Polyhedral Optimizations of Explicitly Parallel Programs

Prasanth Chatarasi, Jun Shirako, Vivek Sarkar
Department of Computer Science
Rice University, Houston, Texas-77005, USA
{prasanth,shirako,vsarkar} @rice.edu

Abstract—The polyhedral model is a powerful al-
gebraic framework that has enabled significant ad-
vances to analysis and transformation of sequential
affine (sub)programs, relative to traditional AST-
based approaches. However, given the rapid growth
of parallel software, there is a need for increased
attention to using polyhedral frameworks to optimize
explicitly parallel programs. An interesting side effect
of supporting explicitly parallel programs is that
doing so can also enable optimization of programs
with unanalyzable data accesses within a polyhedral
framework. In this paper, we address the problem of
extending polyhedral frameworks to enable analysis
and transformation of programs that contain both
explicit parallelism and unanalyzable data accesses.
As a first step, we focus on OpenMP loop parallelism
and task parallelism, including task dependences from
OpenMP 4.0.

Our approach first enables conservative depen-
dence analysis of a given region of code. Next, we
identify happens-before relations from the explicitly
parallel constructs, such as tasks and parallel loops,
and intersect them with the conservative depen-
dences. Finally, the resulting set of dependences is
passed on to a polyhedral optimizer, such as PLuTo
and PolyAST, to enable transformation of explicitly
parallel programs with unanalyzable data accesses.

We evaluate our approach using eleven OpenMP
benchmark programs from the KASTORS and Ro-
dinia benchmark suites. We show that 1) these
benchmarks contain unanalyzable data accesses that
prevent polyhedral frameworks from performing ex-
act dependence analysis, 2) explicit parallelism can
help mitigate the imprecision, and 3) polyhedral
transformations with the resulting dependences can
further improve the performance of the manually-
parallelized OpenMP benchmarks. Our experimental
results show geometric mean performance improve-
ments of 1.62x and 2.75x on the Intel Westmere and
IBM Power8 platforms respectively (relative to the
original OpenMP versions).

Keywords-Explicit parallelism; Polyhedral trans-
formations; Task parallelism; OpenMP; Happens-
before relations

I. Introduction

A key challenge for optimizing compilers is to keep up
with the increasing complexity related to locality and
parallelism in modern computers, especially as computer
vendors head towards new designs for extreme-scale

processors and exascale systems [1]. Classical AST-based
optimizers typically focus on one particular objective at
a time, such as vectorization, locality or parallelism. In
contrast, polyhedral transformation frameworks support
complex sequences of transformations of perfectly/im-
perfectly nested loops in a unified formulation. The
advantages of this unified formulation are seen in polyhe-
dral optimizers, such as PLuTo [2], [3] and PolyAST [4].
It has even been extended and specialized to integrate
SIMD constraints [5]. Polyhedral frameworks achieve
this generality in transformations by restricting the
class of programs that do not have unanalyzable control
or data flow. In the original formulation of polyhe-
dral frameworks, all array subscripts, loop bounds, and
branch conditions in analyzable programs were required
to be affine functions of loop index variables and global
parameters. However, decades of research since then
have led to a great expansion of programs that can be
considered analyzable by polyhedral frameworks. The
main remaining constraints stem from restrictions on
various program constructs including pointer aliasing,
unknown function calls, non-affine expressions, recur-
sion, and unstructured control flow.

Our work is motivated by the observation that soft-
ware with explicit parallelism is on the rise. It can be
used to enable larger set of polyhedral transformations
(by mitigating conservative dependences), compared to
what might have been possible if the input program is
sequential. Our work focuses on explicitly-parallel pro-
grams that specify potential logical parallelism, rather
than actual parallelism. Thus, explicit parallelism is
simply a specification of a partial order, traditionally
referred to as a happens-before relations [6]. Depen-
dences can only occur among statement instances that
are ordered by the happens-before relations. Hence,
we can reduce spurious dependences arising from the
unanalyzable constructs by intersecting happens-before
relations with conservative dependences.

In this paper, we restrict our attention to explicitly-
parallel programs that satisfy the serial elision property,
i.e., the property that removal of all parallel constructs
results in a sequential program that is a valid (albeit
inefficient) implementation of the parallel program se-
mantics [7]. We observe that loop-level and task-level

parallelism form the core of modern parallel program-
ming languages, such as OpenMP [8], Chapel [9], Cilk
[10], and X10 [11]. So, we focus our attention on loop-
level and task-level constructs in OpenMP that satisfy
the serial elision property, while deferring support for
SPMD constructs that do not satisfy this property to
future work.

A summary of our approach is as follows. We first
enable conservative dependence analysis of a given region
of code. Next, we identify happens-before relations from
the explicitly parallel constructs and intersect with the
conservative dependences. Finally, the resulting set of
dependences is passed to the polyhedral transformation
tools, such as PLuTo [2], [3] and PolyAST [4], to en-
able the transformations of explicitly-parallel programs
with unanalyzable data accesses. To the best of our
knowledge, our work is the first to enable the polyhedral
transformations of explicitly parallel OpenMP programs
by combining the classical dependence analysis with
happens-before analysis for explicit parallelism®.

The rest of the paper is organized as follows. Section II
summarizes background material, and Section IIT moti-
vates the problem using OpenMP benchmark programs.
Section IV provides an overview of our approach for
enabling polyhedral transformations of explicitly parallel
programs; we refer to our framework as the Polyhe-
dral optimizer for Parallel Programs (PoPP). Section V
presents experimental results to evaluate our approach
on OpenMP benchmarks from the Kastors [13] and
the Rodinia [14] benchmark suites on a 12-core Intel
Westmere processor and a 24-core IBM Power8 system.
Section VII and Section VIII summarize related work
and our conclusions.

II. Background

We start with a brief overview of the polyhedral
model, the basis of the proposed optimizing framework.
Next, we briefly summarize explicit-parallelism including
loop-level and task-level parallelism in the context of
OpenMP [8], which is a widely used shared memory
parallel programming model.

A. Polyhedral Model

The polyhedral model is a flexible representation for
perfect and imperfect loop nests with static predictable
control. Loop nests amenable to this algebraic represen-
tation are called Static Control Parts (SCoPs). It con-
sists of a set of consecutive statements, and each state-
ment contains three elements namely iteration domain,
access relations, and schedule. The loop bounds, branch
conditions, and array subscripts in the SCoP need to

L An earlier version of this paper was informally presented at the
IMPACT’15 workshop [12], which is a forum that does not include
formal proceedings.

be affine functions of iterators and global parameters.
A code region that does not strictly satisfy the above
requirements can be also represented in the polyhedral
model via conservative estimations.

Iteration domain, Ds: A statement S enclosed by
‘m’ loops is represented by a m-dimensional polytope,
referred to as an iteration domain of the statement [15].
Each element in the iteration domain of the statement
is regarded as a statement instance.

Access relation: Each array expression in the state-
ment is expressed through an access relation in the
SCoP. An access relation maps the statement instance
to one or more array elements [16]. It can conservatively
support non-affine array expressions by mapping them to
multiple array elements, perhaps even the entire range
of the array. An example of a non-affine array access
is shown below. The array reference to x is an indirect
access via col[j] and is considered to read the entire
range of x[*] to enable conservative estimations. In
contrast, an access function maps a statement instance
to a single array element, and cannot support non-affine
accesses as a result.

1 for(i = 0; i < n; i++)
2 for(j = index[il; j < index[i+1]; j++)
3 y[il += A[jl*x[col[jl];

Schedule: is a function which associates a logical exe-
cution date (a timestamp) to each instance of a given
statement. In the case of multidimensional schedules,
this timestamp is a vector. In the program, statement
instances will be executed according to the increasing
lexicographic order of their timestamp.

