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Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

2 International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

3 The main task of the joint technical committee is to prepare International Standards. Draft International Stan-
dards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

4 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

5 ISO/IEC 1539-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 22, Programming languages, their environments and system software interfaces.

6 This third edition cancels and replaces the second edition (ISO/IEC 1539-1:2004), which has been techni-
cally revised. It also incorporates the Technical Corrigenda ISO/IEC 1539-1:2004/Cor. 1:2006, ISO/IEC 1539-
1:2004/Cor. 2:2007, ISO/IEC 1539-1:2004/Cor. 3:2008, and ISO/IEC 1539-1:2004/Cor. 4:2009, and Technical
Report ISO/IEC TR 19767:2005.

7 ISO/IEC 1539 consists of the following parts, under the general title Information technology — Programming
languages — Fortran:

8 — Part 1: Base language

9 — Part 2: Varying length character strings

10 — Part 3: Conditional compilation

xii Foreword
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Introduction

1 This part of ISO/IEC 1539 comprises the specification of the base Fortran language, informally known as Fortran
2008. With the limitations noted in 1.6.2, the syntax and semantics of Fortran 2003 are contained entirely within
Fortran 2008. Therefore, any standard-conforming Fortran 2003 program not affected by such limitations is a
standard-conforming Fortran 2008 program. New features of Fortran 2008 can be compatibly incorporated into
such Fortran 2003 programs, with any exceptions indicated in the text of this part of ISO/IEC 1539.

2 Fortran 2008 contains several extensions to Fortran 2003; some of these are listed below.

• Module enhancements:
Submodules provide additional structuring facilities for modules. Data objects and procedure pointers
declared in a module implicitly have the SAVE attribute.
• Parallel execution:

Coarrays and synchronization constructs support parallel programming using a single program multiple
data (SPMD) model.
• Performance enhancements:

The DO CONCURRENT construct provides a means for the program to specify that individual loop
iterations have no interdependencies. The CONTIGUOUS attribute provides a means for the program to
specify restrictions on the storage layout of pointer targets and assumed-shape dummy arguments.
• Data declaration:

The maximum rank has been increased to 15. A processor is required to support at least one kind of integer
with a range of at least 18 decimal digits. An allocatable component can be of recursive type. A named
constant array’s shape can be implied by its value. A pointer can be initially associated with a target.
Subscripts and nested implied-do limits inside a data-implied-do can be any constant expression instead
of being limited to combinations of constants, implied-do variables, and intrinsic operations. A FORALL
index variable can have its type and kind explicitly declared within the construct. The TYPE keyword can
be used to declare entities of intrinsic type. Multiple type-bound procedures can be declared in a single
type-bound procedure statement.
• Data usage and computation:

A structure constructor can omit the value for an allocatable component. SOURCE= in an ALLOCATE
statement can give an array variable the bounds as well as the value of an expression. MOLD= in an AL-
LOCATE statement can give a polymorphic variable the shape, type, and type parameters of an expression
without copying the value. The real and imaginary parts of a complex entity can be accessed independently
with a component-like syntax. Intrinsic assignment to an allocatable polymorphic variable is allowed. A
pointer function reference can denote a variable in any variable definition context. Some restrictions on the
use of dummy arguments in elemental subprograms have been removed.
• Input/output:

NEWUNIT= in an OPEN statement automatically selects a unit number that does not interfere with other
unit numbers selected by the program. The G0 edit descriptor and unlimited format control ease writing
output in comma-separated-value (CSV) format. Recursive data transfers are allowed on distinct units.
• Execution control:

The BLOCK construct can contain declarations of objects with construct scope. The EXIT statement can
transfer control from within more named executable constructs. The STOP statement has been changed to
accept a constant expression instead of merely a literal constant, and to encourage the processor to provide
the integer stop code (if it appears) as a termination status (where that makes sense).
• Intrinsic procedures:

– The intrinsic functions ACOS, ASIN, ATAN, COSH, SINH, TAN, and TANH can have arguments of
type complex.

– The new intrinsic functions ACOSH, ASINH, and ATANH calculate the inverse hyperbolic cosine, sine,
and tangent respectively.

– The intrinsic function ATAN2 can be referenced by the name ATAN.
– The new intrinsic subroutines ATOMIC DEFINE and ATOMIC REF define and reference a variable

atomically.

Introduction xiii
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– The new intrinsic functions BESSEL J0, BESSEL J1, BESSEL JN, BESSEL Y0, BESSEL Y1, and
BESSEL YN calculate Bessel functions.

– The new intrinsic functions BGE, BGT, BLE, and BLT perform bitwise comparisons.
– The new intrinsic functions DSHIFTL and DSHIFTR calculate combined left and right shifts.
– The new intrinsic functions ERF, ERFC, and ERFC SCALED calculate the error function and its

complement.
– The new intrinsic subroutine EXECUTE COMMAND LINE allows a program to start another pro-

gram.
– The new intrinsic function FINDLOC searches an array for a value.
– The intrinsic functions LGE, LGT, LLE, and LLT can have arguments of ASCII kind.
– The new intrinsic functions GAMMA and LOG GAMMA calculate the gamma function and its log.
– The new intrinsic function HYPOT calculates the Euclidean distance.
– The new intrinsic functions IALL, IANY, and IPARITY reduce an array with the bitwise AND, bitwise

OR, and bitwise exclusive OR functions respectively.
– The new intrinsic function IMAGE INDEX converts cosubscripts to an image index.
– The new intrinsic functions LCOBOUND and UCOBOUND return the cobounds of a coarray.
– The new intrinsic functions LEADZ and TRAILZ return the number of leading and trailing zero bits

in an integer.
– The new intrinsic functions MASKL and MASKR return simple left and right justified masks.
– A BACK= argument has been added to the intrinsic functions MAXLOC and MINLOC.
– The new intrinsic function MERGE BITS performs a bitwise merge using a mask.
– The new intrinsic function NORM2 calculates the L2 norm of an array.
– The new intrinsic function NUM IMAGES returns the number of images.
– The new intrinsic function PARITY reduces an array with the .NEQV. operation.
– The new intrinsic functions POPCNT and POPPAR return the number of 1 bits of an integer and its

parity.
– A RADIX= argument has been added to the intrinsic function SELECTED REAL KIND.
– The new intrinsic functions SHIFTA, SHIFTL and SHIFTR perform shift operations.
– The new intrinsic function STORAGE SIZE returns the size of an array element in bits.
– The new intrinsic function THIS IMAGE returns the index of this image or cosubscripts for it.

• Intrinsic modules:
The functions COMPILER VERSION and COMPILER OPTIONS in the intrinsic module ISO FOR-
TRAN ENV return information about the program translation phase. Named constants for selecting kind
values have been added to the intrinsic module ISO FORTRAN ENV. The function C SIZEOF in the in-
trinsic module ISO C BINDING returns the size of an array element in bytes. A RADIX= argument has
been added to the function IEEE SELECTED REAL KIND in the intrinsic module IEEE ARITHMETIC.
• Programs and procedures:

An empty CONTAINS section is allowed. An internal procedure can be used as an actual argument or pro-
cedure pointer. ALLOCATABLE and POINTER attributes are used in generic resolution. Procedureness
of a dummy argument is used in generic resolution. An actual argument with the TARGET attribute can
correspond to a dummy pointer. A null pointer can be used to denote an absent nonallocatable nonpoin-
ter optional argument. An impure elemental procedure processes array arguments in array element order.
The FUNCTION and SUBROUTINE keywords can be omitted from the END statement for a module or
internal subprogram. A line in the program is permitted to begin with a semicolon.

3 Additionally, the ENTRY feature present in Fortran 77 onwards is now deemed to be obsolescent by this part
of ISO/IEC 1539.
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4 This part of ISO/IEC 1539 is organized in 16 clauses, dealing with 8 conceptual areas. These 8 areas, and the
clauses in which they are treated, are:

High/low level concepts Clauses 1, 2, 3
Data concepts Clauses 4, 5, 6
Computations Clauses 7, 13, 14
Execution control Clause 8
Input/output Clauses 9, 10
Program units Clauses 11, 12
Interoperability with C Clause 15
Scoping and association rules Clause 16

5 It also contains the following nonnormative material:

Processor dependencies Annex A
Deleted and obsolescent features Annex B
Extended notes Annex C
Syntax rules Annex D
Index Index

Introduction xv
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Information technology — Programming languages —
Fortran —

Part 1:
Base language

1 Overview

1.1 Scope

1 This part of ISO/IEC 1539 specifies the form and establishes the interpretation of programs expressed in the base
Fortran language. The purpose of this part of ISO/IEC 1539 is to promote portability, reliability, maintainability,
and efficient execution of Fortran programs for use on a variety of computing systems.

2 This part of ISO/IEC 1539 specifies

• the forms that a program written in the Fortran language may take,
• the rules for interpreting the meaning of a program and its data,
• the form of the input data to be processed by such a program, and
• the form of the output data resulting from the use of such a program.

3 Except where stated otherwise, requirements and prohibitions specified by this part of ISO/IEC 1539 apply to
programs rather than processors.

4 This part of ISO/IEC 1539 does not specify

• the mechanism by which programs are transformed for use on computing systems,
• the operations required for setup and control of the use of programs on computing systems,
• the method of transcription of programs or their input or output data to or from a storage medium,
• the program and processor behavior when this part of ISO/IEC 1539 fails to establish an interpretation

except for the processor detection and reporting requirements in items (2) to (8) of 1.5,
• the maximum number of images, or the size or complexity of a program and its data that will exceed the

capacity of any particular computing system or the capability of a particular processor,
• the mechanism for determining the number of images of a program,
• the physical properties of an image or the relationship between images and the computational elements of

a computing system,
• the physical properties of the representation of quantities and the method of rounding, approximating, or

computing numeric values on a particular processor, except by reference to the IEEE International Standard
under conditions specified in Clause 14,
• the physical properties of input/output records, files, and units, or
• the physical properties and implementation of storage.

1.2 Normative references

1 The following referenced standards are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

1 Overview 1
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ISO/IEC 646:1991 (International Reference Version), Information technology—ISO 7-bit coded character set for
information interchange

ISO/IEC 9899:1999, Programming languages—C

ISO/IEC 10646, Information technology—Universal Multiple-Octet Coded Character Set (UCS)

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems

1.3 Terms and definitions

1 For the purposes of this document, the following terms and definitions apply.

1.3.1
abstract interface
set of procedure characteristics with dummy argument names (12.4.1)

1.3.2
actual argument
entity (R1223) that appears in a procedure reference

1.3.3
allocatable
having the ALLOCATABLE attribute (5.3.3)

1.3.4
array
set of scalar data, all of the same type and type parameters, whose individual elements are arranged in a
rectangular pattern

1.3.4.1
array element
scalar individual element of an array

1.3.4.2
array pointer
array with the POINTER attribute (5.3.14)

1.3.4.3
array section
array subobject designated by array-section, and which is itself an array (6.5.3.3)

1.3.4.4
assumed-shape array
nonallocatable nonpointer dummy argument array that takes its shape from its effective argument (5.3.8.3)

1.3.4.5
assumed-size array
dummy argument array whose size is assumed from that of its effective argument (5.3.8.5)

1.3.4.6
deferred-shape array
allocatable array or array pointer, declared with a deferred-shape-spec-list (5.3.8.4)

1.3.4.7
explicit-shape array
array declared with an explicit-shape-spec-list, which specifies explicit values for the bounds in each dimension of
the array (5.3.8.2)

2 Overview 1.3
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1.3.5
ASCII character
character whose representation method corresponds to ISO/IEC 646:1991 (International Reference Version)

1.3.6
associate name
name of construct entity associated with a selector of an ASSOCIATE or SELECT TYPE construct (8.1.3)

1.3.7
associating entity
in a dynamically-established association, the entity that did not exist prior to the establishment of the association
(16.5.5)

1.3.8
association
inheritance association (16.5.4), name association (16.5.1), pointer association (16.5.2), or storage association
(16.5.3).

1.3.8.1
argument association
association between an effective argument and a dummy argument (12.5.2)

1.3.8.2
construct association
association between a selector and an associate name in an ASSOCIATE or SELECT TYPE construct (8.1.3,
8.1.9, 16.5.1.6)

1.3.8.3
host association
name association, other than argument association, between entities in a submodule or contained scoping unit
and entities in its host (16.5.1.4)

1.3.8.4
inheritance association
association between the inherited components of an extended type and the components of its parent component

1.3.8.5
linkage association
association between a variable or common block with the BIND attribute and a C global variable (15.4, 16.5.1.5)

1.3.8.6
name association
argument association, construct association, host association, linkage association, or use association (16.5.1)

1.3.8.7
pointer association
association between a pointer and an entity with the TARGET attribute (16.5.2)

1.3.8.8
storage association
association between storage sequences (16.5.3)

1.3.8.9
use association
association between entities in a module and entities in a scoping unit or construct that references that module,
as specified by a USE statement (11.2.2)

1.3. TERMS AND DEFINITIONS Overview 3
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1.3.9
attribute
property of an entity that determines its uses (5.1)

1.3.10
automatic data object
automatic object
nondummy data object with a type parameter or array bound that depends on the value of a specification-expr
that is not an constant expression

1.3.11
base object
of a data-ref , the object designated by the leftmost part-name (6.4.2)

1.3.12
binding
type-bound procedure or final subroutine (4.5.5)

1.3.13
binding name
name given to a specific or generic type-bound procedure in the type definition (4.5.5)

1.3.14
binding label
default character value specifying the name by which a global entity with the BIND attribute is known to the
companion processor (15.5.2, 15.4.2)

1.3.15
block
sequence of executable constructs formed by the syntactic class block and which is treated as a unit by the
executable constructs described in 8.1

1.3.16
block data program unit
program unit whose initial statement is a BLOCK DATA statement, used for providing initial values for data
objects in named common blocks (11.3)

1.3.17
bound
array bound
limit of a dimension of an array

1.3.18
branch target statement
action-stmt , associate-stmt , end-associate-stmt , if-then-stmt , end-if-stmt , select-case-stmt , end-select-stmt , select-
type-stmt , end-select-type-stmt , do-stmt , end-do-stmt , block-stmt , end-block-stmt , critical-stmt , end-critical-stmt ,
a forall-construct-stmt , do-term-action-stmt , do-term-shared-stmt , or where-construct-stmt whose statement label ap-
pears as a label in a GO TO statement, computed GO TO statement, arithmetic IF statement, alt-return-spec,
END= specifier, EOR= specifier, or ERR= specifier (8.2.1)

1.3.19
C address
value identifying the location of a data object or procedure either defined by the companion processor or which
might be accessible to the companion processor; this is the concept that ISO/IEC 9899:1999 calls the address

1.3.20
character context
within a character literal constant (4.4.3) or within a character string edit descriptor (10.3.2)

4 Overview 1.3. TERMS AND DEFINITIONS
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1.3.21
characteristics
either
• of a procedure, the properties listed in 12.3.1,
• of a dummy argument, being a dummy data object, dummy procedure, or an asterisk (alternate return indicator),
• of a dummy data object, the properties listed in 12.3.2.2,
• of a dummy procedure or dummy procedure pointer, the properties listed in 12.3.2.3, or
• of a function result, the properties listed in 12.3.3.

1.3.22
coarray
data entity that has nonzero corank (2.4.7)

1.3.23
cobound
bound (limit) of a codimension

1.3.24
codimension
dimension of the pattern formed by a set of corresponding coarrays

1.3.25
coindexed object
data object whose designator includes an image-selector (R624, 6.6)

1.3.26
collating sequence
one-to-one mapping from a character set into the nonnegative integers (4.4.3.4)

1.3.27
common block
block of physical storage specified by a COMMON statement (5.7.2)

1.3.27.1
blank common
unnamed common block

1.3.28
companion processor
processor-dependent mechanism by which global data and procedures may be referenced or defined (2.5.7)

1.3.29
component
part of a derived type, or of an object of derived type, defined by a component-def-stmt (4.5.4)

1.3.29.1
direct component
one of the components, or one of the direct components of a nonpointer nonallocatable component (4.5.1)

1.3.29.2
parent component
component of an extended type whose type is that of the parent type and whose components are inheritance
associated with the inherited components of the parent type (4.5.7.2)

1.3.29.3
subcomponent
of a structure, direct component that is a subobject of that structure (6.4.2)
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1.3.29.4
ultimate component
a component that is of intrinsic type, a pointer, or allocatable; or an ultimate component of a nonpointer
nonallocatable component of derived type

1.3.30
component order
ordering of the nonparent components of a derived type that is used for intrinsic formatted input/output and
structure constructors (where component keywords are not used) (4.5.4.7)

1.3.31
conformable
of two data entities, having the same shape, or one being an array and the other being scalar

1.3.32
connected
relationship between a unit and a file: each is connected if and only if the unit refers to the file (9.5.4)

1.3.33
constant
data object that has a value and which cannot be defined, redefined, or become undefined during execution of a
program (3.2.3, 6.3)

1.3.33.1
literal constant
constant that does not have a name (R305, 4.4)

1.3.33.2
named constant
named data object with the PARAMETER attribute (5.3.13)

1.3.34
construct entity
entity whose identifier has the scope of a construct (16.1, 16.4)

1.3.35
constant expression
expression satisfying the requirements specified in 7.1.12, thus ensuring that its value is constant

1.3.36
contiguous
of a multi-part data object, that the parts in order are not separated by other data objects; of an array, having
array elements in order that are not separated by other data objects, as specified in 5.3.7

1.3.36.1
simply contiguous
of an array designator or variable, satisfying the conditions specified in 6.5.4

NOTE 1.1
These conditions are simple ones which make it clear that the designator or variable designates a contiguous
array.

1.3.37
corank
number of codimensions of a coarray (zero for objects that are not coarrays)
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1.3.38
cosubscript
(R625) scalar integer expression in an image-selector (R624)

1.3.39
data entity
data object, result of the evaluation of an expression, or the result of the execution of a function reference

1.3.40
data object
object
constant (4.1.3), variable (6), or subobject of a constant (2.4.3.1.3)

1.3.41
decimal symbol
character that separates the whole and fractional parts in the decimal representation of a real number in a file
(10.6)

1.3.42
declaration
specification of attributes for various program entities

NOTE 1.2
Often this involves specifying the type of a named data object or specifying the shape of a named array
object.

1.3.43
default initialization
mechanism for automatically initializing pointer components to have a defined pointer association status, and
nonpointer components to have a particular value (4.5.4.6)

1.3.44
default-initialized
of a subcomponent, being subject to a default initialization specified in the type definition for that component
(4.5.4.6)

1.3.45
definable
being capable of definition and permitted to become defined

1.3.46
defined
either
• of a data object, the property of having a valid value, or
• of a pointer, the property of having a pointer association status (16.5.2.2) of associated or disassociated

1.3.47
defined assignment
assignment defined by a procedure (7.2.1.4, 12.4.3.4.3)

1.3.48
defined input/output
input/output defined by a procedure and accessed via a defined-io-generic-spec (R1208, 9.6.4.8)

1.3.49
defined operation
operation defined by a procedure (7.1.6.1, 12.4.3.4.2)
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1.3.50
definition
either
• the specification of derived types (4.5.2), enumerations (4.6), and procedures (12.6), or
• the process by which a data object becomes defined (16.6.5)

1.3.51
descendant
of a module or submodule, submodule that extends that module or submodule or that extends another descendant
thereof

1.3.52
designator
name followed by zero or more component selectors, complex part selectors, array section selectors, array element
selectors, image selectors, and substring selectors (6.1)

1.3.52.1
complex part designator
designator that designates the real or imaginary part of a complex data object, independently of the other part
(6.4.4)

1.3.52.2
object designator
data object designator
designator for a data object

NOTE 1.3
An object name is a special case of an object designator.

1.3.52.3
procedure designator
designator for a procedure

1.3.53
disassociated
either
• the pointer association status of not being associated with any target and not being undefined (16.5.2.2),

or
• of a pointer, having that pointer association status

1.3.54
dummy argument
entity whose identifier appears in a dummy argument list (R1235) in a FUNCTION, SUBROUTINE, ENTRY, or

statement function statement, or whose name can be used as an argument keyword in a reference to an intrinsic
procedure or a procedure in an intrinsic module

1.3.54.1
dummy data object
dummy argument that is a data object

1.3.54.2
dummy function
dummy procedure that is a function
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1.3.55
effective argument
entity that is argument-associated with a dummy argument (12.5.2.3)

1.3.56
effective item
scalar object resulting from the application of the rules in 9.6.3 to an input/output list

1.3.57
elemental
independent scalar application of an action or operation to elements of an array or corresponding elements of a
set of conformable arrays and scalars, or possessing the capability of elemental operation

NOTE 1.4
Combination of scalar and array operands or arguments combine the scalar operand(s) with each element
of the array operand(s).

1.3.57.1
elemental assignment
assignment that operates elementally

1.3.57.2
elemental operation
operation that operates elementally

1.3.57.3
elemental operator
operator in an elemental operation

1.3.57.4
elemental procedure
elemental intrinsic procedure or procedure defined by an elemental subprogram

1.3.57.5
elemental reference
reference to an elemental procedure with at least one array actual argument

1.3.57.6
elemental subprogram
subprogram with the ELEMENTAL prefix

1.3.58
END statement
end-block-data-stmt , end-function-stmt , end-module-stmt , end-mp-subprogram-stmt , end-program-stmt ,
end-submodule-stmt , or end-subroutine-stmt

1.3.59
explicit initialization
initialization of a data object by a specification statement (5.2.3, 5.4.7)

1.3.60
explicit interface
interface of a procedure that includes all the characteristics of the procedure and names for its dummy arguments
except for asterisk dummy arguments (12.4.2)

1.3.61
extent
number of elements in a single dimension of an array
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1.3.62
external file
file that exists in a medium external to the program (9.3)

1.3.63
external unit
external input/output unit
entity that can be connected to an external file

1.3.64
file storage unit
unit of storage in a stream file or an unformatted record file (9.3.5)

1.3.65
final subroutine
subroutine whose name appears in a FINAL statement (4.5.6) in a type definition, and which can be automatically
invoked by the processor when an object of that type is finalized (4.5.6.2)

1.3.66
finalizable
either
• of a type, having a final subroutine or a nonpointer nonallocatable component of finalizable type, or
• of a nonpointer data entity, being of finalizable type

1.3.67
finalization
the process of calling final subroutines when one of the events listed in 4.5.6.3 occurs

1.3.68
function
procedure that is invoked by an expression

1.3.69
generic identifier
lexical token that identifies a generic set of procedures, intrinsic operations, and/or intrinsic assignments

1.3.70
host instance
of an internal procedure, or of a dummy procedure or procedure pointer associated with an internal procedure,
instance of the host procedure that supplies the host environment of the internal procedure (12.6.2.4)

1.3.71
host scoping unit
host
the scoping unit immediately surrounding another scoping unit, or the scoping unit extended by a submodule

1.3.72
IEEE infinity
IEC 60559:1989 conformant infinite floating-point value

1.3.73
IEEE NaN
IEC 60559:1989 conformant floating-point datum that does not represent a number

1.3.74
image
instance of a Fortran program (2.3.4)

10 Overview 1.3. TERMS AND DEFINITIONS



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

1.3.75
image index
integer value identifying an image

1.3.76
image control statement
statement that affects the execution ordering between images (8.5)

1.3.77
implicit interface
interface of a procedure that includes only the type and type parameters of a function result (12.4.2, 12.4.3.8)

1.3.78
inherit
of an extended type, to acquire entities (components, type-bound procedures, and type parameters) through type
extension from the parent type

1.3.79
inquiry function
intrinsic function, or function in an intrinsic module, whose result depends on the properties of one or more of
its arguments instead of their values

1.3.80
interface
of a procedure, its name, procedure characteristics, dummy argument names, binding label, and generic identifiers
(12.4.1)

1.3.80.1
generic interface
set of procedure interfaces identified by a generic identifier

1.3.80.2
specific interface
interface identified by a nongeneric name

1.3.81
interface block
abstract interface block, generic interface block, or specific interface block (12.4.3.2)

1.3.81.1
abstract interface block
interface block with the ABSTRACT keyword; collection of interface bodies that specify named abstract interfaces

1.3.81.2
generic interface block
interface block with a generic-spec; collection of interface bodies and procedure statements that are to be given
that generic identifier

1.3.81.3
specific interface block
interface block with no generic-spec or ABSTRACT keyword; collection of interface bodies that specify the
interfaces of procedures

1.3.82
interface body
scoping unit that specifies an abstract interface or the interface of a dummy procedure, external procedure,
procedure pointer, or separate module procedure (12.4.3.2)
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1.3.83
interoperable
of a Fortran entity, being equivalent to an entity defined by or definable by the companion processor (15.3)

1.3.84
intrinsic
type, procedure, module, assignment, operator, or input/output operation defined in this part of ISO/IEC 1539
and accessible without further definition or specification, or a procedure or module provided by a processor but
not defined in this part of ISO/IEC 1539

1.3.84.1
standard intrinsic
of a procedure or module, defined in this part of ISO/IEC 1539 (13)

1.3.84.2
nonstandard intrinsic
of a procedure or module, provided by a processor but not defined in this part of ISO/IEC 1539

1.3.85
internal file
character variable that is connected to an internal unit (9.4)

1.3.86
internal unit
input/output unit that is connected to an internal file (9.5.4)

1.3.87
ISO 10646 character
character whose representation method corresponds to UCS-4 in ISO/IEC 10646

1.3.88
keyword
statement keyword, argument keyword, type parameter keyword, or component keyword

1.3.88.1
argument keyword
word that identifies the corresponding dummy argument in an actual argument list

1.3.88.2
component keyword
word that identifies a component in a structure constructor

1.3.88.3
statement keyword
word that is part of the syntax of a statement (2.5.2)

1.3.88.4
type parameter keyword
word that identifies a type parameter in a type parameter list

1.3.89
lexical token
keyword, name, literal constant other than a complex literal constant, operator, label, delimiter, comma, =, =>,
:, ::, ;, or % (3.2)

1.3.90
line
sequence of zero or more characters
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1.3.91
main program
program unit that is not a subprogram, module, submodule, or block data program unit (11.1)

1.3.92
masked array assignment
assignment statement in a WHERE statement or WHERE construct (7.2.3)

1.3.93
module
program unit containing (or accessing from other modules) definitions that are to be made accessible to other
program units (11.2)

1.3.94
name
identifier of a program consituent, formed according to the rules given in 3.2.2

1.3.95
NaN
Not a Number, a symbolic floating-point datum (IEC 60559:1989)

1.3.96
operand
data value that is the subject of an operator

1.3.97
operator
either a prefix syntax specifying a computation involving one (unary operator) data value, or an infix syntax
specifying a computation involving two (binary operator) data values

1.3.98
passed-object dummy argument
dummy argument of a type-bound procedure or procedure pointer component that becomes associated with the
object through which the procedure is invoked (4.5.4.5)

1.3.99
pointer
data pointer (1.3) or procedure pointer (1.3)

1.3.99.1
data pointer
data entity with the POINTER attribute (5.3.14)

1.3.99.2
procedure pointer
procedure with the EXTERNAL and POINTER attributes (5.3.9, 5.3.14)

1.3.100
pointer assignment
association of a pointer with a target, by execution of a pointer assignment statement (7.2.2) or an intrinsic
assignment statement (7.2.1.2) for a derived-type object that has the pointer as a subobject

1.3.101
polymorphic
data entity declared with the CLASS keyword, able to be of differing dynamic types during program execution
(4.3.1.3)
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1.3.102
preconnected
of a file or unit, connected at the beginning of execution of the program (9.5.5)

1.3.103
procedure
entity encapsulating an arbitrary sequence of actions that can be invoked directly during program execution

1.3.103.1
dummy procedure
procedure that is a dummy argument (12.2.2.3)

1.3.103.2
external procedure
procedure defined by an external subprogram (R203) or by means other than Fortran (12.6.3)

1.3.103.3
internal procedure
procedure defined by an internal subprogram (R211)

1.3.103.4
module procedure
procedure that is defined by a module subprogram (R1108)

1.3.103.5
pure procedure
procedure declared or defined to be pure according to the rules in 12.7

1.3.103.6
type-bound procedure
procedure that is bound to a derived type and referenced via an object of that type (4.5.5)

1.3.104
processor
combination of a computing system and mechanism by which programs are transformed for use on that computing
system

1.3.105
processor dependent
not completely specified in this part of ISO/IEC 1539, having methods and semantics determined by the processor

1.3.106
program
set of Fortran program units and entities defined by means other than Fortran that includes exactly one main
program

1.3.107
program unit
main program, external subprogram, module, submodule, or block data program unit (2.2.1)

1.3.108
rank
number of array dimensions of a data entity (zero for a scalar entity)

1.3.109
record
sequence of values or characters in a file (9.2)
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1.3.110
record file
file composed of a sequence of records (9.1)

1.3.111
reference
data object reference, procedure reference, or module reference

1.3.111.1
data object reference
appearance of a data object designator (6.1) in a context requiring its value at that point during execution

1.3.111.2
function reference
appearance of the procedure designator for a function, or operator symbol in a context requiring execution of the
function during expression evaluation (12.5.3)

1.3.111.3
module reference
appearance of a module name in a USE statement (11.2.2)

1.3.111.4
procedure reference
appearance of a procedure designator, operator symbol, or assignment symbol in a context requiring execution
of the procedure at that point during execution; or occurrence of defined input/output (10.7.6) or derived-type
finalization (4.5.6.2)

1.3.112
result variable
variable that returns the value of a function (12.6.2.2)

1.3.113
saved
having the SAVE attribute (5.3.16)

1.3.114
scalar
data entity that can be represented by a single value of the type and that is not an array (6.5)

1.3.115
scoping unit
either
• a program unit or subprogram, excluding any scoping units in it,
• a derived-type definition (4.5.2), or
• an interface body, excluding any scoping units in it

1.3.116
sequence
set of elements ordered by a one-to-one correspondence with the numbers 1, 2, to n

1.3.117
sequence structure
scalar data object of a sequence type (4.5.2.3)

1.3.118
sequence type
derived type with the SEQUENCE attribute (4.5.2.3)
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1.3.118.1
character sequence type
sequence type with no type parameters, no allocatable or pointer components, and whose components are all
default character or of another character sequence type

1.3.118.2
numeric sequence type
sequence type with no type parameters, no allocatable or pointer components, and whose components are all
default complex, default integer, default logical, default real, double precision real, or of another numeric sequence
type

1.3.119
shape
array dimensionality of a data entity, represented as a rank-one array whose size is the rank of the data entity
and whose elements are the extents of the data entity

NOTE 1.5
Thus the shape of a scalar data entity is an array with rank one and size zero.

