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SocketCAN – concepts & usage

The former concepts for CAN access – recap from 2017 slides*

• Only one application can use the CAN bus at a time
• There was no standard Linux CAN driver model

• Every CAN hardware vendor sells his own driver 
bundled to his CAN hardware

• CAN application protocols and intelligent content 
filters need to be implemented in userspace

• People still think in this out-dated design 
pattern! :-(
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* https://wiki.automotivelinux.org/_media/agl-distro/agl2017-socketcan-print.pdf
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CAN network layer protocols and frame processing (recap)
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LXRng Penguin Logo by Arne Georg Gleditsch (CC BY-SA 3.0) 
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CAN_RAW – Reading and writing of raw CAN frames (recap)
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• Similar to known programming interfaces
• A socket feels like a private CAN interface
• per-socket CAN identifier receive filtersets
• Linux timestamps in nano second resolution
• Easy migration of existing CAN software

• Multiple applications can run independently
• Network transparency through local echo of sent frames
• Functions can (should!) be split into different processes
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CAN_BCM – timer support and filters for cyclic messages

Linux Socket Layer
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• Executes in operating system context
• Programmable by BCM socket commands

• CAN receive path functions
• Filter bit-wise content in CAN frame payload
• Throttle update rate for changed received data
• Detect timeouts of cyclic messages (deadline monitoring)

• CAN transmit path functions
• Autonomous timer based sending of CAN frames
• Multiplex CAN messages and instant data updates
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CAN_BCM – Vehicle data access prototyping technology
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CAN_GW – Linux kernel based CAN frame routing (recap)

Linux Socket Layer

Packet Processing
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• Efficient CAN frame routing in OS context
• Re-use of Linux networking technology

• PF_CAN receive filter capabilities
• Linux packet processing NET_RX softirq
• PF_NETLINK based configuration interface

(known from Linux network routing configuration like 'iptables')
• Optional CAN frame modifications on the fly

• Modify CAN identifier, data length code, payload data with 
AND/OR/XOR/SET operations

• Calculate XOR and CRC8 checksums after modification
• Support of different CRC8 profiles (1U8, 16U8, SFFID_XOR)
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Routing & modification element

Source device: can0 Destination device: can1

CAN_GW – Routing & modification configuration entity

cangw -A -s can0 -d can1 -e -f 123:C00007FF -m SET:IL:333.4.1122334455667788
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Some best practices on design patterns and separation

• Write programs that do one thing and do it well.
• … if you don’t trust a CAN application
• … if you *really* don’t trust a CAN application
• … if you *only* trust your CAN application
• Btw. why wouldn’t you trust an Open Source CAN application?
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Write programs that do one thing and do it well.
(https://en.wikipedia.org/wiki/Unix_philosophy)

A/C
control

Interior light
control

Seat heating
control

CAN frame dispatcher Timer

Single CAN_RAW socket (with CAN ID filter?)

Holistic CAN traffic covering all use-cases

Monolithic application

No!
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Write programs that do one thing and do it well.
(https://en.wikipedia.org/wiki/Unix_philosophy)

A/C
control

Interior light
control

Seat heating
control

CAN frame dispatcher Timer(s)

CAN_BCM sockets with CAN content filter

Different BCM sockets
(instances of multiple
data filters & timers)

Yes!

Specific CAN traffic
covering one use-case

Data content
filter(s)

Data content
filter(s)

Data content
filter(s)

►Separation, maintainability, minimized code/complexity/dependency, etc.
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… if you don’t trust a CAN application

• Give the application a dedicated virtual CAN bus
• Make use of CAN_GW to forward just the needed traffic
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SocketCAN – concepts & usage

Virtual CAN network device driver (vcan) – recap from 2017

• No need for real CAN hardware
• Local echo of sent CAN frames ‘loopback device’
• vcan instances can be created at run-time
• Example vcan use-case: Replay of vehicle log files CAN

application

HDDcandump

can0 .. can3

canplayer

vcan0 .. vcan3

vcan0 .. vcan3
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How to create and name a virtual CAN network device

• Loading the virtual CAN driver into the Linux kernel

sudo modprobe vcan

• Create virtual CAN interfaces

sudo ip link add type vcan
sudo ip link add dev helga type vcan
sudo ip link set vcan0 up
sudo ip link set helga up
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Dedicated virtual CAN interfaces for each application
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… if you don’t trust a CAN application

