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Abstract

Exploiting relationships between objects for image and video
captioning has received increasing attention. Most existing
methods depend heavily on pre-trained detectors of objects
and their relationships, and thus may not work well when
facing detection challenges such as heavy occlusion, tiny-size
objects, and long-tail classes. In this paper, we propose a joint
commonsense and relation reasoning method that exploits
prior knowledge for image and video captioning without rely-
ing on any detectors. The prior knowledge provides semantic
correlations and constraints between objects, serving as guid-
ance to build semantic graphs that summarize object relation-
ships, some of which cannot be directly perceived from im-
ages or videos. Particularly, our method is implemented by an
iterative learning algorithm that alternates between 1) com-
monsense reasoning for embedding visual regions into the
semantic space to build a semantic graph and 2) relation rea-
soning for encoding semantic graphs to generate sentences.
Experiments on several benchmark datasets validate the ef-
fectiveness of our prior knowledge-based approach.

Introduction
Most existing methods for image and video captioning
(Donahue et al. 2015; Venugopalan et al. 2015b; 2015a;
Pan et al. 2016) are based on the encoder-decoder frame-
work which directly translates visual features into sentences,
without exploiting high-level semantic entities (e.g., ob-
jects, attributes, and concepts) as well as relations among
them. Recent work (Yao et al. 2018; Li and Jiang 2019;
Yang et al. 2019) has shown promising efforts of using
a scene graph that provides an understanding of semantic
relationships for image captioning. These methods usually
use pre-trained object and relationship detectors to extract
a scene graph and then reason about object relationships in
the graph. However, when facing detection challenges, such
as heavy occlusion, tiny-size objects, and the long-tail prob-
lem, this paradigm might not accurately depict the objects
and their relationships in images or videos, thus resulting in
a degradation of captioning performance.
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As we know, human beings can still describe images and
videos by summarizing object relationships when some ob-
jects are not precisely identified or even absent, thanks to
their remarkable reasoning ability based on prior knowledge.
This inspires us to explore how to leverage prior knowl-
edge to achieve relation reasoning in captioning, mimick-
ing the human reasoning procedure. As an augmentation of
the object relationships explicitly inferred from an image or
a video, the prior knowledge about object relationships in
the world provides information that is not available in the
image or video. For example, as shown in Figure 1, the cap-
tion of “Several people waiting at a race holding umbrel-
las” will be generated via prior knowledge when describing
a crowd of people standing along the road, even if the image
shows no players or running actions (perhaps because the
game is yet to begin). Clearly, the relationship of “people
waiting race” is inferred from the commonsense relation-
ship between “people” and “race” rather than from the im-
age. Therefore, it is beneficial to integrate prior knowledge
with visual information to reason relationships for generat-
ing accurate and reasonable captions.

In this paper, we utilize prior knowledge to guide the rea-
soning of object relationships for image and video caption-
ing. The prior knowledge provides commonsense semantic
correlations and constraints between objects to augment vi-
sual information extracted from images or videos. We em-
ploy external knowledge graphs in Visual Genome (Krishna
et al. 2017) which represents a type of prior knowledge in
that the nodes represent the objects and the edges denote the
relations between nodes.

To effectively apply the prior knowledge into image and
video captioning, we propose a joint commonsense and rela-
tion reasoning (C-R Reasoning) method that integrates both
commonsense reasoning and relation reasoning, and imple-
ments them simultaneously. The commonsense reasoning
selects local visual regions and maps them into a high-level
semantic space to build a semantic graph by using the se-
mantic constraints about relations in the knowledge graphs.
The relation reasoning encodes the semantic graph by refin-
ing the representations of regions through a graph convolu-
tional network (GCN) to generate textual descriptions. To be
specific, we develop an iterative learning algorithm which
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Figure 1: An example of how commonsense reasoning facil-
itates image and video captioning in our work. The concept
“race” is absent from the image but can be inferred from
prior knowledge via commonsense reasoning.

alternates between building semantic graph via common-
sense reasoning and generating captions via relation reason-
ing.