Dependence Polyhedra, P57 : captures all possible
dependences between statements S and 7. Two state-
ment instances fs and)?,, which belong to the iteration
domains of statements S and 7 respectively, are said
to be in dependence if they access the same array
location and at least one of them is a write. Multiple
dependence polyhedra may be required to capture all
dependent instances between two statements (scalars are
simply treated as zero-dimensional arrays). For a given
schedule, depth of a dependence polyhedron indicates
the loop nest level where its dependence is carried. In
other words, depth is the first non-zero dimension of the
corresponding dependence vector.

A dependence polyhedron captures exact dependence
information when each of the access relations is an
access function or if the access relation models an exact
read/write of an array range, e.g., a memset of an
entire array. However, dependence polyhedra can be
overestimated due to conservative access relations when
array subscripts include unanalyzable accesses.

B. Explicit Parallelism

The major difference between sequential programs and
explicitly-parallel programs is that sequential programs
specify a total execution order, whereas the execution of
an explicitly-parallel program can be viewed as a partial
order, which is traditionally referred to as a happens-
before relation. We briefly summarize the loop-level and
task-level constructs in the context of OpenMP [8].

1) Loop-level parallelism: The OpenMP loop con-
struct, #pragma omp for, is specified immediately be-
fore a for loop. This construct indicates that the itera-
tions of the loop can be executed in parallel, which guar-
antees no happens-before relations among iterations. A
barrier, i.e., an all-to-all synchronization point, is implied
immediately after the parallel loop region.

The private(op: list) clause, which is attached to a
for loop construct, indicates that each OpenMP thread
has its own private copies of the variables specified in
list.

2) Task-level parallelism including dependences: The
OpenMP task construct, #pragma omp task, is speci-
fied on a code region and indicates the creation of an
asynchronous task to process the region. Synchroniza-
tion among the parent task and its child tasks (i.e.,
tasks spawned by the parent task) is supported by
the taskwait construct, #pragma omp taskwait. This
directive specifies a synchronization point at which the
encountering task waits for all its child tasks to complete.
Synchronization among the sibling tasks with the same
parent task is supported by the depend(type: vars)
clauses attached on a task construct. Here, type is in,
out, or inout to imply read, write, or read-and-write
access on vars, which is a list of variables that can include
arrays?. The ordering constraints enforced by the depend
clauses are as follows:

e in dependence-type. The generated task will be a
dependent task of all previously generated sibling
tasks that reference at least one of the list items in
an out or inout depend clause.

« out and inout dependence-types. The generated
task will be a dependent task of all previously
generated sibling tasks that reference at least one
of the list items in an in, out, or inout depend
clause.

A task can start its execution only when all the de-
pendent tasks have completed. These dependences on
previous generated tasks enforce serial elision property.
More details on these constructs can be found in [17].

III. Motivating Examples
To motivate the proposed approach, we discuss two
explicitly parallel kernels with data accesses that are

2 Any type or rank of arrays are permitted; in Figure 1, 1-D array
of type double (*)[ny] are used.

likely to be considered unanalyzable by many exist-
ing polyhedral frameworks. The first example uses C
nested arrays which may have an unrestricted pointer
aliasing, in general. The second example uses linearized
(non-affine) array subscripts that would require a de-
linearization analysis to make them analyzable by poly-
hedral frameworks.

A. 2-D Jacobi

| jacobi (double *u_, double *unew_, double *f_)
2 {

3 double (*f)[nx][nyl = (double (*)[nx][nyl)f_;
double (*u)[nx][nyl = (double (*)[nxl[nyl)u_;
double (*unew) [nx][ny] = \

6 (double (*) [nx][nyl)unew_;

8 #pragma omp parallel

o #pragma omp single

10 {

11 for (int it = itold + 1; it <= itnew; it++) {
12 for (int i = 0; i < nx; i++) {

13 #pragma omp task depend(out: ulil]) \

14 depend (in: unewl[il])

15 for (int j = 0; j < ny; j++) {

16 (xu) [i1[j] = (*unew)[i][jI1;

17} %

18 for (int i = 0; i < nx; i++) {

10 #pragma omp task depend(out: unew[i]) \

20 depend (in: f[il, uli-1], ulil, uli+1])
21 for (int j = 0; j < ny; j++) {

22 if (i == 0 ||l j == 0 ||

23 i ==mnx -1 || j==ny - 1) {

24 (xunew) [i1[j] = (x£)[il[j1;

25 } else {

26 (*unew) [i1[j] = 0.25 * ((xu)[i-11[j]
27 + (k) [1][j+1] + (*u)[il[j-1]

28 + (k) [A+11031 + (*£)[i1[3] * dx * dy);
20+ } r}

30 #pragma omp taskwait

31} }

Figure 1: 2-D Jacobi kernel from KASTORS suite.

The first example (in Figure 1) is a 2-dimensional
Jacobi computation from the KASTORS suite [13]. This
computation is parallelized using the OpenMP 4.0 task
construct with depend clauses. Even though the loop
nest has affine accesses on arrays u and unew, the
possible aliasing of the flat array pointers can prevent a
sound compiler analysis from detecting the exact cross-
iteration dependences. However, the happens-before re-
lations described through the task depend clauses (lines
13-14, lines 19-20) indicate uniform dependence pat-
terns only among neighboring iterations (i.e., uli-1],
ul[i], and u[i+1]), which enable skewing, tiling, and
doacross pipelined parallelization. Section V shows how
these transformations improve the data locality and the
parallelism granularity and contribute the overall per-
formance. However, there exist speculative approaches
that add code to the program to check if all referenced
arrays of a loop nest do not overlap and to generate
optimized variants that can be selected at runtime [18].

B. Particle Filter

The second example (in Figure 2) is the particle
filter kernel from the Rodinia suite [14]. The loop
nests in the kernel contain linearized (non-affine) array
subscripts such as ind[x*countOnes+y], and indirect
array subscript (I[ind[x*countOnes+yll), that may
pose challenges to the compiler for analysis.

1 #define ALLOC(N) (double *) \
2 malloc (sizeof (double)*N)
3 void particleFilter(int *I, int Nparticles) {

5 double *weights = ALLOC(Nparticles);

6 double *arrayX ALLOC (Nparticles);

7 double *arrayY ALLOC (Nparticles);

8 double *likelihood = ALLOC(Nparticles);
o double *objxy = ALLOC(countOnes*2);

10 int *ind = (int*)malloc(sizeof (int) * \
11 countOnes*Nparticles);

13 #pragma omp parallel for

14 for(x = 0; x < Nparticles; x++){

15 arrayX[x] += 1 + b*randn(seed, x);
16 arrayY[x] += -2 + 2#randn(seed, x);
17 ¥

19 #pragma omp parallel for private(y, indX, indY)
20 for(x = 0; x < Nparticles; x++){

21 for(y = 0; y < countOnes; y++){

22 indX = roundDouble(arrayX[x]) + objxy[y*2+1];
23 indY = roundDouble(arrayY[x]) + objxyl[y*2];
24 ind[x*countOnes+y] = fabs(indX ... indY ...);
25 .-

26 likelihood[x] += ...I[ind[x*countOnes+yl]...
27 ¥

28 ...}

30 #pragma omp parallel for
31 for(x = 0; x < Nparticles; x++){
32 weights[x] = weights[x] * exp(likelihood[x]);

34 #pragma omp parallel for private(x) \
35 reduction(+:sumWeights)

36 for(x = 0; x < Nparticles; x++)
37 sumWeights += weights[x];

38 }

39 ...