1.3.120
size
of an array, the total number of elements in the array

1.3.121
specification expression
expression satisfying the requirements specified in 7.1.11, thus being suitable for use in specifications

1.3.122
specific name
name that is not a generic name

1.3.123
standard-conforming program
program that uses only those forms and relationships described in, and has an interpretation according to, this
part of ISO/IEC 1539

1.3.124
statement
sequence of one or more complete or partial lines satisfying a syntax rule that ends in -stmt (3.3)

1.3.124.1
executable statement
statement that is a member of the syntactic class executable-construct , excluding those in the specification-part
of a BLOCK construct

1.3.124.2
nonexecutable statement
statement that is not an executable statement

1.3.125
statement entity
entity whose identifier has the scope of a statement or part of a statement (16.1, 16.4)

1.3.126
statement label
label
unsigned positive number of up to five digits that refers to an individual statement (3.2.5)
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1.3.127
storage sequence
contiguous sequence of storage units (16.5.3.2)

1.3.128
storage unit
unit of storage; a character storage unit, numeric storage unit, file storage unit, or unspecified storage unit
(16.5.3.2)

1.3.128.1
character storage unit
storage unit for holding a default character value (16.5.3.2)

1.3.128.2
numeric storage unit
storage unit for holding a default real, default integer, or default logical value (16.5.3.2)

1.3.128.3
unspecified storage unit
storage unit for holding a value that is not default character, default real, double precision real, default logical,
or default complex (16.5.3.2)

1.3.129
stream file
file composed of a sequence of file storage units (9.1)

1.3.130
structure
scalar data object of derived type (4.5)

1.3.130.1
structure component
component of a structure

1.3.130.2
structure constructor
syntax (structure-constructor , 4.5.10) that specifies a structure value or creates such a value

1.3.131
submodule
program unit that extends a module or another submodule (11.2.3)

1.3.132
subobject
portion of data object that can be referenced, and if it is a variable defined, independently of any other portion

1.3.133
subprogram
function-subprogram (R1227) or subroutine-subprogram (R1233)

1.3.133.1
external subprogram
subprogram that is not contained in a main program, module, submodule, or another subprogram

1.3.133.2
internal subprogram
subprogram that is contained in a main program or another subprogram
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1.3.133.3
module subprogram
subprogram that is contained in a module or submodule but is not an internal subprogram

1.3.134
subroutine
procedure invoked by a CALL statement, by defined assignment, or by some operations on derived-type entities

1.3.134.1
atomic subroutine
intrinsic subroutine that performs an action on its ATOM argument atomically

1.3.135
target
entity that is pointer associated with a pointer (16.5.2.2), entity on the right-hand-side of a pointer assignment
statement (R733), or entity with the TARGET attribute (5.3.17)

1.3.136
transformational function
intrinsic function, or function in an intrinsic module, that is neither elemental nor an inquiry function

1.3.137
type
data type
named category of data characterized by a set of values, a syntax for denoting these values, and a set of operations
that interpret and manipulate the values (4.1)

1.3.137.1
abstract type
type with the ABSTRACT attribute (4.5.7.1)

1.3.137.2
declared type
type that a data entity is declared to have, either explicitly or implicitly (4.3.1, 7.1.9)

1.3.137.3
derived type
type defined by a type definition (4.5) or by an intrinsic module

1.3.137.4
dynamic type
type of a data entity at a particular point during execution of a program (4.3.1.3, 7.1.9)

1.3.137.5
extended type
type with the EXTENDS attribute (4.5.7.1)

1.3.137.6
extensible type
type that has neither the BIND attribute nor the SEQUENCE attribute and which therefore may be extended
using the EXTENDS clause (4.5.7.1)

1.3.137.7
extension type
relationship between two types: a type is an extension type of another if the other is the same type, the parent
type, or an extension of the parent type (4.5.7.1)
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1.3.137.8
intrinsic type
type defined by this part of ISO/IEC 1539 that is always accessible (4.4)

1.3.137.9
numeric type
one of the types integer, real, and complex

1.3.137.10
parent type
of an extended type, the type named in its EXTENDS clause

1.3.137.11
type compatible
of one entity with respect to another, compatibility of the types of the entities for purposes such as argument
association, pointer association, and allocation (4.3.1)

1.3.137.12
type parameter
value used to parameterize a type, further specifying the set of data values, syntax for denoting those, and the
set of operations available (4.2)

1.3.137.12.1
assumed type parameter
length type parameter that assumes the type parameter value from another entity, which is
• the selector for an associate name,
• the constant-expr for a named constant of type character, and
• the effective argument for a dummy argument

1.3.137.12.2
deferred type parameter
length type parameter whose value can change during execution of a program and whose type-param-value is a
colon

1.3.137.12.3
kind type parameter
type parameter whose value is required to be defaulted or given by a constant expression

1.3.137.12.4
length type parameter
type parameter whose value is permitted to be assumed, deferred, or given by a specification expression

1.3.137.12.5
type parameter inquiry
syntax (type-param-inquiry) that is used to inquire the value of a type parameter of a data object (6.4.5)

1.3.137.12.6
type parameter order
ordering of the type parameters of a type (4.5.3.2) used for derived-type specifiers (derived-type-spec, 4.5.9)

1.3.138
ultimate argument
nondummy entity with which a dummy argument is associated via a chain of argument associations (12.5.2.3)

1.3.139
undefined
either
• of a data object, the property of not having a valid value, or
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• of a pointer, the property of having not having a pointer association status of associated or disassociated
(16.5.2.2)

1.3.140
unit
input/output unit
means, specified by an io-unit , for referring to a file (9.5.1)

1.3.141
unlimited polymorphic
data entity declared with CLASS(*), able to have any dynamic type during program execution (4.3.1.3)

1.3.142
unsaved
not having the SAVE attribute (5.3.16)

1.3.143
variable
data entity that can be defined and redefined during execution of a program

1.3.143.1
local variable
variable in a scoping unit or BLOCK construct that is not a dummy argument or part thereof, is not a global
entity or part thereof, and is not accessible outside that scoping unit or construct

1.3.143.2
lock variable
scalar variable of type LOCK TYPE (13.8.2.16) from the the intrinsic module ISO FORTRAN ENV

1.3.144
vector subscript
section-subscript that is an array (6.5.3.3.2)

1.3.145
whole array
array component or array name without further qualification (6.5.2)

1.4 Notation, symbols and abbreviated terms

1.4.1 Syntax rules

1 Syntax rules describe the forms that Fortran lexical tokens, statements, and constructs may take. These syntax
rules are expressed in a variation of Backus-Naur form (BNF) with the following conventions.

• Characters from the Fortran character set (3.1) are interpreted literally as shown, except where otherwise
noted.
• Lower-case italicized letters and words (often hyphenated and abbreviated) represent general syntactic

classes for which particular syntactic entities shall be substituted in actual statements.
Common abbreviations used in syntactic terms are:

arg for argument attr for attribute
decl for declaration def for definition
desc for descriptor expr for expression
int for integer op for operator
spec for specifier stmt for statement
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• The syntactic metasymbols used are:

is introduces a syntactic class definition
or introduces a syntactic class alternative
[ ] encloses an optional item
[ ] ... encloses an optionally repeated item

that may occur zero or more times
continues a syntax rule

• Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or two-digit
clause number and nn is a two-digit sequence number within that clause. The syntax rules are distributed
as appropriate throughout the text, and are referenced by number as needed. Some rules in Clauses 2 and
3 are more fully described in later clauses; in such cases, the clause number s is the number of the later
clause where the rule is repeated.
• The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be used to

generate a Fortran parser automatically; where a syntax rule is incomplete, it is restricted by corresponding
constraints and text.

NOTE 1.6
An example of the use of the syntax rules is:

digit-string is digit [ digit ] ...

The following are examples of forms for a digit string allowed by the above rule:

digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit

If particular entities are substituted for digit , actual digit strings might be:

4
67
1999
10243852

1.4.2 Constraints

1 Each constraint is given a unique identifying number of the form Csnn, where s is a one or two digit clause number
and nn is a two or three digit sequence number within that clause.

2 Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint is annotated
with the syntax rule number in parentheses. A constraint that is associated with a syntax rule constitutes part of
the definition of the syntax term defined by the rule. It thus applies in all places where the syntax term appears.

3 Some constraints are not associated with particular syntax rules. The effect of such a constraint is similar to
that of a restriction stated in the text, except that a processor is required to have the capability to detect and
report violations of constraints (1.5). In some cases, a broad requirement is stated in text and a subset of the
same requirement is also stated as a constraint. This indicates that a standard-conforming program is required to
adhere to the broad requirement, but that a standard-conforming processor is required only to have the capability
of diagnosing violations of the constraint.
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1.4.3 Assumed syntax rules

1 In order to minimize the number of additional syntax rules and convey appropriate constraint information, the
following rules are assumed.

R101 xyz-list is xyz [ , xyz ] ...

R102 xyz-name is name

R103 scalar-xyz is xyz

C101 (R103) scalar-xyz shall be scalar.

2 The letters “xyz” stand for any syntactic class phrase. An explicit syntax rule for a term overrides an assumed
rule.

1.4.4 Syntax conventions and characteristics

1 Any syntactic class name ending in “-stmt” follows the source form statement rules: it shall be delimited by
end-of-line or semicolon, and may be labeled unless it forms part of another statement (such as an IF or WHERE
statement). Conversely, everything considered to be a source form statement is given a “-stmt” ending in the
syntax rules.

2 The rules on statement ordering are described rigorously in the definition of program-unit (R202). Expression
hierarchy is described rigorously in the definition of expr (R722).

3 The suffix “-spec” is used consistently for specifiers, such as input/output statement specifiers. It also is used for
type declaration attribute specifications (for example, “array-spec” in R515), and in a few other cases.

4 Where reference is made to a type parameter, including the surrounding parentheses, the suffix “-selector” is
used. See, for example, “kind-selector” (R405) and “length-selector” (R421).

1.4.5 Text conventions

1 In descriptive text, an equivalent English word is frequently used in place of a syntactic term. Particular state-
ments and attributes are identified in the text by an upper-case keyword, e.g., “END statement”. The descriptions
of obsolescent features appear in a smaller type size.

NOTE 1.7
This sentence is an example of the type size used for obsolescent features.

1.5 Conformance

1 A program (2.2.2) is a standard-conforming program if it uses only those forms and relationships described
herein and if the program has an interpretation according to this part of ISO/IEC 1539. A program unit (2.2.1)
conforms to this part of ISO/IEC 1539 if it can be included in a program in a manner that allows the program
to be standard conforming.

2 A processor conforms to this part of ISO/IEC 1539 if:

(1) it executes any standard-conforming program in a manner that fulfills the interpretations herein,
subject to any limits that the processor may impose on the size and complexity of the program;

(2) it contains the capability to detect and report the use within a submitted program unit of a form
designated herein as obsolescent, insofar as such use can be detected by reference to the numbered
syntax rules and constraints;

(3) it contains the capability to detect and report the use within a submitted program unit of an additio-
nal form or relationship that is not permitted by the numbered syntax rules or constraints, including
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the deleted features described in Annex B
(4) it contains the capability to detect and report the use within a submitted program unit of an intrinsic

type with a kind type parameter value not supported by the processor (4.4);
(5) it contains the capability to detect and report the use within a submitted program unit of source

form or characters not permitted by Clause 3;
(6) it contains the capability to detect and report the use within a submitted program of name usage

not consistent with the scope rules for names, labels, operators, and assignment symbols in Clause
16;

(7) it contains the capability to detect and report the use within a submitted program unit of intrinsic
procedures whose names are not defined in Clause 13; and

(8) it contains the capability to detect and report the reason for rejecting a submitted program.

3 However, in a format specification that is not part of a FORMAT statement (10.2.1), a processor need not detect
or report the use of deleted or obsolescent features, or the use of additional forms or relationships.

4 A standard-conforming processor may allow additional forms and relationships provided that such additions
do not conflict with the standard forms and relationships. However, a standard-conforming processor may allow
additional intrinsic procedures even though this could cause a conflict with the name of a procedure in a standard-
conforming program. If such a conflict occurs and involves the name of an external procedure, the processor is
permitted to use the intrinsic procedure unless the name is given the EXTERNAL attribute (5.3.9) in the scoping
unit (2.2.1). A standard-conforming program shall not use nonstandard intrinsic procedures or modules that have
been added by the processor.

5 Because a standard-conforming program may place demands on a processor that are not within the scope of this
part of ISO/IEC 1539 or may include standard items that are not portable, such as external procedures defined
by means other than Fortran, conformance to this part of ISO/IEC 1539 does not ensure that a program will
execute consistently on all or any standard-conforming processors.

6 The semantics of facilities that are identified as processor dependent are not completely specified in this part of
ISO/IEC 1539. They shall be provided, with methods or semantics determined by the processor.

NOTE 1.8
The processor should be accompanied by documentation that specifies the limits it imposes on the size
and complexity of a program and the means of reporting when these limits are exceeded, that defines the
additional forms and relationships it allows, and that defines the means of reporting the use of additional
forms and relationships and the use of deleted or obsolescent forms. In this context, the use of a deleted
form is the use of an additional form.

The processor should be accompanied by documentation that specifies the methods or semantics of
processor-dependent facilities.

1.6 Compatibility

1.6.1 New intrinsic procedures

1 Each Fortran International Standard since ISO 1539:1980 (informally referred to as Fortran 77), defines more
intrinsic procedures than the previous one. Therefore, a Fortran program conforming to an older standard may
have a different interpretation under a newer standard if it invokes an external procedure having the same name
as one of the new standard intrinsic procedures, unless that procedure is specified to have the EXTERNAL
attribute.

1.6.2 Fortran 2003 compatibility

1 This part of ISO/IEC 1539 is an upward compatible extension to the preceding Fortran International Stan-
dard, ISO/IEC 1539-1:2004 (Fortran 2003). Any standard-conforming Fortran 2003 program remains standard-
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conforming under this part of ISO/IEC 1539.

1.6.3 Fortran 95 compatibility

1 Except as identified in this subclause, this part of ISO/IEC 1539 is an upward compatible extension to ISO/IEC
1539-1:1997 (Fortran 95). Any standard-conforming Fortran 95 program remains standard-conforming under
this part of ISO/IEC 1539. The following Fortran 95 features may have different interpretations in this part of
ISO/IEC 1539.

• Earlier Fortran standards had the concept of printing, meaning that column one of formatted output had
special meaning for a processor-dependent (possibly empty) set of external files. This could be neither
detected nor specified by a standard-specified means. The interpretation of the first column is not specified
by this part of ISO/IEC 1539.
• This part of ISO/IEC 1539 specifies a different output format for real zero values in list-directed and

namelist output.
• If the processor can distinguish between positive and negative real zero, this part of ISO/IEC 1539 requires

different returned values for ATAN2(Y,X) when X < 0 and Y is negative real zero and for LOG(X) and
SQRT(X) when X is complex with REAL(X) < 0 and negative zero imaginary part.
• This part of ISO/IEC 1539 has fewer restrictions on constant expressions than Fortran 95; this might affect

whether a variable is considered to be automatic.

1.6.4 Fortran 90 compatibility

1 Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part of
ISO/IEC 1539 is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-conforming
Fortran 90 program that does not use one of the deleted features remains standard-conforming under this part
of ISO/IEC 1539.

2 The PAD= specifier in the INQUIRE statement in this part of ISO/IEC 1539 returns the value UNDEFINED if
there is no connection or the connection is for unformatted input/output. Fortran 90 specified YES.

3 Fortran 90 specified that if the second argument to MOD or MODULO was zero, the result was processor
dependent. This part of ISO/IEC 1539 specifies that the second argument shall not be zero.

4 The following Fortran 90 features have different interpretations in this part of ISO/IEC 1539.

• If the processor can distinguish between positive and negative real zero, the behavior of the intrinsic function
SIGN when the second argument is negative real zero is changed by this standard.
• Fortran 90 required that formatted output never produce a floating point zero value with a minus sign; this

part of ISO/IEC 1539 requires that a minus sign be produced if the internal value is negative.
• This part of ISO/IEC 1539 has fewer restrictions on constant expressions than Fortran 90; this might affect

whether a variable is considered to be automatic.

1.6.5 FORTRAN 77 compatibility

1 Except for the deleted features noted in Annex B.1, and except as identified in this subclause, this part of
ISO/IEC 1539 is an upward compatible extension to ISO 1539:1980 (Fortran 77). Any standard-conforming
Fortran 77 program that does not use one of the deleted features noted in Annex B.1 and that does not
depend on the differences specified here remains standard-conforming under this part of ISO/IEC 1539. This
part of ISO/IEC 1539 restricts the behavior for some features that were processor dependent in Fortran 77.
Therefore, a standard-conforming Fortran 77 program that uses one of these processor-dependent features may
have a different interpretation under this part of ISO/IEC 1539, yet remain a standard-conforming program. The
following Fortran 77 features may have different interpretations in this part of ISO/IEC 1539.

• Fortran 77 permitted a processor to supply more precision derived from a default real constant than can
be represented in a default real datum when the constant is used to initialize a double precision real data
object in a DATA statement. This part of ISO/IEC 1539 does not permit a processor this option.
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• If a named variable that was not in a common block was initialized in a DATA statement and did not
have the SAVE attribute specified, Fortran 77 left its SAVE attribute processor dependent. This part of
ISO/IEC 1539 specifies (5.4.7) that this named variable has the SAVE attribute.
• Fortran 77 specified that the number of characters required by the input list was to be less than or equal

to the number of characters in the record during formatted input. This part of ISO/IEC 1539 specifies
(9.6.4.5.3) that the input record is logically padded with blanks if there are not enough characters in the
record, unless the PAD= specifier with the value ’NO’ is specified in an appropriate OPEN or READ
statement.
• A value of 0 for a list item in a formatted output statement will be formatted in a different form for some

G edit descriptors. In addition, this part of ISO/IEC 1539 specifies how rounding of values will affect the
output field form, but Fortran 77 did not address this issue. Therefore, some Fortran 77 processors may
produce an output form different from the output form produced by Fortran 2003 processors for certain
combinations of values and G edit descriptors.
• If the processor can distinguish between positive and negative real zero, the behavior of the intrinsic function

SIGN when the second argument is negative real zero is changed by this part of ISO/IEC 1539.

1.7 Deleted and obsolescent features

1.7.1 General

1 This part of ISO/IEC 1539 protects the users’ investment in existing software by including all but five of the
language elements of Fortran 90 that are not processor dependent. This part of ISO/IEC 1539 identifies two
categories of outmoded features. The first category, deleted features, consists of features considered to have been
redundant in Fortran 77 and largely unused in Fortran 90. Those in the second category, obsolescent features,
are considered to have been redundant in Fortran 90 and Fortran 95, but are still frequently used.

1.7.2 Nature of deleted features

1 Better methods existed in Fortran 77 for each deleted feature. These features were not included in Fortran 95
or Fortran 2003, and are not included in this revision of Fortran.

1.7.3 Nature of obsolescent features

1 Better methods existed in Fortran 90 and Fortran 95 for each obsolescent feature. It is recommended that
programmers use these better methods in new programs and convert existing code to these methods.

2 The obsolescent features are identified in the text of this part of ISO/IEC 1539 by a distinguishing type font
(1.4.5).

3 A future revision of this part of ISO/IEC 1539 might delete an obsolescent feature if its use has become insigni-
ficant.

1.7 Overview 25



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

26 Overview 1.7.3



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

2 Fortran concepts

2.1 High level syntax

1 This subclause introduces the syntax associated with program units and other Fortran concepts above the
construct, statement, and expression levels and illustrates their relationships.

NOTE 2.1
Constraints and other information related to the rules that do not begin with R2 appear in the appropriate
clause.

R201 program is program-unit
[ program-unit ] ...

R202 program-unit is main-program
or external-subprogram
or module
or submodule
or block-data

R1101 main-program is [ program-stmt ]
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-program-stmt

R203 external-subprogram is function-subprogram
or subroutine-subprogram

R1227 function-subprogram is function-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-function-stmt

R1233 subroutine-subprogram is subroutine-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-subroutine-stmt

R1104 module is module-stmt
[ specification-part ]
[ module-subprogram-part ]
end-module-stmt

R1116 submodule is submodule-stmt
[ specification-part ]
[ module-subprogram-part ]
end-submodule-stmt

R1120 block-data is block-data-stmt
[ specification-part ]
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end-block-data-stmt

R204 specification-part is [ use-stmt ] ...
[ import-stmt ] ...
[ implicit-part ]
[ declaration-construct ] ...

R205 implicit-part is [ implicit-part-stmt ] ...
implicit-stmt

R206 implicit-part-stmt is implicit-stmt
or parameter-stmt
or format-stmt
or entry-stmt

R207 declaration-construct is derived-type-def
or entry-stmt

or enum-def
or format-stmt
or interface-block
or parameter-stmt
or procedure-declaration-stmt
or other-specification-stmt
or type-declaration-stmt
or stmt-function-stmt

R208 execution-part is executable-construct
[ execution-part-construct ] ...

R209 execution-part-construct is executable-construct
or format-stmt
or entry-stmt

or data-stmt

R210 internal-subprogram-part is contains-stmt
[ internal-subprogram ] ...

R211 internal-subprogram is function-subprogram
or subroutine-subprogram

R1107 module-subprogram-part is contains-stmt
[ module-subprogram ] ...

R1108 module-subprogram is function-subprogram
or subroutine-subprogram
or separate-module-subprogram

R1237 separate-module-subprogram is mp-subprogram-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-mp-subprogram-stmt

R212 other-specification-stmt is access-stmt
or allocatable-stmt
or asynchronous-stmt
or bind-stmt
or codimension-stmt
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or common-stmt
or data-stmt
or dimension-stmt
or equivalence-stmt
or external-stmt
or intent-stmt
or intrinsic-stmt
or namelist-stmt
or optional-stmt
or pointer-stmt
or protected-stmt
or save-stmt
or target-stmt
or volatile-stmt
or value-stmt

R213 executable-construct is action-stmt
or associate-construct
or block-construct
or case-construct
or critical-construct
or do-construct
or forall-construct
or if-construct
or select-type-construct
or where-construct

R214 action-stmt is allocate-stmt
or allstop-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or end-function-stmt
or end-mp-subprogram-stmt
or end-program-stmt
or end-subroutine-stmt
or endfile-stmt
or exit-stmt
or flush-stmt
or forall-stmt
or goto-stmt
or if-stmt
or inquire-stmt
or lock-stmt
or nullify-stmt
or open-stmt
or pointer-assignment-stmt
or print-stmt
or read-stmt
or return-stmt
or rewind-stmt
or stop-stmt
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or sync-all-stmt
or sync-images-stmt
or sync-memory-stmt
or unlock-stmt
or wait-stmt
or where-stmt
or write-stmt
or arithmetic-if-stmt

or computed-goto-stmt

C201 (R208) An execution-part shall not contain an end-function-stmt , end-mp-subprogram-stmt , end-program-
stmt , or end-subroutine-stmt .

2.2 Program unit concepts

2.2.1 Program units and scoping units

1 Program units are the fundamental components of a Fortran program. A program unit is a main program, an
external subprogram, a module, a submodule, or a block data program unit.

2 A subprogram is a function subprogram or a subroutine subprogram. A module contains definitions that are to be
made accessible to other program units. A submodule is an extension of a module; it may contain the definitions
of procedures declared in a module or another submodule. A block data program unit is used to specify initial
values for data objects in named common blocks.

3 Each type of program unit is described in Clause 11 or 12.

4 A program unit consists of a set of nonoverlapping scoping units.

NOTE 2.2
The module or submodule containing a module subprogram is the host scoping unit of the module subpro-
gram. The containing main program or subprogram is the host scoping unit of an internal subprogram.

An internal procedure is local to its host in the sense that its name is accessible within the host scoping
unit and all its other internal procedures but is not accessible elsewhere.

2.2.2 Program

1 A program shall consist of exactly one main program, any number (including zero) of other kinds of program units,
any number (including zero) of external procedures, and any number (including zero) of other entities defined by
means other than Fortran. The main program shall be defined by a Fortran main-program program-unit or by
means other than Fortran, but not both.

NOTE 2.3
There is a restriction that there shall be no more than one unnamed block data program unit (11.3).

2.2.3 Procedure

2.2.3.1 General

1 A procedure is either a function or a subroutine. Invocation of a function in an expression causes a value to be
computed which is then used in evaluating the expression.

2 A procedure that is not pure might change the program state by changing the value of data objects accessible to
it.
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3 Procedures are described further in Clause 12.

2.2.4 Module

1 A module contains (or accesses from other modules) definitions that are to be made accessible to other program
units. These definitions include data object declarations, type definitions, procedure definitions, and interface
blocks. A scoping unit in another program unit may access the definitions in a module. Modules are further
described in Clause 11.

2.2.5 Submodule

1 A submodule extends a module or another submodule.

2 It may provide definitions (12.6) for procedures whose interfaces are declared (12.4.3.2) in an ancestor module
or submodule. It may also contain declarations and definitions of other entities, which are accessible in its
descendants. An entity declared in a submodule is not accessible by use association unless it is a module procedure
whose interface is declared in the ancestor module. Submodules are further described in Clause 11.

NOTE 2.4
The scoping unit of a submodule accesses the scoping unit of its parent module or submodule by host
association.

2.3 Execution concepts

2.3.1 Statement classification

1 Each Fortran statement is classified as either an executable statement or a nonexecutable statement.

2 An executable statement is an instruction to perform or control an action. Thus, the executable statements of a
program unit determine the behavior of the program unit.

3 Nonexecutable statements are used to configure the program environment in which actions take place.

2.3.2 Statement order

1 The syntax rules of clause 2.1 specify the statement order within program units and subprograms. These rules
are illustrated in Table 2.1 and Table 2.2. Table 2.1 shows the ordering rules for statements and applies to
all program units, subprograms, and interface bodies. Vertical lines delineate varieties of statements that may
be interspersed and horizontal lines delineate varieties of statements that shall not be interspersed. Internal
or module subprograms shall follow a CONTAINS statement. Between USE and CONTAINS statements in a
subprogram, nonexecutable statements generally precede executable statements, although the ENTRY statement,

FORMAT statement, and DATA statement may appear among the executable statements. Table 2.2 shows which
statements are allowed in a scoping unit.

Table 2.1: Requirements on statement ordering
PROGRAM, FUNCTION, SUBROUTINE,

MODULE, SUBMODULE, or BLOCK DATA statement
USE statements

IMPORT statements
IMPLICIT NONE

PARAMETER IMPLICIT
statements statements

Derived-type definitions,
FORMAT interface blocks,
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Requirements on statement ordering (cont.)
and PARAMETER type declaration statements,

ENTRY and DATA enumeration definitions,
statements statements procedure declarations,

specification statements,
and statement function statements

DATA Executable
statements constructs

CONTAINS statement
Internal subprograms

or module subprograms
END statement

Table 2.2: Statements allowed in scoping units

Kind of scoping unit
Main Module or Block External Module Internal Interface

Statement type program submodule data subprogram subprogram subprogram body

USE Yes Yes Yes Yes Yes Yes Yes
IMPORT No No No No No No Yes
ENTRY No No No Yes Yes No No

FORMAT Yes No No Yes Yes Yes No
Misc. decl.s 1 Yes Yes Yes Yes Yes Yes Yes
DATA Yes Yes Yes Yes Yes Yes No
Derived-type Yes Yes Yes Yes Yes Yes Yes
Interface Yes Yes No Yes Yes Yes Yes
Executable Yes No No Yes Yes Yes No
CONTAINS Yes Yes No Yes Yes No No
Statement function Yes No No Yes Yes Yes No

(1) Miscellaneous declarations are PARAMETER statements, IMPLICIT statements, type declaration
statements, enumeration definitions, procedure declaration statements, and specification statements.

2.3.3 The END statement

1 Each program unit, module subprogram, and internal subprogram shall have exactly one END statement. The
end-program-stmt , end-function-stmt , end-subroutine-stmt , and end-mp-subprogram-stmt statements are execu-
table, and may be branch target statements (8.2). Executing an end-program-stmt initiates normal termination
of the image. Executing an end-function-stmt , end-subroutine-stmt , or end-mp-subprogram-stmt is equivalent to
executing a return-stmt with no scalar-int-expr .

2 The end-module-stmt , end-submodule-stmt , and end-block-data-stmt statements are nonexecutable.

2.3.4 Program execution

1 Execution of a program consists of the asynchronous execution of a fixed number (which may be one) of its images.
Each image has its own execution state, floating-point status (14.7), and set of data objects, input/output units,
and procedure pointers. The image index that identifies an image is an integer value in the range one to the
number of images.
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NOTE 2.5
The programmer controls the progress of execution in each image through explicit use of Fortran control
constructs (8.1, 8.2). Image control statements (8.5.1) affect the relative progress of execution between
images. Coarrays (2.4.7) provide a mechanism for accessing data on one image from another image.

NOTE 2.6
A processor might allow the number of images to be chosen at compile time, link time, or run time. It
might be the same as the number of CPUs but this is not required. Compiling for a single image might
permit the optimizer to eliminate overhead associated with parallel execution. Portable programs should
not make assumptions about the exact number of images. The maximum number of images may be limited
due to architectural constraints.

2.3.5 Execution sequence

1 Following the creation of a fixed number of instances of the program, execution begins on each image. Image
execution is a sequence, in time, of actions. Actions take place during execution of the statement that performs
them (except when explicitly stated otherwise). Segments (8.5.2) executed by a single image are totally ordered,
and segments executed by separate images are partially ordered by image control statements (8.5.1).

2 If the program contains a Fortran main program, each image begins execution with the first executable construct
of the main program. The execution of a main program or subprogram involves execution of the executable
constructs within its scoping unit. When a Fortran procedure is invoked, the specification expressions within
the specification-part of the invoked procedure, if any, are evaluated in a processor dependent order. Thereafter,
execution proceeds to the first executable construct appearing within the scoping unit of the procedure after
the invoked entry point. With the following exceptions, the effect of execution is as if the executable constructs
are executed in the order in which they appear in the main program or subprogram until a STOP, ALL STOP,
RETURN, or END statement is executed.

• Execution of a branching statement (8.2) changes the execution sequence. These statements explicitly
specify a new starting place for the execution sequence.
• DO constructs, IF constructs, SELECT CASE constructs, and SELECT TYPE constructs contain an

internal statement structure and execution of these constructs involves implicit internal branching. See
Clause 8 for the detailed semantics of each of these constructs.
• BLOCK constructs may contain specification expressions; see 8.1.4 for detailed semantics of this construct.
• END=, ERR=, and EOR= specifiers may result in a branch.
• Alternate returns may result in a branch.

3 Internal subprograms may precede the END statement of a main program or a subprogram. The execution
sequence excludes all such definitions.

4 Termination of execution of an image occurs in three steps: initiation, synchronization, and completion. All
images synchronize execution at the second step so that no image starts the completion step until all images
have finished the initiation step. Termination of execution of an image is either normal termination or error
termination. An image that initiates normal termination also completes normal termination. An image that
initiates error termination also completes error termination. The synchronization step is executed by all images.
Termination of execution of the program occurs when all images have terminated execution.

5 Normal termination of execution of an image is initiated if a STOP statement or end-program-stmt is executed.
Normal termination of execution of an image also may be initiated during execution of a procedure defined by a
companion processor (ISO/IEC 9899:1999 5.1.2.2.3 and 7.20.4.3). If normal termination of execution is initiated
within a Fortran program unit and the program incorporates procedures defined by a companion processor, the
process of execution termination shall include the effect of executing the C exit() function (ISO/IEC 9899:1999
7.20.4.3) during the completion step.

6 Error termination of execution of an image is initiated if an ALL STOP statement is executed or as specified
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elsewhere in this part of ISO/IEC 1539.

NOTE 2.7
As well as in the circumstances specified in this part of ISO/IEC 1539, error termination might be initiated
by means other than Fortran.

7 If an image initiates error termination, all other images that have not already initiated termination initiate error
termination.

NOTE 2.8
Within the performance limits of the processor’s ability to send signals to other images, the initiation of
error termination on other images should be immediate. Error termination is intended to cause all images
to stop execution as quickly as possible.

NOTE 2.9
If an image has initiated termination, its data remain available for possible reference or definition by other
images that are still executing.

2.4 Data concepts

2.4.1 Type

1 A type is a named categorization of data that, together with its type parameters, determines the set of values,
syntax for denoting these values, and the set of operations that interpret and manipulate the values. This central
concept is described in 4.1.

2 A type is either an intrinsic type or a derived type.

2.4.1.1 Intrinsic type

1 The intrinsic types are integer, real, complex, character, and logical. The properties of intrinsic types are described
in 4.4.

2 All intrinsic types have a kind type parameter called KIND, which determines the representation method for the
specified type. The intrinsic type character also has a length type parameter called LEN, which determines the
length of the character string.

2.4.1.2 Derived type

1 Derived types may be parameterized. A scalar object of derived type is a structure; assignment of structures
is defined intrinsically (7.2.1.3), but there are no intrinsic operations for structures. For each derived type, a
structure constructor is available to create values (4.5.10). In addition, objects of derived type may be used as
procedure arguments and function results, and may appear in input/output lists. If additional operations are
needed for a derived type, they shall be defined by procedures (7.1.6).