Our method does not rely on any pre-trained detectors
and does not require any annotations of semantic graphs for
training. By discovering the inherent relationships guided by
prior knowledge, our method can identify objects that are
difficult to detect or even absent from images or videos. An-
other merit of our method lies in the ability of reaching se-
mantic coherency within a video or image for captioning,
which alleviates the problem of semantic inconsistency be-
tween the pre-defined object or relationship categories and
the target lexical words in existing methods (Yao et al. 2018;
Li and Jiang 2019; Yang et al. 2019; Aditya et al. 2018;
Zhou, Sun, and Honavar 2019).

Related Work
Recently, exploiting relationships between objects for im-
age captioning has received increasing attention. Yao et al.
(2018) employed two graph convolutional networks (GCNs)
to reason semantic and spatial correlations among visual fea-
tures of detected objects and their relationships to boost im-
age captioning. Li et al. 2019 generated scene graphs of im-
ages by detectors, and built a hierarchical attention-based
model to reason visual relationships for image captioning.
Yang et al. 2019 incorporated language inductive bias into a
GCN based image captioning model to not only reason re-
lationship via GCN but also represent visual information in
language domain via a scene graph auto-encoder for easier
translation. These methods explicitly exploit high-level se-
mantic concepts via the pre-defined scene graph of each im-
age and the annotations of object and relationship locations
in the image. Quite different from their methods, our method
utilizes prior knowledge to generate a graph of latent seman-
tic concepts in an image or a video, without requiring any
pre-trained detectors. Moreover, our iterative algorithm en-
ables the scene graph generation and captioning to be trained
in an end-to-end manner, thus alleviates the semantic incon-
sistency between the pre-defined object/relation categories
and the target lexical words.

Some recent methods apply external knowledge graphs

for image captioning. In (Aditya et al. 2018), the com-
monsense reasoning is used to detect the scene descrip-
tion graph of an image, and the graph is directly translated
into a sentence via a template-based language model. CNet-
NIC (Zhou, Sun, and Honavar 2019) incorporates knowl-
edge graphs to augment information extracted from images
for captioning. Different from these methods that directly
extract explicit semantic concepts from external knowledge,
our method uses external knowledge to reason relationships
between semantic concepts via joint commonsense and rela-
tion reasoning, without facing the “hallucinating” problem
as stated by (Rohrbach et al. 2018).

Some Visual Question Answering (VQA) methods (Be-
rant et al. 2013; Fader, Zettlemoyer, and Etzioni 2014;
Su et al. 2018; Mao et al. 2019) apply commonsense or rela-
tion reasoning. In these methods, almost the entire semantic
graph is given in terms of the question sentences, while the
semantic graph is built only by using the input visual cues
for image and video captioning with reasoning. The reason-
ing problem in image and video captioning is thus more
challenging. To tackle this problem, we leverage the prior
knowledge to help reasoning and propose a joint learning
method to implement the reasoning.

Our Method
Our method consists of three modules: visual mapping and
knowledge mapping, commonsense reasoning, and relation
reasoning, as shown in Figure 2. In the visual mapping and
knowledge mapping module, the candidate proposals of se-
mantic entities are generated, and then the visual feature vec-
tors of the proposals are learned via visual mapping, and the
knowledge vectors of the proposals via knowledge mapping.
In the commonsense reasoning module, given the candidate
proposals, a semantic graph is built under the guidance of the
prior knowledge graphs. In the relation reasoning module,
given the semantic graph, textual descriptions are generated
via GCN and a sequence-based language model.

Visual Mapping
The goal of visual mapping is to generate candidate pro-
posals of semantic entities such as objects, attributes and
relationships. Specifically, the proposals of objects and at-
tributes are represented by visual features of local regions.
The relationship proposals are represented by visual features
of the union areas of two local regions. The local region
refers to a 2D patch in images or a 3D cuboid in videos. We
densely sample local regions from input images or videos,
and then features of the regions are extracted using pre-
trained CNNs. We cluster on the sampled regions to ob-
tain typical candidate proposals that are represented by the
cluster centers. Let V = [v1, . . . ,vNv ] ∈ RLv×Nv denote
the visual feature vectors of the candidate proposals, where
vi ∈ RLv×1 is the visual feature vector of the i-th candidate
proposal and Nv is the number of candidate proposals.