0 ¥

Figure 2: Particle filter kernel from Rodinia suite

Although de-linearization techniques [19] can handle
the ind[x*countOnes+y] case, and the fact that array
I is read-only in the kernel can be used to handle the
I[ind[x*countOnes+y]] case, the use of parallel loop
constructs can prune conservativeness in dependence
analysis, even in the absence of techniques such as
delinearization. The legality of loop fusion is easily
established by the fact that all variables that cross multi-
ple loops have affine accesses with no fusion-preventing
dependences and the arrays don’t alias each other, as
these array are malloc(ed) in the same kernel. The key
information needed from the parallel program is that the
second loop (lines 19-28 in Figure 2) has no loop-carried
dependence. This ensures that the resulting loop after
fusing all four loops can also be made parallel.

IV. Polyhedral optimizer for Parallel Programs (PoPP)

In this section, we introduce our framework for auto-
matically optimizing explicitly parallel programs.

Algorithm 1 Overall steps in PoPP
1: Input: Explicitly parallel program, I
2: P := set of conservative dependences in J
H B := Transitive closure of happens-before relations
from parallel constructs in I
P =PNHSB,
Optimized schedules, S = Transform(Z, ')
I’ = CodeGen(Z, S, P)
Output: Optimized explicitly parallel program, I’

o

Algorithm 1 shows the overall approach to conser-
vatively handle unanalyzable accesses (step 2), extract
happens-before (HB) relations from explicit parallelism
(step 3), and improve the accuracy of conservative de-
pendences (step 4). Then the resulting dependences are
passed to polyhedral optimizers, such as PolyAST and
PLuTo, to leverage existing loop transformations (step
5). Finally, the code generator is invoked to generate the
optimized parallel program (step 6).

2) AST

1) Source to { e
5) Loop HB

Analyzer

3)AST to
regular SCoP

Conservative
dependences

4) AST to
task SCoP

HB relations

7) Intersect conservative
dependence with HB

relations

[8) Polyhedral

9) Code
transformations tools generator

Figure 3: Overview of our approach

The overall approach is summarized in Figure 3,
which is implemented as an extension to the PolyAST
optimization framework [4] implemented in the ROSE
compiler [20], and consists of the following components:
1) Conversion from source code to AST (with support
for parallel-loop and parallel-task constructs), 2) AST
Modifier (handling unanalyzable accesses), 3) AST to
SCoP converter for regular statements, 4) AST to task
SCoP converter (preprocessing of computing HB rela-
tions based on task parallelism), 5) Loop HB analyzer
to compute HB relations based on loop level parallelism,

6) Use of CANDL [21] for both conservative depen-
dence analysis and computing task-based HB relations,
7) Intersection of conservative dependences with HB
relations, 8) Communication of the resulting set of de-
pendences to a polyhedral transformation tool, such as
PLuTo [2] and PolyAST [4], and 9) Code generator to
produce automatically optimized code.

A. Conservative analysis

In case of unanalyzable data accesses, compilers must
follow conservative dependence analysis that overesti-
mates dependences and may report spurious depen-
dences. In conservative dependence analysis, the basic
assumption for a compiler is that all memory accesses
of an array in a statement can potentially conflict with
other memory accesses of that array, or perhaps even
memory accesses in other arrays (in the case of unre-
stricted pointer aliasing). In this paper, we support such
conservative assumptions by using the dummy variable
approach described below.

Handling non-affine array subscripts. Non-affine
subscripts such as linearized array subscripts and indi-
rect array subscripts are common in regular benchmarks.
These non-affine subscripts can be handled using the ac-
cess relations in polyhedral extraction tools by assuming
that they accesses the entire range instead of a single
element in the array. Since our polyhedral framework
in the infrastructure supports access functions but not
access relations, we implemented similar functionality
using a dummy variable approach. We treat non-affine
subscript as a dummy variable and create affine inequal-
ities such that these variables accesses the entire range of
the array dimension [12]. There exists other conservative
approaches such as array region analysis [22], fuzzy array
data flow analysis [23] and other variants to approxi-
mate the access relations for arrays having non-affine
subscripts.

Handling function calls. Function calls in the kernel
pose challenges to polyhedral frameworks for analysis
and transformations. We handle library/ user-defined
function calls by treating them as regular statements
and conservatively assume the statements read and write
any array in the SCoP. But, there exists other sophisti-
cated approaches such as array region analysis [24] used
in PIPS compiler to approximate access relations and
enhance dependence analysis in case of procedure calls.
Handling non-affine conditionals. Currently, poly-
hedral extraction tools have limitations in representing
non-affine branch conditions in a polyhedral represen-
tation (SCoP). As a workaround, we handle an if-
statement with a non-affine conditional and its cor-
responding then and else branches as a compound
statement that inherits all the access relations in the

condition, and the then and else branches®. Note that
we allow multi-write per statement in the framework.
For the benchmarks studied in Section V, such non-affine
control flows are closed within a loop body; this approx-
imation keeps the granularity of compound statements
enough small to enable transformations/parallelizations.
The Polyhedral Extraction Tool (PET) [25] also provides
a way to represent data dependent assignments, data
dependent accesses and data dependent conditions in the
access relations.

After converting the given parallel program into poly-
hedral representation (SCoP) with above modifications,
we use an existing polyhedral dependence analyzer
(CANDL [21]) with the sequential schedule ignoring
parallel constructs. The resulting dependence polyhedra
can be directly used as conservative dependences. Adher-
ing to polyhedral dependence notations, we use Pj"_'s"
to represent the dependence between source statement
S; and target statement S; at depth d where depth
represents the loop nest level that carries the data de-
pendence. The conservative dependences for the Jacobi
kernel (in Figure 5(a)) are shown in Figure 5(c).

B. Extraction of happens-before relations

Happens-before (HB) relations [6] have been
introduced in describing memory models. These
relations can be defined as follows in the context of
dependences between statements in the program.

Assume S; and S are the statements in the program.
If S; happens-before §;, then the memory effects of S;
effectively become visible before statement S; is executed.

Explicit parallel constructs in the program specify the
logical parallelism, which in turn describes the happens-
before relations on the statements in the program. Let
‘Llji_'s" represent a given sequential ordering between
source statement S; and target statement S; at depth
d in the program when ignoring parallel constructs. Any
happens-before relation is initialized to this sequential
ordering:

Si—S Si—S;
HB, ™ =U,”" (1)

According to the explicit parallel constructs, the
happens-before relations will be updated. This section
introduces our approach to compute such happens-
before relations in the cases of loop-parallel and task-
parallel constructs, where the serial-elision property
holds.

1) Loop-level parallelism: In the OpenMP, loop-level
parallelism is expressed through the #pragma omp par-
allel for construct. This particular construct is an-

3This has been manually performed for programs with non-affine
conditionals in Section V, but can be automated in future work.

Read: Spn1
Write: Continue

Read: unew[i], Join
Write: u[i], Spni

Read: Spn2
Write: Continue

Read: u[i], u[i-1], u[i+1],
f[i], Join
Write: u[i], Spn2

Read:
Write: Join, Continue

Figure 4: Happens-before relations for the Jacobi program
in Figure 5(a) due to task-spawn, task-wait, and sequential
ordering

notated on specific loops whose iterations can run in
parallel, thereby it guarantees there are no happens-
before relations among iterations of the annotated loop.
Let S; and §; be statements enclosed in a parallel
for loop at depth d, the corresponding happens-before
relation is updated as:

HE ™S = ¢ (2)

Note that the variables specified within private clause
are expanded as arrays such that each parallel iteration
accesses an unique element of the arrays, before the
polyhedral compilation. In the post-polyhedral phase,
the expanded arrays are replaced by the original vari-
ables with private attribute if they remain in parallel
loops. This approach only applies to cases where each
parallel loop is in an OpenMP parallel region by itself,
and not to general OpenMP parallel regions (which are
not supported by the approach in this paper).

