
Design & separation of CAN applications

Adopting Un*x rules and network namespaces

Presentation for Automotive Grade Linux F2F, 2018-04-12, Microchip (Karlsruhe)

Oliver Hartkopp

SocketCAN – concepts & usage

The former concepts for CAN access – recap from 2017 slides*

• Only one application can use the CAN bus at a time
• There was no standard Linux CAN driver model

• Every CAN hardware vendor sells his own driver
bundled to his CAN hardware

• CAN application protocols and intelligent content
filters need to be implemented in userspace

• People still think in this out-dated design
pattern! :-(

protocol

application

CAN controller

O
perating system

C
A

N
 driver

* https://wiki.automotivelinux.org/_media/agl-distro/agl2017-socketcan-print.pdf

Oliver Hartkopp

SocketCAN – concepts & usage

CAN network layer protocols and frame processing (recap)

Linux Socket Layer

Packet Processing

PF_CANPF_INET

App1 App2 App3

BCM ISOTPRAW

CAN Qdisc

vcan0 vcan9can0 can3

CAN receive filtersCAN receive filters

CAN GW

cangw

PF_NETLINK

LXRng Penguin Logo by Arne Georg Gleditsch (CC BY-SA 3.0)

Oliver Hartkopp

SocketCAN – concepts & usage

CAN_RAW – Reading and writing of raw CAN frames (recap)

Linux Socket Layer

Packet Processing

PF_CANPF_INET

App1 App2 App3

BCM ISOTPRAW

CAN Qdisc

vcan0 vcan9can0 can3

CAN receive filters

CAN GW

cangw

PF_NETLINK

• Similar to known programming interfaces
• A socket feels like a private CAN interface
• per-socket CAN identifier receive filtersets
• Linux timestamps in nano second resolution
• Easy migration of existing CAN software

• Multiple applications can run independently
• Network transparency through local echo of sent frames
• Functions can (should!) be split into different processes

Oliver Hartkopp

SocketCAN – concepts & usage

CAN_BCM – timer support and filters for cyclic messages

Linux Socket Layer

Packet Processing

PF_CANPF_INET

App1 App2 App3

BCM ISOTPRAW

CAN Qdisc

vcan0 vcan9can0 can3

CAN receive filters

CAN GW

cangw

PF_NETLINK

• Executes in operating system context
• Programmable by BCM socket commands

• CAN receive path functions
• Filter bit-wise content in CAN frame payload
• Throttle update rate for changed received data
• Detect timeouts of cyclic messages (deadline monitoring)

• CAN transmit path functions
• Autonomous timer based sending of CAN frames
• Multiplex CAN messages and instant data updates

Oliver Hartkopp

SocketCAN – concepts & usage

CAN_BCM – Vehicle data access prototyping technology

Java App

Bluetooth WLAN RS232 Ethernet

PF_CAN aka SocketCAN with CAN_BCM

VehicleAPI

jSLAP lib

C simple app

findi, snanfc()n

Debug

telnet, 2 eyes,
10 fingers

Vehinle Network ()CAN Busn

CAN 0101001

<XML/>

Snalability ()PC, mobile dievines, embedidiedi nontrol unitsn

Oliver Hartkopp

SocketCAN – concepts & usage

CAN_GW – Linux kernel based CAN frame routing (recap)

Linux Socket Layer

Packet Processing

PF_CANPF_INET

App1 App2 App3

BCM ISOTPRAW

CAN Qdisc

vcan0 vcan9can0 can3

CAN receive filters

CAN GW

cangw

PF_NETLINK

• Efficient CAN frame routing in OS context
• Re-use of Linux networking technology

• PF_CAN receive filter capabilities
• Linux packet processing NET_RX softirq
• PF_NETLINK based configuration interface

(known from Linux network routing configuration like 'iptables')
• Optional CAN frame modifications on the fly

• Modify CAN identifier, data length code, payload data with
AND/OR/XOR/SET operations

• Calculate XOR and CRC8 checksums after modification
• Support of different CRC8 profiles (1U8, 16U8, SFFID_XOR)