Knowledge Mapping
Knowledge mapping aims at learning knowledge vectors of
the candidate proposals by projecting the visual feature vec-
tors V of the candidate proposals onto a semantic concept
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Figure 2: Overview of our method for video captioning. We first densely sample spatial-temporal regions from the input videos
and cluster the regions according to their visual appearances to obtain the candidate proposals. Then we project the proposals
into semantic spaces via visual and knowledge mappings and build a semantic graph via commonsense reasoning guided by
prior knowledge graphs. Finally, we learn the relation-aware graph via relation reasoning for captioning, and the generated
sentence in turn refines the knowledge graphs. For image captioning, the spatial image regions are first densely sampled.

space with knowledge embedding vectors of prior knowl-
edge. The knowledge embedding vectors are calculated by
using knowledge graphs on the Visual Genome1 via com-
plEX (Trouillon et al. 2016). Supposing that there are to-
tally C semantic concepts in the knowledge graphs, letE =
[e1, ..., eC ] ∈ CLk×C represent the knowledge embedding
vectors where ei ∈ CLk×1 denotes the i-th semantic concept
and C is the complex domain that enables the knowledge
embedding vectors to represent directed knowledge graphs.
The knowledge vectors of the candidate proposals are de-
rived from the aggregation of the knowledge embedding
vectors weighted by a soft-assignment that is implemented
by a non-linear mapping network. LetK = [k1, . . . ,kNv ] ∈
CLk×Nv represent the knowledge vectors of the candidate
proposals, where ki denotes the knowledge vector of the i-th
candidate proposal, ki = Epi and pi ∈ RC×1 represent the
weights of knowledge embedding vectors. Since there are
three kinds of semantic concepts (object, relationship, and
attribute), we build three non-linear mapping networks to
soft-assign the visual feature vectors with concept labels of
object, relationship, and attribute, respectively. The ground-
truth labels of objects (resp. relationships and attributes) are
simply derived from the nouns (resp. verbs and adjectives) of
the ground-truth sentences via POS tagging using the NLTK
toolkit (Xue 2011). The training and inference procedures of
the three networks are similar, so we only describe details of
the network for the object below.

During training, we apply a multiple self-attention mecha-
nism to the visual feature vectorsV of an image or a video to
make the network focus on the relevant candidate proposals
to the ground-truth. Specifically, K attention operations are
used to obtain vectors Z = [z1, ...,zK ] ∈ RLv×K , where
zk ∈ RLv×1 represents the vector after the k-th attention op-
eration, given zk = V aT

k, and ak ∈ RNv×1 represents the

1Note that Visual Genome is a large-scale dataset containing
images annotated by triples of semantic concepts (i.e., objects, at-
tributes, and relationships), but we construct the knowledge graphs
only using the triples without images and bounding box annota-
tions.

k-th attention weights calculated by a non-linear mapping
with the sparsemax (Martins and Astudillo 2016) activation.
The predicted object class probabilities of V are calculated
as σ(

∑K
k=1 f(zk)) ∈ RC×1, where f(·) is a linear mapping

function that maps zk to a C dimensional space and σ(·)
is a sigmoid operation. Given the predicted class probabili-
ties and ground-truth class labels of objects, the network for
the object is trained with a binary cross-entropy loss func-
tion. Moreover, to encourage the model to focus on diverse
objects in each image or video, we set a constraint C to reg-
ularize f(Z), formulated by

C = −
∑
i 6=j

KL(p(f(zi))||p(f(zj))), (1)

where KL(·) denotes the Kullback–Leibler divergence and
p(·) is a softmax function.