• Give the application a dedicated virtual CAN bus
• Make use of CAN_GW to forward just the needed traffic
• But still the application might access the ‘real CAN device’ can0
• This is not really a separation but helps with testing and may cover 

unintended (erroneous) sending on wrong CAN identifiers
• Maybe other Linux security measures (e.g. SELinux) can also help 

in this case?!? Did not check so far ... 
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… if you *really* don’t trust a CAN application

• Since Linux 4.12 the CAN subsystem supports network namespaces
• Net namespaces are required for LXC, Docker, etc.
• You can now deploy your specific containers with CAN functionality
• To connect different containers (in different network namespaces) 

the veth driver can create a pair of virtual ethernet devices that 
establish some kind of ethernet patch cable between containers

• Since Linux 4.12 a new vxcan driver can connect different 
namespaces in a similar way. The vxcan instances do not have IP 
addresses and only can transfer CAN frames like vcan devices.

• N.B. vxcan’s do not provide the local IFF_ECHO feature! 
• https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=a8f820a380a2a06fc4fe1a54159067958f800929 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit?id=a8f820a380a2a06fc4fe1a54159067958f800929


Oliver Hartkopp

SocketCAN – concepts & usage

Dedicated VXCAN interface for each application in namespace

A/C
control

CAN socket

ac
(vxcan)

ac_ns
(vxcan)

can0
(real device)

CAN_GW
configuration

CAN_GW

Specific CAN filters
and routing

init/root/default/global namespaceapplication namespace(s)

Pair of vxcan
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VXCAN interfaces just forward; without local echo (IFF_ECHO)!
To support multiple* applications in a namespace use vcan via CAN_GW there
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ac_root
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and routing

init/root/default/global namespace

ac
(vcan)

CAN_GW
configuration

CAN_GW

*

application namespace(s)
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… if you *only* trust your CAN application

• Move the real(!) CAN interface into the namespace where only your 
trusted application(s) can access the CAN bus

• The real CAN interface is not accessible in the default namespace 
anymore

• Can make sense when you have a single container managing the 
vehicle interfaces or vehicle abtraction services
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The real(!) CAN interface is moved into the namespace

Vehicle API
server

CAN socket

can0
(real device)

init/root/default/global namespaceapplication namespace(s)

(nothing here)

► Excellent setup to run a Vehicle API which provides abstract data
objects through a TCP/IP service to different namespaces via veth/IP
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Btw. why wouldn’t you trust an Open Source CAN application?

• Separation via CAN_GW and network namespaces is fun and 
enables the setup and distribution of easy-to-use containers

• Btw. the best approach is still having a proper design (‘do one thing 
and do it well’) with minimized code using all of the fancy 
functionality that SocketCAN provides out-of-the-box and 
transparency/use/testing through the Open Source community

• Some references to namespace documentations:
• https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

• https://blogs.igalia.com/dpino/2016/04/10/network-namespaces/

• http://www.opencloudblog.com/?p=66 

• https://marc.info/?l=linux-can&m=149046502301622&w=2 

https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
https://blogs.igalia.com/dpino/2016/04/10/network-namespaces/
http://www.opencloudblog.com/?p=66
https://marc.info/?l=linux-can&m=149046502301622&w=2
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$> cat linux/MAINTAINERS | grep -B 2 -A 14 Hartkopp

CAN NETWORK LAYER
M: Oliver Hartkopp <socketcan@hartkopp.net>
M: Marc Kleine-Budde <mkl@pengutronix.de> 
L: linux-can@vger.kernel.org
W: https://github.com/linux-can
T: git git://git.kernel.org/pub/scm/linux/kernel/gut/mkl/linux-can.git
T: git git://git.kernel.org/pub/scm/linux/kernel/gut/mkl/linux-can-next.git
S: Maintained
F: Documentation/networking/can.rst
F: net/can/
F: include/linux/can/core.h
F: include/uapi/linux/can.h
F: include/uapi/linux/can/bcm.h
F: include/uapi/linux/can/raw.h
F: include/uapi/linux/can/gw.h

$>

Many thanks!

_
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