2 Derived types are described further in 4.5.

2.4.2 Data value

1 Each intrinsic type has associated with it a set of values that a datum of that type may take, depending on the
values of the type parameters. The values for each intrinsic type are described in 4.4. The values that objects of
a derived type may assume are determined by the type definition, type parameter values, and the sets of values
of its components.
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2.4.3 Data entity

1 A data entity has a type and type parameters; it may have a data value (an exception is an undefined variable).
Every data entity has a rank and is thus either a scalar or an array.

2 A data entity that is the result of the execution of a function reference is called the function result.

2.4.3.1 Data object

1 A data object is either a constant, variable, or a subobject of a constant. The type and type parameters of a
named data object may be specified explicitly (5.2) or implicitly (5.5).

2 Subobjects are portions of data objects that may be referenced and defined (variables only) independently of the
other portions.

3 These include portions of arrays (array elements and array sections), portions of character strings (substrings),
portions of complex objects (real and imaginary parts), and portions of structures (components). Subobjects
are themselves data objects, but subobjects are referenced only by object designators or intrinsic functions. A
subobject of a variable is a variable. Subobjects are described in Clause 6.

4 The following objects are referenced by a name:
• a named scalar (a scalar object);
• a named array (an array object).

5 The following subobjects are referenced by an object designator:
• an array element (a scalar subobject);
• an array section (an array subobject);
• a complex part designator (the real or imaginary part of a complex object);
• a structure component (a scalar or an array subobject);
• a substring (a scalar subobject).

2.4.3.1.1 Variable

1 A variable can have a value or be undefined; during execution of a program it can be defined and redefined.

2 A local variable of a module, submodule, main program, subprogram, or BLOCK construct is accessible only in
that scoping unit or construct and in any contained scoping units and constructs.

NOTE 2.10
A subobject of a local variable is also a local variable.

A local variable cannot be in COMMON or have the BIND attribute, because common blocks and variables
with the BIND attribute are global entities.

2.4.3.1.2 Constant

1 A constant is either a named constant or a literal constant.

2 Named constants are defined using the PARAMETER attribute (5.3.13, 5.4.11). The syntax of literal constants
is described in 4.4.

2.4.3.1.3 Subobject of a constant

1 A subobject of a constant is a portion of a constant.

2 In an object designator for a subobject of a constant, the portion referenced may depend on the value of a
variable.
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NOTE 2.11
For example, given:

CHARACTER (LEN = 10), PARAMETER :: DIGITS = ’0123456789’
CHARACTER (LEN = 1) :: DIGIT
INTEGER :: I

...
DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

2.4.3.2 Expression

1 An expression (7.1) produces a data entity when evaluated. An expression represents either a data object reference
or a computation; it is formed from operands, operators, and parentheses. The type, type parameters, value, and
rank of an expression result are determined by the rules in Clause 7.

2.4.3.3 Function reference

1 A function reference produces a data entity when the function is executed during expression evaluation. The
type, type parameters, and rank of a function result are determined by the interface of the function (12.3.3). The
value of a function result is determined by execution of the function.

2.4.4 Definition of objects and pointers

1 When an object is given a valid value during program execution, it becomes defined. This is often accomplished
by execution of an assignment or input statement. When a variable does not have a predictable value, it is
undefined.

2 Similarly, when a pointer is associated with a target or nullified, its pointer association status becomes defined.
When the association status of a pointer is not predictable, its pointer association status is undefined.

3 Clause 16 describes the ways in which variables become defined and undefined and the association status of
pointers becomes defined and undefined.

2.4.5 Reference

1 A data object is referenced when its value is required during execution. A procedure is referenced when it is
executed.

2 The appearance of a data object designator or procedure designator as an actual argument does not constitute
a reference to that data object or procedure unless such a reference is necessary to complete the specification of
the actual argument.

2.4.6 Array

1 An array may have up to fifteen dimensions, and any extent in any dimension. The size of an array is the total
number of elements, which is equal to the product of the extents. An array may have zero size. The shape of an
array is determined by its rank and its extent in each dimension, and is represented as a rank-one array whose
elements are the extents. All named arrays shall be declared, and the rank of a named array is specified in its
declaration. The rank of a named array, once declared, is constant; the extents may be constant or may vary
during execution.

2 Any intrinsic operation defined for scalar objects may be applied to conformable objects. Such operations are
performed elementally to produce a resultant array conformable with the array operands.
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NOTE 2.12
If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8), the
element operations may be performed simultaneously or in any order.

3 A rank-one array may be constructed from scalars and other arrays and may be reshaped into any allowable array
shape (4.8).

4 Arrays may be of any type and are described further in 6.5.

2.4.7 Coarray

1 A coarray is a data entity that has nonzero corank; it can be directly referenced or defined by any image. It may
be a scalar or an array.

2 For each coarray on an image, there is a corresponding coarray with the same type, type parameters, and bounds
on every other image.

3 The set of corresponding coarrays on all images is arranged in a rectangular pattern. The dimensions of this
pattern are the codimensions; the number of codimensions is the corank. The bounds for each codimension are
the cobounds.

4 A coarray on any image can be accessed directly by using cosubscripts. On its own image, a coarray can also be
accessed without use of cosubscripts.

5 A subobject of a coarray is a coarray if it does not have any cosubscripts, vector subscripts, allocatable component
selection, or pointer component selection.

6 For a coindexed object, its cosubscript list determines the image index in the same way that a subscript list
determines the subscript order value for an array element (6.5.3.2).

7 Intrinsic procedures are provided for mapping between an image index and a list of cosubscripts.

NOTE 2.13
The mechanism for an image to reference and define a coarray on another image might vary according
to the hardware. On a shared-memory machine, a coarray on an image and the corresponding coarrays
on other images could be implemented as a sequence of arrays with evenly spaced starting addresses. On
a distributed-memory machine with separate physical memory for each image, a processor might store a
coarray at the same virtual address in each physical memory.

NOTE 2.14
Except in contexts where coindexed objects are disallowed, accessing a coarray on its own image by using
a set of cosubscripts that specify that image has the same effect as accessing it without cosubscripts. In
particular, the segment ordering rules (8.5.2) apply whether or not cosubscripts are used to access the
coarray.

2.4.8 Pointer

1 A pointer has an association status which is either associated, disassociated, or undefined (16.5.2.2).

2 A pointer that is not associated shall not be referenced or defined.

3 If a data pointer is an array, the rank is declared, but the bounds are determined when it is associated with a
target.
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2.4.9 Allocatable variables

1 The allocation status of an allocatable variable is either allocated or unallocated. An allocatable variable becomes
allocated as described in 6.7.1.3. It becomes unallocated as described in 6.7.3.2.

2 An unallocated allocatable variable shall not be referenced or defined.

3 If an allocatable variable is an array, the rank is declared, but the bounds are determined when it is allocated. If
an allocatable variable is a coarray, the corank is declared, but the cobounds are determined when it is allocated.

2.4.10 Storage

1 Many of the facilities of this part of ISO/IEC 1539 make no assumptions about the physical storage characteristics
of data objects. However, program units that include storage association dependent features shall observe the
storage restrictions described in 16.5.3.

2.5 Fundamental concepts

2.5.1 Names and designators

1 A name is used to identify a program constituent, such as a program unit, named variable, named constant,
dummy argument, or derived type.

2 A designator is used to identify a program constituent or a part thereof.

2.5.2 Statement keyword

1 A statement keyword is not a reserved word; that is, a name with the same spelling is allowed. In the syntax
rules, such keywords appear literally. In descriptive text, this meaning is denoted by the term “keyword” without
any modifier. Examples of statement keywords are IF, READ, UNIT, KIND, and INTEGER.

2.5.3 Other keywords

1 Other keywords denote names that identify items in a list. In this case, items are identified by a preceding
keyword= rather than their position within the list.

2 An argument keyword is the name of a dummy argument in the interface for the procedure being referenced, and
may appear in an actual argument list. A type parameter keyword is the name of a type parameter in the type
being specified, and may appear in a type parameter list. A component keyword is the name of a component in
a structure constructor.

R215 keyword is name

NOTE 2.15
Use of keywords rather than position to identify items in a list can make such lists more readable and allows
them to be reordered. This facilitates specification of a list in cases where optional items are omitted.

2.5.4 Association

1 Association permits an entity to be identified by different names in the same scoping unit or by the same name
or different names in different scoping units.

2 Also, storage association causes different entities to use the same storage.
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2.5.5 Intrinsic

1 All intrinsic types, procedures, assignments, and operators may be used in any scoping unit without further
definition or specification. Intrinsic modules (13.8, 14, 15.2) may be accessed by use association.

2.5.6 Operator

1 This part of ISO/IEC 1539 specifies a number of intrinsic operators (e.g., the arithmetic operators +, –, *, /,
and ** with numeric operands and the logical operators .AND., .OR., etc. with logical operands). Additional
operators may be defined within a program (4.5.5, 12.4.3.4).

2.5.7 Companion processors

1 A processor has one or more companion processors. A companion processor may be a mechanism that references
and defines such entities by a means other than Fortran (12.6.3), it may be the Fortran processor itself, or it may
be another Fortran processor. If there is more than one companion processor, the means by which the Fortran
processor selects among them are processor dependent.

2 If a procedure is defined by means of a companion processor that is not the Fortran processor itself, this part of
ISO/IEC 1539 refers to the C function that defines the procedure, although the procedure need not be defined
by means of the C programming language.

NOTE 2.16
A companion processor might or might not be a mechanism that conforms to the requirements of ISO/IEC
9899:1999.

For example, a processor may allow a procedure defined by some language other than Fortran or C to be
invoked if it can be described by a C prototype as defined in 6.5.5.3 of ISO/IEC 9899:1999.
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3 Lexical tokens and source form

3.1 Processor character set

3.1.1 Characters

1 The processor character set is processor dependent. Each character in a processor character set is either a control
character or a graphic character. The set of graphic characters is further divided into letters (3.1.2), digits (3.1.3),
underscore (3.1.4), special characters (3.1.5), and other characters (3.1.6).

2 The letters, digits, underscore, and special characters make up the Fortran character set. Together, the set of
letters, digits, and underscore define the syntax class alphanumeric-character .

R301 alphanumeric-character is letter
or digit
or underscore

3 Except for the currency symbol, the graphics used for the characters shall be as given in 3.1.2, 3.1.3, 3.1.4, and
3.1.5. However, the style of any graphic is not specified.

3.1.2 Letters

1 The twenty-six letters are:

2 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

3 The set of letters defines the syntactic class letter . The processor character set shall include lower-case and upper-
case letters. A lower-case letter is equivalent to the corresponding upper-case letter in program units except in a
character context (1.3).

NOTE 3.1
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)

3.1.3 Digits

1 The ten digits are:

2 0 1 2 3 4 5 6 7 8 9

3 The ten digits define the syntactic class digit .

3.1.4 Underscore

R302 underscore is

3.1.5 Special characters

1 The special characters are shown in Table 3.1.
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Table 3.1: Special characters
Character Name of character Character Name of character

Blank ; Semicolon
= Equals ! Exclamation point
+ Plus " Quotation mark or quote
- Minus % Percent
* Asterisk & Ampersand
/ Slash ~ Tilde
\ Backslash < Less than
( Left parenthesis > Greater than
) Right parenthesis ? Question mark
[ Left square bracket ’ Apostrophe
] Right square bracket ` Grave accent
{ Left curly bracket ^ Circumflex accent
} Right curly bracket | Vertical line
, Comma $ Currency symbol
. Decimal point or period # Number sign
: Colon @ Commercial at

2 Some of the special characters are used for operator symbols, bracketing, and various forms of separating and
delimiting other lexical tokens.

3.1.6 Other characters

1 Additional characters may be representable in the processor, but may appear only in comments (3.3.2.3, 3.3.3.2),
character constants (4.4.3), input/output records (9.2.2), and character string edit descriptors (10.3.2).

3.2 Low-level syntax

3.2.1 Tokens

1 The low-level syntax describes the fundamental lexical tokens of a program unit. A lexical token is a keyword,
name, literal constant other than a complex literal constant, operator, statement label, delimiter, comma, =, =>,
:, ::, ; or %.

3.2.2 Names

1 Names are used for various entities such as variables, program units, dummy arguments, named constants, and
derived types.

R303 name is letter [ alphanumeric-character ] ...

C301 (R303) The maximum length of a name is 63 characters.

NOTE 3.2
Examples of names:

A1
NAME_LENGTH (single underscore)
S_P_R_E_A_D__O_U_T (two consecutive underscores)
TRAILER_ (trailing underscore)
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NOTE 3.3
The word “name” always denotes this particular syntactic form. The word “identifier” is used where entities
may be identified by other syntactic forms or by values; its particular meaning depends on the context in
which it is used.

3.2.3 Constants

R304 constant is literal-constant
or named-constant

R305 literal-constant is int-literal-constant
or real-literal-constant
or complex-literal-constant
or logical-literal-constant
or char-literal-constant
or boz-literal-constant

R306 named-constant is name

R307 int-constant is constant

C302 (R307) int-constant shall be of type integer.

R308 char-constant is constant

C303 (R308) char-constant shall be of type character.

3.2.4 Operators

R309 intrinsic-operator is power-op
or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R707 power-op is **

R708 mult-op is *
or /

R709 add-op is +
or –

R711 concat-op is //

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
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or <=
or >
or >=

R718 not-op is .NOT.

R719 and-op is .AND.

R720 or-op is .OR.

R721 equiv-op is .EQV.

or .NEQV.

R310 defined-operator is defined-unary-op
or defined-binary-op
or extended-intrinsic-op

R703 defined-unary-op is . letter [ letter ] ... .

R723 defined-binary-op is . letter [ letter ] ... .

R311 extended-intrinsic-op is intrinsic-operator

3.2.5 Statement labels

1 A statement label provides a means of referring to an individual statement.

R312 label is digit [ digit [ digit [ digit [ digit ] ] ] ]

C304 (R312) At least one digit in a label shall be nonzero.

2 If a statement is labeled, the statement shall contain a nonblank character. The same statement label shall not be
given to more than one statement in a scoping unit. Leading zeros are not significant in distinguishing between
statement labels.

NOTE 3.4
For example:

99999
10
010

are all statement labels. The last two are equivalent.

There are 99999 unique statement labels and a processor shall accept any of them as a statement label.
However, a processor may have a limit on the total number of unique statement labels in one program unit.

3 Any statement may have a statement label, but the labels are used only in the following ways.

• The label on a branch target statement (8.2) is used to identify that statement as the possible destination
of a branch.
• The label on a FORMAT statement (10.2.1) is used to identify that statement as the format specification

for a data transfer statement (9.6).
• In some forms of the DO construct (8.1.6), the range of the DO construct is identified by the label on the

last statement in that range.
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3.2.6 Delimiters

1 A lexical token that is a delimiter is a (, ), /, [, ], (/, or /).

3.3 Source form

3.3.1 Program units, statements, and lines

1 A Fortran program unit is a sequence of one or more lines, organized as Fortran statements, comments, and
INCLUDE lines. A line is a sequence of zero or more characters. Lines following a program unit END statement
are not part of that program unit. A Fortran statement is a sequence of one or more complete or partial lines.

2 A comment may contain any character that may occur in any character context.

3 There are two source forms: free and fixed. Free form and fixed form shall not be mixed in the same program unit. The means

for specifying the source form of a program unit are processor dependent.

3.3.2 Free source form

3.3.2.1 Free form line length

1 In free source form there are no restrictions on where a statement (or portion of a statement) may appear within
a line. A line may contain zero characters. If a line consists entirely of characters of default kind (4.4.3), it may
contain at most 132 characters. If a line contains any character that is not of default kind, the maximum number
of characters allowed on the line is processor dependent.

3.3.2.2 Blank characters in free form

1 In free source form blank characters shall not appear within lexical tokens other than in a character context or in
a format specification. Blanks may be inserted freely between tokens to improve readability; for example, blanks
may occur between the tokens that form a complex literal constant. A sequence of blank characters outside of a
character context is equivalent to a single blank character.

2 A blank shall be used to separate names, constants, or labels from adjacent keywords, names, constants, or labels.

NOTE 3.5
For example, the blanks after REAL, READ, 30, and DO are required in the following:

REAL X
READ 10
30 DO K=1,3

3 One or more blanks shall be used to separate adjacent keywords except in the following cases, where blanks are
optional:

Adjacent keywords where separating blanks are optional

ALL STOP END IF
BLOCK DATA END MODULE
DOUBLE PRECISION END INTERFACE
ELSE IF END PROCEDURE
ELSE WHERE END PROGRAM
END ASSOCIATE END SELECT
END BLOCK END SUBMODULE
END BLOCK DATA END SUBROUTINE
END CRITICAL END TYPE

3.3 Lexical tokens and source form 45



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

Adjacent keywords where separating blanks are optional

END DO END WHERE
END ENUM GO TO
END FILE IN OUT
END FORALL SELECT CASE
END FUNCTION SELECT TYPE

3.3.2.3 Free form commentary

1 The character “!” initiates a comment except where it appears within a character context. The comment extends
to the end of the line. If the first nonblank character on a line is an “!”, the line is a comment line. Lines
containing only blanks or containing no characters are also comment lines. Comments may appear anywhere in
a program unit and may precede the first statement of a program unit or may follow the last statement of a
program unit. Comments have no effect on the interpretation of the program unit.

NOTE 3.6
This part of ISO/IEC 1539 does not restrict the number of consecutive comment lines.

3.3.2.4 Free form statement continuation

1 The character “&” is used to indicate that the statement is continued on the next line that is not a comment
line. Comment lines cannot be continued; an “&” in a comment has no effect. Comments may occur within a
continued statement. When used for continuation, the “&” is not part of the statement. No line shall contain
a single “&” as the only nonblank character or as the only nonblank character before an “!” that initiates a
comment.

2 If a noncharacter context is to be continued, an “&” shall be the last nonblank character on the line, or the last
nonblank character before an “!”. There shall be a later line that is not a comment; the statement is continued
on the next such line. If the first nonblank character on that line is an “&”, the statement continues at the next
character position following that “&”; otherwise, it continues with the first character position of that line.

3 If a lexical token is split across the end of a line, the first nonblank character on the first following noncomment
line shall be an “&” immediately followed by the successive characters of the split token.

4 If a character context is to be continued, an “&” shall be the last nonblank character on the line and shall not be
followed by commentary. There shall be a later line that is not a comment; an “&” shall be the first nonblank
character on the next such line and the statement continues with the next character following that “&”.

3.3.2.5 Free form statement termination

1 If a statement is not continued, a comment or the end of the line terminates the statement.

2 A statement may alternatively be terminated by a “;” character that appears other than in a character context
or in a comment. The “;” is not part of the statement. After a “;” terminator, another statement may appear
on the same line, or begin on that line and be continued. A sequence consisting only of zero or more blanks and
one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

3.3.2.6 Free form statements

1 A label may precede any statement not forming part of another statement.

NOTE 3.7
No Fortran statement begins with a digit.

2 A statement shall not have more than 255 continuation lines.
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3.3.3 Fixed source form

3.3.3.1 General

1 In fixed source form, there are restrictions on where a statement may appear within a line. If a source line contains only characters

of default kind, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor dependent.

2 Except in a character context, blanks are insignificant and may be used freely throughout the program.

3.3.3.2 Fixed form commentary

1 The character “!” initiates a comment except where it appears within a character context or in character position 6. The comment
extends to the end of the line. If the first nonblank character on a line is an “!” in any character position other than character
position 6, the line is a comment line. Lines beginning with a “C” or “*” in character position 1 and lines containing only blanks are
also comment lines. Comments may appear anywhere in a program unit and may precede the first statement of the program unit or
may follow the last statement of a program unit. Comments have no effect on the interpretation of the program unit.

NOTE 3.8

This part of ISO/IEC 1539 does not restrict the number of consecutive comment lines.

3.3.3.3 Fixed form statement continuation

1 Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank or zero, the
line is the initial line of a new statement, which begins in character position 7. If character position 6 contains any character other
than blank or zero, character positions 7–72 of the line constitute a continuation of the preceding noncomment line.

NOTE 3.9

An “!” or “;” in character position 6 is interpreted as a continuation indicator unless it appears within commentary indicated
by a “C” or “*” in character position 1 or by an “!” in character positions 1–5.

2 Comment lines cannot be continued. Comment lines may occur within a continued statement.

3.3.3.4 Fixed form statement termination

1 If a statement is not continued, a comment or the end of the line terminates the statement.

2 A statement may alternatively be terminated by a “;” character that appears other than in a character context, in a comment, or in

character position 6. The “;” is not part of the statement. After a “;” terminator, another statement may begin on the same line, or

begin on that line and be continued. A “;” shall not appear as the first nonblank character on an initial line. A sequence consisting

only of zero or more blanks and one or more “;” terminators, in any order, is equivalent to a single “;” terminator.

3.3.3.5 Fixed form statements

1 A label, if it appears, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions 1 through

5 shall be blank. Blanks may appear anywhere within a label. A statement following a “;” on the same line shall not be labeled.

Character positions 1 through 5 of any continuation lines shall be blank. A statement shall not have more than 255 continuation

lines. The program unit END statement shall not be continued. A statement whose initial line appears to be a program unit END

statement shall not be continued.

3.4 Including source text

1 Additional text may be incorporated into the source text of a program unit during processing. This is accomplished
with the INCLUDE line, which has the form

2 INCLUDE char-literal-constant

3 The char-literal-constant shall not have a kind type parameter value that is a named-constant .

4 An INCLUDE line is not a Fortran statement.
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5 An INCLUDE line shall appear on a single source line where a statement may appear; it shall be the only
nonblank text on this line other than an optional trailing comment. Thus, a statement label is not allowed.

6 The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE line prior
to program processing. Included text may contain any source text, including additional INCLUDE lines; such
nested INCLUDE lines are similarly replaced with the specified source text. The maximum depth of nesting of
any nested INCLUDE lines is processor dependent. Inclusion of the source text referenced by an INCLUDE line
shall not, at any level of nesting, result in inclusion of the same source text.

7 When an INCLUDE line is resolved, the first included statement line shall not be a continuation line and the last
included statement line shall not be continued.

8 The interpretation of char-literal-constant is processor dependent. An example of a possible valid interpretation
is that char-literal-constant is the name of a file that contains the source text to be included.

NOTE 3.10
In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose source

form might be either fixed or free, observing the following rules allows the code to be used with either source form.

• Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72.

• Treat blanks as being significant.

• Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character position 6.

• For continued statements, place an ampersand (&) in both character position 73 of a continued line and character

position 6 of a continuation line.
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4 Types

4.1 The concept of type

4.1.1 General

1 Fortran provides an abstract means whereby data can be categorized without relying on a particular physical
representation. This abstract means is the concept of type.

2 A type has a name, a set of valid values, a means to denote such values (constants), and a set of operations to
manipulate the values.

3 A type is either an intrinsic type or a derived type.

4 This part of ISO/IEC 1539 defines five intrinsic types: integer, real, complex, character, and logical.

5 A derived type is one that is defined by a derived-type definition (4.5.2) or by an intrinsic module. It shall be
used only where it is accessible (4.5.2.2). An intrinsic type is always accessible.

4.1.2 Set of values

1 For each type, there is a set of valid values. The set of valid values for logical is completely determined by this
part of ISO/IEC 1539. The sets of valid values for integer, character, and real are processor dependent. The set
of valid values for complex consists of the set of all the combinations of the values of the individual components.
The set of valid values for a derived type is as defined in 4.5.8.

4.1.3 Constants

1 The syntax for denoting a value indicates the type, type parameters, and the particular value.

2 The syntax for literal constants of each intrinsic type is specified in 4.4.

3 A structure constructor (4.5.10) that is a constant expression (7.1.12) denotes a scalar constant value of derived
type. An array constructor (4.8) that is a constant expression denotes a constant array value of intrinsic or
derived type.

4 A constant value can be named (5.3.13, 5.4.11).

4.1.4 Operations

1 For each of the intrinsic types, a set of operations and corresponding operators is defined intrinsically. These are
described in Clause 7. The intrinsic set can be augmented with operations and operators defined by functions
with the OPERATOR interface (12.4.3.2). Operator definitions are described in Clauses 7 and 12.

2 For derived types, there are no intrinsic operations. Operations on derived types can be defined by the program
(4.5.11).

4.2 Type parameters

1 A type might be parameterized. In this case, the set of values, the syntax for denoting the values, and the set of
operations on the values of the type depend on the values of the parameters.

2 The intrinsic types are all parameterized. Derived types may be defined to be parameterized.
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3 A type parameter is either a kind type parameter or a length type parameter. All type parameters are of type
integer.

4 A kind type parameter may be used in constant and specification expressions within the derived-type definition
(4.5.2) for the type; it participates in generic resolution (12.5.5.2). Each of the intrinsic types has a kind type
parameter named KIND, which is used to distinguish multiple representations of the intrinsic type.

NOTE 4.1
The value of a kind type parameter is always known at compile time. Some parameterizations that involve
multiple representation forms need to be distinguished at compile time for practical implementation and
performance. Examples include the multiple precisions of the intrinsic real type and the possible multiple
character sets of the intrinsic character type.

A type parameter of a derived type may be specified to be a kind type parameter in order to allow generic
resolution based on the parameter; that is to allow a single generic to include two specific procedures that
have interfaces distinguished only by the value of a kind type parameter of a dummy argument. All generic
references are resolvable at compile time.

5 A length type parameter may be used in specification expressions within the derived-type definition for the type,
but it shall not be used in constant expressions. The intrinsic character type has a length type parameter named
LEN, which is the length of the string.

NOTE 4.2
The adjective “length” is used for type parameters other than kind type parameters because they often
specify a length, as for intrinsic character type. However, they may be used for other purposes. The
important difference from kind type parameters is that their values need not be known at compile time and
might change during execution.

6 A type parameter value may be specified by a type specification (4.4, 4.5.9).

R401 type-param-value is scalar-int-expr
or *
or :

C401 (R401) The type-param-value for a kind type parameter shall be a constant expression.

C402 (R401) A colon shall not be used as a type-param-value except in the declaration of an entity or component
that has the POINTER or ALLOCATABLE attribute.

7 A colon as a type-param-value specifies a deferred type parameter.

8 The values of the deferred type parameters of an object are determined by successful execution of an ALLOCATE
statement (6.7.1), execution of an intrinsic assignment statement (7.2.1.3), execution of a pointer assignment
statement (7.2.2), or by argument association (12.5.2).

NOTE 4.3
Deferred type parameters of functions, including function procedure pointers, have no values. Instead, they
indicate that those type parameters of the function result will be determined by execution of the function,
if it returns an allocated allocatable result or an associated pointer result.

9 An asterisk as a type-param-value specifies that a length type parameter is an assumed type parameter. It is used
for a dummy argument to assume the type parameter value from the effective argument, for an associate name
in a SELECT TYPE construct to assume the type parameter value from the corresponding selector, and for a
named constant of type character to assume the character length from the constant-expr .
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4.3 Relationship of types and values to objects

1 The name of a type serves as a type specifier and may be used to declare objects of that type. A declaration
specifies the type of a named object. A data object may be declared explicitly or implicitly. A data object has
attributes in addition to its type. Clause 5 describes the way in which a data object is declared and how its type
and other attributes are specified.

2 Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an array of the
same type and type parameters. An array object has a type and type parameters just as a scalar object does.

3 A variable is a data object. The type and type parameters of a variable determine which values that variable
may take. Assignment (7.2) provides one means of defining or redefining the value of a variable of any type.

4 The type of a variable determines the operations that may be used to manipulate the variable.

4.3.1 Type specifiers and type compatibility

4.3.1.1 Type specifier syntax

1 A type specifier specifies a type and type parameter values. It is either a type-spec or a declaration-type-spec.

R402 type-spec is intrinsic-type-spec
or derived-type-spec

C403 (R402) The derived-type-spec shall not specify an abstract type (4.5.7).

R403 declaration-type-spec is intrinsic-type-spec
or TYPE ( intrinsic-type-spec )
or TYPE ( derived-type-spec )
or CLASS ( derived-type-spec )
or CLASS ( * )

C404 (R403) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall be a
specification-expr .

C405 (R403) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify an exten-
sible type (4.5.7).

C406 (R403) TYPE(derived-type-spec) shall not specify an abstract type (4.5.7).

C407 An entity declared with the CLASS keyword shall be a dummy argument or have the ALLOCATABLE
or POINTER attribute.

2 An intrinsic-type-spec specifies the named intrinsic type and its type parameter values. A derived-type-spec
specifies the named derived type and its type parameter values.

NOTE 4.4
A type-spec is used in an array constructor, a SELECT TYPE construct, or an ALLOCATE statement.
Elsewhere, a declaration-type-spec is used.

4.3.1.2 TYPE

1 A TYPE type specifier is used to declare entities of an intrinsic or derived type.

2 Where a data entity is declared explicitly using the TYPE type specifier to be of derived type, the specified derived
type shall have been defined previously in the scoping unit or be accessible there by use or host association. If
the data entity is a function result, the derived type may be specified in the FUNCTION statement provided the
derived type is defined within the body of the function or is accessible there by use or host association. If the
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derived type is specified in the FUNCTION statement and is defined within the body of the function, it is as if
the function result variable were declared with that derived type immediately following the derived-type-def of
the specified derived type.

4.3.1.3 CLASS

1 The CLASS type specifier is used to declare polymorphic entities. A polymorphic entity is a data entity that is
able to be of differing dynamic types during program execution.

2 The declared type of a polymorphic entity is the specified type if the CLASS type specifier contains a type name.

3 An entity declared with the CLASS(*) specifier is an unlimited polymorphic entity. An unlimited polymorphic
entity is not declared to have a type. It is not considered to have the same declared type as any other entity,
including another unlimited polymorphic entity.

4 A nonpolymorphic entity is type compatible only with entities of the same declared type. A polymorphic entity
that is not an unlimited polymorphic entity is type compatible with entities of the same declared type or any of
its extensions. Even though an unlimited polymorphic entity is not considered to have a declared type, it is type
compatible with all entities. An entity is type compatible with a type if it is type compatible with entities of that
type.

NOTE 4.5
Given

TYPE TROOT
...
TYPE,EXTENDS(TROOT) :: TEXTENDED
...
CLASS(TROOT) A
CLASS(TEXTENDED) B
...

A is type compatible with B but B is not type compatible with A.

5 A polymorphic allocatable object may be allocated to be of any type with which it is type compatible. A
polymorphic pointer or dummy argument may, during program execution, be associated with objects with which
it is type compatible.

6 The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated. The
dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic type of a
nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its effective argument. The
dynamic type of an unallocated allocatable object or a disassociated pointer is the same as its declared type. The
dynamic type of an entity identified by an associate name (8.1.3) is the dynamic type of the selector with which
it is associated. The dynamic type of an object that is not polymorphic is its declared type.

4.4 Intrinsic types

4.4.1 Classification and specification

1 Each intrinsic type is classified as a numeric type or a nonnumeric type. The numeric types are integer, real, and
complex. The nonnumeric intrinsic types are character and logical.

2 Each intrinsic type has a kind type parameter named KIND; this type parameter is of type integer with default
kind.

R404 intrinsic-type-spec is INTEGER [ kind-selector ]
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or REAL [ kind-selector ]
or DOUBLE PRECISION
or COMPLEX [ kind-selector ]
or CHARACTER [ char-selector ]
or LOGICAL [ kind-selector ]

R405 kind-selector is ( [ KIND = ] scalar-int-constant-expr )

C408 (R405) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

4.4.2 Numeric intrinsic types

4.4.2.1 General

1 The numeric intrinsic types are provided for computation. Intrinsic numeric operations and numeric relational
operations are defined as specified in 7.1.5.2.1 and 7.1.5.5 for the numeric intrinsic types.