Oliver Hartkopp

SocketCAN – concepts & usage

F
IL

T
E

R

AND

OR

XOR

SET

CHECKSUM

CRC
XOR

Original content Modified content

Routing & modification element

Source device: can0 Destination device: can1

CAN_GW – Routing & modification configuration entity

cangw -A -s can0 -d can1 -e -f 123:C00007FF -m SET:IL:333.4.1122334455667788

Oliver Hartkopp

SocketCAN – concepts & usage

Some best practices on design patterns and separation

• Write programs that do one thing and do it well.
• … if you don’t trust a CAN application
• … if you *really* don’t trust a CAN application
• … if you *only* trust your CAN application
• Btw. why wouldn’t you trust an Open Source CAN application?

Oliver Hartkopp

SocketCAN – concepts & usage

Write programs that do one thing and do it well.
(https://en.wikipedia.org/wiki/Unix_philosophy)

A/C
control

Interior light
control

Seat heating
control

CAN frame dispatcher Timer

Single CAN_RAW socket (with CAN ID filter?)

Holistic CAN traffic covering all use-cases

Monolithic application

No!

Oliver Hartkopp

SocketCAN – concepts & usage

Write programs that do one thing and do it well.
(https://en.wikipedia.org/wiki/Unix_philosophy)

A/C
control

Interior light
control

Seat heating
control

CAN frame dispatcher Timer(s)

CAN_BCM sockets with CAN content filter

Different BCM sockets
(instances of multiple
data filters & timers)

Yes!

Specific CAN traffic
covering one use-case

Data content
filter(s)

Data content
filter(s)

Data content
filter(s)

►Separation, maintainability, minimized code/complexity/dependency, etc.

Oliver Hartkopp

SocketCAN – concepts & usage

… if you don’t trust a CAN application

• Give the application a dedicated virtual CAN bus
• Make use of CAN_GW to forward just the needed traffic

Oliver Hartkopp

SocketCAN – concepts & usage

Virtual CAN network device driver (vcan) – recap from 2017

• No need for real CAN hardware
• Local echo of sent CAN frames ‘loopback device’
• vcan instances can be created at run-time
• Example vcan use-case: Replay of vehicle log files CAN

application

HDDcandump

can0 .. can3

canplayer

vcan0 .. vcan3

vcan0 .. vcan3

Oliver Hartkopp

SocketCAN – concepts & usage

How to create and name a virtual CAN network device

• Loading the virtual CAN driver into the Linux kernel

sudo modprobe vcan

• Create virtual CAN interfaces

sudo ip link add type vcan
sudo ip link add dev helga type vcan
sudo ip link set vcan0 up
sudo ip link set helga up

Oliver Hartkopp

SocketCAN – concepts & usage

Dedicated virtual CAN interfaces for each application

A/C
control

Interior light
control

Seat heating
control

Some CAN sockets

ac
(virtual)

intlight
(virtual)

seat
(virtual)

can0
(real device)

CAN_GW
configuration

CAN_GW

Specific CAN filters
and routing

Oliver Hartkopp

SocketCAN – concepts & usage

… if you don’t trust a CAN application

• Give the application a dedicated virtual CAN bus
• Make use of CAN_GW to forward just the needed traffic
• But still the application might access the ‘real CAN device’ can0
• This is not really a separation but helps with testing and may cover

unintended (erroneous) sending on wrong CAN identifiers
• Maybe other Linux security measures (e.g. SELinux) can also help

in this case?!? Did not check so far ...

Oliver Hartkopp

SocketCAN – concepts & usage

… if you *really* don’t trust a CAN application

• Since Linux 4.12 the CAN subsystem supports network namespaces
• Net namespaces are required for LXC, Docker, etc.
• You can now deploy your specific containers with CAN functionality
• To connect different containers (in different network namespaces)

the veth driver can create a pair of virtual ethernet devices that
establish some kind of ethernet patch cable between containers

• Since Linux 4.12 a new vxcan driver can connect different
namespaces in a similar way. The vxcan instances do not have IP
addresses and only can transfer CAN frames like vcan devices.