2) Task parallelism including dependences: In
OpenMP, task parallelism is specified through the
task, taskwait, and depend constructs. As described
in Section II-B2, these constructs specify ordering
constraints 1) from parent task to child tasks via task-
spawn, 2) from child tasks to parent task via task-wait,
and 3) among sibling tasks via inter-task dependence.
Computing happens-before relations in the presence of
the inter-task dependences is challenging as it requires
dependence analysis on the variables including arrays
listed in the depend(in/out) clause.

In our approach, we encode these task-related con-
structs in the SCoP format by handling tasks as state-
ments and in/out dependence type as read/write access;
this is later processed by polyhedral dependence ana-
lyzers such as CANDL [21]. The resulting dependence
polyhedra, mekjﬁs,», are used as happens-before rela-

tions due to inter-task dependences among sibling tasks:

WB;AHS/ = Ptaskjﬁsj (3)

The other relations among parent and child tasks are
captured in the same manner by introducing special
dependence variables shared by parent and children. We
detail our approach in the rest of this section.

Task SCoP. Given a code region that contains task
constructs, we define task SCoP that captures all re-
quired information to compute happens-before relations
derived from tasks. As with regular SCoP, it includes
set of statements and access relations which are modi-
fied as follows while domains and schedules are same as
those in regular SCoP. Statement. The statements not
enclosed in a task construct are handled in the same
manner as regular SCoP statements. The #pragma omp
task and #pragma omp taskwait are also handled as
stand-alone statements that represent task-spawn and
task-wait points, respectively. Finally, the body of task
construct is handled as a compound statement, say task-
body statement.

Figure 4 shows an example corresponding to the Ja-

cobi kernel in Figure 5(a), where two task-spawn state-
ments are represented as T1 and T2, a task-wait state-
ment is Tw, and task-body statements are shown as S1
and S2.
Access relation. The in and out dependence types
in depend clause are respectively handled as read and
write accesses in the corresponding task-body statement
(e.g., read: unew[i] / write: ul[i] of S1 in Figure 4).
In order to capture happens-before relations between
parent and child tasks, we introduce the following special
dependence variables and add to access relations.

« Spawn variable Spni is added as a read access in i-th
task-spawn statement and a write access in its task-
body statement; the resulting Write-After-Read (WAR)
dependence captures the ordering constraint on this
specific task-spawn.

« Join variable Join is added as a read access in task-
body statements and a write access in task-wait
statements so that the WAR dependences capture
ordering constraints on task-wait, which waits for
all child tasks.

« Continue variable Continue is added as a write ac-
cess in all statements by parent (i.e., task-spawn,
task-wait, and regular statements) so that the Write-
After-Write (WAW) dependences capture the sequen-
tial ordering.

Further, nested task graphs can be easily supported with
the use of multiple join/continue variables for each level
of nesting. The edges in Figure 4 represent the happens-
before relations due to task-spawn, task-wait, and se-
quential ordering, which are computed by CANDL de-

1 jacobi (double *u_, double *unew_, double *f_) 1 jacobi (double *u_, double *unew_, double *f_)
24 2 {

3 double (*f)[nx][ny]l = (double (*)[nx]lnyl)f_; 3 double (*f)[nx][ny]l = (double (*)[nx][nyl)f_;

1 double (*u)[nx][ny] = (double (*)[nx][nyl)u_; 1 double (*u)[nx][ny]l = (double (*)[nx][nyl)u_;

5 double (*unew) [nx][nyl = \ 5 double (*unew) [nx][ny] = \

6 (double (*)[nx][nyl)unew_; 6 (double (*)[nx][nyl)unew_;

8 #pragma omp parallel

o #pragma omp single 9 #pragma omp parallel for private(c3,c5) ordered(2)
10 { 10 for (cl = itold + 1; cl1 <= itnew; cil++) {

11 for (int it = itold + 1; it <= itnew; it++) { 11 for (c3 = 2 * cl; ¢c3 <= 2 % c1 + nx; c3++) {
12 for (int i = 0; i < nx; i++) { 12 #pragma omp ordered depend(sink: c1-1, c3) \

13 #pragma omp task depend(out: ulil) \ 13 depend (sink: c1, c3-1)

14 depend (in: unewl[i]) // T1 14 if (e3 <= 2 * ¢l + nx + -1) {

15 for (int j = 0; j < ny; j++) 15 for (cb5 = 0; cb < ny; cb++)

16 S1: ulil[j] = unew[il[j]1; 16 S1: ul[-2%xc1+c3][c5] = unew[-2%c1+c3][c5];
7 } 17 }

18 for (int i = 0; i < nx; i++) { 18 if (c3 >= 2 *x c1 + 1) {

19 #pragma omp task depend(out: unew[i]) \ 19 for (cb = 0; cb < ny; cb++)

20 depend (in: f[il], uwli-1], ulil, uli+1]l) // T2 20 82 cpd(-2*cl+c3-1, c5, unew, u, f);

21 for (int j = 0; j < ny; j++) 21 }

22 S2: cpd(i, j, unew, u, f); 22 #pragma omp ordered depend(source)

23 3 20

24 } 24 }

25 #pragma omp taskwait // Tw 25 }

26 }3

27 /* Original schedule 27 /* Transformed schedule

28 si: (o, it, 0, i, 0, j, 0) 28 S1: (0, it, 0O, 2*it+i, 0, j, 0)

29 s2: (0, it, 1, i, 0, j, 0) x/ 29 s2: (0, it, 0, 2*it+i+1, 1, j, 0) */

(a) Input program: Jacobi from KASTORS suite; cpd repre- (b) Jacobi after skewing and doacross pipelined parallelism;

sents compound statement. tiling was omitted due to space limitation.

P it it 1, == = w = CHB T il it L0 = P it i 1,0 =0,] = = %

PIS it =it 2 i 1, f == HB,' g PIStg

P i =i =i 2+] HB' S it =i =i j > j+1 PES it =i =i 2 j+ 1

PSIVS2 i > i = im =k = HB' 7 il 2 i = PUIT i 2 =, =% =
uit' >it,i’ =i+1 Uit' > it,i’ =i+ 1,j =%, j==x
vir >it, i’ =i—1 vit' >it,i' =i—1,j ==, j=x

Pt i+ L = wim == HBT i st 1,0 = PSSt 1,0 =0, f =% = %
vir >it+1,i' =i+1 Uit >it+ 1,0 =i+ 1,j ==, j==x
vir >it+1,i' =i—-1 Uit >it+ 1,0 =i—1,j ==, j==x

Py il i+ L =wi=x f =x = HBTZ i s it+ 1,0 =i P2 it it L =0, f =% j=x

P2 i =i i1, == HBS P2

P it =ity =i 2+ 1 HBS? it =iti =i, > j+ 1 PRI i =i =0 2 4]

(c) Conservative dependences, P (d) Happens-before relations, HB (e) Accurate dependences, # = PN HB

Figure 5: Overall explanation of our framework on Jacobi benchmark from KASTORS suite.

pendence analyzer. As with Equation 3, the resulting Algorithm 2 Intersection of happens-before relations

dependence polyhedra are used as happens-before rela- with conservative dependences.
tions based on any task parallel constructs, after map- 1: Input: Conservative dependences P, Happens-
ping task-body statements (i.e., compound statements) Before relations HSB
to regular statements. We use function inlining to handle 2. for each dependence pj =5 in P do
tasks in non-recursive calls. However, handling of tasks 3. for each HB relation HBS* 75" in HB do
in recursive calls is not currently supported by our ap- 4 if $; =8, &S;=5,&d = e then
proach. 5. P'dsi_’si _ Pj,—ﬁ, n Wﬂfﬁs’;
C. Reflection of happens-before relations 6: end if
7. end for
After the extraction of happens-before relations from 8: Add the intersected polyhedron P;S’Hsf to P’;
parallel constructs such as loop-level and task level con- 9. end for
structs, it is necessary to reflect the happens-before re- 10: Output: Accurate dependences after intersection £’

lations onto conservative dependences as it prunes the

spurious dependences from the program. Note that HB is
more conservative than # in all program regions that do
not contain explicit g)arallelism. Given conservative de-
pendences P > Pji_) ’ and HB relations HB 3 HB 75",
we define £ = P N HB where Pjﬁs" NHB3 is non-
empty if and only if §; = Sy & §; = S5, & d = e.
According to the definition, the happens-before relation
must be transitive (like all binary relations); our ap-
proach removes dependences only for pairs of source and
target instances that are not in the HB relation (includ-
ing transitive dependences). Therefore, the intersection
keeps any dependences between code portions that are
not annotated as running in parallel.