4.4.2.2 Integer type

1 The set of values for the integer type is a subset of the mathematical integers. The processor shall provide one or
more representation methods that define sets of values for data of type integer. Each such method is characterized
by a value for the kind type parameter KIND. The kind type parameter of a representation method is returned
by the intrinsic function KIND (13.7.89). The decimal exponent range of a representation method is returned
by the intrinsic function RANGE (13.7.137). The intrinsic function SELECTED INT KIND (13.7.146) returns
a kind value based on a specified decimal range requirement. The integer type includes a zero value, which is
considered to be neither negative nor positive. The value of a signed integer zero is the same as the value of an
unsigned integer zero.

2 The processor shall provide at least one representation method with a decimal exponent range greater than or
equal to 18.

3 The type specifier for the integer type uses the keyword INTEGER.

4 The keyword INTEGER with no kind-selector specifies type integer with default kind; the kind type parameter
value is equal to KIND (0). The decimal exponent range of default integer shall be at least 5.

5 Any integer value may be represented as a signed-int-literal-constant .

R406 signed-int-literal-constant is [ sign ] int-literal-constant

R407 int-literal-constant is digit-string [ kind-param ]

R408 kind-param is digit-string
or scalar-int-constant-name

R409 signed-digit-string is [ sign ] digit-string

R410 digit-string is digit [ digit ] ...

R411 sign is +
or –

C409 (R408) A scalar-int-constant-name shall be a named constant of type integer.

C410 (R408) The value of kind-param shall be nonnegative.

C411 (R407) The value of kind-param shall specify a representation method that exists on the processor.

6 The optional kind type parameter following digit-string specifies the kind type parameter of the integer constant;
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if it is does not appear, the constant is default integer.

7 An integer constant is interpreted as a decimal value.

NOTE 4.6
Examples of signed integer literal constants are:

473
+56
-101
21_2
21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant.

4.4.2.3 Real type

1 The real type has values that approximate the mathematical real numbers. The processor shall provide two
or more approximation methods that define sets of values for data of type real. Each such method has a
representation method and is characterized by a value for the kind type parameter KIND. The kind type parameter
of an approximation method is returned by the intrinsic function KIND (13.7.89).

2 The decimal precision, decimal exponent range, and radix of an approximation method are returned by the
intrinsic functions PRECISION (13.7.131), RADIX (13.7.134) and RANGE (13.7.137). The intrinsic function
SELECTED REAL KIND (13.7.147) returns a kind value based on specified precision, range, and radix require-
ments.

NOTE 4.7
See C.1.1 for remarks concerning selection of approximation methods.

3 The real type includes a zero value. Processors that distinguish between positive and negative zeros shall treat
them as mathematically equivalent

• in all intrinsic relational operations,
• as actual arguments to intrinsic procedures other than those for which it is explicitly specified that negative

zero is distinguished, and
• as the scalar-numeric-expr in an arithmetic IF.

NOTE 4.8
On a processor that can distinguish between 0.0 and −0.0,

( X >= 0.0 )

evaluates to true if X = 0.0 or if X = −0.0,

( X < 0.0 )

evaluates to false for X = −0.0, and

IF (X) 1,2,3

causes a transfer of control to the branch target statement with the statement label “2” for both X = 0.0 and X = −0.0.

In order to distinguish between 0.0 and −0.0, a program should use the SIGN function. SIGN(1.0,X) will
return −1.0 if X < 0.0 or if the processor distinguishes between 0.0 and −0.0 and X has the value −0.0.
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4 The type specifier for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an alternative
specifier for one kind of real type.

5 If the type keyword REAL is used without a kind type parameter, the real type with default real kind is specified
and the kind value is KIND (0.0). The type specifier DOUBLE PRECISION specifies type real with double
precision kind; the kind value is KIND (0.0D0). The decimal precision of the double precision real approximation
method shall be greater than that of the default real method.

6 The decimal precision of double precision real shall be at least 10, and its decimal exponent range shall be at
least 37. It is recommended that the decimal precision of default real be at least 6, and that its decimal exponent
range be at least 37.

R412 signed-real-literal-constant is [ sign ] real-literal-constant

R413 real-literal-constant is significand [ exponent-letter exponent ] [ kind-param ]
or digit-string exponent-letter exponent [ kind-param ]

R414 significand is digit-string . [ digit-string ]
or . digit-string

R415 exponent-letter is E
or D

R416 exponent is signed-digit-string

C412 (R413) If both kind-param and exponent-letter appear, exponent-letter shall be E.

C413 (R413) The value of kind-param shall specify an approximation method that exists on the processor.

7 A real literal constant without a kind type parameter is a default real constant if it is without an exponent part
or has exponent letter E, and is a double precision real constant if it has exponent letter D. A real literal constant
written with a kind type parameter is a real constant with the specified kind type parameter.

8 The exponent represents the power of ten scaling to be applied to the significand or digit string. The meaning of
these constants is as in decimal scientific notation.

9 The significand may be written with more digits than a processor will use to approximate the value of the constant.

NOTE 4.9
Examples of signed real literal constants are:

-12.78
+1.6E3
2.1
-16.E4_8
0.45D-4
10.93E7_QUAD
.123
3E4

where QUAD is a scalar integer named constant.

4.4.2.4 Complex type

1 The complex type has values that approximate the mathematical complex numbers. The values of a complex
type are ordered pairs of real values. The first real value is called the real part, and the second real value is called
the imaginary part.
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2 Each approximation method used to represent data entities of type real shall be available for both the real and
imaginary parts of a data entity of type complex. The (default integer) kind type parameter KIND for a complex
entity specifies for both parts the real approximation method characterized by this kind type parameter value.
The kind type parameter of an approximation method is returned by the intrinsic function KIND (13.7.89).

3 The type specifier for the complex type uses the keyword COMPLEX. There is no keyword for double precision
complex. If the type keyword COMPLEX is used without a kind type parameter, the complex type with default
complex kind is specified, the kind value is KIND (0.0), and both parts are default real.

R417 complex-literal-constant is ( real-part , imag-part )

R418 real-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

R419 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

C414 (R417) Each named constant in a complex literal constant shall be of type integer or real.

4 If the real part and the imaginary part of a complex literal constant are both real, the kind type parameter value
of the complex literal constant is the kind type parameter value of the part with the greater decimal precision; if
the precisions are the same, it is the kind type parameter value of one of the parts as determined by the processor.
If a part has a kind type parameter value different from that of the complex literal constant, the part is converted
to the approximation method of the complex literal constant.

5 If both the real and imaginary parts are integer, they are converted to the default real approximation method
and the constant is default complex. If only one of the parts is an integer, it is converted to the approximation
method selected for the part that is real and the kind type parameter value of the complex literal constant is
that of the part that is real.

NOTE 4.10
Examples of complex literal constants are:

(1.0, -1.0)
(3, 3.1E6)
(4.0_4, 3.6E7_8)
( 0., PI) ! where PI is a previously declared named real constant.

4.4.3 Character type

4.4.3.1 Character sets

1 The character type has a set of values composed of character strings. A character string is a sequence of characters,
numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The number of characters in
the string is called the length of the string. The length is a type parameter; its kind is processor dependent and
its value is greater than or equal to zero.

2 The processor shall provide one or more representation methods that define sets of values for data of type
character. Each such method is characterized by a value for the (default integer) kind type parameter KIND.
The kind type parameter of a representation method is returned by the intrinsic function KIND (13.7.89). The
intrinsic function SELECTED CHAR KIND (13.7.145) returns a kind value based on the name of a character
type. Any character of a particular representation method representable in the processor may occur in a character
string of that representation method.

3 The character set specified in ISO/IEC 646:1991 (International Reference Version) is referred to as the ASCII
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character set and its corresponding representation method is ASCII character kind. The character set UCS-4 as
specified in ISO/IEC 10646 is referred to as the ISO 10646 character set and its corresponding representation
method is the ISO 10646 character kind.

4 The intrinsic concatenation operation (7.1.5.3) and character relational operations (7.1.5.5) are defined for the
character intrinsic type.

4.4.3.2 Character type specifier

1 The type specifier for the character type uses the keyword CHARACTER.

2 If the type keyword CHARACTER is used without a kind type parameter, the character type with default
character kind is specified and the kind value is KIND (’A’).

3 The default character kind shall support a character set that includes the characters in the Fortran character
set (3.1). By supplying nondefault character kinds, the processor may support additional character sets. The
characters available in nondefault character kinds are not specified by this part of ISO/IEC 1539, except that
one character in each nondefault character set shall be designated as a blank character to be used as a padding
character.

R420 char-selector is length-selector
or ( LEN = type-param-value ,

KIND = scalar-int-constant-expr )
or ( type-param-value ,

[ KIND = ] scalar-int-constant-expr )
or ( KIND = scalar-int-constant-expr

[ , LEN =type-param-value ] )

R421 length-selector is ( [ LEN = ] type-param-value )
or * char-length [ , ]

R422 char-length is ( type-param-value )
or int-literal-constant

C415 (R420) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

C416 (R422) The int-literal-constant shall not include a kind-param.

C417 (R422) A type-param-value in a char-length shall be a colon, asterisk, or specification-expr .

C418 (R420 R421 R422) A type-param-value of * shall be used only

• to declare a dummy argument,

• to declare a named constant,

• in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument of
type CHARACTER with an assumed character length,

• in the type-spec or derived-type-spec of a type guard statement (8.1.9), or

• in an external function, to declare the character length parameter of the function result.

C419 A function name shall not be declared with an asterisk type-param-value unless it is of type CHARACTER

and is the name of the result of an external function or the name of a dummy function.

C420 A function name declared with an asterisk type-param-value shall not be an array, a pointer, elemental, recursive, or pure.

C421 (R421) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-stmt .

C422 (R421) The optional comma in a length-selector is permitted only if no double-colon separator appears in the type-
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declaration-stmt .

C423 (R420) The length specified for a character statement function or for a statement function dummy argument of type

character shall be a constant expression.

4 The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in a component-
decl of a type definition specify character length. The * char-length in an entity-decl or a component-decl specifies
an individual length and overrides the length specified in the char-selector , if any. If a * char-length is not specified
in an entity-decl or a component-decl , the length-selector or type-param-value specified in the char-selector is the
character length. If the length is not specified in a char-selector or a * char-length, the length is 1.

5 If the character length parameter value evaluates to a negative value, the length of character entities declared
is zero. A character length parameter value of : indicates a deferred type parameter (4.2). A char-length type
parameter value of * has the following meanings.

• If used to declare a dummy argument of a procedure, the dummy argument assumes the length of the
effective argument.
• If used to declare a named constant, the length is that of the constant value.
• If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length from the

effective argument.
• If used in the type-spec of a type guard statement, the associating entity assumes its length from the selector.
• If used to specify the character length parameter of a function result, any scoping unit invoking the function shall declare the

function name with a character length parameter value other than * or access such a definition by host or use association.

When the function is invoked, the length of the result variable in the function is assumed from the value of this type parameter.

4.4.3.3 Character literal constant

1 The syntax of a character literal constant is given by R423.

R423 char-literal-constant is [ kind-param ] ’ [ rep-char ] ... ’
or [ kind-param ] " [ rep-char ] ... "

C424 (R423) The value of kind-param shall specify a representation method that exists on the processor.

2 The optional kind type parameter preceding the leading delimiter specifies the kind type parameter of the cha-
racter constant; if it does not appear, the constant is default character.

3 For the type character with kind kind-param, if it appears, and for default character otherwise, a representable
character, rep-char , is defined as follows.

• In free source form, it is any graphic character in the processor-dependent character set.
• In fixed source form, it is any character in the processor-dependent character set. A processor may restrict the occurrence of

some or all of the control characters.

4 The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.

5 An apostrophe character within a character constant delimited by apostrophes is represented by two consecutive
apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one character. Si-
milarly, a quotation mark character within a character constant delimited by quotation marks is represented by
two consecutive quotation marks (without intervening blanks) and the two quotation marks are counted as one
character.

6 A zero-length character literal constant is represented by two consecutive apostrophes (without intervening blanks)
or two consecutive quotation marks (without intervening blanks) outside of a character context.

NOTE 4.11
Examples of character literal constants are:
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NOTE 4.11 (cont.)

"DON’T"
’DON’’T’

both of which have the value DON’T and

’’

which has the zero-length character string as its value.

NOTE 4.12
An example of a nondefault character literal constant, where the processor supports the corresponding
character set, is:

NIHONGO ’
� � � � � � � � � �

’

where NIHONGO is a named constant whose value is the kind type parameter for Nihongo (Japanese)
characters. This means “Without her, nothing is possible”.

4.4.3.4 Collating sequence

1 The processor defines a collating sequence for the character set of each kind of character. The collating sequence
is an isomorphism between the character set and the set of integers {I : 0 ≤ I < N}, where N is the number of
characters in the set. The intrinsic functions CHAR (13.7.35) and ICHAR (13.7.77) provide conversions between
the characters and the integers according to this mapping.

NOTE 4.13
For example:

ICHAR ( ’X’ )

returns the integer value of the character ’X’ according to the collating sequence of the processor.

2 The collating sequence of the default character kind shall satisfy the following constraints.

• ICHAR (’A’) < ICHAR (’B’) < ... < ICHAR (’Z’) for the twenty-six upper-case letters.
• ICHAR (’0’) < ICHAR (’1’) < ... < ICHAR (’9’) for the ten digits.
• ICHAR (’ ’) < ICHAR (’0’) < ICHAR (’9’) < ICHAR (’A’) or

ICHAR (’ ’) < ICHAR (’A’) < ICHAR (’Z’) < ICHAR (’0’).
• ICHAR (’a’) < ICHAR (’b’) < ... < ICHAR (’z’) for the twenty-six lower-case letters.
• ICHAR (’ ’) < ICHAR (’0’) < ICHAR (’9’) < ICHAR (’a’) or

ICHAR (’ ’) < ICHAR (’a’) < ICHAR (’z’) < ICHAR (’0’).

3 There are no constraints on the location of any other character in the collating sequence, nor is there any specified
collating sequence relationship between the upper-case and lower-case letters.

4 The collating sequence for the ASCII character kind is as specified in ISO/IEC 646:1991 (International Reference
Version); this collating sequence is called the ASCII collating sequence in this part of ISO/IEC 1539. The collating
sequence for the ISO 10646 character kind is as specified in ISO/IEC 10646.

NOTE 4.14
The intrinsic functions ACHAR (13.7.3) and IACHAR (13.7.70) provide conversions between characters
and corresponding integer values according to the ASCII collating sequence.
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5 The intrinsic functions LGT, LGE, LLE, and LLT (13.7.95-13.7.98) provide comparisons between strings based
on the ASCII collating sequence. International portability is guaranteed if the set of characters used is limited
to the Fortran character set (3.1).

4.4.4 Logical type

1 The logical type has two values, which represent true and false.

2 The processor shall provide one or more representation methods for data of type logical. Each such method
is characterized by a value for the (default integer) kind type parameter KIND. The kind type parameter of a
representation method is returned by the intrinsic function KIND (13.7.89).

3 The type specifier for the logical type uses the keyword LOGICAL.

4 The keyword LOGICAL with no kind-selector specifies type logical with default kind; the kind type parameter
value is equal to KIND (.FALSE.).

R424 logical-literal-constant is .TRUE. [ kind-param ]
or .FALSE. [ kind-param ]

C425 (R424) The value of kind-param shall specify a representation method that exists on the processor.

5 The optional kind type parameter specifies the kind type parameter of the logical constant; if it does not appear,
the constant has the default logical kind.

6 The intrinsic operations defined for data entities of logical type are negation (.NOT.), conjunction (.AND.), in-
clusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence (.NEQV., .XOR.) as described
in 7.1.5.4. There is also a set of intrinsically defined relational operators that compare the values of data entities
of other types and yield a default logical value. These operations are described in 7.1.5.5.

4.5 Derived types

4.5.1 Derived type concepts

1 Additional types may be derived from the intrinsic types and other derived types. A type definition defines the
name of the type and the names and attributes of its components and type-bound procedures.

2 A derived type may be parameterized by multiple type parameters, each of which is defined to be either a kind
or length type parameter and may have a default value.

3 The ultimate components of a derived type are the components that are of intrinsic type or have the ALLOCA-
TABLE or POINTER attribute, plus the ultimate components of the components that are of derived type and
have neither the ALLOCATABLE nor POINTER attribute.

4 The direct components of a derived type are the components of that type, plus the direct components of the
components that are of derived type and have neither the ALLOCATABLE nor POINTER attribute.

5 The components, direct components, and ultimate components of an object of derived type are the components,
direct components, and ultimate components of its type, respectively.

6 By default, no storage sequence is implied by the order of the component definitions. However, a storage order
is implied for a sequence type (4.5.2.3). If the derived type has the BIND attribute, the storage sequence is that
required by the companion processor (2.5.7, 15.3.4).

7 A scalar entity of derived type is a structure. If a derived type has the SEQUENCE attribute, a scalar entity of
the type is a sequence structure.
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NOTE 4.15
The ultimate components of an object of the derived type kids defined below are name, age, and other_-
kids. The direct components of such an object are name, age, other_kids, and oldest_child.

type :: person
character(len=20) :: name
integer :: age

end type person

type :: kids
type(person) :: oldest_child
type(person), allocatable, dimension(:) :: other_kids

end type kids

4.5.2 Derived-type definition

4.5.2.1 Syntax

R425 derived-type-def is derived-type-stmt
[ type-param-def-stmt ] ...
[ private-or-sequence ] ...
[ component-part ]
[ type-bound-procedure-part ]
end-type-stmt

R426 derived-type-stmt is TYPE [ [ , type-attr-spec-list ] :: ] type-name
[ ( type-param-name-list ) ]

R427 type-attr-spec is ABSTRACT
or access-spec
or BIND (C)
or EXTENDS ( parent-type-name )

C426 (R426) A derived type type-name shall not be DOUBLEPRECISION or the same as the name of any
intrinsic type defined in this part of ISO/IEC 1539.

C427 (R426) The same type-attr-spec shall not appear more than once in a given derived-type-stmt .

C428 (R427) A parent-type-name shall be the name of a previously defined extensible type (4.5.7).

C429 (R425) If the type definition contains or inherits (4.5.7.2) a deferred type-bound procedure (4.5.5), ABS-
TRACT shall appear.

C430 (R425) If ABSTRACT appears, the type shall be extensible.

C431 (R425) If EXTENDS appears, SEQUENCE shall not appear.

C432 (R425) If EXTENDS appears and the type being defined has a coarray ultimate component, its parent
type shall have a coarray ultimate component.

C433 (R425) If EXTENDS appears and the type being defined has an ultimate component of type LOCK -
TYPE from the intrinsic module ISO FORTRAN ENV, its parent type shall have an ultimate component
of type LOCK TYPE.

R428 private-or-sequence is private-components-stmt
or sequence-stmt

C434 (R425) The same private-or-sequence shall not appear more than once in a given derived-type-def .
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R429 end-type-stmt is END TYPE [ type-name ]

C435 (R429) If END TYPE is followed by a type-name, the type-name shall be the same as that in the
corresponding derived-type-stmt .

1 Derived types with the BIND attribute are subject to additional constraints as specified in 15.3.4.

NOTE 4.16
An example of a derived-type definition is:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 50) NAME

END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:

TYPE (PERSON) :: CHAIRMAN

4.5.2.2 Accessibility

1 Types that are defined in a module or accessible in that module by use association have either the PUBLIC or
PRIVATE attribute. Types for which an access-spec is not explicitly specified in that module have the default
accessibility attribute for that module. The default accessibility attribute for a module is PUBLIC unless it has
been changed by a PRIVATE statement (5.4.1). Only types that have the PUBLIC attribute in that module are
available to be accessed from that module by use association.

2 The accessibility of a type does not affect, and is not affected by, the accessibility of its components and type-
bound procedures.

3 If a type definition is private, then the type name, and thus the structure constructor (4.5.10) for the type, are
accessible only within the module containing the definition, and within its descendants.

NOTE 4.17
An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC
CHARACTER (LEN = 20) :: MESSAGE

END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined, and within its descendants.

4.5.2.3 Sequence type

R430 sequence-stmt is SEQUENCE

C436 (R425) If SEQUENCE appears, each data component shall be declared to be of an intrinsic type or of a
sequence type, and a type-bound-procedure-part shall not appear.

1 If the SEQUENCE statement appears, the type has the SEQUENCE attribute and is a sequence type. The
order of the component definitions in a sequence type specifies a storage sequence for objects of that type. The
type is a numeric sequence type if there are no type parameters, no pointer or allocatable components, and each
component is default integer, default real, double precision real, default complex, default logical, or of numeric
sequence type. The type is a character sequence type if there are no type parameters, no pointer or allocatable
components, and each component is default character or of character sequence type.
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NOTE 4.18
An example of a numeric sequence type is:

TYPE NUMERIC_SEQ
SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL
LOGICAL :: LOG_VAL

END TYPE NUMERIC_SEQ

NOTE 4.19
A structure resolves into a sequence of components. Unless the structure includes a SEQUENCE statement,
the use of this terminology in no way implies that these components are stored in this, or any other, order.
Nor is there any requirement that contiguous storage be used. The sequence merely refers to the fact that
in writing the definitions there will necessarily be an order in which the components appear, and this will
define a sequence of components. This order is of limited significance because a component of an object of
derived type will always be accessed by a component name except in the following contexts: the sequence of
expressions in a derived-type value constructor, intrinsic assignment, the data values in namelist input data,
and the inclusion of the structure in an input/output list of a formatted data transfer, where it is expanded
to this sequence of components. Provided the processor adheres to the defined order in these cases, it is
otherwise free to organize the storage of the components for any nonsequence structure in memory as best
suited to the particular architecture.

4.5.2.4 Determination of derived types

1 Derived-type definitions with the same type name may appear in different scoping units, in which case they may
be independent and describe different derived types or they may describe the same type.

2 Two data entities have the same type if they are declared with reference to the same derived-type definition. The
definition may be accessed from a module or from a host scoping unit. Data entities also have the same type if
they are declared with reference to different derived-type definitions that specify the same type name, all have
the SEQUENCE attribute or all have the BIND attribute, have no components with PRIVATE accessibility, and
have type parameters and components that agree in order, name, and attributes. Otherwise, they are of different
derived types. A data entity declared using a type with the SEQUENCE attribute or with the BIND attribute
is not of the same type as an entity of a type that has any components that are PRIVATE.

NOTE 4.20
An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y

END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)

...
CONTAINS

SUBROUTINE SUB (A)
TYPE (POINT) :: A

...
END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association. Because the
declarations of X1 and A both reference the same derived-type definition, X1 and A have the same type.
X1 and A also would have the same type if the derived-type definition were in a module and both SUB and
its containing program unit referenced the module.
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NOTE 4.21
An example of data entities in different scoping units having the same type is:

PROGRAM PGM
TYPE EMPLOYEE

SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) PROGRAMMER
CALL SUB (PROGRAMMER)

...
END PROGRAM PGM
SUBROUTINE SUB (POSITION)

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION
...

END SUBROUTINE SUB

The actual argument PROGRAMMER and the dummy argument POSITION have the same type because
they are declared with reference to a derived-type definition with the same name, the SEQUENCE attribute,
and components that agree in order, name, and attributes.

Suppose the component name ID NUMBER was ID NUM in the subroutine. Because all the component
names are not identical to the component names in derived type EMPLOYEE in the main program, the
actual argument PROGRAMMER would not be of the same type as the dummy argument POSITION.
Thus, the program would not be standard-conforming.

NOTE 4.22
The requirement that the two types have the same name applies to the type-names of the respective derived-
type-stmts, not to local names introduced via renaming in USE statements.

4.5.3 Derived-type parameters

4.5.3.1 Type parameter definition statement

R431 type-param-def-stmt is INTEGER [ kind-selector ] , type-param-attr-spec ::
type-param-decl-list

R432 type-param-decl is type-param-name [ = scalar-int-constant-expr ]

C437 (R431) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the type-param-
names in the derived-type-stmt of that derived-type-def .

C438 (R431) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear as a type-param-
name in a type-param-def-stmt in that derived-type-def .

R433 type-param-attr-spec is KIND
or LEN

1 The derived type is parameterized if the derived-type-stmt has any type-param-names.
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2 Each type parameter is itself of type integer. If its kind selector is omitted, the kind type parameter is default
integer.

3 The type-param-attr-spec explicitly specifies whether a type parameter is a kind parameter or a length parameter.

4 If a type-param-decl has a scalar-int-constant-expr , the type parameter has a default value which is specified by
the expression. If necessary, the value is converted according to the rules of intrinsic assignment (7.2.1.3) to a
value of the same kind as the type parameter.

5 A type parameter may be used as a primary in a specification expression (7.1.11) in the derived-type-def . A kind
type parameter may also be used as a primary in a constant expression (7.1.12) in the derived-type-def .

NOTE 4.23
The following example uses derived-type parameters.

TYPE humongous_matrix(k, d)
INTEGER, KIND :: k = kind(0.0)
INTEGER(selected_int_kind(12)), LEN :: d
!-- Specify a nondefault kind for d.

REAL(k) :: element(d,d)
END TYPE

In the following example, dim is declared to be a kind parameter, allowing generic overloading of procedures
distinguished only by dim.

TYPE general_point(dim)
INTEGER, KIND :: dim
REAL :: coordinates(dim)

END TYPE

4.5.3.2 Type parameter order

1 Type parameter order is an ordering of the type parameters of a derived type; it is used for derived-type specifiers.

2 The type parameter order of a nonextended type is the order of the type parameter list in the derived-type
definition. The type parameter order of an extended type (4.5.7) consists of the type parameter order of its
parent type followed by any additional type parameters in the order of the type parameter list in the derived-type
definition.

NOTE 4.24
Given

TYPE :: t1(k1,k2)
INTEGER,KIND :: k1,k2
REAL(k1) a(k2)

END TYPE
TYPE,EXTENDS(t1) :: t2(k3)
INTEGER,KIND :: k3
LOGICAL(k3) flag

END TYPE

the type parameter order for type T1 is K1 then K2, and the type parameter order for type T2 is K1 then
K2 then K3.
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4.5.4 Components

4.5.4.1 Component definition statement

R434 component-part is [ component-def-stmt ] ...

R435 component-def-stmt is data-component-def-stmt
or proc-component-def-stmt

R436 data-component-def-stmt is declaration-type-spec [ [ , component-attr-spec-list ] :: ]
component-decl-list

R437 component-attr-spec is access-spec
or ALLOCATABLE
or CODIMENSION lbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION ( component-array-spec )
or POINTER

R438 component-decl is component-name [ ( component-array-spec ) ]
[ lbracket coarray-spec rbracket ]
[ * char-length ] [ component-initialization ]

R439 component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

C439 (R436) No component-attr-spec shall appear more than once in a given component-def-stmt .

C440 (R436) If neither the POINTER nor the ALLOCATABLE attribute is specified, the declaration-type-spec
in the component-def-stmt shall specify an intrinsic type or a previously defined derived type.

C441 (R436) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec shall be
a deferred-shape-spec-list.

C442 (R436) If a coarray-spec appears, it shall be a deferred-coshape-spec-list and the component shall have
the ALLOCATABLE attribute.

C443 (R436) If a coarray-spec appears, the component shall not be of type C PTR or C FUNPTR (15.3.3).

C444 A data component whose type has a coarray ultimate component shall be a nonpointer nonallocatable
scalar and shall not be a coarray.

C445 (R436) If neither the POINTER nor the ALLOCATABLE attribute is specified, each component-array-
spec shall be an explicit-shape-spec-list.

C446 (R439) Each bound in the explicit-shape-spec shall be a specification expression in which there are
no references to specification functions or the intrinsic functions ALLOCATED, ASSOCIATED, EX-
TENDS TYPE OF, PRESENT, or SAME TYPE AS, every specification inquiry reference is a constant
expression, and the value does not depend on the value of a variable.

C447 (R436) A component shall not have both the ALLOCATABLE and POINTER attributes.

C448 (R436) If the CONTIGUOUS attribute is specified, the component shall be an array with the POINTER
attribute.

C449 (R438) The * char-length option is permitted only if the component is of type character.

C450 (R435) Each type-param-value within a component-def-stmt shall be a colon or a specification expression
in which there are no references to specification functions or the intrinsic functions ALLOCATED, ASSO-

66 Types 4.5.4.1



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

CIATED, EXTENDS TYPE OF, PRESENT, or SAME TYPE AS, every specification inquiry reference
is a constant expression, and the value does not depend on the value of a variable.

NOTE 4.25
Because a type parameter is not an object, a type-param-value or a bound in an explicit-shape-spec may
contain a type-param-name.

R440 proc-component-def-stmt is PROCEDURE ( [ proc-interface ] ) ,
proc-component-attr-spec-list :: proc-decl-list

NOTE 4.26
See 12.4.3.6 for definitions of proc-interface and proc-decl .

R441 proc-component-attr-spec is POINTER
or PASS [ (arg-name) ]
or NOPASS
or access-spec

C451 (R440) The same proc-component-attr-spec shall not appear more than once in a given proc-component-
def-stmt .

C452 (R440) POINTER shall appear in each proc-component-attr-spec-list.

C453 (R440) If the procedure pointer component has an implicit interface or has no arguments, NOPASS shall
be specified.

C454 (R440) If PASS (arg-name) appears, the interface of the procedure pointer component shall have a
dummy argument named arg-name.

C455 (R440) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.

1 The declaration-type-spec in the data-component-def-stmt specifies the type and type parameters of the com-
ponents in the component-decl-list, except that the character length parameter may be specified or overridden
for a component by the appearance of * char-length in its entity-decl . The component-attr-spec-list in the data-
component-def-stmt specifies the attributes whose keywords appear for the components in the component-decl-list,
except that the DIMENSION attribute may be specified or overridden for a component by the appearance of a
component-array-spec in its component-decl , and the CODIMENSION attribute may be specified or overridden
for a component by the appearance of a coarray-spec in its component-decl .

4.5.4.2 Array components

1 A data component is an array if its component-decl contains a component-array-spec or its data-component-def-
stmt contains a DIMENSION clause. If the component-decl contains a component-array-spec, it specifies the
array rank, and if the array is explicit shape (5.3.8.2), the array bounds; otherwise, the component-array-spec in
the DIMENSION clause specifies the array rank, and if the array is explicit shape, the array bounds.

NOTE 4.27
An example of a derived type definition with an array component is:

TYPE LINE
REAL, DIMENSION (2, 2) :: COORD !

! COORD(:,1) has the value of [X1, Y1]
! COORD(:,2) has the value of [X2, Y2]

REAL :: WIDTH ! Line width in centimeters
INTEGER :: PATTERN ! 1 for solid, 2 for dash, 3 for dot

END TYPE LINE
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NOTE 4.27 (cont.)

An example of declaring a variable LINE SEGMENT to be of the type LINE is:

TYPE (LINE) :: LINE_SEGMENT

The scalar variable LINE SEGMENT has a component that is an array. In this case, the array is a subobject
of a scalar. The double colon in the definition for COORD is required; the double colon in the definition
for WIDTH and PATTERN is optional.

NOTE 4.28
An example of a derived type definition with an allocatable component is:

TYPE STACK
INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS (:)

END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is determined by execu-
tion of an ALLOCATE statement or assignment statement, or by argument association.

NOTE 4.29
Default initialization of an explicit-shape array component may be specified by a constant expression consis-
ting of an array constructor (4.8), or of a single scalar that becomes the value of each array element.

4.5.4.3 Coarray components

1 A data component is a coarray if its component-decl contains a coarray-spec or its data-component-def-stmt
contains a CODIMENSION clause. If the component-decl contains a coarray-spec it specifies the corank; other-
wise, the coarray-spec in the CODIMENSION clause specifies the corank.