During inference, the visual feature vector of each pro-
posal is directly fed into the object network without attention
operations, i.e., zi = vi. A sparsemax operation is used to
normalize f(zi) to generate the weights of embedding vec-
tors of the knowledge graphs, and thus the knowledge vector
ki is given by

ki = Epi, pi = sparsemax(f(zi)). (2)

Joint Commonsense and Relation Reasoning
After learning the visual feature vectors V and the knowl-
edge vectors K of all the candidate proposals from train-
ing data, we implement image and video captioning by al-
ternatively conducting commonsense reasoning and relation
reasoning, as illustrated in Figure 3. The commonsense rea-
soning constructs the semantic graph of candidate propos-
als with the guidance of triplet constraints summarized in
the knowledge graphs. The relation reasoning learns the
relation-aware features via a GCN and generates textual de-
scriptions using a sequence-based language model.

Commonsense reasoning. Taking visual feature vectors V
and knowledge vectors K as input, we further represent the
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Figure 3: Our C-R reasoning. We design “semantic mapping” and “GCN+LSTM” modules for commonsense reasoning and
relation reasoning, respectively. The two modules are alternatively updated through back propagation. Given the features of the
candidate proposals, the “criterion” module selects semantic features of the graph learned by the “semantic mapping” module.

candidate proposals as semantic features S using a non-
linear mapping function: si = ϕ(vi,ki), si ∈ S , i.e., se-
mantic mapping. The semantic features are learned to satisfy
that the correlations and constrains among objects, relation-
ships and attributes are inferred by a commonsense reason-
ing criterion to generate the semantic graph of an image or
a video. The semantic mapping ϕ(·) is updated by the back-
propagation of the Commonsense and Relation Reasoning
(C-R Reasoning) framework. Different from existing meth-
ods of visual relationship detection (Liang, Lee, and Xing
2017; Lu et al. 2016; Zhang et al. 2017) that utilize language
prior or regularize relation embedding space, our method
leverages commonsense reasoning in the semantic space to
generate a relevant semantic graph for describing the image
or video without requiring any explicit supervision.

Concretely, the knowledge graphs are collections of fac-
tual triplets, where each triplet represents a relationship be-
tween a head entity and a tail entity. Let Sh, Sr and St rep-
resent the entity sets of head, relationship and tail. We learn
a commonsense reasoning criterion to represent the seman-
tic features via complex vectors, therefore not only the sym-
metric but also the antisymmetric relations among the enti-
ties can be measured. Following (Trouillon et al. 2016), we
set the criterion to measure the real part of the composition
of the semantic triplet (sh, sr, st) and represent the correla-
tion, and thus the correlation in the triplet is given by

Re(<Wsh,Wsr,Wst >)

= < Re(Wsh),Re(Wsr),Re(Wst) >

+ < Re(Wsh), Im(Wsr), Im(Wst) >

+ < Im(Wsh),Re(Wsr), Im(Wst) >

− < Im(Wsh), Im(Wsr),Re(Wst) >,

(3)

where sh ∈ Sh, sr ∈ Sr, and st ∈ St, W ∈ is a weight
matrix that converts the semantic features into complex vec-
tors, Wst is the complex conjugate of Wst, and < · >
denotes the multi-linear dot product of the vectors in the
triplet. Re(·) and Im(·) denote the real and imaginary parts
of a number, respectively. Note that the form of the triplet is
ordered, and attribute vertices could only be the tail entities.

We select triplets with large responses on the criterion
from the candidate proposals to generate the semantic graph.
In analogy to non-maximum suppression (NMS), we elim-
inate triplets whose scores are lower than −1, and suppress

triplets with more than one vertex which is the same with the
local maxima.

Relation reasoning. We use the GCN (Johnson, Gupta,
and Fei-Fei 2018) to propagate information along edges of
the graph and contextually encode features in the semantic
graph for generating relation-aware features.