Figure 5(e) shows the improved dependence informa-
tion for the Jacobi kernel in Figure 5(a), by intersecting
the conservative dependences shown in Figure 5(c) with
happens-before relations shown in Figure 5(d). As shown
in Figure 5(a), the whole for-j loops are enclosed in
task constructs; the happens-before relations at depth
=3 (i.e., HB3' 75! and HB;*75?) are not subject to task
ordering constraints and kept as the initial sequential
order. Note it is also possible that some smart compil-
ers detect parallelism in the original codes, e.g., Intel
compiler could detect vector parallelism at the inner-
most level. Even in such cases, our approach can fully
utilize explicit parallelism without missing any compiler-
detected parallelism.

D. PolyAST: a loop optimizer integrating polyhedral and
AST-based transformations

For the performance evaluation in Section V, we used
the PolyAST [4] framework to perform loop optimiza-
tions, where the dependence information provided by
the proposed approach is passed as input. PolyAST em-
ploys a hybrid approach of polyhedral and AST-based
compilations; it detects reduction and doacross paral-
lelism [26] in addition to regular doall parallelism. In the
code generation stage, doacross parallelism can be effi-
ciently expressed using the proposed doacross pragmas
in OpenMP 4.1 [17], [27]. These pragmas allow for fine-
grained synchronization in multidimensional loop nests,
using an efficient synchronization library [28].

The transformed code of Jacobi kernel (Figure 5(a))
based on dependence polyhedra Figure 5(e) is shown in
Figure 5(b). The ordered(2) at line 1 specifies the nest
level to place ordered depend directives. The ordered
depend(sink: vec) at line 4 can be viewed as a blocking
operation that waits for the completion of iteration vec,
e.g., (cl, ¢3-1), while the ordered depend(source)
at line 14 can be viewed as an unblocking operation to
indicate that the current iteration (c1, c¢3) has com-
pleted. Thanks to the accurate dependence information
at depths 1 and 2, outermost and secondary nested loops

were skewed and parallelized using doacross extensions [27],
[4] while the innermost loops were kept as the original
because of the conservative dependence at depth 3. Due
to space limitations, we omitted loop tiling at first and
second nest levels although the permutability after skew-
ing guarantees tiling.

V. Experimental Evaluation

In this section, we present the evaluation of our ap-
proach. We begin with an overview of the experimental
setup and benchmark descriptions used in the evalua-
tion. Then we discuss the experimental results and con-
clude with a summary.

A. Ezperimental setup

Intel Xeon 5660

IBM Power 8E

(Westmere) (Power 8)
Microarch Westmere Power PC
Clock speed 2.80GHz 3.02GHz
Cores/socket 6 12
Total cores 12 24
L1 cache/core 32 KB 32 KB
L2 cache/core 256 KB 512 KB
L3 cache/socket | 12 MB 8 MB

gee/g++ -4.9.2

Compiler ice/iepe -14.0 gee/g++ -4.9.2

Compiler flags -03 -fast(icc) -03

Linux kernel 2.6.32 3.13.0

Table I: Details of architectures used for experiments.

Platform: Our evaluation uses two different multi-
way SMP multicore setups: an Intel Westmere and a
IBM Power8 system. Table I lists their hardware specifi-
cations. On both architectures, GCC-4.9.2 is used for all
benchmarks as it supports OpenMP 4.0 specifications.
On the Intel Westmere, the Intel C and C++ compiler
(version-14.0) is also used for evaluation of the Rodinia
suite. But, this compiler doesn’t support OpenMP 4.0
task depend clauses and hence it is not used for eval-
uation of the KASTORS suite. On our IBM Power8
machine, the IBM XLC compiler is currently unavailable
for the experiments. Note that our results include the -
fast option for icc, but not the -Ofast option for gec; this
is not a significant issue because we do not use these
results to compare icc vs. gee performance.

Benchmarks and experimental variants: We used
the KASTORS and the Rodinia suites to evaluate our
approach. Benchmarks in these suites cover OpenMP
loop and task constructs. Also, these benchmarks have
various data access patterns such as affine array sub-
scripts, linearized array subscripts, indirect array sub-
scripts, unrestricted pointer aliasing and unknown func-
tion calls. Table II summarizes problem sizes used for
each benchmark. The table also includes the sequential
execution times for the benchmarks while using different

Bench Kk Manual Probl Sequential Exec time (Sec) Transform-
Suite enchmar modifications rg. em Intel Westmere | IBM Power8 ations by
name to source 1ze ICC GCC GCC PoPP
Jacobi OF Matrix size: 21 - 4412 4914 | F,8,T,D
Time iterations: 200 L
Kastors Matrix size: 2K
Jacobi-Blocked D . . " - 5.838 6.241 F, S, D
Time iterations: 200 e
Matrix size: 100
Sparse LU D, OF Block size: 25 - 1.632 2.284 F, D
Back prop. AP Layer size: 5 Million 1.660 1.659 0.705 P
CFD Solver - file: fvcorr.domn.097K | 0.002 0.002 0.015 -
Hotspot AT, F Matrix size: 8K 5.828 19.385 12532 | F, S, T,D
.. Time iterations: 12
Rodinia Clusters: 5
Kmeans - Attributes: 34 2.484 4.914 7.061 -
LUD APR Matrix size: 2K 7.866 8.633 30.471 P
Needle-Wunch AT Matrix size: 8K 1.962 1.964 8.603 P, T,D
Particle filter R Size: 10K 0.341 0.603 0.920 F
Size: 100K,
Path finder - Time iterations: 100 0.208 0.030 0.066 -

Table II: Sequential execution times of KASTORS and Rodinia on Intel Westmere and IBM Power 8 systems along with
problem sizes. Intel ICC-14.0 compiler doesn’t support OpenMP 4.0 task depend constructs. So, no execution time is reported
for KASTORS on Intel platform with ICC compiler. Transformations exposed by PoPP: Permutation (P), Fusion (F), Skewing
(S), Tiling (T), Doacross pipelined parallelism (D), No further optimizations (-). Manual modifications performed before passing
to PoPP: Replace complex if-statements by closures i.e., outlined functions (OF), Delinearization on task-depend variables
(D), Function inlining (F), Annotated inner loop as parallel (AP), Annotated inner loop as parallel with array reductions

(APR), Annotated with task-depend constructs (AT), Removal of printf statements (R), No modifications (-).

compilers on each platform. In all experiments, we report
the mean execution time measured over 10 runs repeated
in the same environment for each data point.

In the following experiments, we compare two experi-
mental variants: OpenMP to show the original OpenMP
parallel version running with all cores - i.e., 12 cores
on Westmere and 24 cores on Power8 - and PoPP to
show the transformed version by our framework running
with all cores. The speedup of a program is defined as
the execution time of the serial version of the program
divided by the execution time of the parallel version of
the program.

