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Abstract
Sequence-to-sequence attention-based models on subword units
allow simple open-vocabulary end-to-end speech recognition. In
this work, we show that such models can achieve competitive
results on the Switchboard 300h and LibriSpeech 1000h tasks. In
particular, we report the state-of-the-art word error rates (WER)
of 3.54% on the dev-clean and 3.82% on the test-clean evaluation
subsets of LibriSpeech. We introduce a new pretraining scheme
by starting with a high time reduction factor and lowering it
during training, which is crucial both for convergence and final
performance. In some experiments, we also use an auxiliary CTC
loss function to help the convergence. In addition, we train long
short-term memory (LSTM) language models on subword units.
By shallow fusion, we report up to 27% relative improvements
in WER over the attention baseline without a language model.
Index Terms: attention, end-to-end, speech recognition

1. Introduction
Conventional speech recognition systems [1] with neural net-
work (NN) based acoustic models using the hybrid hidden
Markov models (HMM) / NN approach [2, 3] usually operate on
the phone level, given a phonetic pronunciation lexicon (from
phones to words). They require a pretraining scheme with HMM
and Gaussian mixture models (GMM) as emission probabili-
ties to bootstrap good alignments of the HMM states. Context-
independent phones are used initially because context-dependent
phones need a good clustering, which is usually created on good
existing alignments (via a Classification And Regression Tree
(CART) clustering [4]). This boot-strapping process is iterated
a few times. Then a hybrid HMM / NN is trained with frame-
wise cross entropy. Recognition with such a model requires a
sophisticated beam search decoder. Handling out-of-vocabulary
words is also not straightforward and increases the complexity.
There was certain work to remove the GMM dependency in
the pretraining [5], or to be able to train without an existing
alignment [6–8], or to avoid the lexicon [9], which simplifies the
pretraining procedure but still is not end-to-end.

An end-to-end model in speech recognition generally de-
notes a simple single model which can be trained from scratch,
and usually directly operates on words, sub-words or character-
s/graphemes. This removes the need for a pronunciation lexicon
and the whole explicit modeling of phones, and it greatly simpli-
fies the decoding.

Connectionist temporal classification (CTC) [10] has been
often used as an end-to-end model for speech recognition, often
on characters/graphemes [11–16] or on sub-words [17] but also
directly on words [18, 19].

The encoder-decoder framework with attention has become
the standard approach for machine translation [20–22] and many
other domains such as images [23]. Recent investigations have

shown promising results by applying the same approach for
speech recognition [24–28]. In this work, we also investigate
techniques to improve recurrent encoder-attention-decoder based
systems for speech recognition. We use long short-term memory
(LSTM) neural networks [29] for the encoder and the decoder.
Our model is similar to the architecture used in machine trans-
lation [30], except for encoder time reduction. This generality
of the model and the simplicity is its strength. Although a valid
argument against this model for speech recognition is that it is in
fact too powerful because it does not require monotonicity in its
implicit alignments. There are attempts to restrict the attention
to become monotonic in various ways [31–38]. In this work, our
models are without these modifications and extensions.

Recently, alternative models for end-to-end modeling were
also suggested, such as inverted HMMs [39], the recurrent trans-
ducer [40–42], or the recurrent neural aligner [43]. In many
ways, these can all be interpreted in the same encoder-decoder-
attention framework, but these approaches often use some variant
of hard latent monotonic attention instead of soft attention.

Our models operate on subword units which are created
via byte-pair encoding (BPE) [44]. We introduce a pretraining
scheme applied on the encoder, which grows the encoder in layer
depth, as well as decreases the initial high encoder time reduc-
tion factor. To the best of our knowledge, we are the first to
apply pretraining for encoder-attention-decoder models. We use
RETURNN [30, 45] based on TensorFlow [46] for its computa-
tion. We have implemented our own flexible and efficient beam
search decoder and efficient LSTM kernels in native CUDA. In
addition, we train subword-level LSTM language models [47],
which we integrate in the beam search by shallow fusion [48].
The source code is fully open1, as well as all the setups of the
experiments in this paper2. We report competitive results on the
300h-Switchboard and LibriSpeech [49]. In particular on Lib-
riSpeech, our system achieves WERs of 3.54% on the dev-clean
and 3.82% on the test-clean evaluation subsets, which are the
best results obtained on this task to the best of our knowledge.