As for the captioning, we introduce an attention mech-
anism to aggregate the triplets in the relation-aware graph
for generating captions. Specifically, we adopt the caption-
ing model of (Anderson et al. 2019), which is composed of a
top-down attention LSTM for weighting visual features and
a language LSTM for generating captions. The input to the
top-down attention LSTM layer at time step t is the con-
catenation of the previous hidden state h2

t−1 of the language
LSTM layer, the global features g, and the embedding vec-
tor ut−1 of the previously generated word. Thus, the hidden
state of the top-down attention LSTM is given by

h1
t = LSTM([h2

t−1, g,ut−1],h
1
t−1), (4)

where [·, ·, ·] denotes the concatenation operation. Then we
use h1

t as the query of the attention operation to weight the
triplets in relation-aware graph. The g-th triplet tg in the
graph is represented by the concatenation of the relation-
aware features of the head, relationship, and tail entities.
Supposing that there are G triplets in the graph, the atten-
tion weight at time step t is given by αt = [α1,t, . . . , αG,t],
where each αg,t is calculated by fusing h1

t and tg after a
normalization operation. The input to the language LSTM
layer at time step t can thus be obtained by concatenating∑G

g=1 αg,ttg with h1
t , and the output is the conditional dis-

tribution over the words.

Objective. Two losses are effectively combined to train the
entire captioning model. One loss Lc is a cross-entropy loss
for generating sentences:

Lc = −
T∑

t=1

log
(
Pr(yt|y1:t−1, I)

)
, (5)

where Pr(yt|y1:t−1, I) denotes the probability that the pre-
diction is the ground-truth word yt given the previous word
sequence y1:t−1 and all the features I of the input images or
videos. Specifically, I includes the global features and can-
didate proposal features (visual feature vectors and knowl-
edge vectors) of the input images or videos.



The other loss Ls guides the learning of the semantic fea-
tures of each vertex to capture correlation information with
its adjacent vertices. Ls is measured by the commonsense
reasoning criteria when the semantic features are mapped
into the complex domain:

Ls =

G∑
g=1

T∑
t=1

(αg,t − γ) log(1+

exp(−Re(<Wsh
g ,Wsr

g,Wst
g >))) + λ||W ||22,

(6)

where the parameter λ represents the importance of the reg-
ularization term, and γ is a threshold that determines triplets
to be punished. In the experiments, we set λ = 0.01 and
γ = 0.3, empirically.

Consequently, the overall loss is defined as

L = Lc + βLs, (7)

where β is a hyper-parameter. Since Ls is constrained on
the learning of attention weights {αt|t = 1, . . . , T} guided
by Lc, we set β to 0 during the first few epochs of training,
and 0.1 afterwards.

Iterative algorithm. Our C-R Reasoning method theoreti-
cally can be trained in an end-to-end manner. However, the
commonsense reasoning module faces an optimization chal-
lenge: the construction of the semantic graph involves hard
assignment operations, i.e., selecting triplets. To address this
issue, we develop an iterative algorithm that alternates be-
tween semantic graph generation via commonsense reason-
ing and captioning via relation reasoning, as summarized in
Algorithm 1.

Experiments
Datasets
We conduct experiments on a video captioning dataset,
MSVD (Guadarrama et al. 2013), and an image caption-
ing dataset, MSCOCO (Lin et al. 2014). The MSVD dataset
comprises 1,970 video clips collected from Youtube, each
annotated with roughly 40 captions. We follow the split in
(Venugopalan et al. 2015a) which divides the videos into
three parts: 1,200 training videos, 100 validation videos and
670 testing videos. The MSCOCO dataset contains above
100K images with 5 captions each. We follow the standard
split by (Karpathy and Fei-Fei 2017) which takes 113,287
images for training, 5,000 for validation and 5,000 for test-
ing.

We also conduct qualitative experiments on a Chinese
video captioning dataset, Youku-VC, to further validate the
effectiveness of our method on the task of video caption-
ing in different languages. The Youku-VC dataset contains
1,430 short videos collected from Youku2, and each video
annotated with 10 Chinese sentences. We split the dataset
into 1,000 training videos, 215 validation videos and 215
testing videos.

