

ν

δ

=ν′

where ν is any total net with m ≥ 1 free ports. If we plug ε into the only free principal
port of ν′ we obtain a net which is β-equivalent to a net consisting of m ε cells, which we
call εm; on the other hand, if we do the same operation with the package δ, we obtain
a net β-equivalent to ν. Hence, again by the fact that ≈ is a congruence containing 'β ,
for any total ν with m ≥ 1 free ports, ν ≈ εm; by transitivity of ≈, we get the thesis.

The results of this section will guide us in our search for a denotational semantics for the
symmetric combinators. In fact, once a good observational equivalence like 'βη is found,
the goal of denotational semantics can be seen as the individuation of a mathematical
structure in which 'βη becomes an equality.

3. Denotational semantics

As already recalled, interaction nets are a generalization of multiplicative proof-nets.
Thus, in seeking a denotational semantics for the symmetric combinators, it seems natural
to draw inspiration from linear logic.

The simplest denotational semantics of linear logic is the relational semantics. To our
knowledge, relational semantics has not been formally introduced in any particular work.
The best way to see it is perhaps as “coherent spaces without coherence”; it has been
considered by many as the starting point for building other denotational semantics of
linear logic (semantics = relational semantics + structure), as for example in the work
of Thomas Ehrhard (Ehrhard, 2005). In the multiplicative case, the relational semantics
is obtained from coherent spaces by simply ignoring the coherence relation: a formula A

is interpreted by a set |A|, and a proof of A by a subset of |A|; no particular structure is
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attached or required on |A|. In categorical terms, the denotational interpretation takes
place in the category Rel of sets and relations.

The denotational interpretation of a sequent calculus proof is, as usual, defined by
induction. More interestingly, the interpretation can also be defined directly on proof-
structures (so, in particular, on proof-nets) by means of experiments (Girard, 1987a). This
will be our main source of inspiration, as a sequent calculus is obviously not available in
our framework.

3.1. Companion bijections

The relational semantics of linear logic is typed; in particular, the two multiplicative
connectives (which are the only ones of interest to us) are interpreted by the cartesian
product : if the formulas A and B are interpreted resp. by |A| and |B|, then A ⊗ B and
A�B are interpreted by |A|×|B|. Our nets are not typed, which means that if we see our
binary combinators as multiplicative rules, the natural thing to do would be to consider
a set D in bijection with D ×D, i.e., any infinite set.

The presence of two combinators actually requires two bijections, and the δζ commu-
tation inspires the following:

Definition 3.1 (Companion bijections). Let D be an infinite set and

〈·, ·〉, [·, ·] : D ×D → D
two bijections. 〈·, ·〉 and [·, ·] are said to be companions iff, for all a, b, c, d ∈ D,

〈[a, b], [c, d]〉 = [〈a, c〉, 〈b, d〉].
Companion bijections do exist, as proved by the following example. Let A be any

infinite set, and let β : A × A → A be a bijection. We denote by S(A) the set of all
infinite sequences of elements of A. Then we define two functions from S(A)× S(A) to
S(A) as follows:

〈d, e〉n =
{

dk if n = 2k

ek if n = 2k + 1

[d, e]n = β(dn, en)

In other words, 〈·, ·〉 takes two sequences and builds a new one by interleaving them,
while [·, ·] simply superposes the two sequences using the bijection β. The two functions
are clearly bijections; moreover, given four sequences a, b, c, d, for even indexes we get

〈[a, b], [c, d]〉2k = [a, b]k = β(ak, bk) = β(〈a, c〉2k, 〈b, d〉2k) = [〈a, c〉, 〈b, d〉]2k,

and similarly for odd indexes, which proves that the two bijections are indeed companions.
If A is a denumerably infinite pointed set, whose distinguished element we call zero, the

same example can be built on Φ(A), the set of infinite sequences of elements of A which
are almost everywhere zero. So companion bijections exist on countable sets as well, in
particular on Φ(N), which by the fundamental theorem of arithmetics is isomorphic (as
a monoid) to N∗, the strictly positive integers.
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3.2. Experiments and interpretation

The previous section suggests the following definition:

Definition 3.2 (Interaction set). An interaction set is an infinite pointed set D (the
distinguished element being denoted by 0), admitting two companion bijections

〈·, ·〉, [·, ·] : D ×D → D
such that 〈0, 0〉 = [0, 0] = 0.

The examples above show that interaction sets exist; for instance, in Φ(N), 0 is the
everywhere-zero sequence.

In the following, D will be an interaction set.

Definition 3.3 (Experiment). Let µ be a net. An experiment on µ is a function
e : Ports(µ) → D such that:

(a) if i, j ∈ Ports(µ) are connected by a wire, then e(i) = e(j);
(b) if i, j, k ∈ Ports(µ) are resp. the left auxiliary, right auxiliary, and principal port of a

δ cell of µ, then e(k) = 〈e(i), e(j)〉;
(c) if i, j, k ∈ Ports(µ) are resp. the left auxiliary, right auxiliary, and principal port of a

ζ cell of µ, then e(k) = [e(i), e(j)];
(d) if i ∈ Ports(µ) is the principal port of an ε cell, then e(i) = 0.

If k1, . . . , kn are the free ports of µ, with n ≥ 1, the tuple (e(k1), . . . , e(kn)) is called the
result of the experiment and is denoted by |e|.

In the following, we write Dn for D × · · · × D n times.

Definition 3.4 (Interpretation). Let µ be a net with n ≥ 1 free ports. The interpre-
tation of µ in D, written JµK, is defined to be the subset of Dn containing the results of
all possible experiments on µ:

JµK = {|e| ; e experiment on µ}.
We can give a few examples to see some concrete applications of the above definition.

Consider the package ε consisting of a single ε cell. There is only one possible experiment
on it, which assigns 0 to the principal port of the ε cell and to the free port of the package,
so JεK = {0}. This is the smallest possible interpretation a net can receive; as a matter
of fact, the interpretation of a net is always a pointed set, i.e., it is never empty. This
is an immediate consequence of the definition of experiment and of the fact that 0 is a
fixpoint of both bijections:

Proposition 3.1. For all µ with at least one free port, (0, . . . , 0) ∈ JµK.