2. Pretraining
Compared to machine translation, the input sequences are much
longer in speech recognition, relatively to the output sequence
(e.g. with BPE 10K subword units, and audio feature frames ev-
ery 10ms, more than 30 times longer on Switchboard on average).
However, as the original input is continuous, some sort of down-
scaling in the time dimension works, such as concatenation in
the feature dimension of consecutive time-frames [7, 24, 42, 50].
We use max-pooling in the time-dimension which is simpler.
The time reduction can be done directly on the features or al-
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2
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ternatively at multiple steps inside the encoder, e.g. after every
encoder layer [24]. This is also what we do. This allows the
encoder to better compress any necessary information.

We observed that a high time reduction factor makes the
training much simpler. In fact, without careful tuning, usually
the model will not converge without a high time reduction fac-
tor (16 or 32), as has also been observed in the literature [24].
However, we also observed that a low time reduction factor (e.g.
8) can perform better after all, when pretrained with a high time
reduction factor.

Also, it has been shown that deep LSTM models can benefit
from layer-wise pretraining, by starting with 1 or 2 layers and
adding more and more layers [1]. We apply the same pretraining.

To improve the convergence further, we disable label smooth-
ing during pretraining and only enable it after pretraining. Also,
we disable dropout during the first few pretraining epochs in the
encoder.

3. Model
We use a deep bidirectional LSTM encoder network, and LSTM
decoder network. After every layer in the encoder, we optionally
do max-pooling in the time dimension to reduce the encoder
length. I.e. for the input sequence xT1 , we end up with the
encoder state

hT
′

1 = LSTM#enc ◦ · · · ◦max-pool1 ◦LSTM1(x
T
1 ),

where T ′ = red ·T for the time reduction factor red, and #enc
is the number of encoder layers, with #enc ≥ 2. We use the
MLP attention [20, 21, 31, 32, 51]. Our model closely follows
the machine translation model presented by Bahar et al. [51] and
Bahdanau et al. [20] and we use a variant of attention weight
/ fertility feedback [52], which is inverse in our case, to use a
multiplication instead of a division, for better numerical stability.
More specifically, the attention energies ei,t ∈ R for encoder
time-step t and decoder step i are defined as

ei,t = v> tanh(W [si, ht, βi,t]),

where v is a trainable vector,W a trainable matrix, si the current
decoder state, ht the encoder state, and βi,t is the attention
weight feedback, defined as

βi,t = σ(v>β ht) ·
i−1∑
k=1

αk,t,

where vβ is a trainable vector. Then the attention weights are
defined as

αi = softmaxt(ei)

and the attention context vector is given as

ci =
∑
t

αi,tht.

The decoder state is recurrent function implemented as

si = LSTMCell(si−1, yi−1, ci−1)

and the final prediction probability for the output symbol yi is
given as

p(yi|yi−1, x
T
1 ) = softmax(MLPreadout(si, yi−1, ci)).

In our case we use MLPreadout = linear ◦maxout ◦ linear.

4. Sub-word units
Characters/graphemes are probably the most generic and simple
output units for generating texts but it has been shown that
sub-word units can perform better [26] and they can be just as

generic since the characters can be included in the set of subword
units. Using words as output units is also possible but does not
permit recognition of out-of-vocabulary words and it requires a
large softmax output and thus is computationally expensive. An
inhomogeneous length distribution as well as an imbalance in
the label occurence can also make training harder.