B. KASTORS Suite

KASTORS suite is designed to evaluate the efficiency
of OpenMP 4.0 task dependences [13]. This suite con-
sists of five benchmarks namely Jacobi, Jacobi-Blocked,
SparseLU, Strassen and Plasma. Our implementation is
currently unable to compiler Strassen due to its use of
recursive calls with tasks, and Plasma due to its use of
C structs. As a result, we only provide results for Jacobi,
Jacobi-Blocked and SparseLLU from the KASTORS suite.
Support for recursive task parallelism and for supporting
C structs are topics for future work.

Jacobi & Jacobi-Blocked (Poisson2D): The kernel
of Poisson2D is the Jacobi example discussed in Sec-
tion IV-D and Poisson2D - Blocked is the version where
loop tiling/blocking is already applied in the OpenMP
version. In both versions, the PoPP framework utilized

the explicit parallelism and applied loop fusion, skew-
ing, tiling (only to non-blocked version) and doacross
parallelization. Figures 6(a) and 6(b) show that PoPP
has much better performance than OpenMP for the non-
blocked version because of automatic loop tiling; it also
gave some improvements for the blocked version thanks
to doacross parallelization.

SparseLU. This benchmark computes LU decomposi-
tion of given sparse matrix. The computation kernel is
a triply nested imperfect loop nest, which contains four
kinds of function calls with linearized (i.e., non-affine)
array subscripts. In the OpenMP version, each function
call is annotated by task depend constructs to imple-
ment task parallelism with inter-task dependences.

To the input kernel, we manually applied de-linearization

[19] technique, which is not yet supported in the current
framework. As described in Section IV-A, our depen-
dence analyzer handled these function calls enclosed in
non-affine if-statements* and provided conservative de-
pendence information. Further, the proposed approach
computed exact dependence information by intersecting
with the happens-before relations obtained from task
depend constructs. The PoPP framework applied loop
fusion to make a perfect loop nest and parallelized the
outermost loop as doacross, as with Jacobi kernel dis-
cussed in Section IV-D.

Figures 6(a) and 6(b) summarize the speedup compar-

4In preprocessing phase, if-statements are moved into the in-
nermost levels so that loops are free from non-affine control flows.

B GCC-49.2 B GCC-49.2
B PoPP w/o HB + GCC - 4.9.2 B PoPP w/o HB + GCC - 4.9.2

% 18 L PoPP with HB + GOC - 4.0.2 % 18 i PoPP with HB + GCC - 4.9.2
o o
o
£ =15
2 2
3 &
5 12 5 12
2 9.72x g
E = 8.97x
] ; 9 .
g — g 8.26x
lﬁ; 6 5.54x o 6
5 3
Q o
8 &
g &

Jacobi Jacobi-Blocked Sparse LU Jacobi Jacobi-Blocked Sparse LU

(a) Intel Westmere with 12 cores (b) IBM Power8 with 24 cores

Figure 6: Evaluation of the KASTORS suite (using GCC compiler). Sequential times are reported in Table II. Original
benchmark speedup is compared against with optimized codes from PoPP with/ without considering happens-before (HB)
relations.

W ICC- 140

" M PoPP w/o HB +1CG - 14.0
i PoPP with HB + ICC - 14.0

15.01x

9.68x 9.68x

Speedup (Exec. time of Serial / Parallel)

Back propagation CFD Solver Hotspot Kmeans LUD Needle-Wunch Particle filter Pathfinder

Figure 7: Evaluation of the Rodinia suite (using Intel compiler) on Intel Westmere with 12 cores. Sequential times are reported
in Table II. Original benchmark speedup is compared against with optimized codes from PoPP with/ without considering
happens-before (HB) relations.

21
{38dx B GCC-4.9.2
18 B PoPP w/o HB + GCC-4.9.2

& PoPP with HB + GCC-4.9.2

9.74x 9.74x

Speedup (Exec. time of Serial / Parallel)

Back propagation CFD Solver Hotspot Kmeans LuD Needle-Wunch Particle filter Pathfinder

Figure 8: Evaluation of Rodinia suite (using GCC compiler) on Intel Westmere with 12 cores. Sequential times are reported
in Table II. Original benchmark speedup is compared against with optimized codes from PoPP with/ without considering
happens-before (HB) relations.

18 16.97x

9 7.85%

3.96x 4.02x

Speedup (Exec. time of Serial / Parallel)

1.78x

1.00x 160X 4 0o

1.60x
I

Back propagation CFD Solver Hotspot

4.02x

B Gcc-49.2
B PoPP w/o HB + GCC-4.9.2
& PoPP with HB + GCC-4.9.2

5.61x 5.96x

4.25x 371x

0.98x 1.00x

LUD Needle-Wunch Particle filter Pathfinder

Figure 9: Evaluation of the Rodinia suite (using GCC compiler) on IBM Power8 with 24 cores. Sequential times are reported
in Table II. Original benchmark speedup is compared against with optimized codes from PoPP with/ without considering

happens-before (HB) relations.

ing with sequential execution on Westmere and PowerS,

which show that PoPP improved performances from 3.19x
t0 9.72x on Westmere and from 4.13x to 8.97x on Powers,
respectively. This improvement is due to the synchro-

nization efficiency of doacross parallelization. Although

the possible dependence patterns of doacross parallelism

is subset of the task constructs, the loop-based point-to-

point synchronizations of doacross generally have quite

small synchronization overhead. By using our framework,

programmers can specify ideal task dependences regard-

less of the overhead and the framework applies a se-

quence of transformations and converts into the efficient

doacross implementations when possible.

C. Rodinia Suite

Rodinia suite is designed for heterogeneous comput-
ing and it includes kernels which target towards multi-
core CPUs and GPU platforms [14]. The suite consists
of 18 benchmarks and include diverse applications such
as dynamic programming techniques, linear algebra ker-
nels, graph traversals, structure grid, unstructured grid,
etc. In the current evaluation, we consider eight bench-
marks namely Back propagation, CFD Solver, Hotspot,
Kmeans, LU decomposition, Needleman-Wunch, Parti-
cle filter, and Pathfinder. The other 10 benchmarks
contain C structs, which are not yet supported in the
proposed polyhedral framework. We will address these
benchmarks in future work.

Back propagation. This benchmark is a machine-learning

algorithm that trains the weights of connecting nodes
on a layered neural network. This benchmark has two
functions each of which contains an OpenMP parallelized
doubly nested loops®, which is the source of parallelism
in this benchmark. However, because of the unrestricted

5For evaluation, we also specified the inner loop’s parallelism.

pointer aliasing among function arguments (2D pointer-
to-pointer arrays), this loop parallelism is impossible to
detect without sound inter-procedural pointer analysis.
Run-time checking for the absence of aliasing without
inter-procedural analysis can be expensive in this bench-
mark even though there exists speculative approaches [18]
and compiler flags to identify pointer aliases. Alterna-
tively, our framework utilized the happens-before rela-
tions derived from parallel loop constructs; based on
the improved dependence information, our framework
applied loop permutation to the kernel loops so that the
resulting kernels have better spatial data locality to en-
hance cache reuse and vectorization. As can be seen from
Figures 7, 8, and 9, PoPP versions show much better
speedup than the OpenMP versions on both systems.

