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Abstract

The outbreaks of Coronavirus Disease 2019 (COVID-19) have im-
pacted the world significantly. Modeling the trend of infection and real-
time forecasting of cases can help decision making and control of the
disease spread. However, data-driven methods such as recurrent neural
networks (RNN) can perform poorly due to limited daily samples in time.
In this work, we develop an integrated spatiotemporal model based on the
epidemic differential equations (SIR) and RNN. The former after simplifi-
cation and discretization is a compact model of temporal infection trend of
a region while the latter models the effect of nearest neighboring regions.
The latter captures latent spatial information. We trained and tested our
model on COVID-19 data in Italy, and show that it out-performs existing
temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and
1-week ahead forecasting especially in the regime of limited training data.

Keywords: COVID-19, Recurrent Neural Network,
Discrete Epidemic Model, Spatiotemporal Machine Learning.



1 Introduction

Susceptible-Infected-Removed (SIR) is a classical differential equa-
tion model of infectious diseases [2]. It divides the total population
into three compartments and models their evolution by the system
of equations

dS

dt
= −β I S

dI

dt
= β I S − γ I

dR

dt
= γ I

where β and γ are two positive parameters. SIR is a simple and
efficient model of temporal data for a given region, see also [3] for
related compartment models with social structures.

Yet the infectious disease data are often spatio-temporal as in
the case of COVID-19, see [5]. A natural question is how to extend
SIR to a space time model of suitable complexity so that it can be
quickly trained from the available public data sets and applied in
real-time forecasts. See [8] for temporal model real-time forecasts
on cumulative cases of China in Feb 2020.

In this paper, we explore spatial infectious disease information to
model the latent effect due to the in-flow of the infected people from
the geographical neighbors. The in-flow data is not observed. To
this end, machine learning tools such as regression and neural net-
work models are more convenient. Auto-regressive model (AR) and
its variants are linear statistical models to forecast time-series data.
The Long Short Term Memory (LSTM) neural networks, originally
designed for natural language processing [4], have more representa-
tion power and can be applied to disease time-series data as well.
With spatial structures added, the graph-structured LSTM models
can achieve state-of-the-art performance on spatiotemporal influenza
data [6], crime and traffic data [10, 9]. However, they require a large
enough supply of training data. For COVID-19, we only have lim-
ited daily data since the outbreaks began in early 2020. Applying
space-time LSTM models [6, 9] directly to COVID-19 turns out to
produce poor results. In view of the limited COVID-19 data, we
shall propose a hybrid SIR-LSTM model.

2 Related Work

In [11], the authors designed a variant of AR, the AutoRegression
with Google search data (ARGO), that utilizes external feature of
google search data to forecast influenza data from Centers for Disease



Control and Prevention (CDC). Based on google search trend data
that correlated to influenza as external feature, ARGO is a linear
model that processes historical observations and external features.
The prediction of influenza activity level at time t, defined as ŷt, is
given by:

ŷt = ut +

52∑
j=1

αjyt−j +

100∑
i=1

βiXi,t.

ARGO is optimized as:

min
µy,~α,~β

(
yt − ut −

52∑
j=1

αjyt−j −
100∑
i=1

βiXi,t

)2
+λa||~α||1 + ηa||~β||1 + λb||~α||22 + ηb||~β||22

where ~α = (α1, · · · , α52) and ~β = (β1, · · · , β100). The yt−j ’s, 1 ≤
j ≤ 52, are historical observations of previous 52 weeks and Xi,t are
the google search trend measures of top 100 terms that are most
correlated to influenza at time t. Essentially, ARGO is a linear
regression with regularization terms. In [11], ARGO is shown to
outperform standard machine learning models such as LSTM, AR,
and ARIMA.

In [6], graph structured recurrent neural network (GSRNN) fur-
ther improved ARGO in the forecasting accuracy of CDC influenza
activity level. The CDC partitions the US into 10 Health and Hu-
man Services (HHS) regions for reporting. GSRNN treats the 10
regions as a graph with nodes v1, · · · , v10, and E be the collection of
edges (i.e E = {(vi, vj)|vi, vj are adjacent}). Based on the average
history of activity levels, the 10 HHS regions are divided into two
groups, relatively active group, H, and relatively inactive group, L.
There are 3 types of edges, L−L, H−L, and H−H, and each edge
type has a corresponding RNN to train the edge features. There are
also two node RNNs for each group to output the final prediction.
Given a node (region) v, suppose v ∈ H. GSRNN generates the edge
features of v at time t, etv,H and etv,L, by averaging the history of
neighbors of v in the corresponding groups. Next, the edge features
are fed into the corresponding edge RNNs:

f tv = edgeRNNH−L(etv,L), htv = edgeRNNH−H(etv,L)

Then, the outputs of edgeRNNs are fed into the nodeRNN of group
H together with the node feature of v at time t, denoted as vt, to
output the prediction of the activity level of node v at time t+ 1, or
yt+1
v :

yt+1
v = nodeRNNH(vt, f tv, h

t
v).