In all the experiments, we use byte-pair encoding (BPE) [44]
to create subword units, which are the output targets of the
decoder. The beam search decoding will go over these BPE
units, and then select the best hypothesis. Therefore, our system
is open-vocabulary. At the end of decoding, the BPE units are
merged into words in order to obtain the best hypothesis on
word level. In addition, we add the special tokens from the
transcriptions which denote noise, vocalized-noise and laughter
in our BPE vocabulary set. Our recognizer can also potentially
recognize these special events.

5. Language model combination
We also improve the recognition accuracy of our recognizer using
external language models. We train LSTM language models [47]
on the same BPE vocabulary set as the end-to-end model, using
RETURNN with TensorFlow. For Switchboard, the training set
of 27M words concatenating Switchboard and Fisher parts of
transcriptions was used. For LibriSpeech, we use the 800M-
word dataset officially available3 for training language models.
It can be noted that in the case of Switchboard, there is some
overlap between the training data for language models and the
transcription used to train the end-to-end model: 3M out of 27M
words are used to train the end-to-end system. While for the
LispriSpeech, 800M-word data is fully external to the end-to-end
models. Our experiments show that this difference in amount of
external data directly affects the performance improvements by
the use of external language model. For both tasks, we use two
LSTM layers with 2048 nodes. The input projection layer size is
256 and 512 respectively for Switchboard and LibriSpeech. We
apply dropout at the input of all hidden layers with the rate of 0.2.
The standard stochastic gradient descent with global gradient
clipping is used for optimization to train all LSTM LMs.

We integrate the external language model in the beam search
by shallow fusion [48]. The weight for the language model has
been optimized by grid search on the development set WER. We
found 0.23 and 0.36 to be optimal respectively for Switchboard
and LibriSpeech (the weight on the attention model is 1).

For LibriSpeech, we also train Kneser-Ney smoothed n-
gram count based language models [53] on the same BPE vo-
cabulary set using SRILM toolkit [54]. The comparison of
perplexities can be found in Table 1. We also report WERs using
the 4-gram count model by shallow fusion with a weight of 0.01,
for comparison to the performance of the LSTM LM.

Table 1: Perplexities (PPL) on the concatenation of dev-clean
and dev-other sets of LibriSpeech. All models have the same
vocabulary of 10K BPE.

LM 3-gram 4-gram 5-gram LSTM
PPL 104.6 88.2 85.1 65.9

6. Experiments
All attention models and neural network language models were
trained and decoded with RETURNN. For both Switchboard and
LibriSpeech, we first used the BPE vocabulary of 10K subword
units to tune the hyperparameters of the model, then trained the
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models with 1K and 5K BPE units. We found 1K and 10K to
be optimal for Switchboard and LibriSpeech respectively. We
use label smoothing [55], dropout [56], Adam [57], learning rate
warmup [26], and automatic learning rate scheduling according
to a cross-validation set (”Newbob”) [1].

6.1. Pretraining
In all cases we use layer-wise pretraining for the encoder, where
we start with two encoder layers and a single max-pool in be-
tween with factor 32. Then we add a LSTM layer and a max-pool
in between, and we reduce the first max-pool to factor 16 and
the new one with factor 2 such that we always keep the same
total encoder time reduction factor of 32. Only when we end
up at 6 layers, we remove some of the max-pooling ops to get
a final total time reduction factor of e.g. 8. Directly starting
with a time reduction factor of 8 with and with 2 layers did
not work for us. Also directly starting with 6 layers and time
reduction factor of 32 did not work for us. Similar experiments
for translation converged also without pretraining, however with
much worse performance compared when layer-wise pretraining
was used [30]. With more careful tuning or more training data,
it might have worked without pretraining as it is seen in the
literature, however, that is not necessary with pretraining.

We were interested in the optimal final total time reduction
factor, after the pretraining with time reduction factor 32. We
tried factor 8, 16 and 32, and ended up with 20.4, 21.0 and 21.9
WER% respectively, on the full Hub5’00 set (Switchboard +
Callhome). Thus we continue to use a final reduction factor of 8
in all further experiments. Note that a lower factor requires more
memory and more computation for the global attention and was
not feasible with our hardware and computational resources.