Other benchmarks. As shown in the figures, we also
observed performance improvements for Hotspot, LU De-
composition, Needle-Wunch, and Particle filter, by the
PoPP framework. Based on the improved dependence
information via happens-before relations, the PoPP ap-
plied loop fusion and/or permutation to improve spatial
data locality to these five benchmarks. Note that Ro-
dinia benchmarks aim at parallelization on accelerators
such as GPUs while the optimization criteria in PolyAST
framework are customized for CPU cache architectures
and thereby enabled these transformations. Also, we re-
moved some print statements as summarized in Table II,
which provided more opportunities for transformations.
For evaluation of Hotspot and Needle-Wunch, although
the OpenMP variants reported in Figures 7, 8, and 9 are
the original loop parallel versions, we converted these
loop constructs into task depend constructs and passed
to PoPP framework. Loop skewing (only to Hotspot),
tiling and doacross parallelization were applied automat-
ically on these benchmarks by PoPP to enable better

data reuse and synchronization efficiency. No transfor-

mations were applied to CFD Solver, Kmeans, and Pathfinder;

same performance was observed between OpenMP and
PoPP. The overall experimental results show geometric
mean performance improvements of 1.62x and 2.75x on
the Intel Westmere and IBM Power8 platforms respec-
tively, relative to the original OpenMP versions.

VI. Limitations

This section describes the limitations imposed on the
current framework and briefly discusses how we can ad-
dress such restrictions in the future work.

The algorithmic limitations are as follows:

« Intersection of conservative dependence with happens-

before relations is applicable only in the case of
programs that satisfy serial-elision property. This
limitation is also due to the underlying polyhedral
representations that support only sequential - i.e.,
total ordered - schedules. In our future work, we
will address the parallel constructs that don’t sat-
isfy serial-elision property, e.g., SPMDized code with
explicit OpenMP threads and barriers, by extend-
ing data dependence definition with happens-before
relations for ordering. There is certain amount of
related work in this direction [29], [30].

o In this work, we consider only nested tasks all of
which are included in the same lexical scope with-
out recursive calls. On the other hand, the generic
OpenMP task parallel constructs support wider range
of parallelism including arbitrary patterns of dy-
namic task parallelism. We plan to address recursive
task patterns (e.g., observed in Strassen benchmark
in KASTORS suite) by an hybrid approach of poly-
hedral and graph-based optimizations, which also
have a long history including the Sisal language [31].

e In the current framework, we implement the de-
tected doall and doacross parallelism by the #pragma
omp for and #pragma omp for ordered constructs
in the code generation phase. In our future work, we
will also support task parallel constructs including
inter-task dependences in the codegen phase and ap-
propriate cost models to determine which construct
of task dependence or doacross is more beneficial in
the parallelization phase. In general, doacross con-
struct has less synchronization overhead while task
dependence is more robust over load unbalance.

The implementation limitations are as follows:

« In this paper, we limit our analysis to support only
doall (#pragma omp for) parallelism and task par-
allelism including inter-task dependence (task de-
pend constructs). We will extend our framework so
that other parallel constructs in OpenMP, such as
sections that do satisfy serial-elision property, can
be expressed as happens-before relations. Once they

are converted into HB relations in step 3 of Algo-
rithm 1, the remaining steps seamlessly reflect such
parallelism in the final dependence information.

« We extend our approach to handle C structs by
encoding the fields of structure onto separate names
and extend dependence analysis accordingly, as with
access relations in ISL library [32].

VII. Related Work

There is an extensive body of literature on applying
polyhedral transformations to non-affine static program
regions. We focus on past contributions that are most
closely related to this paper. The comparison between
our approach and other related work is discussed in [12].

PENCIL [33], a platform-neutral compute intermedi-
ate language, aimed at facilitating automatic paralleliza-
tion and optimization on multi-threaded SIMD hardware
for domain specific languages. The language allows users
to supply information about dependences and memory
access patterns to enable better optimizations. PENCIL
provides directives such as independent, reductions to
remove data dependences on the loop, but doesn’t have
support for task directives as in our approach. Another
key difference from our approach is that we are interested
in general-purpose parallel languages such as OpenMP
while PENCIL is focused on supporting DSLs in which
certain coding rules are enforced related to pointer alias-
ing, recursion, unstructured control flow. There is a sim-
ilarity in the semantics of the independent pragma from
PENCIL and the parallel for pragma from OpenMP, as
they both indicate no dependences among loop itera-
tions.

Pop and Cohen have presented a preliminary approach
to increase optimization opportunities for parallel pro-
grams by extracting the semantics of the parallel anno-
tations [34]. This extracted information is brought into
compiler’s intermediate representation and leverage ex-
isting polyhedral frameworks for optimizations. They en-
visaged on considering streaming OpenMP extensions
carrying explicit dependence information, to enhance the
accuracy of data dependence analyses.

A number of papers addressed the problem of data-
flow analysis of explicitly parallel programs, including
extensions of array data-flow analysis to data-parallel
and/or task-parallel programs [29], and adaptation of
array data-flow analysis to the X10 programs with fin-

ish/async parallelism [30]. In these approaches, the happens-

before relations are first analyzed and the data-flow is
computed based on the partial order imposed by happen-
before relations. On the other hand, our approach first
overestimates dependences based on the sequential or-
der and intersect the happen-before relations with the
conservative dependences. The main focus of our work
is on transformations of explicitly parallel programs for

improved performance, whereas the work in [29] and [30]
is only focused on analysis.

There has also been work done in partitioned global
address space languages such as Co-Array FORTRAN
(CAF) and Unified Parallel C (UPC), where certain com-
piler optimizations have been enabled by introducing
language extensions and new synchronization constructs
[35]. There has been significant effort to handle certain
subsets of non-affine accesses, including delinearization
techniques [19] for linearized subscripts, polynomial ac-
cesses [36] in the polyhedral model for array dependence
analysis and loop transformations.

VIII. Conclusions and Future Work

This work is motivated by the observation that soft-
ware with explicit parallelism is on the rise. This ex-
plicit parallelism can be used to enable larger set of
polyhedral transformations by mitigating conservative
dependences, compared to what might have been pos-
sible if the input program had been sequential. We in-
troduced an approach that reduces spurious dependences
from the conservative dependence analysis by intersect-
ing them with the happens-before relations from parallel
constructs. The final set of the dependences can then be
passed on to a polyhedral transformation tool, such as
PLuTo or PolyAST, to enable transformations of explic-
itly parallel programs.

We evaluated our approach using OpenMP benchmark
programs from the KASTORS and the Rodinia bench-
mark suites. The approach reduced spurious dependences
from the conservative analysis of these benchmarks and
the resulting dependence information broadened the range
of legal transformations in the polyhedral optimization
phase. Overall, our experimental results show geometric
mean performance improvements of 1.62x and 2.75x on
the 12-core Intel Westmere and 24-core IBM Power8
platforms respectively, relative to the original OpenMP
versions. The main focus of our future work will be to
address the limitations summarized in Section VI.

Acknowledgments

This research was supported in part by the DOE Office
of Science Advanced Scientific Computing Research pro-
gram through collaborative agreement DE-SC0008882.
We are also very grateful to the anonymous reviewers
on the PACT’15 program committee, and members of
the Habanero Extreme Scale Software Research Group
at Rice University, for their detailed comments and sug-
gestions on earlier drafts of this paper.

References

[1] S. Borkar and A. A. Chien, “The future of microproces-
sors,” Commun. ACM, vol. 54, no. 5, pp. 67-77, May
2011.

[2] U.Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev, and P. Sadayappan, “Automatic
transformations for communication-minimized paral-
lelization and locality optimization in the polyhedral
model,” in Proceedings of the Joint European Confer-
ences on Theory and Practice of Software 17th In-
ternational Conference on Compiler Construction, ser.
CC’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 132-146.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sa-
dayappan, “A practical automatic polyhedral parallelizer
and locality optimizer,” in Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, ser. PLDI '08. New York,
NY, USA: ACM, 2008, pp. 101-113.