The metrics of BLEU-4 (B@4) (Papineni et al. 2002),
METEOR (Denkowski and Lavie 2014), CIDEr (Vedantam,
Zitnick, and Parikh 2015), and SPICE (Anderson et al. 2016)

2https://www.youku.com

are used for evaluations by the MSCOCO toolkit (Chen et al.
2015). For all the metrics, higher values indicate better per-
formance.

Algorithm 1: C-R Reasoning.
Input: Visual feature vectors V = ∪N

n=1Vn and
knowledge vectors K = ∪N

n=1Kn of N images
or videos.

Output: C-R Reasoning model.
1 Initialization:Hn = Kn, ∀n = 1, · · · , N ;
2 repeat
3 • Semantic Graph Generation:
4 for n = 1, · · · , N do
5 Select object, relationship and attribute vertices

from (Vn,Kn) by using (3) onHn to generate
(VS

n ,KS
n);

6 end
7 VS ⇐ ∪N

n=1VS
n , KS ⇐ ∪N

n=1KS
n ;

8 Map VS and KS into semantic space ϕ(VS ,KS);
9 • Captioning:

10 Map ϕ(VS ,KS) into φ(ϕ(VS ,KS)) by using
relation reasoning based on GCN;

11 • Update:
12 Update parameters of φ(·), ϕ(·), and the

sequence-based language model by minimizing L.
13 Hn ⇐ ϕ(Vn,Kn), ∀n = 1, · · · , N ;
14 until Convergence;

Implementation Details
For video captioning, the visual feature vector of each sam-
pled local region (i.e., 3D cuboid) is extracted by concate-
nating features after average pooling from the correspond-
ing region in the feature map of the last convolutional lay-
ers of ResNeXt-101 (Xie et al. 2017) and IRv2 (Szegedy
et al. 2017). The visual feature of each video frame is the
concatenation of outputs of the pooling layer after the last
convolutional layers of ResNeXt-101 and IRv2. The visual
features of the entire video are derived from the res5c layer
of ResNeXt-101 and the inception-c layer of IRv2. For im-
age captioning, the visual feature vector of each sampled
local region (i.e., 2D patch) is calculated after ROI pool-
ing from the corresponding region in the feature map of the
res5c layer of ResNet-101 (He et al. 2016). The visual fea-
ture of the entire image is the output of the pool5 layer of
ResNet-101. For Chinese video captioning, the sentences are
tokenized by jieba3.

In visual mapping, to reduce computational cost, we em-
ploy the RPN (Ren et al. 2017) without NMS to densely
sample candidate object regions with scores higher than
threshold 0.7. For data augmentation, we repeatedly conduct
k-means clustering operations to obtain multiple groups of
candidate proposals from each image or video, and the num-
ber of clusters is set from 5 to 10. In knowledge mapping,
the number of the sparse attention operations is set to 3 ac-
cording to the mAP of the multi-label classification by the
non-linear mapping networks on the validation set. In the

3https://github.com/fxsjy/jieba



Methods Detector B@4 METEOR CIDEr

Gao et al. (2017) 50.8 33.3 74.8
Gan et al. (2017) 51.1 33.5 77.7
Wang et al. (2018b) 52.8 33.1 -
Wang et al. (2018a) 52.3 34.1 80.3
Aafaq et al. (2019) X 47.8 35.0 78.1
Zhang et al. (2019) X 56.9 36.2 90.6

Ours 57.0 36.8 96.8

Table 1: Comparison results on the MSVD dataset.

