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We want to solve the following optimisation problem:

min fo(x) (1)
such that f;(z) <0 Viel,....m (2)

For now we do not need to assume convexity. For simplicity we assume no
equality constraints, but all these results extend straightforwardly in that
case. An obvious (but foolish) approach would be to achieve this by min-
imising the following function:

00, otherwise

= fol@) + 3 11fi()] (4)
where I[u] is a infinite step function:

I[u]:{o’ if u <0 (5)

oo, otherwise

This function I gives infinite penalty to a constraint being dissatisfied. Now
if we were able to minimise J(x) then we would have a way of solving our
optimisation problem. Unfortunately, J(z) is a pretty horrible function to
optimise because I[u] is both non-differentiable and discontinuous. What
about replacing I[u] with something nicer? A straight line, Au is certainly
easier to handle. This might seem like a pretty dumb choice, but for A > 0 the
penalty is at least in the correct direction (we are penalised for constraints
being dissatisfied), and Au is a lower bound on I[u] (see Figure 1). If we
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Figure 1: The infinite step function I(u) and the linear relaxation Au. For
A > 0 note that Au is a lower bound on I(u).

replace [[u] by Au in the function J(x) we get a function of x and A known
as the Lagrangian:

L(z, \) = fo(z) + Z Aifi(z) (6)

Note that if we take the maximum with respect to A of this function we
recover J(x). For a particular value of z, if the constraints are all satisfied (i.e.
fi(z) <0 Vi) then the best we can do is to set \; = 0 Vi, so L(z,0) = fo(z).
If any of the constraints are not satisfied, then f;(xz) > 0 for some i, and we
can make L(z, \) infinite by taking \; — co. So we have:

max L(z,\) = J(z) (7)

That’s all well and good, but how does it help us solve our original optimi-
sation problem? Remember that we want to minimise J(z), which we now

2



know means finding:

min max Lz, \) (8)
This is a hard problem. But what would happen if we reversed the order of
maximisation over A and minimisation over 7 Then we would be finding:
max min L(z, \) = max g(\) 9)
where g(A) = min, L(z, A) is known as the dual function. Maximising the
dual function g(A) is known as the dual problem, in the constrast the orig-
inal primal problem. Since g()\) is a pointwise minimum of affine functions
(L(x,\) is affine, i.e. linear, in \), it is a concave function. The minimi-
sation of L(x,\) over x might be hard. However since g(\) is concave and
Ai > 0 Vi are linear constraints, maximising g(A) over A is a convex optimi-
sation problem, i.e. an easy problem. But does solving this problem relate to

the original problem? Recall that Au is a lower bound on I(u). As a result,
L(z,\) is a lower bound on J(x) for all A > 0. Thus

L(z,\) < J(z) VA >0 (10)
= mminL(x,)\) =g(\) < min J(z) =:p* (11)
=d" = mfxxg(/\) <p (12)

where p* and d* are the optima of the primal and dual problems respectively.
We see that for any A the dual function g(\) gives a lower bound on the
optimal problem. We can then interpret the dual problem of maximising
over A as finding the tightest possible lower bound on p*:

m)z\xxmxin L(z,\) < mmin max L(z, \) (13)
This property is known as weak duality, and in fact holds in general for
smooth functions L. The difference p* — d* is known as the optimal duality
gap. Strong duality means that we have equality, i.e. the optimal duality
gap is zero. Strong duality holds if our optimisation problem is convex and a
strictly feasible point exists (i.e. a point x where all constraints are strictly
satisfied). In that case the solution of the primal and dual problems is equiv-
alent, i.e. the optimal x* is given by min, L(z, A*), where A* is the maximiser

of g(\).



Duality gives us an option of trying to solve our original (potentially
nonconvex) constrained optimisation problem in another way. If minimising
the Lagrangian over x happens to be easy for our problem, then we know that
maximising the resulting dual function over A is easy. If strong duality holds
we have found an easier approach to our original problem: if not then we
still have a lower bound which may be of use. Duality also lets us formulate
optimality conditions for constrained optimisation problems.

1 KKT Conditions

For an unconstrained convex optimisation problem we know we are at the
global minimum if the gradient is zero. The KKT conditions are the equiva-
lent conditions for the global minimum of a constrained convex optimisation
problem. If strong duality holds and (z*, \*) is optimal then z* minimises
L(z, \*), giving us the first KKT condition:

V. L(z*, \*) = V, folx +Z>\*V filz*) = (14)

We can interpret this condition by saying that the gradient of the objective
function and constraint function must be parallel (and opposite). This means
that moving along the constraint surface cannot improve the objective func-
tion. This concept is illustrated for a simple 2D optimisation problem with
one inequality constraint in Figure 2.

Also, by definition we have:

fo(x*) = g(\*) = min L(w, \*) < fo(x +Z>\*fz ) < folz*)  (15)

where the last inequality holds because Y. Af f;i(z*) < 0. We see that
> N filx*) =0 (16)
Since Af > 0 and f;(z*) < 0 for all 4, this gives the second KKT condition:
Al fi(x®) =0 Vi (17)

This condition is known as complementary slackness: either A or f;(z*) must
be zero for all 7. If the constraint is inactive then A\¥ = 0, and f;(z*) has some
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Figure 2: The first KKT condition, V, fo(z*) + XV, fi(z*) = 0. The black
contours are the objective function, the red line is the constraint boundary.
At the optimal solution the gradient of the objective and constraint must
be parallel and opposing so that no direction along the constraint boundary
could give an improved objective value.

negative value. We can interpret A7 = 0 as meaning that we can disregard
constraint ¢ in the first KKT condition since this constraint is not active.
If the constraint is active then f;(z*) = 0 and Af has some positive value.
Note that this condition means that the lower bound Au on I(u) shown in
Figure 1 is tight: if A\ is zero and u the functions match, and if v = 0, the
functions also match. The remaining KKT conditions are simply the primal
constraints and dual constraints (i.e. that A\¥ > 0).