NOTE 4.30
An example of a derived type definition with a coarray component is:

TYPE GRID_TYPE
REAL,ALLOCATABLE,CODIMENSION[:,:,:] :: GRID(:,:,:)

END TYPE GRID_TYPE

An object of type grid type is required to be a scalar and is not permitted to be a pointer, allocatable, or
a coarray.

4.5.4.4 Pointer components

1 A component is a pointer (2.4.8) if its component-attr-spec-list contains the POINTER attribute. A pointer
component may be a data pointer or a procedure pointer.

NOTE 4.31
An example of a derived type definition with a pointer component is:

TYPE REFERENCE
INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE
PROCEDURE (printer_interface), POINTER :: PRINT => NULL()
CHARACTER, DIMENSION (:), POINTER :: SYNOPSIS

END TYPE REFERENCE
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NOTE 4.31 (cont.)

Any object of type REFERENCE will have the four nonpointer components VOLUME, YEAR, PAGE, and
TITLE, the procedure pointer PRINT, which has an explicit interface the same as printer interface, plus a
pointer to an array of characters holding SYNOPSIS. The size of this target array will be determined by
the length of the synopsis. The space for the target may be allocated (6.7.1) or the pointer component may
be associated with a target by a pointer assignment statement (7.2.2).

4.5.4.5 The passed-object dummy argument

1 A passed-object dummy argument is a distinguished dummy argument of a procedure pointer component or
type-bound procedure. It affects procedure overriding (4.5.7.3) and argument association (12.5.2.2).

2 If NOPASS is specified, the procedure pointer component or type-bound procedure has no passed-object dummy
argument.

3 If neither PASS nor NOPASS is specified or PASS is specified without arg-name, the first dummy argument of a
procedure pointer component or type-bound procedure is its passed-object dummy argument.

4 If PASS (arg-name) is specified, the dummy argument named arg-name is the passed-object dummy argument
of the procedure pointer component or named type-bound procedure.

C456 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data object
with the same declared type as the type being defined; all of its length type parameters shall be assumed;
it shall be polymorphic (4.3.1.3) if and only if the type being defined is extensible (4.5.7). It shall not
have the VALUE attribute.

NOTE 4.32
If a procedure is bound to several types as a type-bound procedure, different dummy arguments might be
the passed-object dummy argument in different contexts.

4.5.4.6 Default initialization for components

1 Default initialization provides a means of automatically initializing pointer components to be disassociated or
associated with specific targets, and nonpointer nonallocatable components to have a particular value. Allocatable
components are always initialized to unallocated.

2 A pointer variable or component is data-pointer-initialization compatible with a target if the pointer is type
compatible with the target, they have the same rank, all nondeferred type parameters of the pointer have the
same values as the corresponding type parameters of the target, and the target is contiguous if the pointer has
the CONTIGUOUS attribute.

R442 component-initialization is = constant-expr
or => null-init
or => initial-data-target

R443 initial-data-target is designator

C457 (R436) If component-initialization appears, a double-colon separator shall appear before the component-
decl-list.

C458 (R436) If component-initialization appears, every type parameter and array bound of the component
shall be a colon or constant expression.

C459 (R436) If => appears in component-initialization, POINTER shall appear in the component-attr-spec-
list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE shall appear in
the component-attr-spec-list.
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C460 (R442) If initial-data-target appears, component-name shall be data-pointer-initialization compatible
with it.

C461 (R443) The designator shall designate a nonallocatable variable that has the TARGET and SAVE attri-
butes and does not have a vector subscript. Every subscript, section subscript, substring starting point,
and substring ending point in designator shall be a constant expression.

3 If null-init appears for a pointer component, that component in any object of the type has an initial association
status of disassociated (1.3) or becomes disassociated as specified in 16.5.2.4.

4 If initial-data-target appears for a data pointer component, that component in any object of the type is initially
associated with the target or becomes associated with the target as specified in 16.5.2.3.

5 If initial-proc-target (12.4.3.6) appears in proc-decl for a procedure pointer component, that component in any
object of the type is initially associated with the target or becomes associated with the target as specified in
16.5.2.3.

6 If constant-expr appears for a nonpointer component, that component in any object of the type is initially defined
(16.6.3) or becomes defined as specified in 16.6.5 with the value determined from constant-expr . If necessary,
the value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees in type, type
parameters, and shape with the component. If the component is of a type for which default initialization is
specified for a component, the default initialization specified by constant-expr overrides the default initialization
specified for that component. When one initialization overrides another it is as if only the overriding initialization
were specified (see Note 4.34). Explicit initialization in a type declaration statement (5.2) overrides default
initialization (see Note 4.33). Unlike explicit initialization, default initialization does not imply that the object
has the SAVE attribute.

7 A subcomponent (6.4.2) is default-initialized if the type of the object of which it is a component specifies default
initialization for that component, and the subcomponent is not a subobject of an object that is default-initialized
or explicitly initialized.

8 A type has default initialization if component-initialization is specified for any direct component of the type. An
object has default initialization if it is of a type that has default initialization.

NOTE 4.33
It is not required that initialization be specified for each component of a derived type. For example:

TYPE DATE
INTEGER DAY
CHARACTER (LEN = 5) MONTH
INTEGER :: YEAR = 1994 ! Partial default initialization

END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is overridden by
explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 1995)

NOTE 4.34
The default initial value of a component of derived type may be overridden by default initialization specified
in the definition of the type. Continuing the example of Note 4.33:

TYPE SINGLE_SCORE
TYPE(DATE) :: PLAY_DAY = TODAY
INTEGER SCORE
TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ( )

END TYPE SINGLE_SCORE
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NOTE 4.34 (cont.)

TYPE(SINGLE_SCORE) SETUP

The PLAY DAY component of SETUP receives its initial value from TODAY, overriding the initialization
for the YEAR component.

NOTE 4.35
Arrays of structures may be declared with elements that are partially or totally initialized by default.
Continuing the example of Note 4.34 :

TYPE MEMBER (NAME_LEN)
INTEGER, LEN :: NAME_LEN
CHARACTER (LEN = NAME_LEN) :: NAME = ’’
INTEGER :: TEAM_NO, HANDICAP = 0
TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ( )

END TYPE MEMBER
TYPE (MEMBER(9)) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER(9)) :: ORGANIZER = MEMBER (9) ("I. Manage",1,5,NULL ( ))

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type MEMBER.

Allocated objects may also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
! SINGLE_SCORE is created.

NOTE 4.36
A pointer component of a derived type may have as its target an object of that derived type. The type
definition may specify that in objects declared to be of this type, such a pointer is default initialized to
disassociated. For example:

TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => NULL ( )

END TYPE

A type such as this may be used to construct linked lists of objects of type NODE. See C.1.5 for an example.
Linked lists can also be constructed using allocatable components.

NOTE 4.37
A pointer component of a derived type may be default initialized to have an initial target.

TYPE NODE
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => SENTINEL

END TYPE

TYPE(NODE), SAVE, TARGET :: SENTINEL

4.5.4.7 Component order

1 Component order is an ordering of the nonparent components of a derived type; it is used for intrinsic formatted
input/output and structure constructors (where component keywords are not used). Parent components are
excluded from the component order of an extended type (4.5.7).
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2 The component order of a nonextended type is the order of the declarations of the components in the derived-type
definition. The component order of an extended type consists of the component order of its parent type followed
by any additional components in the order of their declarations in the extended derived-type definition.

NOTE 4.38
Given the same type definitions as in Note 4.24, the component order of type T1 is just A (there is only
one component), and the component order of type T2 is A then FLAG. The parent component (T1) does
not participate in the component order.

4.5.4.8 Component accessibility

R444 private-components-stmt is PRIVATE

C462 (R444) A private-components-stmt is permitted only if the type definition is within the specification part
of a module.

1 The default accessibility for the components that are declared in a type’s component-part is private if the type
definition contains a private-components-stmt , and public otherwise. The accessibility of a component may be
explicitly declared by an access-spec; otherwise its accessibility is the default for the type definition in which it is
declared.

2 If a component is private, that component name is accessible only within the module containing the definition,
and within its descendants.

NOTE 4.39
Type parameters are not components. They are effectively always public.

NOTE 4.40
The accessibility of the components of a type is independent of the accessibility of the type name. It is
possible to have all four combinations: a public type name with a public component, a private type name
with a private component, a public type name with a private component, and a private type name with a
public component.

NOTE 4.41
An example of a type with private components is:

TYPE POINT
PRIVATE
REAL :: X, Y

END TYPE POINT

Such a type definition is accessible in any scoping unit accessing the module via a USE statement; however,
the components X and Y are accessible only within the module, and within its descendants.

NOTE 4.42
The following example illustrates the use of an individual component access-spec to override the default
accessibility:

TYPE MIXED
PRIVATE
INTEGER :: I
INTEGER, PUBLIC :: J

END TYPE MIXED
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NOTE 4.42 (cont.)

TYPE (MIXED) :: M

The component M%J is accessible in any scoping unit where M is accessible; M%I is accessible only within
the module containing the TYPE MIXED definition, and within its descendants.

4.5.5 Type-bound procedures

R445 type-bound-procedure-part is contains-stmt
[ binding-private-stmt ]
[ type-bound-proc-binding ] ...

R446 binding-private-stmt is PRIVATE

C463 (R445) A binding-private-stmt is permitted only if the type definition is within the specification part of
a module.

R447 type-bound-proc-binding is type-bound-procedure-stmt
or type-bound-generic-stmt
or final-procedure-stmt

R448 type-bound-procedure-stmt is PROCEDURE [ [ , binding-attr-list ] :: ] type-bound-proc-decl-list
or PROCEDURE (interface-name), binding-attr-list :: binding-name-list

R449 type-bound-proc-decl is binding-name [ => procedure-name ]

C464 (R448) If => procedure-name appears in a type-bound-proc-decl , the double-colon separator shall appear.

C465 (R448) The procedure-name shall be the name of an accessible module procedure or an external procedure
that has an explicit interface.

1 If neither => procedure-name nor interface-name appears in a type-bound-proc-decl , it is as though => procedure-
name had appeared with a procedure name the same as the binding name.

R450 type-bound-generic-stmt is GENERIC [ , access-spec ] :: generic-spec => binding-name-list

C466 (R450) Within the specification-part of a module, each type-bound-generic-stmt shall specify, either im-
plicitly or explicitly, the same accessibility as every other type-bound-generic-stmt with that generic-spec
in the same derived type.

C467 (R450) Each binding-name in binding-name-list shall be the name of a specific binding of the type.

C468 (R450) If generic-spec is not generic-name, each of its specific bindings shall have a passed-object dummy
argument (4.5.4.5).

C469 (R450) If generic-spec is OPERATOR ( defined-operator ), the interface of each binding shall be as
specified in 12.4.3.4.2.

C470 (R450) If generic-spec is ASSIGNMENT ( = ), the interface of each binding shall be as specified in
12.4.3.4.3.

C471 (R450) If generic-spec is defined-io-generic-spec, the interface of each binding shall be as specified in
9.6.4.8. The type of the dtv argument shall be type-name.

R451 binding-attr is PASS [ (arg-name) ]
or NOPASS
or NON OVERRIDABLE
or DEFERRED
or access-spec
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C472 (R451) The same binding-attr shall not appear more than once in a given binding-attr-list.

C473 (R448) If the interface of the binding has no dummy argument of the type being defined, NOPASS shall
appear.

C474 (R448) If PASS (arg-name) appears, the interface of the binding shall have a dummy argument named
arg-name.

C475 (R451) PASS and NOPASS shall not both appear in the same binding-attr-list.

C476 (R451) NON OVERRIDABLE and DEFERRED shall not both appear in the same binding-attr-list.

C477 (R451) DEFERRED shall appear if and only if interface-name appears.

C478 (R448) An overriding binding (4.5.7.3) shall have the DEFERRED attribute only if the binding it over-
rides is deferred.

C479 (R448) A binding shall not override an inherited binding (4.5.7.2) that has the NON OVERRIDABLE
attribute.

2 A type-bound procedure statement declares one or more specific type-bound procedures. A specific type-bound
procedure may have a passed-object dummy argument (4.5.4.5). A type-bound procedure with the DEFERRED
attribute attribute is a deferred type-bound procedure. The DEFERRED keyword shall appear only in the
definition of an abstract type.

3 A GENERIC statement declares a generic type-bound procedure, which is a type-bound generic interface for its
specific type-bound procedures.

4 A binding of a type is a type-bound procedure (specific or generic), a generic type-bound interface, or a final
subroutine. These are referred to as specific bindings, generic bindings, and final bindings respectively.

5 A type-bound procedure may be identified by a binding name in the scope of the type definition. This name is the
binding-name for a specific type-bound procedure, and the generic-name for a generic binding whose generic-spec
is generic-name. A final binding, or a generic binding whose generic-spec is not generic-name, has no binding
name.

6 The interface of a specific type-bound procedure is that of the procedure specified by procedure-name or the
interface specified by interface-name.

NOTE 4.43
An example of a type and a type-bound procedure is:

TYPE POINT
REAL :: X, Y

CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH

END TYPE POINT
...

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)
CLASS (POINT), INTENT (IN) :: A, B
POINT_LENGTH = SQRT ( (A%X - B%X)**2 + (A%Y - B%Y)**2 )

END FUNCTION POINT_LENGTH

7 The same generic-spec may be used in several GENERIC statements within a single derived-type definition. Each
additional GENERIC statement with the same generic-spec extends the generic interface.
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NOTE 4.44
Unlike the situation with generic procedure names, a generic type-bound procedure name is not permitted
to be the same as a specific type-bound procedure name in the same type (16.3).

8 The default accessibility for the type-bound procedures of a type is private if the type definition contains a binding-
private-stmt , and public otherwise. The accessibility of a type-bound procedure may be explicitly declared by an
access-spec; otherwise its accessibility is the default for the type definition in which it is declared.

9 A public type-bound procedure is accessible via any accessible object of the type. A private type-bound procedure
is accessible only within the module containing the type definition, and within its descendants.

NOTE 4.45
The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the component-part ;
the accessibility of a data component is not affected by a PRIVATE statement in the type-bound-procedure-
part .

4.5.6 Final subroutines

4.5.6.1 Declaration

R452 final-procedure-stmt is FINAL [ :: ] final-subroutine-name-list

C480 (R452) A final-subroutine-name shall be the name of a module procedure with exactly one dummy argu-
ment. That argument shall be nonoptional and shall be a nonpointer, nonallocatable, nonpolymorphic
variable of the derived type being defined. All length type parameters of the dummy argument shall be
assumed. The dummy argument shall not have the INTENT (OUT) or VALUE attribute.

C481 (R452) A final-subroutine-name shall not be one previously specified as a final subroutine for that type.

C482 (R452) A final subroutine shall not have a dummy argument with the same kind type parameters and
rank as the dummy argument of another final subroutine of that type.

1 The FINAL statement specifies that each procedure it names is a final subroutine. A final subroutine might be
executed when a data entity of that type is finalized (4.5.6.2).

2 A derived type is finalizable if and only if it has a final subroutine or a nonpointer, nonallocatable component of
finalizable type. A nonpointer data entity is finalizable if and only if it is of finalizable type.

NOTE 4.46
Final subroutines are effectively always “accessible”. They are called for entity finalization regardless of the
accessibility of the type, its other type-bound procedures, or the subroutine name itself.

NOTE 4.47
Final subroutines are not inherited through type extension and cannot be overridden. The final subroutines
of the parent type are called after any additional final subroutines of an extended type are called.

4.5.6.2 The finalization process

1 Only finalizable entities are finalized. When an entity is finalized, the following steps are carried out in sequence.

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the same kind
type parameters and rank as the entity being finalized, it is called with the entity as an actual
argument. Otherwise, if there is an elemental final subroutine whose dummy argument has the same
kind type parameters as the entity being finalized, it is called with the entity as an actual argument.
Otherwise, no subroutine is called at this point.
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(2) All finalizable components that appear in the type definition are finalized in a processor-dependent
order. If the entity being finalized is an array, each finalizable component of each element of that
entity is finalized separately.

(3) If the entity is of extended type and the parent type is finalizable, the parent component is finalized.

2 If several entities are to be finalized as a consequence of an event specified in 4.5.6.3, the order in which they are
finalized is processor dependent. A final subroutine shall not reference or define an object that has already been
finalized.

3 If an object is not finalized, it retains its definition status and does not become undefined.

NOTE 4.48
An implementation might need to ensure that when an event causes more than one coarray to be deallocated,
they are deallocated in the same order on all images.

4.5.6.3 When finalization occurs

1 When a pointer is deallocated its target is finalized. When an allocatable entity is deallocated, it is finalized.

2 A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized immediately
before it would become undefined due to execution of a RETURN or END statement (16.6.6, item (3)).

3 A nonpointer nonallocatable local variable of a BLOCK construct is finalized immediately before it would become
undefined due to termination of the BLOCK construct (16.6.6, item (22)).

4 If an executable construct references a function, the result is finalized after execution of the innermost executable
construct containing the reference.

5 If an executable construct references a structure constructor or array constructor, the entity created by the
constructor is finalized after execution of the innermost executable construct containing the reference.

6 If a specification expression in a scoping unit references a function, the result is finalized before execution of the
executable constructs in the scoping unit.

7 If a specification expression in a scoping unit references a structure constructor or array constructor, the entity
created by the constructor is finalized before execution of the executable constructs in the scoping unit.

8 When a procedure is invoked, a nonpointer, nonallocatable object that is an actual argument corresponding to
an INTENT (OUT) dummy argument is finalized.

9 When an intrinsic assignment statement is executed, the variable is finalized after evaluation of expr and before
the definition of the variable.

NOTE 4.49
If finalization is used for storage management, it often needs to be combined with defined assignment.

10 If an object is allocated via pointer allocation and later becomes unreachable due to all pointers associated with
that object having their pointer association status changed, it is processor dependent whether it is finalized. If it
is finalized, it is processor dependent as to when the final subroutines are called.

4.5.6.4 Entities that are not finalized

1 If image execution is terminated, either by an error (e.g. an allocation failure) or by execution of a stop-stmt ,
allstop-stmt , or end-program-stmt , entities existing immediately prior to termination are not finalized.
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NOTE 4.50
A nonpointer, nonallocatable object that has the SAVE attribute is never finalized as a direct consequence
of the execution of a RETURN or END statement.

4.5.7 Type extension

4.5.7.1 Concepts

1 A derived type that does not have the BIND attribute or the SEQUENCE attribute is an extensible type.

2 A type with the EXTENDS attribute is an extended type; its parent type is the type named in the EXTENDS
type-attr-spec.

NOTE 4.51
The name of the parent type might be a local name introduced via renaming in a USE statement.

3 An extensible type that does not have the EXTENDS attribute is an extension type of itself only. An extended
type is an extension of itself and of all types for which its parent type is an extension.

4 An abstract type is a type that has the ABSTRACT attribute.

NOTE 4.52
The DEFERRED attribute (4.5.5) defers the implementation of a type-bound procedure to extensions of
the type; it may appear only in an abstract type. The dynamic type of an object cannot be abstract;
therefore, a deferred type-bound procedure cannot be invoked. An extension of an abstract type need not
be abstract if it has no deferred type-bound procedures. A short example of an abstract type is:

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS

PROCEDURE(OPEN_FILE), DEFERRED, PASS(HANDLE) :: OPEN
...

END TYPE

For a more elaborate example see C.1.4.

4.5.7.2 Inheritance

1 An extended type includes all of the type parameters, all of the components, and the nonoverridden (4.5.7.3)
type-bound procedures of its parent type. These are inherited by the extended type from the parent type. They
retain all of the attributes that they had in the parent type. Additional type parameters, components, and
procedure bindings may be declared in the derived-type definition of the extended type.

NOTE 4.53
Inaccessible components and bindings of the parent type are also inherited, but they remain inaccessible in
the extended type. Inaccessible entities occur if the type being extended is accessed via use association and
has a private entity.

NOTE 4.54
A derived type is not required to have any components, bindings, or parameters; an extended type is not
required to have more components, bindings, or parameters than its parent type.

2 An extended type has a scalar, nonpointer, nonallocatable, parent component with the type and type parameters
of the parent type. The name of this component is the parent type name. It has the accessibility of the parent
type. Components of the parent component are inheritance associated (16.5.4) with the corresponding components
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inherited from the parent type. An ancestor component of a type is the parent component of the type or an
ancestor component of the parent component.

NOTE 4.55
A component or type parameter declared in an extended type shall not have the same name as any accessible
component or type parameter of its parent type.

NOTE 4.56
Examples:

TYPE POINT ! A base type
REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
! Components X and Y, and component name POINT, inherited from parent
INTEGER :: COLOR

END TYPE COLOR_POINT

4.5.7.3 Type-bound procedure overriding

1 If a specific type-bound procedure specified in a type definition has the same binding name as a type-bound
procedure from the parent type then the binding specified in the type definition overrides the one from the parent
type.

2 The overriding and overridden type-bound procedures shall satisfy the following conditions.

• Either both shall have a passed-object dummy argument or neither shall.
• If the overridden type-bound procedure is pure then the overriding one shall also be pure.
• Either both shall be elemental or neither shall.
• They shall have the same number of dummy arguments.
• Passed-object dummy arguments, if any, shall correspond by name and position.
• Dummy arguments that correspond by position shall have the same names and characteristics, except for

the type of the passed-object dummy arguments.
• Either both shall be subroutines or both shall be functions having the same result characteristics (12.3.3).
• If the overridden type-bound procedure is PUBLIC then the overriding one shall not be PRIVATE.

NOTE 4.57
The following is an example of procedure overriding, expanding on the example in Note 4.43.

TYPE, EXTENDS (POINT) :: POINT_3D
REAL :: Z

CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH

END TYPE POINT_3D
...

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_3D_LENGTH ( A, B )
CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)
CLASS IS(POINT_3D)
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NOTE 4.57 (cont.)

POINT_3D_LENGTH = SQRT( (A%X-B%X)**2 + (A%Y-B%Y)**2 + (A%Z-B%Z)**2 )
RETURN

END SELECT
PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
STOP

END FUNCTION POINT_3D_LENGTH

3 If a generic binding specified in a type definition has the same generic-spec as an inherited binding, it extends
the generic interface and shall satisfy the requirements specified in 12.4.3.4.5.

4 A binding of a type and a binding of an extension of that type correspond if the latter binding is the same binding
as the former, overrides a corresponding binding, or is an inherited corresponding binding.

4.5.8 Derived-type values

1 The component value of

• a pointer component is its pointer association,
• an allocatable component is its allocation status and, if it is allocated, its dynamic type and type parameters,

bounds and value, and
• a nonpointer nonallocatable component is its value.

2 The set of values of a particular derived type consists of all possible sequences of the component values of its
components.

4.5.9 Derived-type specifier

1 A derived-type specifier is used in several contexts to specify a particular derived type and type parameters.

R453 derived-type-spec is type-name [ ( type-param-spec-list ) ]

R454 type-param-spec is [ keyword = ] type-param-value

C483 (R453) type-name shall be the name of an accessible derived type.

C484 (R453) type-param-spec-list shall appear only if the type is parameterized.

C485 (R453) There shall be at most one type-param-spec corresponding to each parameter of the type. If a
type parameter does not have a default value, there shall be a type-param-spec corresponding to that
type parameter.

C486 (R454) The keyword= may be omitted from a type-param-spec only if the keyword= has been omitted
from each preceding type-param-spec in the type-param-spec-list.

C487 (R454) Each keyword shall be the name of a parameter of the type.

C488 (R454) An asterisk may be used as a type-param-value in a type-param-spec only in the declaration of a
dummy argument or associate name or in the allocation of a dummy argument.

2 Type parameter values that do not have type parameter keywords specified correspond to type parameters in type
parameter order (4.5.3.2). If a type parameter keyword appears, the value corresponds to the type parameter
named by the keyword. If necessary, the value is converted according to the rules of intrinsic assignment (7.2.1.3)
to a value of the same kind as the type parameter.

3 The value of a type parameter for which no type-param-value has been specified is its default value.
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4.5.10 Construction of derived-type values

1 A derived-type definition implicitly defines a corresponding structure constructor that allows construction of
scalar values of that derived type. The type and type parameters of a constructed value are specified by a derived
type specifier.

R455 structure-constructor is derived-type-spec ( [ component-spec-list ] )

R456 component-spec is [ keyword = ] component-data-source

R457 component-data-source is expr
or data-target
or proc-target

C489 (R455) The derived-type-spec shall not specify an abstract type (4.5.7).

C490 (R455) At most one component-spec shall be provided for a component.

C491 (R455) If a component-spec is provided for an ancestor component, a component-spec shall not be provided
for any component that is inheritance associated with a subcomponent of that ancestor component.

C492 (R455) A component-spec shall be provided for a nonallocatable component unless it has default initializa-
tion or is inheritance associated with a subcomponent of another component for which a component-spec
is provided.

C493 (R456) The keyword= may be omitted from a component-spec only if the keyword= has been omitted
from each preceding component-spec in the constructor.

C494 (R456) Each keyword shall be the name of a component of the type.

C495 (R455) The type name and all components of the type for which a component-spec appears shall be
accessible in the scoping unit containing the structure constructor.

C496 (R455) If derived-type-spec is a type name that is the same as a generic name, the component-spec-list
shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a generic reference
to that name (12.5.5.2).

C497 (R457) A data-target shall correspond to a data pointer component; a proc-target shall correspond to a
procedure pointer component.

C498 (R457) A data-target shall have the same rank as its corresponding component.

NOTE 4.58
The form ’name(...)’ is interpreted as a generic function-reference if possible; it is interpreted as a structure-
constructor only if it cannot be interpreted as a generic function-reference.

2 In the absence of a component keyword, each component-data-source is assigned to the corresponding component
in component order (4.5.4.7). If a component keyword appears, the expr is assigned to the component named
by the keyword. For a nonpointer component, the declared type and type parameters of the component and
expr shall conform in the same way as for a variable and expr in an intrinsic assignment statement (7.2.1.2), as
specified in Table 7.10. If necessary, each value of intrinsic type is converted according to the rules of intrinsic
assignment (7.2.1.3) to a value that agrees in type and type parameters with the corresponding component of
the derived type. For a nonpointer nonallocatable component, the shape of the expression shall conform with the
shape of the component.

3 If a component with default initialization has no corresponding component-data-source, then the default initiali-
zation is applied to that component. If an allocatable component has no corresponding component-data-source,
then that component has an allocation status of unallocated.
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NOTE 4.59
Because no parent components appear in the defined component ordering, a value for a parent component
can be specified only with a component keyword. Examples of equivalent values using types defined in Note
4.56:

! Create values with components x = 1.0, y = 2.0, color = 3.
TYPE(POINT) :: PV = POINT(1.0, 2.0) ! Assume components of TYPE(POINT)

! are accessible here.
...
COLOR_POINT( point=point(1,2), color=3) ! Value for parent component
COLOR_POINT( point=PV, color=3) ! Available even if TYPE(point)

! has private components
COLOR_POINT( 1, 2, 3) ! All components of TYPE(point)

! need to be accessible.

4 A structure constructor shall not appear before the referenced type is defined.

NOTE 4.60
This example illustrates a derived-type constant expression using a derived type defined in Note 4.16:

PERSON (21, ’JOHN SMITH’)

This could also be written as

PERSON (NAME = ’JOHN SMITH’, AGE = 21)

NOTE 4.61
An example constructor using the derived type GENERAL POINT defined in Note 4.23 is

general_point(dim=3) ( [ 1., 2., 3. ] )

5 For a pointer component, the corresponding component-data-source shall be an allowable data-target or proc-
target for such a pointer in a pointer assignment statement (7.2.2). If the component data source is a pointer,
the association of the component is that of the pointer; otherwise, the component is pointer associated with the
component data source.

NOTE 4.62
For example, if the variable TEXT were declared (5.2) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in Note 4.31

TYPE (REFERENCE) :: BIBLIO

the statement

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &
&paper", SYNOPSIS=TEXT)

is valid and associates the pointer component SYNOPSIS of the object BIBLIO with the target object
TEXT. The keyword SYNOPSIS is required because the fifth component of the type REFERENCE is a
procedure pointer component, not a data pointer component of type character. It is not necessary to specify
a proc-target for the procedure pointer component because it has default initialization.
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6 If a component of a derived type is allocatable, the corresponding constructor expression shall either be a reference
to the intrinsic function NULL with no arguments, an allocatable entity of the same rank, or shall evaluate to an
entity of the same rank. If the expression is a reference to the intrinsic function NULL, the corresponding com-
ponent of the constructor has a status of unallocated. If the expression is an allocatable entity, the corresponding
component of the constructor has the same allocation status as that allocatable entity and, if it is allocated, the
same dynamic type, bounds, and value; if a length parameter of the component is deferred, its value is the same
as the corresponding parameter of the expression. Otherwise the corresponding component of the constructor
has an allocation status of allocated and has the same bounds and value as the expression.

NOTE 4.63
When the constructor is an actual argument, the allocation status of the allocatable component is available
through the associated dummy argument.

4.5.11 Derived-type operations and assignment

1 Intrinsic assignment of derived-type entities is described in 7.2.1. This part of ISO/IEC 1539 does not specify
any intrinsic operations on derived-type entities. Any operation on derived-type entities or defined assignment
(7.2.1.4) for derived-type entities shall be defined explicitly by a function or a subroutine, and a generic interface
(4.5.2, 12.4.3.2).

4.6 Enumerations and enumerators

1 An enumeration is a set of enumerators. An enumerator is a named integer constant. An enumeration definition
specifies the enumeration and its set of enumerators of the corresponding integer kind.

R458 enum-def is enum-def-stmt
enumerator-def-stmt
[ enumerator-def-stmt ] ...
end-enum-stmt

R459 enum-def-stmt is ENUM, BIND(C)

R460 enumerator-def-stmt is ENUMERATOR [ :: ] enumerator-list

R461 enumerator is named-constant [ = scalar-int-constant-expr ]

R462 end-enum-stmt is END ENUM

C499 (R460) If = appears in an enumerator , a double-colon separator shall appear before the enumerator-list.

2 For an enumeration, the kind is selected such that an integer type with that kind is interoperable (15.3.2) with the
corresponding C enumeration type. The corresponding C enumeration type is the type that would be declared
by a C enumeration specifier (6.7.2.2 of ISO/IEC 9899:1999) that specified C enumeration constants with the
same values as those specified by the enum-def , in the same order as specified by the enum-def .

3 The companion processor (2.5.7) shall be one that uses the same representation for the types declared by all C
enumeration specifiers that specify the same values in the same order.

NOTE 4.64
If a companion processor uses an unsigned type to represent a given enumeration type, the Fortran processor
will use the signed integer type of the same width for the enumeration, even though some of the values of
the enumerators cannot be represented in this signed integer type. The types of any such enumerators will
be interoperable with the type declared in the C enumeration.
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NOTE 4.65
ISO/IEC 9899:1999 guarantees the enumeration constants fit in a C int (6.7.2.2 of ISO/IEC 9899:1999).
Therefore, the Fortran processor can evaluate all enumerator values using the integer type with kind pa-
rameter C INT, and then determine the kind parameter of the integer type that is interoperable with the
corresponding C enumerated type.

NOTE 4.66
ISO/IEC 9899:1999 specifies that two enumeration types are compatible only if they specify enumeration
constants with the same names and same values in the same order. This part of ISO/IEC 1539 further
requires that a C processor that is to be a companion processor of a Fortran processor use the same
representation for two enumeration types if they both specify enumeration constants with the same values
in the same order, even if the names are different.

4 An enumerator is treated as if it were explicitly declared with the PARAMETER attribute. The enumerator is
defined in accordance with the rules of intrinsic assignment (7.2) with the value determined as follows.

(1) If scalar-int-constant-expr is specified, the value of the enumerator is the result of scalar-int-constant-
expr .

(2) If scalar-int-constant-expr is not specified and the enumerator is the first enumerator in enum-def ,
the enumerator has the value 0.

(3) If scalar-int-constant-expr is not specified and the enumerator is not the first enumerator in enum-
def , its value is the result of adding 1 to the value of the enumerator that immediately precedes it
in the enum-def .