Methods Detector B@4 METEOR CIDEr SPICE

Gan et al. (2017) 33.0 25.7 101.2 -
Anderson et al. (2019) X 36.2 27.0 113.5 20.3
Yao et al. (2018) X 37.1 28.1 117.1 21.1
Zhou et al. (2019) X 29.9 25.6 107.2 -
Li et al. (2019) X 33.8 26.2 110.3 19.8
Yang et al. (2019) X 36.9 27.7 116.7 20.9

Ours 36.7 28.1 117.3 20.1
Ours with detector X 37.7 28.2 120.1 21.6

Table 2: Comparison resuls on the MSCOCO dataset.

sequence-based language model, both the number of hidden
units in each LSTM and the size of the input word embed-
ding is set to 512. During training, the convergence crite-
rion is considered as that the CIDEr score on the validation
set stops increasing in 10 consecutive epochs. During infer-
ence, the sizes of beam search are set to 3 and 5 to generate
sentences in image and video captioning, respectively.

Comparison with the State-of-the-Art Methods
Table 1 shows the comparison results on the MSVD dataset.
From the results, it is interesting to observe that: (1) Com-
paring with (Gao et al. 2017; Wang et al. 2018a; 2018b;
Gan et al. 2017) which are simple sequence-to-sequence
captioning models without exploiting their relations, our
method achieves better performances, which proves the ad-
vantage of our joint commonsense and relation reasoning.
(2) Our method outperforms (Aafaq et al. 2019; Zhang and
Peng 2019) which detect objects from videos using detec-
tors pre-trained on image dataset. It validates that using prior
knowledge to identify objects in our method is more general
than pre-training object detectors on images, since there ex-
ists a domain gap between the image and video datasets.

Table 2 shows the comparison results between our method
and several recent methods that are closely related to our
method on the MSCOCO dataset. All the compared methods
(Gan et al., 2017; Anderson et al., 2019; Yao et al., 2018;
Zhou et al.,2019; Li et al.,2019) use explicit high-level se-
mantic concepts of objects and relationships for image cap-
tioning. We can have the following observations: (1) The
fact that our method achieves better results than (Gan et al.
2017) where the semantic information is not exploited vali-
dates that C-R Reasoning can benefit learning semantic re-
lationships for image captioning. (2) Compared with (An-
derson et al., 2019; Yao et al., 2018; Zhou et al.,2019; Li
et al.,2019) which use pre-trained detectors to explore vi-
sual relationships for captioning, our method still achieves

Methods B@4 METEOR CIDEr

Anderson et al. (2019) 48.7 33.2 83.4
Ours w/o CR 48.6 32.9 79.5
Ours w/o RR 54.9 36.7 92.4
Ours 57.0 36.8 96.8

Table 3: Results of ablation studies on the MSVD dataset.

comparable performances without any detectors, demon-
strating that exploiting relationships actually benefits from
prior knowledge and does not necessarily rely on pre-trained
detectors. (3) For fair comparison, we also show the results
of our method using the pre-trained Faster R-CNN detector
to extract the initial regions from images. As shown in the
bottom row of Table 2, our method with a detector outper-
forms all the compared methods.

Ablation Study
To analyze our method in depth, ablation studies are con-
ducted to evaluate the effect of each individual component
and the results on the MSVD dataset are reported in Table 3.
Effect of C-R Reasoning. To analyze the effect of C-R Rea-
soning, we compare our method with the Up-Down method
by (Anderson et al. 2019) that uses Faster R-CNN (Ren et
al. 2015) to detect spatial regions and extracts visual features
from the regions as input to a bottom-up attention model. For
fair comparison, the visual features used in the Up-Down
model are the same with ours. As can be seen from Table 3,
our method achieves better results than Up-Down for all the
metrics, which clearly validates that C-R Reasoning can sig-
nificantly boost the performance.
Effect of commonsense reasoning. To analyze the effect
of commonsense reasoning, we remove the commonsense
reasoning, and instead, apply the Faster R-CNN to generate
the semantic graph (i.e., “Ours w/o CR”). As shown in Ta-
ble 3, the great improvement of our method over “Ours w/o
CR” validates the importance of commonsense reasoning on
learning the most relevant semantic concepts and relation-
ships for captioning.
Effect of relation reasoning. To analyze the effect of rela-
tion reasoning, we remove the GCN (i.e., Ours w/o RR). As
shown in Table 3, our method outperforms “ours w/o RR”,
verifying that learning relation-aware features based on se-
mantic graphs is beneficial for improving the performance.