[4] J. Shirako, L.-N. Pouchet, and V. Sarkar, “Oil and Water
Can Mix: An Integration of Polyhedral and AST-based
Transformations.” in Proceedings of the International
Conference on High Performance Computing, Network-
ing, Storage and Analysis, ser. SC ’14, 2014.

[6] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N.
Pouchet, and P. Sadayappan, “When polyhedral trans-
formations meet simd code generation,” in Proceedings
of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: ACM, 2013, pp. 127-138.

[6] L. Lamport, “Time, clocks, and the ordering of events
in a distributed system,” Commun. ACM, vol. 21, no. 7,
pp- 558-565, Jul. 1978.

[7] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the cilk-5 multithreaded language,”
in Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation,

ser. PLDI '98. New York, NY, USA: ACM, 1998, pp.
212-223.
[8] “OpenMP Specifications,”

http://openmp.org/wp/openmp-specifications.

[9] B. Chamberlain, D. Callahan, and H. Zima, “Parallel
programmability and the chapel language,” Interna-
tional Journal of High Performance Computing Appli-
cations, vol. 21, no. 3, pp. 291-312, 2007.

[10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: An ef-
ficient multithreaded runtime system,” in Proceedings of
the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPOPP '95. New
York, NY, USA: ACM, 1995, pp. 207-216.

[11] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar,
“X10: An object-oriented approach to non-uniform clus-
ter computing,” SIGPLAN Not., vol. 40, no. 10, pp. 519—
538, Oct. 2005.

[12] P. Chatarasi, J. Shirako, and V. Sarkar, “Polyhe-
dral transformations of explicitly parallel programs,” in
5th International Workshop on Polyhedral Compilation
Techniques (IMPACT), Amsterdam, Netherlands, Jan.
2015.

(13]

(19]

20]

(21]

(22]

23]

(24]

P. Virouleau, P. Brunet, F. Broquedis, N. Furmento,
S. Thibault, O. Aumage, and T. Gautier, “Evaluation of
OpenMP Dependent Tasks with the KASTORS Bench-
mark Suite,” in Using and Improving OpenMP for De-
vices, Tasks, and More - 10th International Workshop
on OpenMP, IWOMP 201/, Salvador, Brazil, September
28-30, 2014. Proceedings, 2014, pp. 16-29.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark suite
for heterogeneous computing,” in Proceedings of the 2009
IEEE International Symposium on Workload Character-
ization (IISWC), ser. IISWC ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 44-54.

P. Feautrier and C. Lengauer, “Polyhedron model,” in
Encyclopedia of Parallel Computing, D. A. Padua, Ed.
Springer, 2011, pp. 1581-1592.

D. G. Wonnacott, “Constraint-based array dependence
analysis,” Ph.D. dissertation, College Park, MD, USA,
1995, uMI Order No. GAX96-22167.

“OpenMP Technical Report 3 on OpenMP 4.0 enhance-
ments,” http://openmp.org/TR3.pdf.

J. Doerfert, C. Hammacher, K. Streit, and S. Hack,
“SPolly: Speculative Optimizations in the Polyhedral
Model,” in Proc. 3rd International Workshop on Poly-
hedral Compilation Techniques (IMPACT), Berlin, Ger-
many, Jan. 2013, pp. 55-61.

T. Grosser, J. Ramanujam, L.-N. Pouchet, P. Sadayap-
pan, and S. Pop, “Optimistic delinearization of paramet-
rically sized arrays,” in Proceedings of the 29th ACM on
International Conference on Supercomputing, ser. ICS
’15. New York, NY, USA: ACM, 2015, pp. 351-360.

C. Liao, D. J. Quinlan, T. Panas, and B. R. de Supinski,
“A rose-based openmp 3.0 research compiler supporting
multiple runtime libraries,” in Beyond Loop Level Paral-
lelism in OpenMP: Accelerators, Tasking and More, 6th
Internationan Workshop on OpenMP, IWOMP 2010,
Tsukuba, Japan, June 14-16, 2010, Proceedings, ser. Lec-
ture Notes in Computer Science, M. Sato, T. Hanawa,
M. S. Miiller, B. M. Chapman, and B. R. de Supinski,
Eds., vol. 6132. Springer, 2010, pp. 15-28.

“CANDL: Data dependence analysis tool in the polyhe-
dral model,” http://icps.u-strasbg.fr/ bastoul/develop-
ment/candl.

B. Creusillet and F. Irigoin, “Exact versus approximate
array region analyses,” in Proceedings of the 9th In-
ternational Workshop on Languages and Compilers for
Parallel Computing, ser. LCPC ’96. London, UK, UK:
Springer-Verlag, 1997, pp. 86-100.

D. Barthou et al., “Fuzzy Array Dataflow Analysis,” J.
Parallel Distrib. Comput., vol. 40, no. 2, pp. 210-226,
1997.

B. Creusillet and F. Irigoin, “Interprocedural array re-
gion analyses,” Int. J. Parallel Program., vol. 24, no. 6,
pp. 513-546, Dec. 1996.

[25]

[26]

27]

[28]

29]

[30]

[31]

32]

[33]

[34]

[35]

(36]

S. Verdoolaege and T. Grosser, “Polyhedral extraction
tool,” Second International Workshop on Polyhedral
Compilation Techniques (IMPACT 12), Paris, France,
2012.

R. Cytron, “Doacross: Beyond Vectorization for Multi-
processors,” in ICPP’86, 1986, pp. 836-844.

J. Shirako, P. Unnikrishnan, S. Chatterjee, K. Li, and
V. Sarkar, “Expressing DOACROSS Loop Dependencies
in OpenMP,” in 9th International Workshop on OpenMP
(IWOMP), 2011.

P. Unnikrishnan, J. Shirako, K. Barton, S. Chatterjee,
R. Silvera, and V. Sarkar, “A practical approach to
DOACROSS parallelization,” in Furo-Par, 2012, pp.
219-231.

J.-F. Collard and M. Griebl, “Array Dataflow Analysis
for Explicitly Parallel Programs,” in Proceedings of the
Second International Euro-Par Conference on Parallel
Processing, ser. Euro-Par ’96, 1996.

T. Yuki, P. Feautrier, S. Rajopadhye, and V. Saraswat,
“Array Dataflow Analysis for Polyhedral X10 Pro-
grams,” in Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, ser. PPoPP ’07, 2013.

V. Sarkar, Partitioning and Scheduling Parallel Pro-
grams for Multiprocessors. Cambridge, MA, USA: MIT
Press, 1989.

“Integer set library,” http://isl.gforge.inria.fr.

R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege,
J. Inoue, T. Grosser, G. Kouveli, A. Kravets,
A. Lokhmotov, C. Nugteren, F. Waters, and A. F.
Donaldson, “PENCIL: towards a platform-neutral
compute intermediate language for dsls,” CoRR, vol.
abs/1302.5586, 2013.

A. Pop and A. Cohen, “Preserving high-level semantics
of parallel programming annotations through the com-
pilation flow of optimizing compilers,” in Proceedings of
the 15th Workshop on Compilers for Parallel Computers
(CPC’10), 2010.

C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Can-
tonnet, T. El-Ghazawi, A. Mohanti, Y. Yao, and
D. Chavarria-Miranda, “An evaluation of global address
space languages: Co-array fortran and unified parallel ¢,”
in Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser.
PPoPP ’05. New York, NY, USA: ACM, 2005, pp. 36—
47.

V. Maslov and W. Pugh, “Simplifying Polynomial Con-
straints Over Integers to Make Dependence Analysis
More Precise,” In CONPAR 94 - VAPP VI, Int. Conf.
on Parallel and Vector Processing, Tech. Rep., 1994.