NOTE 4.67
Example of an enumeration definition:

ENUM, BIND(C)
ENUMERATOR :: RED = 4, BLUE = 9
ENUMERATOR YELLOW

END ENUM

The kind type parameter for this enumeration is processor dependent, but the processor is required to select
a kind sufficient to represent the values 4, 9, and 10, which are the values of its enumerators. The following
declaration might be equivalent to the above enumeration definition.

INTEGER(SELECTED_INT_KIND(2)), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

An entity of the same kind type parameter value can be declared using the intrinsic function KIND with
one of the enumerators as its argument, for example

INTEGER(KIND(RED)) :: X

NOTE 4.68
There is no difference in the effect of declaring the enumerators in multiple ENUMERATOR statements or
in a single ENUMERATOR statement. The order in which the enumerators in an enumeration definition
are declared is significant, but the number of ENUMERATOR statements is not.

4.7 Binary, octal, and hexadecimal literal constants

1 A binary, octal, or hexadecimal constant (boz-literal-constant) is a sequence of digits that represents an ordered
sequence of bits. Such a constant has no type.
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R463 boz-literal-constant is binary-constant
or octal-constant
or hex-constant

R464 binary-constant is B ’ digit [ digit ] ... ’
or B " digit [ digit ] ... "

C4100 (R464) digit shall have one of the values 0 or 1.

R465 octal-constant is O ’ digit [ digit ] ... ’
or O " digit [ digit ] ... "

C4101 (R465) digit shall have one of the values 0 through 7.

R466 hex-constant is Z ’ hex-digit [ hex-digit ] ... ’
or Z " hex-digit [ hex-digit ] ... "

R467 hex-digit is digit
or A
or B
or C
or D
or E
or F

2 The hex-digits A through F represent the numbers ten through fifteen, respectively; they may be represented
by their lower-case equivalents. Each digit of a boz-literal-constant represents a sequence of bits, according to
its numerical interpretation, using the model of 13.3, with z equal to one for binary constants, three for octal
constants or four for hexadecimal constants. A boz-literal-constant represents a sequence of bits that consists of
the concatenation of the sequences of bits represented by its digits, in the order the digits are specified. The
positions of bits in the sequence are numbered from right to left, with the position of the rightmost bit being zero.
The length of a sequence of bits is the number of bits in the sequence. The processor shall allow the position
of the leftmost nonzero bit to be at least z − 1, where z is the maximum value that could result from invoking
the intrinsic function STORAGE SIZE (13.7.160) with an argument that is a real or integer scalar of any kind
supported by the processor.

C4102 (R463) A boz-literal-constant shall appear only as a data-stmt-constant in a DATA statement, or where
explicitly allowed in subclause 13.7 as an actual argument of an intrinsic procedure.

4.8 Construction of array values

1 An array constructor constructs a rank-one array value from a sequence of scalar values, array values, and implied
DO loops.

R468 array-constructor is (/ ac-spec /)
or lbracket ac-spec rbracket

R469 ac-spec is type-spec ::
or [type-spec ::] ac-value-list

R470 lbracket is [

R471 rbracket is ]

R472 ac-value is expr
or ac-implied-do

R473 ac-implied-do is ( ac-value-list , ac-implied-do-control )
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R474 ac-implied-do-control is ac-do-variable = scalar-int-expr , scalar-int-expr
[ , scalar-int-expr ]

R475 ac-do-variable is do-variable

C4103 (R469) If type-spec is omitted, each ac-value expression in the array-constructor shall have the same type
and kind type parameters.

C4104 (R469) If type-spec specifies an intrinsic type, each ac-value expression in the array-constructor shall be
of an intrinsic type that is in type conformance with a variable of type type-spec as specified in Table
7.10.

C4105 (R469) If type-spec specifies a derived type, all ac-value expressions in the array-constructor shall be of
that derived type and shall have the same kind type parameter values as specified by type-spec.

C4106 (R473) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the
ac-do-variable of the containing ac-implied-do.

2 If type-spec is omitted, each ac-value expression in the array constructor shall have the same length type para-
meters; in this case, the type and type parameters of the array constructor are those of the ac-value expressions.

3 If type-spec appears, it specifies the type and type parameters of the array constructor. Each ac-value expression in
the array-constructor shall be compatible with intrinsic assignment to a variable of this type and type parameters.
Each value is converted to the type parameters of the array-constructor in accordance with the rules of intrinsic
assignment (7.2.1.3).

4 The character length of an ac-value in an ac-implied-do whose iteration count is zero shall not depend on the
value of the ac-do-variable and shall not depend on the value of an expression that is not a constant expression.

5 If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an ac-value is
an array expression, the values of the elements of the expression, in array element order (6.5.3.2), specify the
corresponding sequence of elements of the array constructor. If an ac-value is an ac-implied-do, it is expanded
to form a sequence of elements under the control of the ac-do-variable, as in the DO construct (8.1.6.6).

6 For an ac-implied-do, the loop initialization and execution is the same as for a DO construct.

7 An empty sequence forms a zero-sized array.

NOTE 4.69
A one-dimensional array may be reshaped into any allowable array shape using the intrinsic function
RESHAPE (13.7.140). An example is:

X = (/ 3.2, 4.01, 6.5 /)
Y = RESHAPE (SOURCE = [ 2.0, [ 4.5, 4.5 ], X ], SHAPE = [ 3, 2 ])

This results in Y having the 3 × 2 array of values:

2.0 3.2
4.5 4.01
4.5 6.5

NOTE 4.70
Examples of array constructors containing an implied DO are:

(/ (I, I = 1, 1075) /)

and
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NOTE 4.70 (cont.)

[ 3.6, (3.6 / I, I = 1, N) ]

NOTE 4.71
Using the type definition for PERSON in Note 4.16, an example of the construction of a derived-type array
value is:

[ PERSON (40, ’SMITH’), PERSON (20, ’JONES’) ]

NOTE 4.72
Using the type definition for LINE in Note 4.27, an example of the construction of a derived-type scalar
value with a rank-2 array component is:

LINE (RESHAPE ( [ 0.0, 0.0, 1.0, 2.0 ], [ 2, 2 ] ), 0.1, 1)

The intrinsic function RESHAPE is used to construct a value that represents a solid line from (0, 0) to (1,
2) of width 0.1 centimeters.

NOTE 4.73
Examples of zero-size array constructors are:

[ INTEGER :: ]
[ ( I, I = 1, 0) ]

NOTE 4.74
An example of an array constructor that specifies a length type parameter:

[ CHARACTER(LEN=7) :: ’Takata’, ’Tanaka’, ’Hayashi’ ]

In this constructor, without the type specification, it would have been necessary to specify all of the constants
with the same character length.
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5 Attribute declarations and specifications

5.1 General

1 Every data object has a type and rank and may have type parameters and other properties that determine the
uses of the object. Collectively, these properties are the attributes of the object. The type of a named data
object is either specified explicitly in a type declaration statement or determined implicitly by the first letter of
its name (5.5). All of its attributes may be specified in a type declaration statement or individually in separate
specification statements.

2 A function has a type and rank and may have type parameters and other attributes that determine the uses of
the function. The type, rank, and type parameters are the same as those of its result variable.

3 A subroutine does not have a type, rank, or type parameters, but may have other attributes that determine the
uses of the subroutine.

5.2 Type declaration statements

5.2.1 Syntax

R501 type-declaration-stmt is declaration-type-spec [ [ , attr-spec ] ... :: ] entity-decl-list

1 The type declaration statement specifies the type of the entities in the entity declaration list. The type and type
parameters are those specified by declaration-type-spec, except that the character length type parameter may be
overridden for an entity by the appearance of * char-length in its entity-decl .

R502 attr-spec is access-spec
or ALLOCATABLE
or ASYNCHRONOUS
or CODIMENSION lbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION ( array-spec )
or EXTERNAL
or INTENT ( intent-spec )
or INTRINSIC
or language-binding-spec
or OPTIONAL
or PARAMETER
or POINTER
or PROTECTED
or SAVE
or TARGET
or VALUE
or VOLATILE

C501 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmt .

C502 (R501) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall consist of a
single entity-decl .

C503 (R501) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure names.
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2 The type declaration statement also specifies the attributes whose keywords appear in the attr-spec, except that
the DIMENSION attribute may be specified or overridden for an entity by the appearance of array-spec in its
entity-decl , and the CODIMENSION attribute may be specified or overridden for an entity by the appearance of
coarray-spec in its entity-decl .

R503 entity-decl is object-name [( array-spec )]
[ lbracket coarray-spec rbracket ]
[ * char-length ] [ initialization ]

or function-name [ * char-length ]

C504 (R503) If the entity is not of type character, * char-length shall not appear.

C505 (R501) If initialization appears, a double-colon separator shall appear before the entity-decl-list.

C506 (R503) An initialization shall not appear if object-name is a dummy argument, a function result, an
object in a named common block unless the type declaration is in a block data program unit, an object
in blank common, an allocatable variable, an external function, an intrinsic function, or an automatic
object.

C507 (R503) An initialization shall appear if the entity is a named constant (5.3.13).

C508 (R503) The function-name shall be the name of an external function, an intrinsic function, a dummy
function, a procedure pointer, or a statement function.

R504 object-name is name

C509 (R504) The object-name shall be the name of a data object.

R505 initialization is = constant-expr
or => null-init
or => initial-data-target

R506 null-init is function-reference

C510 (R503) If => appears in initialization, the entity shall have the POINTER attribute. If = appears in
initialization, the entity shall not have the POINTER attribute.

C511 (R503) If initial-data-target appears, object-name shall be data-pointer-initialization compatible with it
(4.5.4.6).

C512 (R506) The function-reference shall be a reference to the intrinsic function NULL with no arguments.

3 A name that identifies a specific intrinsic function in a scoping unit has a type as specified in 13.6. An explicit
type declaration statement is not required; however, it is permitted. Specifying a type for a generic intrinsic
function name in a type declaration statement is not sufficient, by itself, to remove the generic properties from
that function.

5.2.2 Automatic data objects

1 An automatic data object is a nondummy data object with a type parameter or array bound that depends on
the value of a specification-expr that is not a constant expression.

C513 An automatic object shall not have the SAVE attribute.

2 If a type parameter in a declaration-type-spec or in a char-length in an entity-decl for a local variable of a
subprogram or BLOCK construct is defined by an expression that is not a constant expression, the type parameter
value is established on entry to a procedure defined by the subprogram, or on execution of the BLOCK statement,
and is not affected by any redefinition or undefinition of the variables in the expression during execution of the
procedure or BLOCK construct.
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5.2.3 Initialization

1 The appearance of initialization in an entity-decl for an entity without the PARAMETER attribute specifies that
the entity is a variable with explicit initialization. Explicit initialization alternatively may be specified in a DATA
statement unless the variable is of a derived type for which default initialization is specified. If initialization is
= constant-expr , the variable is initially defined with the value specified by the constant-expr ; if necessary, the
value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees in type, type
parameters, and shape with the variable. A variable, or part of a variable, shall not be explicitly initialized more
than once in a program. If the variable is an array, it shall have its shape specified in either the type declaration
statement or a previous attribute specification statement in the same scoping unit.

2 If null-init appears, the initial association status of the object is disassociated. If initial-data-target appears, the
object is initially associated with the target.

3 Explicit initialization of a variable that is not in a common block implies the SAVE attribute, which may be
confirmed by explicit specification.

5.2.4 Examples of type declaration statements

NOTE 5.1

REAL A (10)
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2
COMPLEX :: CUBE_ROOT = (-0.5, 0.866)
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least -9999 to 9999.
REAL (KIND (0.0D0)) A
REAL (KIND = 2) B
COMPLEX (KIND = KIND (0.0D0)) :: C
CHARACTER (LEN = 10, KIND = 2) A
CHARACTER B, C *20
TYPE (PERSON) :: CHAIRMAN
TYPE(NODE), POINTER :: HEAD => NULL ( )
TYPE (humongous_matrix (k=8, d=1000)) :: mat

(The last line above uses a type definition from Note 4.23.)

5.3 Attributes

5.3.1 Constraints

1 An attribute may be explicitly specified by an attr-spec in a type declaration statement or by an attribute
specification statement (5.4). The following constraints apply to attributes.

C514 An entity shall not be explicitly given any attribute more than once in a scoping unit.

C515 An array-spec for a nonallocatable nonpointer function result shall be an explicit-shape-spec-list.

C516 The ALLOCATABLE, POINTER, or OPTIONAL attribute shall not be specified for a dummy argument
of a procedure that has a proc-language-binding-spec.

5.3.2 Accessibility attribute

1 The accessibility attribute specifies the accessibility of an entity via a particular identifier.
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R507 access-spec is PUBLIC
or PRIVATE

C517 (R507) An access-spec shall appear only in the specification-part of a module.

2 Identifiers that are specified in a module or accessible in that module by use association have either the PUBLIC
attribute or PRIVATE attribute. Identifiers for which an access-spec is not explicitly specified in that module have
the default accessibility attribute for that module. The default accessibility attribute for a module is PUBLIC
attribute unless it has been changed by a PRIVATE statement (5.4.1). Only identifiers that have the PUBLIC
attribute in that module are available to be accessed from that module by use association.

NOTE 5.2
In order for an identifier to be accessed by use association, it must have the PUBLIC attribute in the
module from which it is accessed. It can nonetheless have the PRIVATE attribute in a module in which it
is accessed by use association, and therefore not be available for use association from that module.

NOTE 5.3
An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z

5.3.3 ALLOCATABLE attribute

1 An entity with the ALLOCATABLE attribute is a variable for which space is allocated by an ALLOCATE
statement (6.7.1) or by an intrinsic assignment statement (7.2.1.3).

5.3.4 ASYNCHRONOUS attribute

1 An entity with the ASYNCHRONOUS attribute is a variable that may be subject to asynchronous input/output.

2 The base object of a variable shall have the ASYNCHRONOUS attribute in a scoping unit if

• the variable appears in an executable statement or specification expression in that scoping unit and
• any statement of the scoping unit is executed while the variable is a pending I/O storage sequence affector

(9.6.2.5).

3 Use of a variable in an asynchronous input/output statement can imply the ASYNCHRONOUS attribute; see
subclause 9.6.2.5.

4 An object with the ASYNCHRONOUS attribute may be associated with an object that does not have the ASYN-
CHRONOUS attribute, including by use (11.2.2) or host association (16.5.1.4). Within a BLOCK construct, an
object may have the ASYNCHRONOUS attribute even if it does not have the attribute outside the BLOCK
construct. If an object has the ASYNCHRONOUS attribute, then all of its subobjects also have the ASYN-
CHRONOUS attribute.

NOTE 5.4
The ASYNCHRONOUS attribute specifies the variables that might be associated with a pending in-
put/output storage sequence (the actual memory locations on which asynchronous input/output is being
performed) while the scoping unit is in execution. This information could be used by the compiler to disable
certain code motion optimizations.

5.3.5 BIND attribute for data entities

1 The BIND attribute for a variable or common block specifies that it is capable of interoperating with a C variable
whose name has external linkage (15.4).
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R508 language-binding-spec is BIND (C [, NAME = scalar-default-char-constant-expr ])

C518 An entity with the BIND attribute shall be a common block, variable, type, or procedure.

C519 A variable with the BIND attribute shall be declared in the specification part of a module.

C520 A variable with the BIND attribute shall be interoperable (15.3).

C521 Each variable of a common block with the BIND attribute shall be interoperable.

2 If the value of the scalar-default-char-constant-expr after discarding leading and trailing blanks has nonzero
length, it shall be valid as an identifier on the companion processor.

NOTE 5.5
ISO/IEC 9899:1999 provides a facility for creating C identifiers whose characters are not restricted to the
C basic character set. Such a C identifier is referred to as a universal character name (6.4.3 of ISO/IEC
9899:1999). The name of such a C identifier might include characters that are not part of the representation
method used by the processor for default character. If so, the C entity cannot be referenced from Fortran.

3 The BIND attribute for a variable or common block implies the SAVE attribute, which may be confirmed by
explicit specification.

5.3.6 CODIMENSION attribute

5.3.6.1 General

1 The CODIMENSION attribute specifies that an entity is a coarray. The coarray-spec specifies its corank or
corank and cobounds.

R509 coarray-spec is deferred-coshape-spec-list
or explicit-coshape-spec

C522 The sum of the rank and corank of an entity shall not exceed fifteen.

C523 A coarray shall be a component or a variable that is not a function result.

C524 A coarray shall not be of type C PTR or C FUNPTR (15.3.3).

C525 An entity whose type has a coarray ultimate component shall be a nonpointer nonallocatable scalar, shall
not be a coarray, and shall not be a function result.

C526 A coarray or an object with a coarray ultimate component shall be a dummy argument or have the
ALLOCATABLE or SAVE attribute.

NOTE 5.6
A coarray is permitted to be of a derived type with pointer or allocatable components. The target of such
a pointer component is always on the same image as the pointer.

NOTE 5.7
This requirement for the SAVE attribute has the effect that automatic coarrays are not permitted; for
example, the coarray WORK in the following code fragment is not valid.

SUBROUTINE SOLVE3(N,A,B)
INTEGER :: N
REAL :: A(N)[*], B(N)
REAL :: WORK(N)[*] ! Not permitted
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NOTE 5.7 (cont.)

If this were permitted, it would require an implicit synchronization on entry to the procedure.

Explicit-shape coarrays that are declared in a subprogram and are not dummy arguments are required to
have the SAVE attribute because otherwise they might be implemented as if they were automatic coarrays.

NOTE 5.8
Examples of CODIMENSION attribute specifications are:

REAL W(100,100)[0:2,*] ! Explicit-shape coarray
REAL, CODIMENSION[*] :: X ! Scalar coarray
REAL, CODIMENSION[3,*] :: Y(:) ! Assumed-shape coarray
REAL, CODIMENSION[:],ALLOCATABLE :: Z(:,:) ! Allocatable coarray

5.3.6.2 Allocatable coarray

1 A coarray with the ALLOCATABLE attribute has a specified corank, but its cobounds are determined by
allocation or argument association.

R510 deferred-coshape-spec is :

C527 A coarray with the ALLOCATABLE attribute shall have a coarray-spec that is a deferred-coshape-spec-
list.

2 The corank of an allocatable coarray is equal to the number of colons in its deferred-coshape-spec-list.

3 The cobounds of an unallocated allocatable coarray are undefined. No part of such a coarray shall be referenced
or defined; however, the coarray may appear as an argument to an intrinsic inquiry function as specified in 13.1.

4 The cobounds of an allocated allocatable coarray are those specified when the coarray is allocated.

5 The cobounds of an allocatable coarray are unaffected by any subsequent redefinition or undefinition of the
variables on which the cobounds’ expressions depend.

5.3.6.3 Explicit-coshape coarray

1 An explicit-coshape coarray is a named coarray that has its corank and cobounds declared by an explicit-coshape-
spec.

R511 explicit-coshape-spec is [ [ lower-cobound : ] upper-cobound , ]...
[ lower-cobound : ] *

C528 A nonallocatable coarray shall have a coarray-spec that is an explicit-coshape-spec.

2 The corank is equal to one plus the number of upper-cobounds.

R512 lower-cobound is specification-expr

R513 upper-cobound is specification-expr

C529 (R511) A lower-cobound or upper-cobound that is not a constant expression shall appear only in a
subprogram, BLOCK construct, or interface body.

3 If an explicit-coshape coarray is a local variable of a subprogram or BLOCK construct and has cobounds that are
not constant expressions, the cobounds are determined on entry to a procedure defined by the subprogram, or
on execution of the BLOCK statement, by evaluating the cobounds expressions. The cobounds of such a coarray
are unaffected by the redefinition or undefinition of any variable during execution of the procedure or BLOCK
construct.
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4 The values of each lower-cobound and upper-cobound determine the cobounds of the coarray along a particular
codimension. The cosubscript range of the coarray in that codimension is the set of integer values between and
including the lower and upper cobounds. If the lower cobound is omitted, the default value is 1. The upper
cobound shall not be less than the lower cobound.

5.3.7 CONTIGUOUS attribute

C530 An entity with the CONTIGUOUS attribute shall be an array pointer or an assumed-shape array.

1 The CONTIGUOUS attribute specifies that an assumed-shape array can only be argument associated with a
contiguous effective argument, or that an array pointer can only be pointer associated with a contiguous target.

2 An object is contiguous if it is

(1) an object with the CONTIGUOUS attribute,
(2) a nonpointer whole array that is not assumed-shape,
(3) an assumed-shape array that is argument associated with an array that is contiguous,
(4) an array allocated by an ALLOCATE statement,
(5) a pointer associated with a contiguous target, or
(6) a nonzero-sized array section (6.5.3) provided that

(a) its base object is contiguous,
(b) it does not have a vector subscript,
(c) the elements of the section, in array element order, are a subset of the base object elements

that are consecutive in array element order,
(d) if the array is of type character and a substring-range appears, the substring-range specifies all

of the characters of the parent-string (6.4.1),
(e) only its final part-ref has nonzero rank, and
(f) it is not the real or imaginary part (6.4.4) of an array of type complex.

3 An object is not contiguous if it is an array subobject, and

• the object has two or more elements,
• the elements of the object in array element order are not consecutive in the elements of the base object,
• the object is not of type character with length zero, and
• the object is not of a derived type that has no ultimate components other than zero-sized arrays and

characters with length zero.

4 It is processor dependent whether any other object is contiguous.

NOTE 5.9
If a derived type has only one component that is not zero-sized, it is processor-dependent whether a structure
component of a contiguous array of that type is contiguous. That is, the derived type might contain padding
on some processors.

NOTE 5.10
The CONTIGUOUS attribute makes it easier for a processor to enable optimizations that depend on
the memory layout of the object occupying a contiguous block of memory. Examples of CONTIGUOUS
attribute specifications are:

REAL, POINTER, CONTIGUOUS :: SPTR(:)
REAL, CONTIGUOUS, DIMENSION(:,:) :: D
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5.3.8 DIMENSION attribute

5.3.8.1 General

1 The DIMENSION attribute specifies that an entity is an array. The rank or rank and shape is specified by its
array-spec.

R514 dimension-spec is DIMENSION ( array-spec )

R515 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec
or implied-shape-spec-list

NOTE 5.11
The maximum rank of an entity is fifteen minus the corank.

NOTE 5.12
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array
REAL A (:), B (0:) ! Assumed-shape arrays
REAL, POINTER :: D (:, :) ! Array pointer
REAL, DIMENSION (:), POINTER :: P ! Array pointer
REAL, ALLOCATABLE, DIMENSION (:) :: E ! Allocatable array
REAL, PARAMETER :: V(0:*) = [0.1, 1.1] ! Implied-shape array

5.3.8.2 Explicit-shape array

R516 explicit-shape-spec is [ lower-bound : ] upper-bound

R517 lower-bound is specification-expr

R518 upper-bound is specification-expr

C531 (R516) An explicit-shape-spec whose bounds are not constant expressions shall appear only in a subpro-
gram, derived type definition, BLOCK construct, or interface body.

1 An explicit-shape array is an array whose shape is explicitly declared by an explicit-shape-spec-list. The rank is
equal to the number of explicit-shape-specs.

2 An explicit-shape array that is a named local variable of a subprogram or BLOCK construct may have bounds
that are not constant expressions. The bounds, and hence shape, are determined on entry to a procedure defined
by the subprogram, or on execution of the BLOCK statement, by evaluating the bounds’ expressions. The
bounds of such an array are unaffected by the redefinition or undefinition of any variable during execution of the
procedure or BLOCK construct.

3 The values of each lower-bound and upper-bound determine the bounds of the array along a particular dimension
and hence the extent of the array in that dimension. If lower-bound appears it specifies the lower bound; otherwise
the lower bound is 1. The value of a lower bound or an upper bound may be positive, negative, or zero. The
subscript range of the array in that dimension is the set of integer values between and including the lower and
upper bounds, provided the upper bound is not less than the lower bound. If the upper bound is less than the
lower bound, the range is empty, the extent in that dimension is zero, and the array is of zero size.
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5.3.8.3 Assumed-shape array

1 An assumed-shape array is a nonallocatable nonpointer dummy argument array that takes its shape from its
effective argument.

R519 assumed-shape-spec is [ lower-bound ] :

2 The rank is equal to the number of colons in the assumed-shape-spec-list.

3 The extent of a dimension of an assumed-shape array dummy argument is the extent of the corresponding
dimension of its effective argument. If the lower bound value is d and the extent of the corresponding dimension
of its effective argument is s, then the value of the upper bound is s+ d− 1. If lower-bound appears it specifies
the lower bound; otherwise the lower bound is 1.

5.3.8.4 Deferred-shape array

1 A deferred-shape array is an allocatable array or an array pointer. (An allocatable array has the ALLOCATABLE
attribute; an array pointer has the POINTER attribute.)

R520 deferred-shape-spec is :

C532 An array with the POINTER or ALLOCATABLE attribute shall have an array-spec that is a deferred-
shape-spec-list.

2 The rank is equal to the number of colons in the deferred-shape-spec-list.

3 The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are undefined.
No part of such an array shall be referenced or defined; however, the array may appear as an argument to an
intrinsic inquiry function as specified in 13.1.

4 The bounds of each dimension of an allocated allocatable array are those specified when the array is allocated
or, if it is a dummy argument, when it is argument associated with an allocated effective argument.

5 The bounds of each dimension of an associated array pointer, and hence its shape, may be specified

• in an ALLOCATE statement (6.7.1) when the target is allocated,
• by pointer assignment statement (7.2.2), or
• if it is a dummy argument, by argument association with a nonpointer actual argument or an associated

pointer effective argument.

6 The bounds of an array pointer or allocatable array are unaffected by any subsequent redefinition or undefinition
of variables on which the bounds’ expressions depend.

5.3.8.5 Assumed-size array

1 An assumed-size array is a dummy argument array whose size is assumed from that of its effective argument.
The rank and extents may differ for the effective and dummy arguments; only the size of the effective argument
is assumed by the dummy argument. An assumed-size array is declared with an assumed-size-spec.

R521 assumed-size-spec is [ explicit-shape-spec , ]... [ lower-bound : ] *

C533 An assumed-size-spec shall not appear except as the declaration of the array bounds of a dummy data
object.

C534 An assumed-size array with the INTENT (OUT) attribute shall not be polymorphic, finalizable, of a
type with an allocatable ultimate component, or of a type for which default initialization is specified.

2 The size of an assumed-size array is determined as follows.
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• If the effective argument associated with the assumed-size dummy array is an array of any type other than
default character, the size is that of the effective argument.
• If the actual argument corresponding to the assumed-size dummy array is an array element of any type

other than default character with a subscript order value of r (6.5.3.2) in an array of size x, the size of the
dummy array is x− r + 1.
• If the actual argument is a default character array, default character array element, or a default character

array element substring (6.4.1), and if it begins at character storage unit t of an array with c character
storage units, the size of the dummy array is MAX (INT ((c − t + 1)/e), 0), where e is the length of an
element in the dummy character array.
• If the actual argument is a default character scalar that is not an array element or array element substring

designator, the size of the dummy array is MAX (INT (l/e), 0), where e is the length of an element in the
dummy character array and l is the length of the actual argument.

3 The rank is equal to one plus the number of explicit-shape-specs.

4 An assumed-size array has no upper bound in its last dimension and therefore has no extent in its last dimension
and no shape. An assumed-size array shall not appear in a context that requires its shape.

5 If a list of explicit-shape-specs appears, it specifies the bounds of the first rank−1 dimensions. If lower-bound
appears it specifies the lower bound of the last dimension; otherwise that lower bound is 1. An assumed-size
array may be subscripted or sectioned (6.5.3.3). The upper bound shall not be omitted from a subscript triplet
in the last dimension.

6 If an assumed-size array has bounds that are not constant expressions, the bounds are determined on entry to
the procedure. The bounds of such an array are unaffected by the redefinition or undefinition of any variable
during execution of the procedure.

5.3.8.6 Implied-shape array

1 An implied-shape array is a named constant that takes its shape from the constant-expr in its declaration. An
implied-shape array is declared with an implied-shape-spec-list.

R522 implied-shape-spec is [ lower-bound : ] *

C535 An implied-shape array shall be a named constant.

2 The rank of an implied-shape array is the number of implied-shape-specs in the implied-shape-spec-list.

3 The extent of each dimension of an implied-shape array is the same as the extent of the corresponding dimension
of the constant-expr . The lower bound of each dimension is lower-bound , if it appears, and 1 otherwise; the upper
bound is one less than the sum of the lower bound and the extent.

5.3.9 EXTERNAL attribute

1 The EXTERNAL attribute specifies that an entity is an external procedure, dummy procedure, procedure pointer,
or block data subprogram.

C536 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.

C537 In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure defined by
the subprogram.

2 If an external procedure or dummy procedure is used as an actual argument or is the target of a procedure pointer
assignment, it shall be declared to have the EXTERNAL attribute.

3 A procedure that has both the EXTERNAL and POINTER attributes is a procedure pointer.
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NOTE 5.13
The EXTERNAL attribute can be specified in a type declaration statement, by an interface body (12.4.3.2),
by an EXTERNAL statement (12.4.3.5), or by a procedure declaration statement (12.4.3.6).

5.3.10 INTENT attribute

1 The INTENT attribute specifies the intended use of a dummy argument. An INTENT (IN) dummy argument
is suitable for receiving data from the invoking scoping unit, an INTENT (OUT) dummy argument is suitable
for returning data to the invoking scoping unit, and an INTENT (INOUT) dummy argument is suitable for use
both to receive data from and to return data to the invoking scoping unit.

R523 intent-spec is IN
or OUT
or INOUT

C538 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure pointer.

C539 (R523) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable definition
context (16.6.7).

C540 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context (16.6.8).

C541 An entity with the INTENT (OUT) attribute shall not be an allocatable coarray or have a subobject
that is an allocatable coarray.

C542 An entity with the INTENT (OUT) attribute shall not be of type LOCK TYPE (13.8.2.16) of the intrinsic
module ISO FORTRAN ENV or have a subcomponent of this type.

2 The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be defined nor
become undefined during the invocation and execution of the procedure. The INTENT (IN) attribute for a
pointer dummy argument specifies that during the invocation and execution of the procedure its association shall
not be changed except that it may become undefined if the target is deallocated other than through the pointer
(16.5.2.5).

3 The INTENT (OUT) attribute for a nonpointer dummy argument specifies that the dummy argument becomes
undefined on invocation of the procedure, except for any subcomponents that are default-initialized (4.5.4.6). Any
actual argument that corresponds to such a dummy argument shall be definable. The INTENT (OUT) attribute
for a pointer dummy argument specifies that on invocation of the procedure the pointer association status of the
dummy argument becomes undefined. Any actual argument that corresponds to such a pointer dummy shall be
a pointer variable. Any undefinition or definition implied by association of an actual argument with an INTENT
(OUT) dummy argument shall not affect any other entity within the statement that invokes the procedure.

4 The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that any actual argument that
corresponds to the dummy argument shall be definable. The INTENT (INOUT) attribute for a pointer dummy
argument specifies that any actual argument that corresponds to the dummy argument shall be a pointer variable.

NOTE 5.14
The INTENT attribute for an allocatable dummy argument applies to both the allocation status and the
definition status. An actual argument that corresponds to an INTENT (OUT) allocatable dummy argument
is deallocated on procedure invocation (6.7.3.2). To avoid this deallocation for coarrays, INTENT (OUT) is
not allowed for a dummy argument that is an allocatable coarray or has a subobject that is an allocatable
coarray.