Convergence Performance
For a more intuitive view of our iterative algorithm, we plot
the learning curves of the CIDEr and B@4 scores on the test
set of MSVD in Figure 5. Iteration 0 means that our model
is trained without the loss LS at the beginning. As illustrated
in Figure 5, our model converges after three iterations, and
CIDEr drops afterwards because of overfitting.

Qualitative Analysis
Figure 4 shows several exemplars of video captioning re-
sults on the MSVD dataset. For each exemplar, the top three
images represent randomly sampled frames from the video.



o-r-o: <girl, put_on, makeup>, <lady, apply, makeup>, …
o-r-a: <girl, is, talking>, <girl, is, young>, <woman, is, girl>, …

Ours: A young woman is applying makeup.
GT: A lady is putting make up on her eyebrows.

o-r-o: <man, make, food>, <person, prepare, food>, …
o-r-a: <food, is, mixed>, <dough, is, mixed>, <dough, in, bowl>, …

Ours: A person is mixing dough in a bowl.
GT: A woman is mixing some ingredients in a bowl.

(a) (b) (c)

o-r-o: <man, talk_to, man>, <woman, talk_to, woman>, …
o-r-a: < man, is, talking>, <woman, is, young>, …

o-r-o: <cat, play_with, cat>, <animal, play_with, animal>, …
o-r-a: <cat, is, dancing>, <cat, is, white>, <cat, is, kitten>, …
Ours: A woman is playing with a kitten.
GT: A woman is making her cat dance.

o-r-o: < group, play_with, group>, < group, communicate_with, group>, …
o-r-a: < men, are, group >, < man, is, rapid>, …
Ours: A group of people are playing.
GT: People are making a human triangle.

(d) (e) (f)

o-r-o: <man, talk_to, man>, <man, talk_to, woman>, …
o-r-a: < man, is, singing>, <men, are, group>, …

Figure 4: Qualitative results on MSVD and Youku-VC. Yellow and blue bounding boxes represent the candidate proposals of
objects and relations (if any), respectively. The “o-r-o” and “o-r-a” denote the typical triplets of “object-relation-object” and
“object-relation-attribute” in semantic graphs, respectively. “Ours” represents the captions generated by our method, and “GT”
represents one of the ground-truth sentences. Sentences in parentheses are the translations of the Chinese captions.
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Figure 5: Learning curves of the CIDEr and B@4 scores.

The bounding boxes in images indicate the inferred candi-
date proposals. Below the images, we show some typical
triplets of “object-relationship-object (o-r-o)” and “object-
relationship-attribute (o-r-a)” that are generated from the
knowledge graphs. Our captioning results and the ground-
truth (GT) sentences are shown at the bottom. It is inter-
esting to observe that our method can detect some “diffi-
cult” objects for generating accurate captions. For exam-
ple, as shown in Figure 4(b) and (d), the tiny-size object
of “makeup” and the heavily occluded “person” are suc-
cessfully inferred by referring to the prior knowledge of
<woman, put_on, makeup> and <woman, play_with, cat>,
respectively. We also show examples of the results on the
Youku-VC dataset in Figure 4(c) and (f).

Conclusion
We have presented a novel joint commonsense and relation
reasoning approach to image and video captioning by ex-
ploiting prior knowledge, which alternates between com-
monsense reasoning to build a semantic graph and rela-
tion reasoning to generate textual descriptions. It can learn
semantic relationships between objects to comprehensively

understand the visual cues, and generate sentences that accu-
rately describe the image content, without requiring any pre-
defined object or relationship detectors. Thanks to the joint
learning strategy, our captioning model is able to achieve the
global semantic coherency within an image or a video, thus
further improves the captioning performance. Experiments
on both image and video captioning benchmarks demon-
strate that our method outperforms the state-of-the-art meth-
ods. In the future, we will exploit more prior knowledge
for commonsense reasoning and incorporate motion infor-
mation into relation reasoning for video captioning.
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