6.2. Switchboard 300h
Switchboard consists of about 300 hours of training data. There
is also the additional Fisher training dataset, so combined it
makes the total of about 2000h. In this work, we only use the
300h-Switchboard training data. We use 40-dimensional Gam-
matone features [58], and the feature extraction was done with
RASR [59]. Results are shown in Table 2. We observe that our
attention model performs better on the easier Switchboard subset
of the dev set Hub5’00, where it is the best end-to-end model
we know. On the harder Callhome part, it also performs well
compared to other end-to-end models but the relative difference
is not as high.

6.3. LibriSpeech 1000h
LibriSpeech training dataset consist of about 1000 hours of
read audio books. The dev and test sets were split into sim-
ple (”clean”) and harder (”other”) subsets [49]. We do 40-dim.
MFCC feature extraction on-the-fly in RETURNN, based on
librosa [62]. We use CTC as an additional loss function applied
on top of the decoder to help the convergence, although this is
not used in decoding [63]. We initially trained only using the
train-clean set and restricting it to sequences not longer than 75
characters in the orthography. Results are shown in Table 3. Our
end-to-end system achieves competitive performance even with-
out using language models. We observed that the shallow fusion
with LSTM LM brings from 17% to 27% relative improvements
in terms of WER on different subsets. This improvement is much
larger than in the case of Switchboard. The amount of data is
most likely the reason for this observation. For LibriSpeech, the
external data of 800M words is used to train the language models,
which is 80 times larger than the 10M words corresponding to
the transcription of 1000 hours of audio. In addition, this 10M

Table 2: Comparisons on Switchboard 300h. The hybrid HM-
M/NN model is a 6 layer deep bidirectional LSTM. The attention
model has a 6 layer deep bidirectional LSTM encoder and a 1
layer LSTM decoder. CDp are (clustered) context-dependend
phones. Byte-pair encoding (BPE) are sub-word units. SWB and
CH are from Hub5’00. 1added noise from external data. 2added
the lexicon, i.e. also additional data.

model LM
label

WER[%]

unit
Hub5’00 Hub5’01

SWB CH
LF MMI, 2016 [7] 4-gram CDp 9.6 19.3

hybrid 4-gram CDp 9.8 19.0 14.7
hybrid LSTM CDp 8.3 17.3 12.9

CTC1, 2014 [12] RNN chars 20.0 31.8
CTC, 2015 [60] none chars 38.0 56.1
CTC, 2015 [60] RNN chars 21.4 40.2

attention, 2016 [61] none chars 32.8 52.7
attention, 2016 [61] 5-gram chars 30.5 50.4
attention, 2016 [61] none words 26.8 48.2
attention, 2016 [61] 3-gram words 25.8 46.0

CTC, 2017 [16] none chars 24.7 37.1
CTC, 2017 [16] n-gram chars 19.8 32.1
CTC2, 2017 [16] word RNN chars 14.0 25.3

attention, 2017 [28] none chars 23.1 40.8

attention
none

BPE 10K 13.5 27.1 19.9
BPE 1K 13.1 26.1 19.7

LSTM BPE 1K 11.8 25.7 18.1

transcription is not part of the language model training data. In
case of Switchboard, the LM is trained only on about 27M words,
including 3M of transcription used to train the end-to-end system.
Text data for conversational speech is not as readily available
as for read speech. The WER of 3.54% on the dev-clean and
3.82% on the test-clean subsets are the best performance on this
task to the best of our knowledge for systems trained only using
LibriSpeech data.4

6.4. Beam search prune error analysis
Beam search is an approximation for the decision rule

xT1 → ŵN1 := argmax
wN

1

p(wN1 |xT1 ).