3 Our Contribution: IeRNN model

We propose a novel spatiotemporal model integrating LSTM [4] with
a discrete time I-equation derived from SIR differential equations.
The LSTM is utilized to model latent spatial information. The I-
equation models the observed temporal information. Our model,
named IeRNN, differs from [6, 10, 9] in that a difference equation
with 3 parameters (the I-equation) fits the limited temporal data,
which is far more compact than LSTM.

3.1 Derivation of Discrete-Time I-Equation

Based on SIR model, we add an additional feature Ie that represents
the external infection influence from the neighbors of a region. Then
the SIR nonlinear system with Ie as external forcing becomes

dS

dt
= −β1 S I − β2 S Ie (1)

dI

dt
= β1 S I + β2 S Ie − γ I (2)

dR

dt
= γ I (3)

which conserves the total mass (normalized to 1): S + I +R = 1. It
follows from (3) that

R(t) = R(t0) +

∫ t

t0

γ I dτ

Hence,

S(t) = 1− I(t)−R(t0)− γ

∫ t

t0

I dτ

Substituting S(t) into (2) we have:

dI

dt
= (β1 I + β2 Ie)

(
1− I(t)−R(t0)− γ

∫ t

t0

I(τ)dτ

)
− γI

Combining forward Euler method and Riemann sum approximation
of the integral, we have a discrete approximation:

I(t+ 1) = (1− γ)I(t) +
(
β1I(t) + β2Ie(t)

)
·
(

1− I(t)−R(t0)− γ t− t0
p+ 1

p∑
j=0

I(t− j)
)



As we model I(t) from the beginning of the infection, we have t0 = 0
and R(t0) = 0. We arrive at the following discrete time I-equation:

I(t+1) = (1−γ)I(t)+
(
β1I(t)+β2Ie(t)

)
·
(

1−I(t)−γ t

p+ 1

p∑
j=0

I(t−j)
)

(4)

Note that if we let Ie(t) = 0, then we have an approximation of
I(t) for the original SIR model, which is a solely temporal model
(named I model):

I(t+ 1) = (1− γ − β)I(t)− β I2(t)− β γ t

p+ 1
I(t)

p∑
j=0

I(t− j) (5)

In reality, it is hard to know how a population of a region interacts
with populations of neighboring regions. As a result, Ie(t) is a latent
information that is difficult to model by a mathematical formula or
equation. In order to retrieve latent spatial information, we employ
recurrent neural networks made of LSTM cells [4], see Fig. 2.

3.2 Generating Edge Feature and Computing La-
tent Ie

We utilize the spatial information basing on the Italy region map,
Fig. 1. In order to learn the latent information Ie of a region v,
we first generate the edge feature of v. Let C be the collection of
neighbors of v. Then, the edge feature of v at time t is formulated
as:

f te =
1

|C|
∑

i: vi∈C

[
Ii(t− 1), · · · , Ii(t− p)

]
where Ii(t) is the infection population percentage of region vi at
time t. Then, we feed f te into an Edge RNN, an RNN with 3 stacked
LSTM cells (see Fig. 3), followed by a dense layer for computing
Ie. The activation function of the dense layer is hyperbolic tangent
function. Figure 4 illustrates the procedure of computing Ie for
Lazio as an illustration. We hence call our model IeRNN due to its
integrated design of I-equation and edge RNN.

4 Experiment

To calibrate our model IeRNN, we use the Italy COVID-19 data [5]
for training and testing. Although the US has the most infected
cases, the recovered cases are largely missing. On the other hand,
the Italian COVID-19 data is more accurately reported and better



Figure 1: Italian Region Map
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Figure 2: LSTM cell: input xt, output: ht; σ is a sigmoid function.

maintained, reflecting a nearly complete duration of the rise and fall
of infection. We collect the data of daily new (current) cases from
2020-02-24 to 2020-06-18 of 20 Italian regions. We set p = 3 in
(4) based on experimental performance. As a result, we have the



Figure 3: Edge RNN consisting of 3 stacked LSTM cells.
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Figure 4: Computing Ie of Lazio region. Edge RNN is as shown in Fig. 3. Dense
layer is fully connected (see Fig. 5).

current data for 113 days, with 81 days to train our model and 32
days to test our model (or 70%/30% training/testing data split).