• N.B. vxcan’s do not provide the local IFF_ECHO feature!
• https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=a8f820a380a2a06fc4fe1a54159067958f800929

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=a8f820a380a2a06fc4fe1a54159067958f800929

Oliver Hartkopp

SocketCAN – concepts & usage

Dedicated VXCAN interface for each application in namespace

A/C
control

CAN socket

ac
(vxcan)

ac_ns
(vxcan)

can0
(real device)

CAN_GW
configuration

CAN_GW

Specific CAN filters
and routing

init/root/default/global namespaceapplication namespace(s)

Pair of vxcan

Oliver Hartkopp

SocketCAN – concepts & usage

VXCAN interfaces just forward; without local echo (IFF_ECHO)!
To support multiple* applications in a namespace use vcan via CAN_GW there

A/C
control

CAN socket

ac_root
(vxcan)

ac_ns
(vxcan)

can0
(real device)

CAN_GW
configuration

CAN_GW

Specific CAN filters
and routing

init/root/default/global namespace

ac
(vcan)

CAN_GW
configuration

CAN_GW

*

application namespace(s)

Oliver Hartkopp

SocketCAN – concepts & usage

… if you *only* trust your CAN application

• Move the real(!) CAN interface into the namespace where only your
trusted application(s) can access the CAN bus

• The real CAN interface is not accessible in the default namespace
anymore

• Can make sense when you have a single container managing the
vehicle interfaces or vehicle abtraction services

Oliver Hartkopp

SocketCAN – concepts & usage

The real(!) CAN interface is moved into the namespace

Vehicle API
server

CAN socket

can0
(real device)

init/root/default/global namespaceapplication namespace(s)

(nothing here)

► Excellent setup to run a Vehicle API which provides abstract data
objects through a TCP/IP service to different namespaces via veth/IP

Oliver Hartkopp

SocketCAN – concepts & usage

Btw. why wouldn’t you trust an Open Source CAN application?

• Separation via CAN_GW and network namespaces is fun and
enables the setup and distribution of easy-to-use containers

• Btw. the best approach is still having a proper design (‘do one thing
and do it well’) with minimized code using all of the fancy
functionality that SocketCAN provides out-of-the-box and
transparency/use/testing through the Open Source community

• Some references to namespace documentations:
• https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

• https://blogs.igalia.com/dpino/2016/04/10/network-namespaces/

• http://www.opencloudblog.com/?p=66

• https://marc.info/?l=linux-can&m=149046502301622&w=2

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://blogs.igalia.com/dpino/2016/04/10/network-namespaces/
http://www.opencloudblog.com/?p=66
https://marc.info/?l=linux-can&m=149046502301622&w=2

Oliver Hartkopp

SocketCAN – concepts & usage

$> cat linux/MAINTAINERS | grep -B 2 -A 14 Hartkopp

CAN NETWORK LAYER
M: Oliver Hartkopp <socketcan@hartkopp.net>
M: Marc Kleine-Budde <mkl@pengutronix.de>
L: linux-can@vger.kernel.org
W: https://github.com/linux-can
T: git git://git.kernel.org/pub/scm/linux/kernel/gut/mkl/linux-can.git
T: git git://git.kernel.org/pub/scm/linux/kernel/gut/mkl/linux-can-next.git
S: Maintained
F: Documentation/networking/can.rst
F: net/can/
F: include/linux/can/core.h
F: include/uapi/linux/can.h
F: include/uapi/linux/can/bcm.h
F: include/uapi/linux/can/raw.h
F: include/uapi/linux/can/gw.h

$>

Many thanks!

_

	The CAN Subsystem of the Linux Kernel
	CAN access with Linux (the former state of the art)
	CAN network layer protocols and CAN frame processing
	CAN_RAW – Reading and writing of raw CAN frames
	CAN_BCM – timer support and filters for cyclic messages
	CAN_BCM – Vehicle data access prototyping technology
	CAN_GW – Linux kernel based CAN frame routing
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Virtual CAN network device driver (vcan)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Many thanks!