Proof. The function assigning 0 to all ports of µ is an experiment.

If we take the package δ consisting of a single δ cell whose auxiliary ports are connected
by a wire, we clearly have that all possible experiments are of the following form:
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δ

d d

〈d, d〉

〈d, d〉

so JδK = {〈d, d〉 ; d ∈ D}. Just as an axiom in linear logic, the net ω with 2 free
ports consisting of a single wire is interpreted by the diagonal relation in D × D:
JωK = {(d, d) ; d ∈ D}. The following is a more involved example:

ζ ζ δ

ε ε〈a, a〉
0 0

[a, 0]

[0, 〈a, a〉]
[〈a, a〉, 0] = 〈[a, 0], [a, 0]〉

In the above picture, a label d on a wire means that the two ports connected by the wire
have both been assigned the element d by the experiment; a is a generic element of D.
We therefore see that, if we call µ the above net, we have JµK = {[0, 〈a, a〉] ; a ∈ D}. The
reader can check that this is also the interpretation of the following net

δ

ζ

ε

which is the cut-free of form of µ.
As a matter of fact, the interpretation is a denotational semantics for the symmetric

combinators, i.e., it is preserved under reduction. Additionally, it also models 'η.

Lemma 3.2 (Stability under reduction). Let µ, µ′ be two nets with at least one free
port. Then, µ → µ′ implies JµK = Jµ′K.

Proof. We need to show that for any experiment e on µ, there exists an experiment
e′ on µ′ yielding the same result, and vice-versa. Since the rewriting is local, it actually
suffices to show that, for all reduction rules, the assignment given by the experiment e

on the interface of the left member of the rule can be reproduced by e′ on the interface
of the right member, and vice-versa; at this point e and e′ can be assumed to be equal
everywhere else, which guarantees that the results are the same.

The case of the εε annihilation is trivial: e′ is just e restricted to the ports which do
not disappear after the application of the rule.

The δδ and ζζ annihilations are structurally identical, so we shall only consider the
first one:
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b′ a′

a b

〈a, b〉
δ

δ

a

a′b′

b

→
〈a′, b′〉

Here, a, b, a′, b′ are generic elements of D. The assignment on the left hand side must
satisfy 〈a, b〉 = 〈a′, b′〉, which by the injectivity of 〈·, ·〉 implies a = a′ and b = b′, therefore
the assignment on the right hand side is correct. The converse is trivial.

For what concerns the commutations, the δε and ζε commutations are again struc-
turally identical, so we only need to consider the first one:

b a

δ

〈a, b〉

b a

0
→ ε ε

ε

Again, by injectivity of 〈·, ·〉, the requirement on the left hand side that 〈a, b〉 = 0 implies
a = 0 and b = 0, so the assignment on the right hand side is correct. The converse holds
because of the hypothesis that 〈0, 0〉 = 0.

On the other hand, for the δζ commutation, we get

ba

b′ a′

δ δ

ζ ζ

a1a2

a′1 a′2b′1 b′2

b2 b1

a b

〈a, b〉
δ

b′ a′

ζ

→
[a′, b′]

In the left hand side we must have 〈a, b〉 = [a′, b′]. By surjectivity of 〈·, ·〉 and [·, ·], there
exist a1, a2, a

′
1, a

′
2, b1, b2, b

′
1, b

′
2 ∈ D such that a = [a1, a2], b = [b1, b2], a′ = 〈a′1, a′2〉, and

b′ = 〈b′1, b′2〉. The above equality and the fact that 〈·, ·〉 and [·, ·] are companions imply
[〈a′1, a′2〉, 〈b′1, b′2〉] = [〈a1, b1〉, 〈a2, b2〉], which by injectivity of 〈·, ·〉 and [·, ·] in turn implies
a′1 = a1, a′2 = b1, b′1 = a2, and b′2 = b2. Therefore, the assignment defined above for the
right hand side of the rule is correct. Conversely, if we know from the right hand side
that a′1 = a1 = c1, a′2 = b1 = c2, b′1 = a2 = c3, and b′2 = b2 = c4, we have a = [c1, c3],
b = [c2, c4], a′ = 〈c1, c2〉, and b′ = [c3, c4], which means that 〈a, b〉 = 〈[c1, c3], [c2, c4]〉
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and [a′, b′] = [〈c1, c2〉, 〈c3, c4〉]. But since 〈·, ·〉 and [·, ·] are companions, this implies that
〈a, b〉 = [a′, b′], so the assignment on the left hand side is correct.

In the following, if µ is a net with n free ports, we call a context for µ any net C with at
least n+1 free ports, n of which are in bijection with the free ports of µ; the application
of the context to µ, written C[µ], is the net obtained by plugging each free port of µ to
the corresponding free port of C.

Lemma 3.3 (Congruence). Let µ, µ′ be two nets with n free ports, and let C be a
context for µ, µ′. Then, JµK = Jµ′K implies JC[µ]K = JC[µ′]K.

Proof. An experiment on C[µ] must be the union of an experiment e on µ and an
experiment f on C, such that, if i and j are two free ports of resp. µ and C which are
connected in C[µ], e(i) = f(j). The same holds for C[µ′], so, if m is the number of free
ports of C[µ] and C[µ′], we have

JC[µ]K = {d ∈ Dm ; (d, c) ∈ JCK and c ∈ JµK}

JC[µ′]K = {d′ ∈ Dm ; (d′, c) ∈ JCK and c ∈ Jµ′K},
from which we clearly see that if JµK = Jµ′K, then JC[µ]K = JC[µ′]K.

Lemma 3.4 (Extensionality). Let µ, µ′ be two nets with at least one free port. Then,
µ 'η µ′ implies JµK = Jµ′K.