Our training loss function is the mean squared error of the model
output and training data:

ŷ(t) = (1− γ)y(t− 1) +
(
β1y(t− 1) + β2Ie(t− 1)

)
·
(

1− y(t− 1)− γ t

p+ 1

p+1∑
j=1

y(t− j)
)

Loss =
1

T − p− 1

T∑
t=p+1

(
y(t)− ŷ(t)

)2
Since the training is minimization of the above loss fucntion over

parameters in both I-equation and RNN, the two components of IeRNN
are coupled while learning from data. We use Adam gradient de-
scent to learn the weights of LSTM and the dense layer, as well as
I-equation parameters β1, β2, and γ.

To evaluate the performance of our model, we compare IeRNN,
I-model (5), a fully-connected neural network (fcNN, Fig. 5) with
hyperbolic tangent activation function, and auto-regression model
(ARIMA). As the standard setting of ARIMA is 1-day ahead pre-
diction, we shall only compare with it in such a very short-term case.
Since infectious disease evolution is intrinsically nonlinear, we shall
compare nonlinear models for 3-day and 1-week ahead forecasting.
Based on experimental performance, we set the number of hidden
units to be 100, 150, and 100 for the three layers of fcNN respectively.

Figure 5: Schematic of fcNN for modeling time series.
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4.1 One-Day Ahead Forecast

As we see in Fig. 6, fcNN can perform poorly. This is not a surprise,
as both [6] and [11] relied on hundreds of historical observations to
train their models. The I-model based on only sequential data in
time of one region merely follows the trend of the true data but can-
not provide accurate predictions. Our IeRNN model, with the help
of additional spatial information, is able to make accurate predic-
tions and outperform other models. We also test the IeRNN with
training data reduced to 40% (46 days). IeRNN is still able to track
the general trend of the infected population percentage.

We measure the test accuracy with the Root Mean Square Error
(RMSE) averaged over a few trials in training. In Tables 1 and 2
on 1-day ahead forecast, IeRNN achieves the smallest RMSE errors,
and I-model has the largest errors. The compact I-model with 2
parameters cannot do 1-day ahead prediction as accurately. ARIMA
outperforms I-model and does better on Emilia-Romagna and Lazio
regions than fcNN. ARIMA, a linear model, has simpler structure
than fcNN whose nonlinearity does not play out in such a short time
task. Fig. 8 shows 1-day ahead forecast of IeRNN model on other
regions with the learned latent external forcing Ie in Fig. 9.

Table 1: RMSE test errors in 1-day ahead forecast trained with 70 % of data. E-R=
Emilia-Romagna.

Model Lombardy E-R Lazio
IeRNN 1.027e-04 6.333e-05 3.251e-05
I-model 1.175e-03 3.284e-04 2.439e-04
fcNN 1.580e-04 4.614e-04 2.294e-04

ARIMA 9.789e-04 3.627e-04 4.365e-05

Table 2: RMSE test errors in 1-day ahead forecast trained with reduced (40 % of)
data. E-R= Emilia-Romagna.

Model Lombardy E-R Lazio
IeRNN 9.850e-05 1.778e-04 3.617e-05
I-model 1.871e-03 1.252 e-03 5.443e-04
fcNN 3.364e-04 6.204e-04 8.030e-04

ARIMA 1.277e-03 1.082e-03 4.018e-05



Table 3: RMSE test errors in 7-day ahead forecast trained with 70 % of data. E-R=
Emilia-Romagna.

Model Lombardy E-R Lazio
IeRNN 3.513e-04 4.423e-04 1.161e-04
I-model 2.004e-03 6.627e-04 5.586e-04
fcNN 6.608e-04 4.804e-04 4.508e-04

Table 4: RMSE test errors in 7-day ahead forecast trained with reduced (40 % of)
data. E-R= Emilia-Romagna.

Model Lombardy E-R Lazio
IeRNN 3.061e-04 4.324e-04 7.754e-05
I-model 2.196e-03 1.167e-03 6.011e-04
fcNN 2.224e-03 6.889e-04 1.851e-04

Table 5: RMSE test errors in 3-day ahead forecast trained with 70 % of data. E-R=
Emilia-Romagna.