5 If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of its effective
argument (12.5.2).
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NOTE 5.15
An example of INTENT specification is:

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

6 If an object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.

NOTE 5.16
If a dummy argument is a derived-type object with a pointer component, then the pointer as a pointer is
a subobject of the dummy argument, but the target of the pointer is not. Therefore, the restrictions on
subobjects of the dummy argument apply to the pointer in contexts where it is used as a pointer, but not in
contexts where it is dereferenced to indicate its target. For example, if X is a dummy argument of derived
type with an integer pointer component P, and X is INTENT (IN), then the statement

X%P => NEW_TARGET

is prohibited, but

X%P = 0

is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association of the
dummy argument; they do not restrict the operations allowed on its target.

NOTE 5.17
Argument intent specifications serve several purposes in addition to documenting the intended use of dummy
arguments. A processor can check whether an INTENT (IN) dummy argument is used in a way that could
redefine it. A slightly more sophisticated processor could check to see whether an INTENT (OUT) dummy
argument could possibly be referenced before it is defined. If the procedure’s interface is explicit, the
processor can also verify that actual arguments corresponding to INTENT (OUT) or INTENT (INOUT)
dummy arguments are definable. A more sophisticated processor could use this information to optimize
the translation of the referencing scoping unit by taking advantage of the fact that actual arguments
corresponding to INTENT (IN) dummy arguments will not be changed and that any prior value of an
actual argument corresponding to an INTENT (OUT) dummy argument will not be referenced and could
thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely the result
of executing that procedure. If an argument should retain its value rather than being redefined, INTENT
(INOUT) should be used rather than INTENT (OUT), even if there is no explicit reference to the value of
the dummy argument.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The actual argument corresponding
to an INTENT (INOUT) dummy argument is always required to be definable, while an actual argument
corresponding to a dummy argument without an INTENT attribute need be definable only if the dummy
argument is actually redefined.

5.3.11 INTRINSIC attribute

1 The INTRINSIC attribute specifies that the entity is an intrinsic procedure. The procedure name may be a
generic name (13.5), a specific name (13.6), or both.

2 If the specific name of an intrinsic procedure (13.6) is used as an actual argument, the name shall be explicitly
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specified to have the INTRINSIC attribute. An intrinsic procedure whose specific name is marked with a bullet
(•) in 13.6 shall not be used as an actual argument.

C543 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC attribute,
and it is also the generic name of one or more generic interfaces (12.4.3.2) accessible in the same scoping
unit, the procedures in the interfaces and the specific intrinsic procedures shall all be functions or all
be subroutines, and the characteristics of the specific intrinsic procedures and the procedures in the
interfaces shall differ as specified in 12.4.3.4.5.

5.3.12 OPTIONAL attribute

1 The OPTIONAL attribute specifies that the dummy argument need not have a corresponding actual argument
in a reference to the procedure (12.5.2.12).

C544 An entity with the OPTIONAL attribute shall be a dummy argument.

NOTE 5.18
The intrinsic function PRESENT (13.7.132) can be used to determine whether an optional dummy argument
has a corresponding actual argument.

5.3.13 PARAMETER attribute

1 The PARAMETER attribute specifies that an entity is a named constant. The entity has the value specified by
its constant-expr , converted, if necessary, to the type, type parameters and shape of the entity.

C545 An entity with the PARAMETER attribute shall not be a variable, a coarray, or a procedure.

2 A named constant shall not be referenced unless it has been defined previously in the same statement, defined in
a prior statement, or made accessible by use or host association.

NOTE 5.19
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE), PARAMETER :: DEFAULT = NODE(0, NULL ( ))

5.3.14 POINTER attribute

1 Entities with the POINTER attribute can be associated with different data objects or procedures during execution
of a program. A pointer is either a data pointer or a procedure pointer. Procedure pointers are described in
12.4.3.6.

C546 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or TARGET
attribute, and shall not be a coarray.

C547 A procedure with the POINTER attribute shall have the EXTERNAL attribute.

2 A data pointer shall not be referenced unless it is pointer associated with a target object that is defined. A data
pointer shall not be defined unless it is pointer associated with a target object that is definable.

3 If a data pointer is associated, the values of its deferred type parameters are the same as the values of the
corresponding type parameters of its target.

4 A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.
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NOTE 5.20
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

For a more elaborate example see C.2.1.

5.3.15 PROTECTED attribute

1 The PROTECTED attribute imposes limitations on the usage of module entities.

C548 The PROTECTED attribute shall be specified only in the specification part of a module.

C549 An entity with the PROTECTED attribute shall be a procedure pointer or variable.

C550 An entity with the PROTECTED attribute shall not be in a common block.

C551 A nonpointer object that has the PROTECTED attribute and is accessed by use association shall not
appear in a variable definition context (16.6.7) or as the data-target or proc-target in a pointer-assignment-
stmt .

C552 A pointer that has the PROTECTED attribute and is accessed by use association shall not appear in a
pointer association context (16.6.8).

2 Other than within the module in which an entity is given the PROTECTED attribute, or within any of its
descendants,

• if it is a nonpointer object, it is not definable, and
• if it is a pointer, its association status shall not be changed except that it may become undefined if its target

is deallocated other than through the pointer (16.5.2.5) or if its target becomes undefined by execution of
a RETURN or END statement.

3 If an object has the PROTECTED attribute, all of its subobjects have the PROTECTED attribute.

NOTE 5.21
An example of the PROTECTED attribute:

MODULE temperature
REAL, PROTECTED :: temp_c, temp_f

CONTAINS
SUBROUTINE set_temperature_c(c)
REAL, INTENT(IN) :: c
temp_c = c
temp_f = temp_c*(9.0/5.0) + 32

END SUBROUTINE
END MODULE

The PROTECTED attribute ensures that the variables temp_c and temp_f cannot be modified other than
via the set_temperature_c procedure, thus keeping them consistent with each other.

5.3.16 SAVE attribute

1 The SAVE attribute specifies that a local variable of a program unit or subprogram retains its association status,
allocation status, definition status, and value after execution of a RETURN or END statement unless it is a
pointer and its target becomes undefined (16.5.2.5(5)). If it is a local variable of a subprogram it is shared by all
instances (12.6.2.4) of the subprogram.
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2 The SAVE attribute specifies that a local variable of a BLOCK construct retains its association status, allocation
status, definition status, and value after termination of the construct unless it is a pointer and its target becomes
undefined (16.5.2.5(6)). If the BLOCK construct is within a subprogram the variable is shared by all instances
(12.6.2.4) of the subprogram.

3 Giving a common block the SAVE attribute confers the attribute on all entities in the common block.

C553 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.

C554 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic data
object, or an object that is in a common block.

4 A variable, common block, or procedure pointer declared in the scoping unit of a main program, module, or
submodule implicitly has the SAVE attribute, which may be confirmed by explicit specification. If a common
block has the SAVE attribute in any other kind of scoping unit, it shall have the SAVE attribute in every scoping
unit that is not a main program, module, or submodule.

5.3.17 TARGET attribute

1 The TARGET attribute specifies that a data object may have a pointer associated with it (7.2.2). An object
without the TARGET attribute shall not have a pointer associated with it.

C555 An entity with the TARGET attribute shall be a variable.

C556 An entity with the TARGET attribute shall not have the POINTER attribute.

NOTE 5.22
In addition to variables explicitly declared to have the TARGET attribute, the objects created by allocation
of pointers (6.7.1.4) have the TARGET attribute.

2 If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET attribute.

NOTE 5.23
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

For a more elaborate example see C.2.2.

NOTE 5.24
Every object designator that starts from an object with the TARGET attribute will have either the TAR-
GET or POINTER attribute. If pointers are involved, the designator might not necessarily be a subobject
of the original object, but because pointers may point only to entities with the TARGET attribute, there
is no way to end up at a nonpointer that does not have the TARGET attribute.

5.3.18 VALUE attribute

1 The VALUE attribute specifies a type of argument association (12.5.2.4) for a dummy argument.

C557 An entity with the VALUE attribute shall be a dummy data object that is not an assumed-size array or
a coarray, and does not have a coarray ultimate component.

C558 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT), INTENT
(OUT), POINTER, or VOLATILE attributes.
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5.3.19 VOLATILE attribute

1 The VOLATILE attribute specifies that an object may be referenced, defined, or become undefined, by means
not specified by the program. A pointer with the VOLATILE attribute may additionally have its association
status, dynamic type and type parameters, and array bounds changed by means not specified by the program.
An allocatable object with the VOLATILE attribute may additionally have its allocation status, dynamic type
and type parameters, and array bounds changed by means not specified by the program.

C559 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy argu-
ment.

C560 The VOLATILE attribute shall not be specified for a coarray that is accessed by use (11.2.2) or host
(16.5.1.4) association.

C561 Within a BLOCK construct (8.1.4), the VOLATILE attribute shall not be specified for a coarray that is
not a construct entity (16.4) of that construct.

2 A noncoarray object that has the VOLATILE attribute may be associated with an object that does not have the
VOLATILE attribute, including by use (11.2.2) or host association (16.5.1.4). Within a BLOCK construct (8.1.4),
a noncoarray object may have the VOLATILE attribute even if it does not have the attribute outside the BLOCK
construct. The relationship between coarrays, the VOLATILE attribute, and argument association is described
in 12.5.2.8. The relationship between between coarrays, the VOLATILE attribute, and pointer association is
described in 7.2.2.3.

3 A pointer should have the VOLATILE attribute if its target has the VOLATILE attribute. If, by means not
specified by the program, the target is referenced, defined, or becomes undefined, the pointer shall have the
VOLATILE attribute. All members of an EQUIVALENCE group should have the VOLATILE attribute if any
member has the VOLATILE attribute.

4 If an object has the VOLATILE attribute, then all of its subobjects also have the VOLATILE attribute.

NOTE 5.25
The Fortran processor should use the most recent definition of a volatile object when a value is required.
Likewise, it should make the most recent Fortran definition available. It is the programmer’s responsibility
to manage any interaction with non-Fortran processes.

5.4 Attribute specification statements

5.4.1 Accessibility statement

R524 access-stmt is access-spec [ [ :: ] access-id-list ]

R525 access-id is use-name
or generic-spec

C562 (R524) An access-stmt shall appear only in the specification-part of a module. Only one accessibility
statement with an omitted access-id-list is permitted in the specification-part of a module.

C563 (R525) Each use-name shall be the name of a named variable, procedure, derived type, named constant,
or namelist group.

1 An access-stmt with an access-id-list specifies the accessibility attribute, PUBLIC or PRIVATE, of each access-id
in the list. An access-stmt without an access-id list specifies the default accessibility that applies to all potentially
accessible identifiers in the specification-part of the module.The statement

2 PUBLIC
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3 specifies a default of public accessibility.The statement

4 PRIVATE

5 specifies a default of private accessibility. If no such statement appears in a module, the default is public
accessibility.

NOTE 5.26
Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

5.4.2 ALLOCATABLE statement

R526 allocatable-stmt is ALLOCATABLE [ :: ] allocatable-decl-list

R527 allocatable-decl is object-name [ ( array-spec ) ]
[ lbracket coarray-spec rbracket ]

1 The ALLOCATABLE statement specifies the ALLOCATABLE attribute (5.3.3) for a list of objects.

NOTE 5.27
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR

5.4.3 ASYNCHRONOUS statement

R528 asynchronous-stmt is ASYNCHRONOUS [ :: ] object-name-list

1 The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (5.3.4) for a list of objects.

5.4.4 BIND statement

R529 bind-stmt is language-binding-spec [ :: ] bind-entity-list

R530 bind-entity is entity-name
or / common-block-name /

C564 (R529) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of a single
bind-entity .

1 The BIND statement specifies the BIND attribute for a list of variables and common blocks.

5.4.5 CODIMENSION statement

R531 codimension-stmt is CODIMENSION [ :: ] codimension-decl-list

R532 codimension-decl is coarray-name lbracket coarray-spec rbracket

1 The CODIMENSION statement specifies the CODIMENSION attribute (5.3.6) for a list of objects.
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NOTE 5.28
An example of a CODIMENSION statement is:

CODIMENSION a[*], b[3,*], c[:]

5.4.6 CONTIGUOUS statement

R533 contiguous-stmt is CONTIGUOUS [ :: ] object-name-list

1 The CONTIGUOUS statement specifies the CONTIGUOUS attribute (5.3.7) for a list of objects.

5.4.7 DATA statement

R534 data-stmt is DATA data-stmt-set [ [ , ] data-stmt-set ] ...

1 The DATA statement specifies explicit initialization (5.2.3).

2 If a nonpointer object has default initialization, it shall not appear in a data-stmt-object-list.

3 A variable that appears in a DATA statement and has not been typed previously may appear in a subsequent type
declaration only if that declaration confirms the implicit typing. An array name, array section, or array element
that appears in a DATA statement shall have had its array properties established by a previous specification
statement.

4 Except for variables in named common blocks, a named variable has the SAVE attribute if any part of it is
initialized in a DATA statement, and this may be confirmed by explicit specification.

R535 data-stmt-set is data-stmt-object-list / data-stmt-value-list /

R536 data-stmt-object is variable
or data-implied-do

R537 data-implied-do is ( data-i-do-object-list , data-i-do-variable =
scalar-int-constant-expr ,
scalar-int-constant-expr
[ , scalar-int-constant-expr ] )

R538 data-i-do-object is array-element
or scalar-structure-component
or data-implied-do

R539 data-i-do-variable is do-variable

C565 A data-stmt-object or data-i-do-object shall not be a coindexed variable.

C566 (R536) In a variable that is a data-stmt-object , each subscript, section subscript, substring starting point,
and substring ending point shall be a constant expression.

C567 (R536) A variable whose designator appears as a data-stmt-object or a data-i-do-object shall not be a
dummy argument, accessed by use or host association, in a named common block unless the DATA
statement is in a block data program unit, in blank common, a function name, a function result name,
an automatic object, or an allocatable variable.

C568 (R536) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an object designator
in which a pointer appears other than as the entire rightmost part-ref .

C569 (R538) The array-element shall be a variable.

C570 (R538) The scalar-structure-component shall be a variable.

104 Attribute declarations and specifications 5.4.6



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

C571 (R538) The scalar-structure-component shall contain at least one part-ref that contains a subscript-list.

C572 (R538) In an array-element or scalar-structure-component that is a data-i-do-object , any subscript shall
be a constant expression, and any primary within that subscript that is a data-i-do-variable shall be a
DO variable of this data-implied-do or of a containing data-implied-do.

R540 data-stmt-value is [ data-stmt-repeat * ] data-stmt-constant

R541 data-stmt-repeat is scalar-int-constant
or scalar-int-constant-subobject

C573 (R541) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named constant, it
shall have been declared previously in the scoping unit or made accessible by use or host association.

R542 data-stmt-constant is scalar-constant
or scalar-constant-subobject
or signed-int-literal-constant
or signed-real-literal-constant
or null-init
or initial-data-target
or structure-constructor

C574 (R542) If a DATA statement constant value is a named constant or a structure constructor, the named
constant or derived type shall have been declared previously in the scoping unit or accessed by use or
host association.

C575 (R542) If a data-stmt-constant is a structure-constructor , it shall be a constant expression.

R543 int-constant-subobject is constant-subobject

C576 (R543) int-constant-subobject shall be of type integer.

R544 constant-subobject is designator

C577 (R544) constant-subobject shall be a subobject of a constant.

C578 (R544) Any subscript, substring starting point, or substring ending point shall be a constant expression.

5 The data-stmt-object-list is expanded to form a sequence of pointers and scalar variables, referred to as “sequence
of variables” in subsequent text. A nonpointer array whose unqualified name appears as a data-stmt-object or
data-i-do-object is equivalent to a complete sequence of its array elements in array element order (6.5.3.2). An
array section is equivalent to the sequence of its array elements in array element order. A data-implied-do is
expanded to form a sequence of array elements and structure components, under the control of the data-i-do-
variable, as in the DO construct (8.1.6.6).

6 The data-stmt-value-list is expanded to form a sequence of data-stmt-constants. A data-stmt-repeat indicates the
number of times the following data-stmt-constant is to be included in the sequence; omission of a data-stmt-repeat
has the effect of a repeat factor of 1.

7 A zero-sized array or a data-implied-do with an iteration count of zero contributes no variables to the expanded
sequence of variables, but a zero-length scalar character variable does contribute a variable to the expanded
sequence. A data-stmt-constant with a repeat factor of zero contributes no data-stmt-constants to the expanded
sequence of scalar data-stmt-constants.

8 The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence. Each data-stmt-
constant specifies the initial value, initial data target, or null-init for the corresponding variable. The lengths of
the two expanded sequences shall be the same.

9 A data-stmt-constant shall be null-init or initial-data-target if and only if the corresponding data-stmt-object has
the POINTER attribute. If data-stmt-constant is null-init , the initial association status of the corresponding data
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statement object is disassociated. If data-stmt-constant is initial-data-target the corresponding data statement
object shall be data-pointer-initialization compatible with the initial data target; the data statement object is
initially associated with the target.

10 A data-stmt-constant other than boz-literal-constant , null-init , or initial-data-target shall be compatible with its
corresponding variable according to the rules of intrinsic assignment (7.2.1.2). The variable is initially defined
with the value specified by the data-stmt-constant ; if necessary, the value is converted according to the rules of
intrinsic assignment (7.2.1.3) to a value that agrees in type, type parameters, and shape with the variable.

11 If a data-stmt-constant is a boz-literal-constant , the corresponding variable shall be of type integer. The boz-
literal-constant is treated as if it were converted by the intrinsic function INT (13.7.81) to type integer with the
kind type parameter of the variable.

NOTE 5.29
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME
INTEGER, DIMENSION (0:9) :: MILES
REAL, DIMENSION (100, 100) :: SKEW
TYPE (NODE), POINTER :: HEAD_OF_LIST
TYPE (PERSON) MYNAME, YOURNAME
DATA NAME / ’JOHN DOE’ /, MILES / 10 * 0 /
DATA ((SKEW (K, J), J = 1, K), K = 1, 100) / 5050 * 0.0 /
DATA ((SKEW (K, J), J = K + 1, 100), K = 1, 99) / 4950 * 1.0 /
DATA HEAD_OF_LIST / NULL() /
DATA MYNAME / PERSON (21, ’JOHN SMITH’) /
DATA YOURNAME % AGE, YOURNAME % NAME / 35, ’FRED BROWN’ /

The character variable NAME is initialized with the value JOHN DOE with padding on the right because
the length of the constant is less than the length of the variable. All ten elements of the integer array
MILES are initialized to zero. The two-dimensional array SKEW is initialized so that the lower triangle
of SKEW is zero and the strict upper triangle is one. The structures MYNAME and YOURNAME are
declared using the derived type PERSON from Note 4.16. The pointer HEAD OF LIST is declared using
the derived type NODE from Note 4.36; it is initially disassociated. MYNAME is initialized by a structure
constructor. YOURNAME is initialized by supplying a separate value for each component.

5.4.8 DIMENSION statement

R545 dimension-stmt is DIMENSION [ :: ] array-name ( array-spec )
[ , array-name ( array-spec ) ] ...

1 The DIMENSION statement specifies the DIMENSION attribute (5.3.8) for a list of objects.

NOTE 5.30
An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

5.4.9 INTENT statement

R546 intent-stmt is INTENT ( intent-spec ) [ :: ] dummy-arg-name-list

1 The INTENT statement specifies the INTENT attribute (5.3.10) for the dummy arguments in the list.

106 Attribute declarations and specifications 5.4.8



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

NOTE 5.31
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B

5.4.10 OPTIONAL statement

R547 optional-stmt is OPTIONAL [ :: ] dummy-arg-name-list

1 The OPTIONAL statement specifies the OPTIONAL attribute (5.3.12) for the dummy arguments in the list.

NOTE 5.32
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

5.4.11 PARAMETER statement

1 The PARAMETER statement specifies the PARAMETER attribute (5.3.13) and the values for the named
constants in the list.

R548 parameter-stmt is PARAMETER ( named-constant-def -list )

R549 named-constant-def is named-constant = constant-expr

2 If a named constant is defined by a PARAMETER statement, it shall not be subsequently declared to have a
type or type parameter value that differs from the type and type parameters it would have if declared implicitly
(5.5). A named array constant defined by a PARAMETER statement shall have its shape specified in a prior
specification statement.

3 The value of each named constant is that specified by the corresponding constant expression; if necessary, the
value is converted according to the rules of intrinsic assignment (7.2.1.3) to a value that agrees in type, type
parameters, and shape with the named constant.

NOTE 5.33
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

5.4.12 POINTER statement

R550 pointer-stmt is POINTER [ :: ] pointer-decl-list

R551 pointer-decl is object-name [ ( deferred-shape-spec-list ) ]
or proc-entity-name

C579 A proc-entity-name shall have the EXTERNAL attribute.

1 The POINTER statement specifies the POINTER attribute (5.3.14) for a list of entities.

NOTE 5.34
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
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NOTE 5.34 (cont.)

POINTER :: CURRENT, A (:, :)

5.4.13 PROTECTED statement

R552 protected-stmt is PROTECTED [ :: ] entity-name-list

1 The PROTECTED statement specifies the PROTECTED attribute (5.3.15) for a list of entities.

5.4.14 SAVE statement

R553 save-stmt is SAVE [ [ :: ] saved-entity-list ]

R554 saved-entity is object-name
or proc-pointer-name
or / common-block-name /

R555 proc-pointer-name is name

C580 (R553) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no other
appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.

C581 A proc-pointer-name shall be the name of a procedure pointer.

1 A SAVE statement with a saved entity list specifies the SAVE attribute (5.3.16) for a list of entities. A SAVE
statement without a saved entity list is treated as though it contained the names of all allowed items in the same
scoping unit.

NOTE 5.35
An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

5.4.15 TARGET statement

R556 target-stmt is TARGET [ :: ] target-decl-list
R557 target-decl is object-name [ ( array-spec ) ]

[ lbracket coarray-spec rbracket ]

1 The TARGET statement specifies the TARGET attribute (5.3.17) for a list of objects.

NOTE 5.36
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B

5.4.16 VALUE statement

R558 value-stmt is VALUE [ :: ] dummy-arg-name-list

1 The VALUE statement specifies the VALUE attribute (5.3.18) for a list of dummy arguments.

5.4.17 VOLATILE statement

R559 volatile-stmt is VOLATILE [ :: ] object-name-list
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1 The VOLATILE statement specifies the VOLATILE attribute (5.3.19) for a list of objects.

5.5 IMPLICIT statement

1 In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all implicitly typed
data entities whose names begin with one of the letters specified in the statement. Alternatively, it may indicate
that no implicit typing rules are to apply in a particular scoping unit.

R560 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

R561 implicit-spec is declaration-type-spec ( letter-spec-list )

R562 letter-spec is letter [ – letter ]

C582 (R560) If IMPLICIT NONE is specified in a scoping unit, it shall precede any PARAMETER statements
that appear in the scoping unit and there shall be no other IMPLICIT statements in the scoping unit.

C583 (R562) If the minus and second letter appear, the second letter shall follow the first letter alphabetically.

2 A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing all of the
letters in alphabetical order in the alphabetic sequence from the first letter through the second letter. For example,
A–C is equivalent to A, B, C. The same letter shall not appear as a single letter, or be included in a range of
letters, more than once in all of the IMPLICIT statements in a scoping unit.

3 In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z and a
type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in its letter-spec-list.
IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not specified for a letter, the
default for a program unit or an interface body is default integer if the letter is I, J, ..., or N and default real
otherwise, and the default for an internal or module procedure is the mapping in the host scoping unit.

4 Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic function, and
is not accessed by use or host association is declared implicitly to be of the type (and type parameters) mapped
from the first letter of its name, provided the mapping is not null. The mapping for the first letter of the data
entity shall either have been established by a prior IMPLICIT statement or be the default mapping for the letter.
The mapping may be to a derived type that is inaccessible in the local scope if the derived type is accessible
in the host scoping unit. The data entity is treated as if it were declared in an explicit type declaration in the
outermost scoping unit in which it appears. An explicit type specification in a FUNCTION statement overrides
an IMPLICIT statement for the name of the result variable of that function subprogram.

NOTE 5.37
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE
...
INTERFACE

FUNCTION FUN (I) ! Not all data entities need to
INTEGER FUN ! be declared explicitly

END FUNCTION FUN
END INTERFACE

CONTAINS
FUNCTION JFUN (J) ! All data entities need to

INTEGER JFUN, J ! be declared explicitly.
...

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE
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NOTE 5.37 (cont.)

SUBROUTINE SUB
IMPLICIT COMPLEX (C)
C = (3.0, 2.0) ! C is implicitly declared COMPLEX
...

CONTAINS
SUBROUTINE SUB1

IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) ! C is host associated and of

! type complex
Z = 1.0 ! Z is implicitly declared REAL
A = 2 ! A is implicitly declared INTEGER
CC = 1 ! CC is implicitly declared INTEGER
...

END SUBROUTINE SUB1
SUBROUTINE SUB2

Z = 2.0 ! Z is implicitly declared REAL and
! is different from the variable of
! the same name in SUB1

...
END SUBROUTINE SUB2
SUBROUTINE SUB3

USE EXAMPLE_MODULE ! Accesses integer function FUN
! by use association

Q = FUN (K) ! Q is implicitly declared REAL and
... ! K is implicitly declared INTEGER

END SUBROUTINE SUB3
END SUBROUTINE SUB

NOTE 5.38
The following is an example of a mapping to a derived type that is inaccessible in the local scope:

PROGRAM MAIN
IMPLICIT TYPE(BLOB) (A)
TYPE BLOB
INTEGER :: I

END TYPE BLOB
TYPE(BLOB) :: B
CALL STEVE

CONTAINS
SUBROUTINE STEVE
INTEGER :: BLOB
..
AA = B
..

END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE, it is not possible to explicitly declare a variable to be of type BLOB because
BLOB has been given a different meaning, but implicit mapping for the letter A still maps to type BLOB,
so AA is of type BLOB.
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5.6 NAMELIST statement

1 A NAMELIST statement specifies a group of named data objects, which may be referred to by a single name for
the purpose of data transfer (9.6, 10.11).

R563 namelist-stmt is NAMELIST
/ namelist-group-name / namelist-group-object-list
[ [ , ] / namelist-group-name /
namelist-group-object-list ] . . .

C584 (R563) The namelist-group-name shall not be a name accessed by use association.

R564 namelist-group-object is variable-name

C585 (R564) A namelist-group-object shall not be an assumed-size array.

C586 (R563) A namelist-group-object shall not have the PRIVATE attribute if the namelist-group-name has
the PUBLIC attribute.

2 The order in which the variables are specified in the NAMELIST statement determines the order in which the
values appear on output.

3 Any namelist-group-name may occur more than once in the NAMELIST statements in a scoping unit. The
namelist-group-object-list following each successive appearance of the same namelist-group-name in a scoping
unit is treated as a continuation of the list for that namelist-group-name.

4 A namelist group object may be a member of more than one namelist group.

5 A namelist group object shall either be accessed by use or host association or shall have its type, type parameters,
and shape specified by previous specification statements or the procedure heading in the same scoping unit or
by the implicit typing rules in effect for the scoping unit. If a namelist group object is typed by the implicit
typing rules, its appearance in any subsequent type declaration statement shall confirm the implied type and
type parameters.

NOTE 5.39
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C

5.7 Storage association of data objects

5.7.1 EQUIVALENCE statement

5.7.1.1 General

1 An EQUIVALENCE statement is used to specify the sharing of storage units by two or more objects in a scoping
unit. This causes storage association (16.5.3) of the objects that share the storage units.

2 If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement does not cause
type conversion or imply mathematical equivalence. If a scalar and an array are equivalenced, the scalar does
not have array properties and the array does not have the properties of a scalar.

R565 equivalence-stmt is EQUIVALENCE equivalence-set-list

R566 equivalence-set is ( equivalence-object , equivalence-object-list )

R567 equivalence-object is variable-name
or array-element
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or substring

C587 (R567) An equivalence-object shall not be a designator with a base object that is a dummy argument,
a result variable, a pointer, an allocatable variable, a derived-type object that has an allocatable or
pointer ultimate component, an object of a nonsequence derived type, an automatic object, a coarray,
a variable with the BIND attribute, a variable in a common block that has the BIND attribute, or a
named constant.

C588 (R567) An equivalence-object shall not be a designator that has more than one part-ref .

C589 (R567) An equivalence-object shall not have the TARGET attribute.

C590 (R567) Each subscript or substring range expression in an equivalence-object shall be an integer constant
expression (7.1.12).

C591 (R566) If an equivalence-object is default integer, default real, double precision real, default complex,
default logical, or of numeric sequence type, all of the objects in the equivalence set shall be of these
types and kinds.

C592 (R566) If an equivalence-object is default character or of character sequence type, all of the objects in
the equivalence set shall be of these types and kinds.

C593 (R566) If an equivalence-object is of a sequence type that is not a numeric sequence or character sequence
type, all of the objects in the equivalence set shall be of the same type with the same type parameter
values.

C594 (R566) If an equivalence-object is of an intrinsic type but is not default integer, default real, double
precision real, default complex, default logical, or default character, all of the objects in the equivalence
set shall be of the same type with the same kind type parameter value.

C595 (R567) If an equivalence-object has the PROTECTED attribute, all of the objects in the equivalence set
shall have the PROTECTED attribute.

C596 (R567) The name of an equivalence-object shall not be a name made accessible by use association.

C597 (R567) A substring shall not have length zero.

NOTE 5.40
The EQUIVALENCE statement allows the equivalencing of sequence structures and the equivalencing of
objects of intrinsic type with nondefault type parameters, but there are strict rules regarding the appearance
of these objects in an EQUIVALENCE statement.

A structure that appears in an EQUIVALENCE statement shall be a sequence structure. If a sequence
structure is not of numeric sequence type or of character sequence type, it shall be equivalenced only to
objects of the same type with the same type parameter values.

A structure of a numeric sequence type shall be equivalenced only to another structure of a numeric sequence
type, an object that is default integer, default real, double precision real, default complex, or default logical
type such that components of the structure ultimately become associated only with objects of these types
and kinds.

A structure of a character sequence type shall be equivalenced only to a default character object or another
structure of a character sequence type.

An object of intrinsic type with nondefault kind type parameters shall not be equivalenced to objects of
different type or kind type parameters.

Further rules on the interaction of EQUIVALENCE statements and default initialization are given in
16.5.3.4.
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5.7.1.2 Equivalence association

1 An EQUIVALENCE statement specifies that the storage sequences (16.5.3.2) of the data objects specified in an
equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set , if any, have the
same first storage unit, and all of the zero-sized sequences in the equivalence-set , if any, are storage associated with
one another and with the first storage unit of any nonzero-sized sequences. This causes the storage association
of the data objects in the equivalence-set and may cause storage association of other data objects.

2 If any data object in an equivalence-set has the SAVE attribute, all other objects in the equivalence-set have the
SAVE attribute; this may be confirmed by explicit specification.

5.7.1.3 Equivalence of default character objects

1 A default character data object shall not be equivalenced to an object that is not default character and not of a
character sequence type. The lengths of equivalenced default character objects need not be the same.

2 An EQUIVALENCE statement specifies that the storage sequences of all the default character data objects
specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in the equivalence-set , if
any, have the same first character storage unit, and all of the zero-sized sequences in the equivalence-set , if any,
are storage associated with one another and with the first character storage unit of any nonzero-sized sequences.
This causes the storage association of the data objects in the equivalence-set and may cause storage association
of other data objects.

NOTE 5.41
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

1 2 3 4 5 6 7
|--- --- A --- ---|

|--- --- B --- ---|
|--- C(1) ---| |--- C(2) ---|

5.7.1.4 Array names and array element designators

1 For a nonzero-sized array, the use of the array name unqualified by a subscript list as an equivalence-object has
the same effect as using an array element designator that identifies the first element of the array.

5.7.1.5 Restrictions on EQUIVALENCE statements

1 An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than once in a
storage sequence.

NOTE 5.42
For example:

REAL, DIMENSION (2) :: A
REAL :: B
EQUIVALENCE (A (1), B), (A (2), B) ! Not standard-conforming

is prohibited, because it would specify the same storage unit for A (1) and A (2).
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2 An EQUIVALENCE statement shall not specify that consecutive storage units are to be nonconsecutive.