Proof. The proof follows exactly the same argument used for Lemma 3.2. We start by
considering the η-expansion for δ, the corresponding rule involving ζ being structurally
identical:

δ

δ

a1a2

a′

a a

a′

'η
a′1 a′2

The left hand side imposes a′1 = a1 and a′2 = a2, which implies a = a′. Conversely, the
right hand side imposes a′1 = a1; by surjectivity of 〈·, ·〉, a1 and a2 such that 〈a1, a2〉 = a

exist, so the assignment on the left hand side is correct.
The cases of the δε and ζε commutations are trivial, and rest upon the fact that

〈0, 0〉 = [0, 0] = 0.
The case of the δζ commutation is also trivial:
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δ

δ δ

ζ

ζ ζ

'η

b c da b c da

〈[a, b], [c, d]〉 [〈a, c〉, 〈b, d〉]

The two experiments are the same thanks to the fact that 〈·, ·〉 and [·, ·] are companions.

Lemmas 3.2 and 3.3 together prove that J·K is a denotational semantics of 'β : it is
preserved under reduction, and it is a congruence. Lemma 3.4 proves that the semantics
actually models 'βη. Moreover, the examples given at p. 16 show that there exist two
nets µ, µ′ such that JµK 6= Jµ′K, so the semantics is non-trivial.

The fact that µ 'βη µ′ implies JµK = Jµ′K holds for any µ, µ′; if we restrict to total
nets, then the converse holds as well.

Theorem 3.5 (Injectivity on total nets). Let µ, µ′ be two total nets with at least
one free port. Then, µ 'βη µ′ iff JµK = Jµ′K.

Proof. As already said, the implication µ 'βη µ′ ⇒ JµK = Jµ′K is a consequence of
Lemmas 3.2 and 3.4. For the converse, which is the actual injectivity property, we can
restrict to packages, since:

— total nets containing active pairs can be reduced and their cut-free form considered;
— cut-free nets with more than one free port can be “closed” by means of any fixed tree,

and the argument below can thus be easily generalized.

So take two packages π, π′ such that π 6'βη π′. By Theorem 2.5, there exists a test
θ such that θ[π] →∗ ε and θ[π′] →∗ δ (or viceversa, but we do not lose generality in
assuming this situation), where ε is the package consisting of a single ε cell and δ is
the package consisting of a single δ cell with its auxiliary ports connected by a wire. By
Lemma 3.2, and by what we have seen at p. 16, we have

Jθ[π]K = {0}
Jθ[π′]K = {〈d, d〉 ; d ∈ D}.

Since D is infinite, clearly JµK 6= Jµ′K, which by Lemma 3.3 implies JπK 6= Jπ′K.

One may wonder whether injectivity with respect to 'βη can be extended to non-
total nets. The answer is in general negative, as the following example shows. Let Φ(N)
be the space of almost-everywhere-null sequences of natural numbers. The distinguished
element 0 is the everywhere-zero sequence. We know that Φ(N) admits the two companion



A Denotational Semantics for theSymmetric Interaction Combinators 21

bijections defined in Sect. 3.1; in particular, we recall the definition of 〈·, ·〉:

〈x, y〉n =
{

xk if n = 2k

yk if n = 2k + 1

The result below is not hard to verify:

Lemma 3.6. 〈x, y〉 = x iff y = 0 and x is a sequence such that, for all n ≥ 1, xn = 0.

Now consider the following non-total net µ:

δx

y

The labels indicate that the generic experiment on µ in Φ(N) assigns the sequence x

to the left auxiliary and principal ports of the δ cell, and the sequence y to the right
auxiliary port of the δ cell and to the free port of µ. Therefore, we have

JµK = {y ∈ Φ(N) ; ∃x ∈ Φ(N).〈x, y〉 = x}.

But Lemma 3.6 proves that the only possible such y is 0, so JµK = {0} = JεK, where ε is
the package consisting of the sole ε combinator. Now, both µ and ε do not contain active
pairs, hence the only hope of rewriting one into the other is through η-equivalence. But
a simple inspection of the η-rules of p. 13 reveals that the presence of ε cells is preserved
by 'η: no rule can produce a net containing no ε cell from a net containing one, and no
rule can add ε cells if there are none. Therefore, µ 6'βη ε, and yet JµK = JεK.

By the way, we remark that identifying the net µ above with the ε combinator is
observationally sound. Indeed, if we define a blind net as a net such that all of its free
ports are auxiliary and will never become principal through reduction, then it is consistent
to identify any blind net with n free ports to any net βη-equivalent to the following:

ε ε

n

. . .

As a matter of fact, they interact in the same way. In particular, this means that Propo-
sition 2.6 does not hold for generic nets.

The reader may wonder whether this failure of injectivity goes beyond the particular
model chosen above, and actually holds for any interaction set. Although at present we
are not able to answer the question, we tend to believe that this is indeed the case, and
we actually see this phenomenon as quite natural, considering the above remark about
observational equivalence. Indeed, the ε combinator and the deadlocked net used in the
counter-example can be seen as the equivalents of two unsolvable terms in the λ-calculus:
like Ω and λx.Ω, they are not βη-equivalent, but are identified by any sensible model.
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3.3. Full completeness

If D is an interaction set, even denumerable, for obvious resons of cardinality not every
subset of Dn is the interpretation of some net. In this section we characterize those that
are interpretations of total nets.

In the following, D is a generic interaction set.

Definition 3.5 (Bracket expression). Let x range over a denumerable set of variables.
A simple bracket expression b is a syntactical expression belonging to the following gram-
mar:

b ::= x | 0 | 〈b, b〉 | [b, b]

A bracket expression is a tuple of simple bracket expressions.

We denote by var(b) the set of variables occurring in the simple bracket expression b. We
define as usual the substitution of a variable y in place of x in b, denoted by b[y/x]. If
x ∈ var(b) and z 6∈ var(b), then we say that b and b[x/z] are α-equivalent.

Similarly, if B = (b1, . . . , bn) is a bracket expression, we define
var(B) = var(b1) ∪ · · · ∪ var(bn), i.e., variables are shared by the simple expressions
in the tuple, and substitution is performed on the whole expression; α-equivalence is
trivially extended, and bracket expressions are always considered modulo α-equivalence.