The approximation is the pruning we apply due to the beam size.
Beam search decoding for hybrid models is very sophisticated
and uses a dynamic beam size based on the partial hypothesis
scores which can become very large (on the order of thousands)
[67]. The beam search for attention models works directly on
the labels, i.e. on the BPE units in our case, and usually a static
fixed very low beam size (e.g. 10) is used. It has been shown
that increasing the beam size much more does not increase net
performance. This indicates that we do not have a search problem
but we wanted to analyze this in more detail. Specifically, we are
interested in how many errors we are making due to the pruning
for our attention models, and we can count that by calculating
the search score of the reference target sequence, and compare
it to the search score of the decoded sequence. If the decoded
sequence has a higher score than the reference target sequence,
we have not made a search error but it is a model error. We
count the number of sequences where the decoded sequence has
a lower score than the reference target sequence. We report our

4After the Interspeech submission deadline, better WERs for Lib-
riSpeech have been reported in [64] with 3.51% / 3.19% WER on test-
clean using a hybrid HMM-LSTM / system combination.
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Table 3: Comparisons on LibriSpeech 1000h. The attention
model has a 6 layer deep bidirectional LSTM encoder and a 1
layer LSTM decoder. CDp are (clustered) context-dependend
phones. Byte-pair encoding (BPE) are sub-word units. Lattice-
free (LF) maximum mutual information (MMI) [7] is a sequence
criterion to train a hybrid HMM/NN model. Auto SeGmentation
(ASG) [65] can be seen as a variant of the CTC criterion and
model. Policy learning is a sequence training method, applied
here on a CTC model [15]. If not specified, the official 4-gram
word LM is used. The remaining attention models are all our
models.

model LM
label

WER[%]

unit
dev test

clean other clean other
hybrid, FFNN, 2015 [49] 4-gram CDp 4.90 12.98 5.51 13.97

LF MMI, LSTM, 2016 [7] 4-gram CDp 4.28
CTC, 2015 [66] 4-gram chars 5.33 13.25

ASG (CTC), 2017 [65] 4-gram chars 4.80 14.50
ASG (CTC), 2017 [65] none chars 6.70 20.80

CTC, PL, 2017 [15] 4-gram chars 5.10 14.26 5.42 14.70

attention
none BPE 4.87 14.37 4.87 15.39

4-gram BPE 4.79 14.31 4.82 15.30
LSTM BPE 3.54 11.52 3.82 12.76

results in Table 4. We observe that for our standard beam size
12, the number of search errors are well below 1%, and also
the WER will not noticeably improve with a larger beam size.
Note that we only analyzed the search errors regarding reaching
the reference target sequence. We did not count search errors
regarding reaching any sequence with lower WER. However, our
results still suggest that we do not seem to have a search problem
but a model problem.

Table 4: Beam search error analysis, performed on LibriSpeech,
without language model. We provide both the number of
reference-related search errors, relative to the number of se-
quences, and also the corresponding WER.

beam
search errors [%] (WER [%])

size
dev test

clean other clean other
4 1.52 (4.87) 1.68 (14.53) 1.07 (4.87) 1.70 (15.49)
8 0.96 (4.88) 0.98 (14.40) 0.76 (4.87) 1.02 (15.39)
12 0.81 (4.87) 0.59 (14.37) 0.61 (4.86) 0.71 (15.39)
16 0.70 (4.87) 0.52 (14.36) 0.50 (4.86) 0.58 (15.37)
32 0.26 (4.87) 0.14 (14.34) 0.19 (4.86) 0.20 (15.34)

7. Conclusions
We presented an encoder-decoder-attention model for speech
recognition operating on BPE subword units. We introduced
a new method for pretraining the encoder, which was crucial
for both convergence and the performance in terms of WER.
We further improved our recognition accuracy by a joint beam
search with a LSTM LM trained on the same subword vocabulary.
We carried out experiments on two standard datasets. On the
300h-Switchboard, we achieved competitve results compared
to the previously reported end-to-end models, while the WERs
are still higher than the conventional hybrid systems. On the
1000h-LibriSpeech task, we obtained competitive results across
different evaluation subsets. To the best of our knowledge, the
WERs of 3.54% on the dev-clean and 3.82% on the test-clean
subsets are the best results reported on this task, when only the
official LibriSpeech training data is used.
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