Model Lombardy E-R Lazio
IeRNN 2.479e-04 3.668e-04 5.979e-05
I-model 5.609e-04 1.724e-04 1.383e-04
fcNN 8.165e-04 6.757e-04 1.689e-04

Table 6: RMSE test errors in 3-day ahead forecast trained with reduced (40 % of)
data. E-R= Emilia-Romagna.

Model Lombardy E-R Lazio
IeRNN 1.987e-04 3.256e-04 5.297e-05
I-model 1.114e-03 7.337e-04 3.507e-04
fcNN 8.611e-04 1.374e-03 5.290e-04

Table 7: Average model training (tr) and inference (inf) times in seconds on Macbook
Pro with Intel i5 CPU. The first two columns are for 70 % training (tr70) data and
the last two columns are for 40 % training (tr40) data.

Model tr70 inf70 tr40 inf40
IeRNN 0.58s 0.018s 0.51s 0.02s
I-model 0.14s 0.004s 0.11s 0.004s
fcNN 0.09s 0.003s 0.09s 0.003s

ARIMA 0.23s 0.014s 0.19s 0.015s



4.2 Multi-Day Ahead Forecast

In model training for multi-day ahead forecast, the training loss
function is modified so that the model input comes from multiple
days in the past. In 7-day ahead forecast, IeRNN leads the other
two nonlinear models especially in the 40% training data case, by
as much as a factor of 7 in Lombardy. In the 3-day ahead forecast,
IeRNN leads fcNN by a factor of 4 in the 40% training data case, as
much as a factor of 10 in Lazio. Figs. 10-13 show model comparison
in training and forecast phases for Lombardy and Lazio.

4.3 Model Size and Computing Time

IeRNN (fcNN) has about 16400 (1800) parameters. The optimized
(β1, β2, γ) = (0.685, 0.158, 0.044) in Lombardy, similarly in other
regions. Table 7 lists average model training and inference times.

5 Conclusions and Future Work

We developed a novel spatiotemporal infectious disease model con-
sisting of a discrete epidemic equation for the region of interest and
RNNs for interactions with nearest geographic regions. Our model
can be trained under 1 second. Its inference takes a fraction of a
second, suitable for real-time applications. Our model out-performs
temporal models in one-day and multi-day ahead forecasts in limited
training data regime. In future work, we shall consider social and
control mechanisms [1, 7] to strengthen the I-equation, as well as
traffic data to expand interaction beyond nearest neighbors.
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Figure 6: Training and 1-day ahead forecast of 4 models (IeRNN, fcNN, I-model,
and ARIMA) in 4 rows respectively.

(a) Lombardy (b) Lazio

(c) Lombardy (d) Lazio

(e) Lombardy (f) Lazio

(g) Lombardy (h) Lazio



Figure 7: Training and 1-day ahead forecast of 4 models with reduced (40%) training
data. The 4 rows are IeRNN, fcNN, I-model, and ARIMA respectively.

(a) Lombardy (b) Lazio

(c) Lombardy (d) Lazio

(e) Lombardy (f) Lazio

(g) Lombardy (h) Lazio



Figure 8: IeRNN training and 1-day ahead forecast on four additional regions.

(a) Piemonte

(b) Campania

(c) Molise

(d) Umbria



Figure 9: Visulization of the latent information Ie in Fig. 8 learned by IeRNN.

(a) Piemonte

(b) Campania

(c) Molise

(d) Umbria



Figure 10: Training and 7-day ahead forecast of 3 models (IeRNN, fcNN, and I-
model) in 3 rows respectively.

(a) Lombardy (b) Lazio

(c) Lombardy (d) Lazio

(e) Lombardy (f) Lazio



Figure 11: Training and 7-day ahead forecast of 3 models (IeRNN, fcNN, and I-
model) with reduced (40%) training data in 3 rows respectively.

(a) Lombardy (b) Lazio

(c) Lombardy (d) Lazio

(e) Lombardy (f) Lazio



Figure 12: Training and 3-day ahead forecast of 3 models (IeRNN, fcNN, and I-
model) in 3 rows respectively.

(a) Lombardy (b) Lazio

(c) Lombardy (d) Lazio

(e) Lombardy (f) Lazio



Figure 13: Training and 3-day ahead forecast of 3 models (IeRNN, fcNN, and I-
model) with reduced (40 %) training data in 3 rows respectively.

(a) Lombardy (b) Lazio

(c) Lombardy (d) Lazio

(e) Lombardy (f) Lazio
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