If B is a bracket expression containing n simple expressions such that
var(B) ⊆ {x1, . . . , xm}, and if d1, . . . dm ∈ D, we can define an element
B{x1 := d1, . . . , xm := dm} of Dn in the obvious way: just assign each di to xi,
and compute the expression considering the symbols 0, 〈·, ·〉 and [·, ·] as resp. the
distinguished element and the two bijections of D. For example, suppose that d, e, f

are three elements of D such that f = [〈d, e〉, d]; then, if B = [〈x, y〉, x], we have
B{x := d, y := e} = f . In this way, each bracket expression B containing n simple
bracket expressions and a total of m variables defines a function from Dm to Dn. Because
of the obvious shortage of bracket expressions, the assignment cannot be surjective; it
is not injective either, as the expressions 0 and 〈0, 0〉 show (they both represent the
constant function 0).

In the following, occx(B) denotes the number of occurrences of the variable x in the
bracket expression B.

Definition 3.6 (Balanced bracket expression). A bracket expression B is balanced
iff, for any variable x, either occx(B) = 0 or occx(B) = 2. A function from Dm to Dn is
said to be balanced if it can be defined through a balanced bracket expression containing
n expressions using m variables. A set B ⊆ Dn is called balanced if it is the codomain of
a balanced function.

Theorem 3.7 (Full completeness). If µ is a total net with n ≥ 1 free ports, then JµK
is balanced. Conversely, if n ≥ 1, given a balanced set B ⊆ Dn, there exists a cut-free
net µ with n free ports such that JµK = B.

Proof. Since µ is total, we can consider its cut-free form ν. By Lemma 3.2, JµK = JνK;
now, if we remember that cut-free nets are trees of δ and ζ cells with wires and ε cells



A Denotational Semantics for theSymmetric Interaction Combinators 23

“on top”, it is clear that the first statement is a straight-forward consequence of the
definition of experiments.

For what concerns the converse, let B ⊆ Dn be balanced, and let B be the bracket
expression such that B is the codomain of B. Simple bracket expressions can obviously be
provided with a complexity measure ](·), which is the total number of binary syntactical
constructs used:

– ](x) = ](0) = 0;
– ](〈b1, b2〉) = ]([b1, b2]) = ](b1) + ](b2) + 1.

For an expression B = (b1, . . . , bn), we pose ](B) = ](b1) + · · ·+ ](bn).
We can then reason by induction on ](B). If ](B) = 0, knowing that B is balanced, we

can assume without loss of generality that B = (0, . . . , 0, x1, x1, . . . , xk, xk). It is easy to
see that if we interpret the net

. . .

k

ε ε

. . .

n′

(where n′ + k = n), we obtain exactly B.
If ](B) > 0, then we can assume without loss of generality that B = (〈b′1, b′′1〉, b2, . . . , bn)

or B = ([b′1, b
′′
1 ], b2, . . . , bn). In both cases, the bracket expression B′ = (b′1, b

′′
1 , b2, . . . , bn)

has measure strictly smaller than B, so the induction hypothesis applies, giving us a net
µ′ with n + 1 free ports such that Jµ′K is the codomain of B′. Clearly, adding a δ or a ζ

cell (according to the shape of B) to µ′ yields a net with n free ports µ such that JµK = B.

The above proof actually tells us that, for n ≥ 1, the balanced subsets of Dn are in
bijection with the cut-free nets with n free ports. As an example, take the balanced sets
induced by the expressions [0, 〈x, x〉] and ([0, x], 〈x, 0〉); they correspond to the following
two nets:

δ

ζ

ε ε ε

ζ δ

This is not surprising at all: a balanced expression is just a list of trees, the connections
between leaves being expressed as pairs of occurrences of the same variable. Therefore,
balanced expressions are nothing but an alternative, linear syntax for cut-free nets.

It must also be mentioned that this full completeness result is very similar to that
proved by Michele Pagani for multiplicative linear logic proof-nets (Pagani, 2006); as
a matter of fact, this strengthens the claim that the symmetric combinators are an
extension of multiplicative proof-structures, and may be deeply related to them.
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4. Algebraic semantics

In this section we develop an algebraic semantics for the symmetric combinators, in
the style of Girard’s Geometry of Interaction (GoI) (Girard, 1989), already sketched by
Lafont (Lafont, 1997). We do so in connection with the denotational semantics introduced
above, and prove that there is a strong link between the two.

4.1. Interaction monoids

Up to here, we have seen that any infinite set D can serve as the domain for the denota-
tional semantics of nets of symmetric combinators. We shall see that it may be of interest
to add some algebraic structure to D; the least we can require is that D is a monoid.

In the following, the composition u◦v of two monoid endomorphisms is denoted simply
uv.

Definition 4.1 (Interaction monoid). An interaction monoid is a commutative
monoid (M, +, 0) admitting eight endomorphisms c, c∗,d,d∗, f , f∗,g,g∗ such that the
functions 〈x, y〉 = c(x) + d(y) and [x, y] = f(x) + g(y) are companion isomorphisms
between M ⊕M and M , and c∗,d∗ and f∗,g∗ are their respective projections.

Proposition 4.1. A commutative monoid (M, +, 0) is an interaction monoid iff there
exist eight endomorphisms c, c∗,d,d∗, f , f∗,g,g∗ of M such that:

1 c∗c = d∗d = f∗f = g∗g = 1, where 1 is the identity on M ;
2 c∗d = d∗c = f∗g = g∗f = 0, where 0 is the everywhere-zero endomorphism on M ;
3 cc∗ + dd∗ = ff∗ + gg∗ = 1;
4 c, c∗,d,d∗ commute with f , f∗,g,g∗.

Proof. Let us first prove that Definition 4.1 implies the four statements above:

1 By definition, for every x ∈ M , c(x) = 〈x, 0〉, and by the hypothesis that c∗ is the
left projection of 〈·, ·〉, we obtain c∗c(x) = c∗(〈x, 0〉) = x. The same applies to the
other annihilations.

2 As above, for every x ∈ M we have d(x) = 〈0, x〉, from which we obtain c∗d(x) =
c∗(〈0, x〉) = 0. The same applies to the other annihilations.

3 From the surjectivity of 〈·, ·〉, given x ∈ M we know that there exist y, z ∈ M such
that x = 〈y, z〉. Then, we have

(cc∗ + dd∗)(x) = cc∗(x) + dd∗(x) = c(y) + d(z) = 〈y, z〉 = x.

The case ff∗ + gg∗ = 1 is identical.
4 To prove that c,d commute with f ,g simply consider that, by the companion hy-

pothesis, for all x ∈ M , 〈[x, 0], 0〉 = [〈x, 0〉, 0], from which we get cf(x) = fc(x), and
〈[0, x], 0〉 = [0, 〈x, 0〉], from which we obtain cg(x) = gc(x), and so on.
To prove that c,d commute to f∗,g∗ consider, given a generic x ∈ M , the (unique)
decomposition x = [y, z], so that

f∗c(x) = f∗cf(y) + f∗cg(z) = f∗fc(y) + f∗gc(z) = c(y) = cf∗(x),
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where we have used point 1 and 2 proved above. The other cases are handled similarly,
as also the commutations between f ,g and c∗,d∗.
To prove that c∗,d∗ commute to f∗,g∗, we consider the same decomposition above
for the generic x ∈ M , and we obtain

f∗c∗(x) = f∗c∗f(y) + f∗c∗g(z) = f∗fc∗(y) + f∗gc∗(z) = c∗(y) = c∗f∗(x),

and similarly for the other cases.
Assume now that the eight endomorphisms verify the four statements above. The fact

that the maps (x, y) 7→ c(x) + d(y) and (x, y) 7→ f(x) + g(y) are homomorphisms from
M ⊕M to M is obvious; we need to prove that they are bijective. We shall do it for the
first map, the second being structurally identical.

Suppose that, given x, x′, y, y′ ∈ M , c(x) + d(y) = c(x′) + d(y′); then, applying c∗

(resp. d∗) to both sides of the equation and using points 1 and 2, we get x = x′ (resp.
y = y′), which proves injectivity. For what concerns surjectivity, by point 3 for any
element x ∈ M there exist y, z ∈ M such that x = c(y) + d(z): just pose y = c∗(x)
and z = d∗(x). The fact that c∗,d∗ are the projections associated to this isomorphism
is trivial.

We are left to proving that the two isomorphisms are companions. If we pose 〈x, y〉 =
c(x) + d(y) and [x, y] = f(x) + g(y), using point 4 we have

〈[w, x], [y, z]〉 = cf(w) + cg(x) + df(y) + dg(z) =

fc(w) + fd(y) + gc(x) + gd(z) = [〈w, y〉, 〈x, z〉],
which completes the proof.

If (A, +, 0) is a commutative monoid, then the set S2(A) of all sequences of elements of
A indexed by pairs of non-negative integers is an example of interaction monoid. Addition
is defined pointwise, and the neutral element is the everywhere-zero sequence; the eight
endomorphisms are defined as follows:

c(x)m,n =
{

xk,n if m = 2k

0 if m = 2k + 1
c∗(x)m,n = x2m,n

d(x)m,n =
{

0 if m = 2k

xk,n if m = 2k + 1
d∗(x)m,n = x2m+1,n

f(x)m,n =
{

xm,k if n = 2k

0 if n = 2k + 1
f∗(x)m,n = xm,2n

g(x)m,n =
{

0 if n = 2k

xm,k if n = 2k + 1
g∗(x)m,n = xm,2n+1

from which it is not hard to check that points 1, 2, and 3 of Proposition 4.1 are satisfied.
For what concerns point 4, just notice that c, c∗,d,d∗ and f , f∗,g,g∗ act on separate
indexes, so all operations commute.

To better understand the example, observe that the two isomorphisms defined above
build a new sequence by interleaving two sequences; one of them interleaves them “hori-
zontally”, the other “vertically”. More precisely, our sequences being bidimensional, i.e.,
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“sequences of sequences”, in the first case we consider them as “sequences of columns”,
and interleave them horizontally; in the second case, we consider them as “sequences of
rows”, and interleave them vertically.

Notice that the same construction can be applied to almost-everywhere-null bidimen-
sional sequences; in case A is countable, this yields a countable interaction monoid.

Interaction monoids are clearly interaction sets (the distinguished element is the zero
of the monoid), so Definitions 3.3 and 3.4 can be applied just as they are, yielding
a semantics that interprets a net with n ≥ 1 free ports as a subset of Mn, where
Mn = M ⊕ · · · ⊕M n times.

Since we are considering monoids, it makes sense to add experiments pointwise, i.e.,
given a net µ and two experiments e1, e2 on µ over an interaction monoid M , we can
define the function e1 + e2 from Ports(µ) to M that associates to a port i the element
e1(i) + e2(i). One may wonder whether this yields another experiment; the answer is
indeed positive:

Lemma 4.2 (Additivity). Let µ be a net, and e1, e2 two experiments on µ over an
interaction monoid M . Then, e1 + e2 is an experiment.

Proof. The fact that e1+e2 respects conditions (a) and (d) of Definition 3.3 is obvious.
Conditions (b) and (c) are consequences of the fact that our companion bijections are
monoid isomorphisms. For example, in the case of a δ cell, whose auxiliary and principal
ports are resp. i, j, and k, we have

(e1 + e2)(k) = e1(k) + e2(k) = 〈e1(i), e1(j)〉+ 〈e2(i), e2(j)〉 =

= 〈e1(i) + e2(i), e1(j) + e2(j)〉 = 〈(e1 + e2)(i), (e1 + e2)(j)〉.
The case of a ζ cell is identical.

Therefore, if µ is a net with n ≥ 1 free ports, JµK is not just any subset of Mn, it is a
submonoid :

Corollary 4.3. Let µ be a net with n ≥ 1 free ports, and M an interaction monoid.
Then, the interpretation of µ in M is a submonoid of Mn.

Proof. The result follows from the Additivity Lemma 4.2 and Proposition 3.1.

4.2. The GoI semantics

Given an interaction monoid M , we shall now define a semantics which interprets a cut-
free net with n ≥ 1 free ports as an endomorphism of Mn = M ⊕ · · · ⊕M . This is just a
reformulation of what already done by Lafont (Lafont, 1997), so no proofs will be given
in this section.

In the following, we denote by W the sub-semiring (with unit) of End(M) generated
by c, c∗,d,d∗, f , f∗,g,g∗.

Definition 4.2 (Weight). Let M be an interaction monoid, µ a net, and p a straight
path of µ (see Definition 2.1. We define the weight of p in M , which is an element of W

and is denoted w(p), by induction on the length of p:
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– p contains just one port: w(p) = 1 (the identity endomorphism);
– p = p′ · i, and the ending port of p′ and i do not belong to the same cell: w(p) = w(p′).
– p = p′ · i, where p′ ends with the left (resp. right) auxiliary port of a δ cell, and i is

the principal port of the same δ cell: w(p) = cw(p′) (resp. w(p) = dw(p′));
– p = p′ · i, where p′ ends with the principal port of a δ cell, and i is the left (resp.

right) auxiliary port of the same δ cell: w(p) = c∗w(p′) (resp. w(p) = d∗w(p′));
– p = p′ · i, where p′ ends with the left (resp. right) auxiliary port of a ζ cell, and i is

the principal port of the same ζ cell: w(p) = fw(p′) (resp. w(p) = gw(p′));
– p = p′ · i, where p′ ends with the principal port of a ζ cell, and i is the left (resp.

right) auxiliary port of the same ζ cell: w(p) = f∗w(p′) (resp. w(p) = g∗w(p′)).

Given a graph-theoretical path, one can always consider its reversal, i.e., the same path
walked from target to source. Notice that the reversal of a straight path is still straight.
The unit semiring W can be equipped with an involution (·)∗:
— (c)∗ = c∗, (c∗)∗ = c, and similarly for the other generators;
— 0∗ = 0, and for all u, v ∈ W , (u + v)∗ = u∗ + v∗;
— 1∗ = 1, and for all u, v ∈ W , (uv)∗ = v∗u∗.

It is then straight-forward to check the following:

Lemma 4.4 (Reversal). Let µ be a net, p a straight path of µ, and p′ the reversal of
p. Then, w(p′) = w(p)∗.

We are now ready to define the GoI interpretation of a cut-free net:

Definition 4.3 (GoI interpretation). Let M be an interaction monoid, let ν be a
cut-free net with n ≥ 1 free ports, and let Pji be the set of straight paths of ν starting
from the free port j and ending into the free port i. The GoI interpretation of ν in M is
an endomorphism of Mn, which we represent as a formal n×n matrix ν•, whose entries
are defined as follows:

ν•ij =
∑

p∈Pji

w(p).

i and j range over the free ports of ν, and the sum is intended to be equal to 0 (the
everywhere-zero endomorphism) if Pji = ∅.
If A is a formal matrix with coefficients in W , we can define A∗ as the transpose-involute
matrix of A: (A∗)ij = (Aji)∗. Then, the following clearly holds from Lemma 4.4 applied
to Definition 4.3:

Proposition 4.5. If ν• is the GoI interpretation of a cut-free net ν, then

ν•∗ = ν•.

We can give a few examples to clarify the definition. If ε,δ, and ω are the three nets
defined in Sect. 3.2, p. 16, we have ε• = 0, δ• = cd∗+dc∗, while ω• is the endomorphism
of M ⊕M represented by the following matrix:

ω• =
[

0 1
1 0

]
.
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A slightly more complicated example is the net

δ

δ ζ

ζ
ε

ε

whose GoI interpretation is
[

cg(cd∗ + dc∗)g∗c∗ df∗

fd∗ 0

]
.

In all cases, the reader can check that Proposition 4.5 is verified.
The reader may wonder why we have restricted our interpretation to cut-free nets, in

sharp contrast to Definition 3.4, where the denotational semantics is defined for any net.
The reason is quite simple: in the absence of any restriction, Definition 4.3 would not
make sense in general, since Pji may contain an infinite number of non-zero-weighing
paths. As a matter of fact, consider the following example:

δ ζ

There is obviously an infinite number of straight paths from, for instance, the left free
port to the right one; their weights are c∗(fd∗)ng, for every n ∈ N. No element of W can
be associated to the sum of all these paths, so the interpretation would be undefined.
On the other hand, the following result assures us that Definition 4.3 is sound as we
formulated it:

Proposition 4.6. Let ν be a cut-free net with at least one free port, and let i, j be two
free ports (maybe the same) of ν. Then, Pji is finite.

Proof. Remember the general decomposition of a cut-free net with n ≥ 1 free ports: n

trees τ1, . . . , τn with an ε-wiring ω̃ “on top”. Now, a straight path p from port j to port
i is necessarily of the following shape: p goes up along one branch of τj from the root to
its leaf, which is connected through a wire of ω̃ to a leaf k of τi; p follows this connection,
and then goes down the branch of τi leading from k to its root. Therefore, the number of
straight paths in Pji is bounded by the number of leaves of τj , which is of course finite.
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Any net with n ≥ 1 free ports and k active pairs and/or vicious circles can be decom-
posed as follows:

. . . . . .

ν

kn

where ν is cut-free and has n+2k free ports. Notice that, because of the possible presence
of vicious circles, ν is not unique in general. Nevertheless, given an interaction monoid
M and a net µ with n ≥ 1 free ports and k active pairs and/or vicious circles, we can
associate to µ at least one endomorphism µ• of Mn+2k, which is the GoI interpretation
of the net ν in one of the possible decompositions; the association will be unique exactly
when µ does not contain vicious circles.

We also consider the endomorphism σn,k of Mn+2k defined by the formal matrix

σn,k =




0
. . .

0
0 1
1 0

. . .
0 1
1 0








n





2k

(the entries not specified are 0) and the monomorphism πn,k, which is the inclusion of
Mn into Mn+2k:

πn,k =




1
. . .

1
0 · · · 0
...

...
0 · · · 0








n





2k

We can now state the fundamental theorem of the geometry of interaction semantics:

Theorem 4.7 (Lafont (Lafont, 1997)). Let µ be a total net with n ≥ 1 free ports
and k active pairs, and let σ = σn,k and π = πn,k. Then, σµ• is nilpotent, and the GoI
interpretation of the cut-free form of µ is given by Girard’s execution formula

Ex(µ•, σ) = πt

( ∞∑

i=0

µ•(σµ•)i

)
π,

where πt is the transpose of π.

The result above comes from the fact that the execution formula is an invariant of
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reduction. Therefore, if µ• is associated to a total net µ, then Ex(µ•, σ) can be seen as
a semantics for µ. In particular, if µ is cut-free, σ = 0 and Ex(µ•,0) = µ•.

4.3. Relationship between denotational semantics and GoI

We shall now see that the two semantics defined in the previous sections are strongly
related to each other. We have already seen (Corollary 4.3) that, given a net µ with
n ≥ 1 free ports, the denotational semantics JµK of µ in an interaction monoid M is
a submonoid of Mn. In case µ is total, then JµK is the submonoid of the fixpoints of
Ex(µ•, σ).

We prove the result stated above for cut-free nets only; by the preservation of both
J·K and Ex(·, ·) under reduction, this is enough for the result to hold in the more general
case of total nets. In the following, we write fix(u) for the set of fixpoints of a function u.

Theorem 4.8. Let ν be a cut-free net with n ≥ 1 free ports. Then

JνK = fix(ν•),

where the interpretations are taken in any interaction monoid M .

Proof. We prove both inclusions by induction on the number m of binary cells of ν. If
m = 0, then ν is an ε-wiring, containing n′ ε cells and k wires, with n′+ 2k = n. We can
assume without loss of generality that ν has the following shape

. . .

k

ε ε

. . .

n′

hence ν• = σn′,k. Now, if x ∈ JνK, then

x = (0, . . . , 0︸ ︷︷ ︸
n′

, x1, x1, . . . , xk, xk),

so that we obviously have ν•(x) = x. Conversely, it is trivial to check that every fixpoint
of σn′,k is of this form.

Now let m > 0; then, since ν is cut-free, at least one of its free ports is the principal
port of a binary cell. Suppose it is a δ cell; we can assume without loss of generality that
ν has the following shape

δ

ν′

. . .

where ν′ is also cut-free. Now, if we order from left to right the free ports of ν and ν′,
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we have that their GoI interpretations are given by the following formal matrices:

ν′• =




h u∗ A∗

u k B∗

A B C




ν• =




chc∗ + du∗c∗ + cud∗ + dkd∗ cA∗ + dB∗

Ac∗ + Bd∗ C


 .

We have used the block notation to represent an arbitrary number (even zero) of entries
in the bottom-right part of the matrices, corresponding to the n− 1 ports that are free
both in ν and ν′. Here, h, u, and k are endomorphisms of W , with h∗ = h and k∗ = k,
while A, B and C are resp. (n− 1)× 1 and (n− 1)× (n− 1) matrices with entries in W ,
with C∗ = C.

Let us now take x ∈ JνK. We know that x is an element of Mn, so x = (y, z), where
y ∈ M and z ∈ Mn−1. Moreover, since y is associated to the free ports of a δ cell, we
have y = c(y′) + d(y′′) for some y′, y′′ ∈ M such that x′ = (y′, y′′, z) ∈ Jν′K. If we apply
ν′• to x′, we get




h u∗ A∗

u k B∗

A B C


 ·




y′

y′′

z


 =




h(y′) + u∗(y′′) + A∗(z)
u(y′) + k(y′′) + B∗(z)

A(y′) + B(y′′) + C(z)


 .

But by induction hypothesis, ν′•(x′) = x′, so the following equalities hold:

h(y′) + u∗(y′′) + A∗(z) = y′

u(y′) + k(y′′) + B∗(z) = y′′

A(y′) + B(y′′) + C(z) = z .

From this, if we compute ν•(x), we get



chc∗ + du∗c∗ + cud∗ + dkd∗ cA∗ + dB∗

Ac∗ + Bd∗ C


 ·




c(y′) + d(y′′)

z


 =

=




c(h(y′) + u∗(y′′) + A∗(z)) + d(u(y′) + k(y′′) + B∗(z))

A(y′) + B(y′′) + C(z)


 = x.

Consider now a fixpoint x of ν•. Again, this is an element of Mn, and can be decom-
posed into (y, z) with y ∈ M and z ∈ Mn−1. Now, by surjectivity there exist y′, y′′ ∈ M

such that y = c(y′) + d(y′′), so we can define x′ = (y′, y′′, z), for which the same com-
putations done above show that ν′•(x′) = x′. By induction hypothesis, x′ ∈ Jν′K, which
means that there is an experiment of ν′ with result (y′, y′′, z); the “same” experiment
then gives (y, z) on ν, which proves that x ∈ JνK.
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The proof in the case of a ζ combinator is identical: we just need to replace c,d with
f ,g.

Theorem 4.8 tells us that, for any cut-free net ν with at least one free port, if we know
ν•, we also know JνK. Is the converse true? The rest of the section is devoted to prove
that it is actually the case.

Let M be an interaction monoid, and let ν be a cut-free net with n ≥ 1 free ports.
By Theorem 3.7, we know that the elements of JνK are described by a balanced bracket
expression B. From this expression, it is not hard to build an endomorphism φ of Mn

such that fix(φ) = JνK:
— Suppose that var(B) = {x1, . . . , xm}. We make a new expression B′ (no longer bal-

anced) which is structurally identical to B, but such that, for each variable xi of B,
one occurrence of xi is replaced by x′i and one by x′′i , with x′i, x

′′
i distinct and fresh,

and each occurrence of 0 is replaced by a distinct fresh variable zj ; this is always
possible since B is balanced. Notice that B′ contains every variable at most once.

— From the fact that 〈·, ·〉 and [·, ·] are bijections, we know that, for each
d ∈ Mn, there exist unique d′1, d

′′
1 , . . . , d′m, d′′m, e1, . . . , ek ∈ M such that

d = B′{. . . x′i := d′i, x
′′
i := d′′i . . . zj := ej . . .} (see Sect. 3.3, p. 22). We then define

φ as follows:

φ(d) = B′{. . . x′i := d′′i , x′′i := d′i . . . zj := 0 . . .},
i.e., we “swap” the elements assigned to x′i and x′′i , and we set each zj to 0.

— Clearly, φ(0) = 0, and because 〈·, ·〉, [·, ·] are isomorphisms, we also have φ(x + y) =
φ(x) + φ(y), so φ is indeed an endomorphism of Mn (not an isomorphism though,
since in general some non-zero elements may be mapped to zero). It is not hard to
check that φ verifies φ3 = φ, i.e., it is a partial symmetry.

— By construction, the fixpoints of φ are those elements described by B, so fix(φ) =
Im(B).

Let us look at an example to clarify the construction above. The balanced expression
([0, x], 〈x, 0〉), which generates the interpretation of

ε ε

ζ δ

is turned into ([z1, x
′], 〈x′′, z2〉). Now, for each element x ∈ M ⊕M , there exist unique

z1, x
′, x′′, z2 ∈ M such that x = ([z1, x

′], 〈x′′, z2〉) (we have used the same notations for
the variables in the expression and the elements of M to avoid writing the substitution
explicitly). We then define φ so that

φ(x) = φ([z1, x
′], 〈x′′, z2〉) = ([0, x′′], 〈x′, 0〉).

The zero of M ⊕ M is (0, 0) = ([0, 0], 〈0, 0〉), hence φ(0, 0) = (0, 0), and if we take
x, y ∈ M ⊕M , we decompose them as x = ([x1, x2], 〈x3, x4〉) and y = ([y1, y2], 〈y3, y4〉),
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and we have x + y = ([x1 + y1, x2 + y2], 〈x3 + y3, x4 + y4〉), from which we obtain

φ(x + y) = ([0, x3 + y3], 〈x2 + y2, 0〉) =

= ([0, x3], 〈x2, 0〉) + ([0, y3], 〈y2, 0〉) = φ(x) + φ(y),

so φ is an endomorphism of M ⊕M . We also have

fix(φ) = {([0, x], 〈x, 0〉) ∈ M ⊕M ; x ∈ M},
which is exactly the interpretation of the above net.

All that is left to do is verifying that φ = ν•. This is proved by induction on the
number m of binary cells in ν. If m = 0, ν is an ε-wiring, and its interpretation can be
assumed without loss of generality to be generated by a balanced expression of the form

(0, . . . , 0, x1, x1, . . . , xk, xk),

where the symbol 0 appears n′ times, with n′ + 2k = n (the number of free ports of ν).
Then, φ is the endomorphism such that

φ(x1, . . . , xn′ , y
′
1, y

′′
1 , . . . , y′k, y′′k ) = (0, . . . , 0, y′′1 , y′1, . . . , y

′′
k , y′k),

which is exactly the endomorphism we introduced at p. 29 under the name σn′,k, and
which is equal to ν•. If m > 0, calculations virtually identical to those of the proof of
Theorem 4.8 show that we have φ = ν• in this case as well; the details are left to the
reader.

5. Conclusions

Why the symmetric interaction combinators? The reader may wonder why we have cho-
sen to work with the symmetric combinators instead of the “standard” ones, which enjoy
a stronger universality property (Theorem 2.2 holds for any interaction net system, not
just polarized ones). The answer is technical: there is a detail in the reduction rules
of the interaction combinators which renders impossible the formulation of a relational
semantics like the one considered here.

We remind that the “standard” interaction combinators are defined exactly as the
symmetric ones, except that instead of ζ there is a binary cell γ, which interacts with
itself as follows:

γ

γ

→

All other interaction rules are unchanged. Notice that the above rule “exchanges” the
auxiliary ports of the γ cell: according to our convention (p. 3), the left port of each
occurrence of γ is connected to the right port of the other occurrence. On the contrary,
the δδ (and ζζ) annihilation connects left with left and right with right.

Now, in a relational semantics, reduction is modeled by composition of relations: if the
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“rightmost” free port of a net µ is connected to the “leftmost” free port of a net µ′, the
denotational semantics of the resulting net will be (see the proof of Lemma 3.3)

JµK ◦ Jµ′K = {(a, c) ; (a, b) ∈ JµK, (b, c) ∈ Jµ′K}.
This is ensured by our definition of experiment. But if we try to define experiments in

the presence of the γγ annihilation, we see that the only way for the interpretation to
model reduction is that both of the auxiliary ports of γ cells receive the same value. In
fact, in the rule

γ

γ

→(a, b)

a b

b a b

a b

a

we clearly need a = b. This is an unreasonable restriction; for example, it would imply
that the following two nets receive the same semantical interpretation:

ε

εεγ ≈

These two nets are not βη-equivalent; from Proposition 2.6, we infer that in such a
situation, if we ever managed to model 'β , we would do so by identifying all total nets
with a non-empty interface.

The argument given here of course does not rule out the possibility of finding a de-
notational semantics for the interaction combinators; it simply shows that the standard
definitions do not work, and justifies our shift towards the symmetric combinators.

Further work. Our efforts are now concentrating on a typed semantics for the symmetric
combinators. This would not only yield a typing discipline for the combinators, which
would ensure good properties like deadlock-freeness and termination, but more interest-
ingly a new logical system, which should be an extension of multiplicative linear logic.

The existence of such a system would be very intriguing, since it would combine the
simplicity of the multiplicative fragment of linear logic with the high expressive power of
the symmetric combinators.

References

Danos, V. and Regnier, L. (1989). The structure of multiplicatives. Archive for Mathematical

Logic, 28:181–203.

Ehrhard, T. (2005). Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–

646.



A Denotational Semantics for theSymmetric Interaction Combinators 35

Fernández, M. and Mackie, I. (2003). Operational equivalence for interaction nets. Theoretical

Computer Science, 297(1–3):157–181.

Girard, J.-Y. (1987a). Linear logic. Theoretical Computer Science, 50(1):1–102.

Girard, J.-Y. (1987b). Multiplicatives. In Lolli, G., editor, Logic and Computer Science: New

Trends and Applications, pages 11–34. Rendiconti del Seminario Matematico dell’Università
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