NOTE 5.43
For example, the following is prohibited:

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A (1), D (1)), (A (2), D (2)) ! Not standard-conforming

5.7.2 COMMON statement

5.7.2.1 General

1 The COMMON statement specifies blocks of physical storage, called common blocks, that can be accessed by
any of the scoping units in a program. Thus, the COMMON statement provides a global data facility based on
storage association (16.5.3).

2 A common block that does not have a name is called blank common.

R568 common-stmt is COMMON
[ / [ common-block-name ] / ] common-block-object-list
[ [ , ] / [ common-block-name ] /
common-block-object-list ] ...

R569 common-block-object is variable-name [ ( array-spec ) ]
or proc-pointer-name

C598 (R569) An array-spec in a common-block-object shall be an explicit-shape-spec-list.

C599 (R569) Only one appearance of a given variable-name or proc-pointer-name is permitted in all common-
block-object-lists within a scoping unit.

C5100 (R569) A common-block-object shall not be a dummy argument, a result variable, an allocatable variable,
a derived-type object with an ultimate component that is allocatable, an automatic object, a variable
with the BIND attribute, an unlimited polymorphic pointer, or a coarray.

C5101 (R569) If a common-block-object is of a derived type, the type shall have the BIND attribute or the
SEQUENCE attribute and it shall have no default initialization.

C5102 (R569) A variable-name or proc-pointer-name shall not be a name made accessible by use association.

3 In each COMMON statement, the data objects whose names appear in a common block object list following a
common block name are declared to be in that common block. If the first common block name is omitted, all
data objects whose names appear in the first common block object list are specified to be in blank common.
Alternatively, the appearance of two slashes with no common block name between them declares the data objects
whose names appear in the common block object list that follows to be in blank common.

4 Any common block name or an omitted common block name for blank common may occur more than once in one
or more COMMON statements in a scoping unit. The common block list following each successive appearance
of the same common block name in a scoping unit is treated as a continuation of the list for that common block
name. Similarly, each blank common block object list in a scoping unit is treated as a continuation of blank
common.

5 The form variable-name (array-spec) specifies the DIMENSION attribute for that variable.

6 If derived-type objects of numeric sequence type or character sequence type (4.5.2) appear in common, it is as if
the individual components were enumerated directly in the common list.
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NOTE 5.44
Examples of COMMON statements are:

COMMON /BLOCKA/ A, B, D (10, 30)
COMMON I, J, K

5.7.2.2 Common block storage sequence

1 For each common block in a scoping unit, a common block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the sequence of storage units in the storage sequences
(16.5.3.2) of all data objects in the common block object lists for the common block. The order of
the storage sequences is the same as the order of the appearance of the common block object lists in
the scoping unit.

(2) The storage sequence formed in (1) is extended to include all storage units of any storage sequence
associated with it by equivalence association. The sequence shall be extended only by adding storage
units beyond the last storage unit. Data objects associated with an entity in a common block are
considered to be in that common block.

2 Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit contribute to common
block storage sequences formed in that scoping unit.

5.7.2.3 Size of a common block

1 The size of a common block is the size of its common block storage sequence, including any extensions of the
sequence resulting from equivalence association.

5.7.2.4 Common association

1 Within a program, the common block storage sequences of all nonzero-sized common blocks with the same name
have the same first storage unit, and the common block storage sequences of all zero-sized common blocks with the
same name are storage associated with one another. Within a program, the common block storage sequences of
all nonzero-sized blank common blocks have the same first storage unit and the storage sequences of all zero-sized
blank common blocks are associated with one another and with the first storage unit of any nonzero-sized blank
common blocks. This results in the association of objects in different scoping units. Use or host association may
cause these associated objects to be accessible in the same scoping unit.

2 A nonpointer object that is default integer, default real, double precision real, default complex, default logical,
or of numeric sequence type shall be associated only with nonpointer objects of these types and kinds.

3 A nonpointer object that is default character or of character sequence type shall be associated only with nonpointer
objects of these types and kinds.

4 A nonpointer object of a derived type that is not a numeric sequence or character sequence type shall be associated
only with nonpointer objects of the same type with the same type parameter values.

5 A nonpointer object of intrinsic type but which is not default integer, default real, double precision real, default
complex, default logical, or default character shall be associated only with nonpointer objects of the same type
and type parameters.

6 A data pointer shall be storage associated only with data pointers of the same type and rank. Data pointers that
are storage associated shall have deferred the same type parameters; corresponding nondeferred type parameters
shall have the same value. A procedure pointer shall be storage associated only with another procedure pointer;
either both interfaces shall be explicit or both interfaces shall be implicit. If the interfaces are explicit, the
characteristics shall be the same. If the interfaces are implicit, either both shall be subroutines or both shall be
functions with the same type and type parameters.
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7 An object with the TARGET attribute shall be storage associated only with another object that has the TARGET
attribute and the same type and type parameters.

NOTE 5.45
A common block is permitted to contain sequences of different storage units, provided each scoping unit
that accesses the common block specifies an identical sequence of storage units for the common block. For
example, this allows a single common block to contain both numeric and character storage units.

Association in different scoping units between objects of default type, objects of double precision real type,
and sequence structures is permitted according to the rules for equivalence objects (5.7.1).

5.7.2.5 Differences between named common and blank common

1 A blank common block has the same properties as a named common block, except for the following.

• Execution of a RETURN or END statement might cause data objects in a named common block to become
undefined unless the common block has the SAVE attribute, but never causes data objects in blank common
to become undefined (16.6.6).
• Named common blocks of the same name shall be of the same size in all scoping units of a program in which

they appear, but blank common blocks may be of different sizes.
• A data object in a named common block may be initially defined by means of a DATA statement or type

declaration statement in a block data program unit (11.3), but objects in blank common shall not be initially
defined.

5.7.3 Restrictions on common and equivalence

1 An EQUIVALENCE statement shall not cause the storage sequences of two different common blocks to be
associated.

2 Equivalence association shall not cause a derived-type object with default initialization to be associated with an
object in a common block.

3 Equivalence association shall not cause a common block storage sequence to be extended by adding storage units
preceding the first storage unit of the first object specified in a COMMON statement for the common block.

NOTE 5.46
For example, the following is not permitted:

COMMON /X/ A
REAL B (2)
EQUIVALENCE (A, B (2)) ! Not standard-conforming
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6 Use of data objects

6.1 Designator

R601 designator is object-name
or array-element
or array-section
or coindexed-named-object
or complex-part-designator
or structure-component
or substring

1 The appearance of a data object designator in a context that requires its value is termed a reference.

6.2 Variable

R602 variable is designator
or expr

C601 (R602) designator shall not be a constant or a subobject of a constant.

C602 (R602) expr shall be a reference to a function that has a pointer result.

1 A variable is either the data object denoted by designator or the target of expr .

2 A reference is permitted only if the variable is defined. A reference to a data pointer is permitted only if the
pointer is associated with a target object that is defined. A data object becomes defined with a value when events
described in 16.6.5 occur.

R603 variable-name is name

C603 (R603) variable-name shall be the name of a variable.

R604 logical-variable is variable

C604 (R604) logical-variable shall be of type logical.

R605 char-variable is variable

C605 (R605) char-variable shall be of type character.

R606 default-char-variable is variable

C606 (R606) default-char-variable shall be default character.

R607 int-variable is variable

C607 (R607) int-variable shall be of type integer.

NOTE 6.1
For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See Note 4.16
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NOTE 6.1 (cont.)

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.

6.3 Constants

1 A constant (3.2.3) is a literal constant or a named constant. A literal constant is a scalar denoted by a syntactic
form, which indicates its type, type parameters, and value. A named constant is a constant that has a name; the
name has the PARAMETER attribute (5.3.13, 5.4.11). A reference to a constant is always permitted; redefinition
of a constant is never permitted.

6.4 Scalars

6.4.1 Substrings

1 A substring is a contiguous portion of a character string (4.4.3).

R608 substring is parent-string ( substring-range )

R609 parent-string is scalar-variable-name
or array-element
or coindexed-named-object
or scalar-structure-component
or scalar-constant

R610 substring-range is [ scalar-int-expr ] : [ scalar-int-expr ]

C608 (R609) parent-string shall be of type character.

2 The value of the first scalar-int-expr in substring-range is the starting point of the substring and the value of
the second one is the ending point of the substring. The length of a substring is the number of characters in the
substring and is MAX (l − f + 1, 0), where f and l are the starting and ending points, respectively.

3 Let the characters in the parent string be numbered 1, 2, 3, ..., n, where n is the length of the parent string.
Then the characters in the substring are those from the parent string from the starting point and proceeding in
sequence up to and including the ending point. Both the starting point and the ending point shall be within the
range 1, 2, ..., n unless the starting point exceeds the ending point, in which case the substring has length zero.
If the starting point is not specified, the default value is 1. If the ending point is not specified, the default value
is n.

NOTE 6.2
Examples of character substrings are:

B(1)(1:5) array element as parent string
P%NAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string
’0123456789’(N:N) character constant as parent string

6.4.2 Structure components

1 A structure component is part of an object of derived type; it may be referenced by an object designator. A
structure component may be a scalar or an array.

R611 data-ref is part-ref [ % part-ref ] ...

R612 part-ref is part-name [ ( section-subscript-list ) ] [ image-selector ]
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C609 (R611) Each part-name except the rightmost shall be of derived type.

C610 (R611) Each part-name except the leftmost shall be the name of a component of the declared type of the
preceding part-name.

C611 (R611) If the rightmost part-name is of abstract type, data-ref shall be polymorphic.

C612 (R611) The leftmost part-name shall be the name of a data object.

C613 (R612) If a section-subscript-list appears, the number of section-subscripts shall equal the rank of part-
name.

C614 (R612) If image-selector appears, the number of cosubscripts shall be equal to the corank of part-name.

C615 (R612) If image-selector appears and part-name is an array, section-subscript-list shall appear.

C616 (R611) If image-selector appears, data-ref shall not be of type C PTR or C FUNPTR (15.3.3).

C617 (R611) Except as an actual argument to an intrinsic inquiry function or as the designator in a type
parameter inquiry, a data-ref shall not be a polymorphic subobject of a coindexed object and shall not
be a coindexed object that has a polymorphic allocatable subcomponent.

2 The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has a section
subscript list is the number of subscript triplets and vector subscripts in the list.

C618 (R611) There shall not be more than one part-ref with nonzero rank. A part-name to the right of a
part-ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.

3 The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is zero. The base
object of a data-ref is the data object whose name is the leftmost part name.

4 The type and type parameters, if any, of a data-ref are those of the rightmost part name.

5 A data-ref with more than one part-ref is a subobject of its base object if none of the part-names, except
for possibly the rightmost, are pointers. If the rightmost part-name is the only pointer, then the data-ref is a
subobject of its base object in contexts that pertain to its pointer association status but not in any other contexts.

NOTE 6.3
If X is an object of derived type with a pointer component P, then the pointer X%P is a subobject of X
when considered as a pointer – that is in contexts where it is not dereferenced.

However the target of X%P is not a subobject of X. Thus, in contexts where X%P is dereferenced to refer
to the target, it is not a subobject of X.

R613 structure-component is data-ref

C619 (R613) There shall be more than one part-ref and the rightmost part-ref shall not have a section-
subscript-list.

6 A structure component shall be neither referenced nor defined before the declaration of the base object. A
structure component is a pointer only if the rightmost part name is defined to have the POINTER attribute.

NOTE 6.4
Examples of structure components are:

SCALAR_PARENT%SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT(J)%SCALAR_FIELD component of array element parent
ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent
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NOTE 6.4 (cont.)

For a more elaborate example see C.3.1.

NOTE 6.5
The syntax rules are structured such that a data-ref that ends in a component name without a following
subscript list is a structure component, even when other component names in the data-ref are followed
by a subscript list. A data-ref that ends in a component name with a following subscript list is either an
array element or an array section. A data-ref of nonzero rank that ends with a substring-range is an array
section. A data-ref of zero rank that ends with a substring-range is a substring.

6.4.3 Coindexed named objects

1 A coindexed-named-object is a named scalar coarray variable followed by an image selector.

R614 coindexed-named-object is data-ref

C620 (R614) The data-ref shall contain exactly one part-ref . The part-ref shall contain an image-selector .
The part-name shall be the name of a scalar coarray.

6.4.4 Complex parts

R615 complex-part-designator is designator % RE
or designator % IM

C621 (R615) The designator shall be of complex type.

1 If complex-part-designator is designator%RE it designates the real part of designator . If it is designator%IM
it designates the imaginary part of designator . The type of a complex-part-designator is real, and its kind and
shape are those of the designator .

NOTE 6.6
The following are examples of complex part designators:

impedance%re !-- Same value as REAL(impedance)
fft%im !-- Same value as AIMAG(fft)
x%im = 0.0 !-- Sets the imaginary part of X to zero

6.4.5 Type parameter inquiry

1 A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to both intrinsic
and derived types.

R616 type-param-inquiry is designator % type-param-name

C622 (R616) The type-param-name shall be the name of a type parameter of the declared type of the object
designated by the designator .

2 A deferred type parameter of a pointer that is not associated or of an unallocated allocatable variable shall not
be inquired about.

NOTE 6.7
A type-param-inquiry has a syntax like that of a structure component reference, but it does not have the
same semantics. It is not a variable and thus can never be assigned to. It may be used only as a primary
in an expression. It is scalar even if designator is an array.
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NOTE 6.7 (cont.)

The intrinsic type parameters can also be inquired about by using the intrinsic functions KIND and LEN.

NOTE 6.8
The following are examples of type parameter inquiries:

a%kind !-- A is real. Same value as KIND(a).
s%len !-- S is character. Same value as LEN(s).
b(10)%kind !-- Inquiry about an array element.
p%dim !-- P is of the derived type general_point.

See Note 4.23 for the definition of the general_point type used in the last example above.

6.5 Arrays

6.5.1 Order of reference

1 No order of reference to the elements of an array is indicated by the appearance of the array designator, except
where array element ordering (6.5.3.2) is specified.

6.5.2 Whole arrays

1 A whole array is a named array or a structure component whose final part-ref is an array component name; no
subscript list is appended.

2 The appearance of a whole array variable in an executable construct specifies all the elements of the array (2.4.6).
The appearance of a whole array designator in a nonexecutable statement specifies the entire array except for
the appearance of a whole array designator in an equivalence set (5.7.1.4). An assumed-size array (5.3.8.5) is
permitted to appear as a whole array in an executable construct or specification expression only as an actual
argument in a procedure reference that does not require the shape.

6.5.3 Array elements and array sections

6.5.3.1 Syntax

R617 array-element is data-ref

C623 (R617) Every part-ref shall have rank zero and the last part-ref shall contain a subscript-list.

R618 array-section is data-ref [ ( substring-range ) ]
or complex-part-designator

C624 (R618) Exactly one part-ref shall have nonzero rank, and either the final part-ref shall have a section-
subscript-list with nonzero rank, another part-ref shall have nonzero rank, or the complex-part-designator
shall be an array.

C625 (R618) If a substring-range appears, the rightmost part-name shall be of type character.

R619 subscript is scalar-int-expr

R620 section-subscript is subscript
or subscript-triplet
or vector-subscript

R621 subscript-triplet is [ subscript ] : [ subscript ] [ : stride ]
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R622 stride is scalar-int-expr

R623 vector-subscript is int-expr

C626 (R623) A vector-subscript shall be an integer array expression of rank one.

C627 (R621) The second subscript shall not be omitted from a subscript-triplet in the last dimension of an
assumed-size array.

1 An array element is a scalar. An array section is an array. If a substring-range appears in an array-section, each
element is the designated substring of the corresponding element of the array section.

2 The value of a subscript in an array element shall be within the bounds for its dimension.

NOTE 6.9
For example, with the declarations:

REAL A (10, 10)
CHARACTER (LEN = 10) B (5, 5, 5)

A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (:, :, :) (2:3) is an array of
shape (5, 5, 5) whose elements are substrings of length 2 of the corresponding elements of B.

NOTE 6.10
Unless otherwise specified, an array element or array section does not have an attribute of the whole array.
In particular, an array element or an array section does not have the POINTER or ALLOCATABLE
attribute.

NOTE 6.11
Examples of array elements and array sections are:

ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K)(:) array section
SCALAR_PARENT%ARRAY_FIELD(J) array element
SCALAR_PARENT%ARRAY_FIELD(1:N) array section
SCALAR_PARENT%ARRAY_FIELD(1:N)%SCALAR_FIELD array section

6.5.3.2 Array element order

1 The elements of an array form a sequence known as the array element order. The position of an array element
in this sequence is determined by the subscript order value of the subscript list designating the element. The
subscript order value is computed from the formulas in Table 6.1.

Table 6.1: Subscript order value
Rank Subscript bounds Subscript list Subscript order value
1 j1:k1 s1 1 + (s1 − j1)

2 j1:k1,j2:k2 s1, s2
1 + (s1 − j1)
+(s2 − j2)× d1

3 j1:k1, j2:k2, j3:k3 s1, s2, s3

1 + (s1 − j1)
+(s2 − j2)× d1

+(s3 − j3)× d2 × d1

· · · ·
· · · ·
· · · ·
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Subscript order value (cont.)

Rank Subscript bounds Subscript list Subscript order value

15 j1:k1, . . . , j15:k15 s1, . . . , s15

1 + (s1 − j1)
+(s2 − j2)× d1

+(s3 − j3)× d2 × d1

+ . . .
+(s15 − j15)× d14

×d13 × . . .× d1

Notes for Table 6.1:
1) di = max (ki− ji+1, 0) is the size of the ith dimension.
2) If the size of the array is nonzero, ji ≤ si ≤ ki for all
i = 1, 2, ..., 15.

6.5.3.3 Array sections

1 In an array-section having a section-subscript-list, each subscript-triplet and vector-subscript in the section sub-
script list indicates a sequence of subscripts, which may be empty. Each subscript in such a sequence shall be
within the bounds for its dimension unless the sequence is empty. The array section is the set of elements from
the array determined by all possible subscript lists obtainable from the single subscripts or sequences of subscripts
specified by each section subscript.

2 In an array-section with no section-subscript-list, the rank and shape of the array is the rank and shape of the
part-ref with nonzero rank; otherwise, the rank of the array section is the number of subscript triplets and vector
subscripts in the section subscript list. The shape is the rank-one array whose ith element is the number of
integer values in the sequence indicated by the ith subscript triplet or vector subscript. If any of these sequences
is empty, the array section has size zero. The subscript order of the elements of an array section is that of the
array data object that the array section represents.

6.5.3.3.1 Subscript triplet

1 A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript values. The
stride in the subscript triplet specifies the increment between the subscript values. The subscripts and stride of a
subscript triplet are optional. An omitted first subscript in a subscript triplet is equivalent to a subscript whose
value is the lower bound for the array and an omitted second subscript is equivalent to the upper bound. An
omitted stride is equivalent to a stride of 1.

2 The stride shall not be zero.

3 When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence of integers
beginning with the first subscript and proceeding in increments of the stride to the largest such integer not
greater than the second subscript; the sequence is empty if the first subscript is greater than the second.

NOTE 6.12
For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1 : 2) is the array of shape
(3, 2):

A (3, 2, 1) A (3, 2, 2)
A (4, 2, 1) A (4, 2, 2)
A (5, 2, 1) A (5, 2, 2)

4 When the stride is negative, the sequence begins with the first subscript and proceeds in increments of the stride
down to the smallest such integer equal to or greater than the second subscript; the sequence is empty if the
second subscript is greater than the first.
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NOTE 6.13
For example, if an array is declared B (10), the section B (9 : 1 : −2) is the array of shape (5) whose
elements are B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 6.14
A subscript in a subscript triplet need not be within the declared bounds for that dimension if all values
used in selecting the array elements are within the declared bounds.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of shape (2)
consisting of the elements B (3) and B (10), in that order.

6.5.3.3.2 Vector subscript

1 A vector subscript designates a sequence of subscripts corresponding to the values of the elements of the expression.
Each element of the expression shall be defined.

2 An array section with a vector subscript shall not be

• argument associated with a dummy array that is defined or redefined,
• the data-target in a pointer assignment statement, or
• an internal file.

3 If a vector subscript has two or more elements with the same value, an array section with that vector subscript
shall not appear in a variable definition context (16.6.7).

NOTE 6.15
For example, suppose Z is a two-dimensional array of shape [5, 7] and U and V are one-dimensional arrays
of shape (3) and (4), respectively. Assume the values of U and V are:

U = [ 1, 3, 2 ]
V = [ 2, 1, 1, 3 ]

Then Z (3, V) consists of elements from the third row of Z in the order:

Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)

and Z (U, 2) consists of the column elements:

Z (1, 2) Z (3, 2) Z (2, 2)

and Z (U, V) consists of the elements:

Z (1, 2) Z (1, 1) Z (1, 1) Z (1, 3)
Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)
Z (2, 2) Z (2, 1) Z (2, 1) Z (2, 3)

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and Z (U, V) shall
not be redefined as sections.

6.5.4 Simply contiguous array designators

1 A section-subscript-list specifies a simply contiguous section if and only if it does not have a vector subscript and

• all but the last subscript-triplet is a colon,
• the last subscript-triplet does not have a stride, and

124 Use of data objects 6.5.4



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

• no subscript-triplet is preceded by a section-subscript that is a subscript .

2 An array designator is simply contiguous if and only if it is

• an object-name that has the CONTIGUOUS attribute,
• an object-name that is not a pointer or assumed-shape,
• a structure-component whose final part-name is an array and that either has the CONTIGUOUS attribute

or is not a pointer, or
• an array section

– that is not a complex-part-designator ,
– that does not have a substring-range,
– whose final part-ref has nonzero rank,
– whose rightmost part-name has the CONTIGUOUS attribute or is neither assumed-shape nor a pointer,

and
– which either does not have a section-subscript-list, or has a section-subscript-list which specifies a

simply contiguous section.

3 An array variable is simply contiguous if and only if it is a simply contiguous array designator or a reference to
a function that returns a pointer with the CONTIGUOUS attribute.

NOTE 6.16
Array sections that are simply contiguous include column, plane, cube, and hypercube subobjects of a
simply contiguous base object, for example:

ARRAY1 (10:20, 3) ! passes part of the third column of ARRAY1.
X3D (:, i:j, 2) ! passes part of the second plane of X3D (or the whole

! plane if i==LBOUND(X3D,2) and j==UBOUND(X3D,2).
Y5D (:, :, :, :, 7) ! passes the seventh hypercube of Y5D.

All simply contiguous designators designate contiguous objects.

6.6 Image selectors

1 An image selector determines the image index for a coindexed object.

R624 image-selector is lbracket cosubscript-list rbracket

R625 cosubscript is scalar-int-expr

2 The number of cosubscripts shall be equal to the corank of the object. The value of a cosubscript in an image
selector shall be within the cobounds for its codimension. Taking account of the cobounds, the cosubscript list in
an image selector determines the image index in the same way that a subscript list in an array element determines
the subscript order value (6.5.3.2), taking account of the bounds. An image selector shall specify an image index
value that is not greater than the number of images.

NOTE 6.17
For example, if there are 16 images and the coarray A is declared

REAL :: A(10)[5,*]

A(:)[1,4] is valid because it specifies image 16, but A(:)[2,4] is invalid because it specifies image 17.
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6.7 Dynamic association

6.7.1 ALLOCATE statement

6.7.1.1 Syntax

1 The ALLOCATE statement dynamically creates pointer targets and allocatable variables.

R626 allocate-stmt is ALLOCATE ( [ type-spec :: ] allocation-list
[, alloc-opt-list ] )

R627 alloc-opt is ERRMSG = errmsg-variable
or MOLD = source-expr
or SOURCE = source-expr
or STAT = stat-variable

R628 stat-variable is scalar-int-variable

R629 errmsg-variable is scalar-default-char-variable

R630 source-expr is expr

R631 allocation is allocate-object [ ( allocate-shape-spec-list ) ]
[ lbracket allocate-coarray-spec rbracket ]

R632 allocate-object is variable-name
or structure-component

R633 allocate-shape-spec is [ lower-bound-expr : ] upper-bound-expr

R634 lower-bound-expr is scalar-int-expr

R635 upper-bound-expr is scalar-int-expr

R636 allocate-coarray-spec is [ allocate-coshape-spec-list , ] [ lower-bound-expr : ] *

R637 allocate-coshape-spec is [ lower-bound-expr : ] upper-bound-expr

C628 (R632) Each allocate-object shall be a data pointer or an allocatable variable.

C629 (R626) If any allocate-object has a deferred type parameter, is unlimited polymorphic, or is of abstract
type, either type-spec or source-expr shall appear.

C630 (R626) If type-spec appears, it shall specify a type with which each allocate-object is type compatible.

C631 (R626) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object is a
dummy argument for which the corresponding type parameter is assumed.

C632 (R626) If type-spec appears, the kind type parameter values of each allocate-object shall be the same as
the corresponding type parameter values of the type-spec.

C633 (R631) If allocate-object is an array either allocate-shape-spec-list shall appear or source-expr shall appear
and have the same rank as allocate-object . If allocate-object is scalar, allocate-shape-spec-list shall not
appear.

C634 (R631) An allocate-coarray-spec shall appear if and only if the allocate-object is a coarray.

C635 (R631) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as the rank
of the allocate-object . The number of allocate-coshape-specs in an allocate-coarray-spec shall be one less
than the corank of the allocate-object .
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C636 (R627) No alloc-opt shall appear more than once in a given alloc-opt-list.

C637 (R626) At most one of source-expr and type-spec shall appear.

C638 (R626) Each allocate-object shall be type compatible (4.3.1.3) with source-expr . If SOURCE= appears,
source-expr shall be a scalar or have the same rank as each allocate-object .

C639 (R626) Corresponding kind type parameters of allocate-object and source-expr shall have the same values.

C640 (R626) type-spec shall not specify a type that has a coarray ultimate component.

C641 (R626) type-spec shall not specify the type C PTR or C FUNPTR if an allocate-object is a coarray.

C642 (R626) The declared type of source-expr shall not be C PTR, C FUNPTR, LOCK TYPE (13.8.2.16), or
have a subcomponent of type LOCK TYPE, if an allocate-object is a coarray.

C643 (R630) The declared type of source-expr shall not have a coarray ultimate component.

C644 (R632) An allocate-object shall not be a coindexed object.

NOTE 6.18
If a coarray is of a derived type that has an allocatable component, the component shall be allocated by its
own image:

TYPE(SOMETHING), ALLOCATABLE :: T[:]
...
ALLOCATE(T[*]) ! Allowed - implies synchronization
ALLOCATE(T%AAC(N)) ! Allowed - allocated by its own image
ALLOCATE(T[Q]%AAC(N)) ! Not allowed, because it is not

! necessarily executed on image Q.

2 An allocate-object or a bound or type parameter of an allocate-object shall not depend on the value of stat-variable,
the value of errmsg-variable, or on the value, bounds, length type parameters, allocation status, or association
status of any allocate-object in the same ALLOCATE statement.

3 source-expr shall not be allocated within the ALLOCATE statement in which it appears; nor shall it depend on
the value, bounds, deferred type parameters, allocation status, or association status of any allocate-object in that
statement.

4 If allocate-object is a coarray, source-expr shall not have a dynamic type of C PTR, C FUNPTR, or LOCK TYPE,
or have a subcomponent whose dynamic type is LOCK TYPE.

5 If type-spec is specified, each allocate-object is allocated with the specified dynamic type and type parameter
values; if source-expr is specified, each allocate-object is allocated with the dynamic type and type parameter
values of source-expr ; otherwise, each allocate-object is allocated with its dynamic type the same as its declared
type.

6 If type-spec appears and the value of a type parameter it specifies differs from the value of the corresponding
nondeferred type parameter specified in the declaration of any allocate-object , an error condition occurs. If the
value of a nondeferred length type parameter of an allocate-object differs from the value of the corresponding type
parameter of source-expr , an error condition occurs.

7 If a type-param-value in a type-spec in an ALLOCATE statement is an asterisk, it denotes the current value of
that assumed type parameter. If it is an expression, subsequent redefinition or undefinition of any entity in the
expression does not affect the type parameter value.
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NOTE 6.19
An example of an ALLOCATE statement is:

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

6.7.1.2 Execution of an ALLOCATE statement

1 When an ALLOCATE statement is executed for an array for which allocate-shape-spec-list is specified, the values
of the lower bound and upper bound expressions determine the bounds of the array. Subsequent redefinition
or undefinition of any entities in the bound expressions do not affect the array bounds. If the lower bound is
omitted, the default value is 1. If the upper bound is less than the lower bound, the extent in that dimension is
zero and the array has zero size.

2 When an ALLOCATE statement is executed for a coarray, the values of the lower cobound and upper cobound
expressions determine the cobounds of the coarray. Subsequent redefinition or undefinition of any entities in the
cobound expressions do not affect the cobounds. If the lower cobound is omitted, the default value is 1. The
upper cobound shall not be less than the lower cobound.

3 If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be
the same on every image. The values of corresponding bounds and corresponding cobounds shall be the same on
every image. If the coarray is a dummy argument, its ultimate argument (12.5.2.3) shall be the same coarray on
every image.

4 When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-
chronization of all images. On each image, execution of the segment (8.5.2) following the statement is delayed
until all other images have executed the same statement the same number of times.

NOTE 6.20
When an image executes an ALLOCATE statement, communication is not necessarily involved apart from
any required for synchronization. The image allocates its coarray and records how the corresponding
coarrays on other images are to be addressed. The processor is not required to detect violations of the
rule that the bounds are the same on all images, nor is it responsible for detecting or resolving deadlock
problems (such as two images waiting on different ALLOCATE statements).

5 If source-expr is a pointer, it shall be associated with a target. If source-expr is allocatable, it shall be allocated.

6 When an ALLOCATE statement is executed for an array with no allocate-shape-spec-list, the bounds of source-
expr determine the bounds of the array. Subsequent changes to the bounds of source-expr do not affect the array
bounds.

7 If SOURCE= appears, source-expr shall be conformable with allocation. If the value of a nondeferred length type
parameter of allocate-object is different from the value of the corresponding type parameter of source-expr , an
error condition occurs. On successful allocation, if allocate-object and source-expr have the same rank the value
of allocate-object becomes that of source-expr , otherwise the value of each element of allocate-object becomes that
of source-expr .

8 If MOLD= appears and source-expr is a variable, its value need not be defined.

9 The set of error conditions for an ALLOCATE statement is processor dependent. If an error condition occurs
during execution of an ALLOCATE statement that does not contain the STAT= specifier, error termination is
initiated. The STAT= specifier is described in 6.7.4. The ERRMSG= specifier is described in 6.7.5.

6.7.1.3 Allocation of allocatable variables

1 The allocation status of an allocatable entity is one of the following at any time.

• The status of an allocatable variable becomes “allocated” if it is allocated by an ALLOCATE statement,
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if it is allocated during assignment, or if it is given that status by the intrinsic subroutine MOVE ALLOC
(13.7.118). An allocatable variable with this status may be referenced, defined, or deallocated; allocating
it causes an error condition in the ALLOCATE statement. The intrinsic function ALLOCATED (13.7.11)
returns true for such a variable.
• An allocatable variable has a status of “unallocated” if it is not allocated. The status of an allocatable

variable becomes unallocated if it is deallocated (6.7.3) or if it is given that status by the allocation transfer
procedure. An allocatable variable with this status shall not be referenced or defined. It shall not be
supplied as an actual argument corresponding to a nonallocatable dummy argument, except to certain
intrinsic inquiry functions. It may be allocated with the ALLOCATE statement. Deallocating it causes an
error condition in the DEALLOCATE statement. The intrinsic function ALLOCATED (13.7.11) returns
false for such a variable.

2 At the beginning of execution of a program, allocatable variables are unallocated.

3 When the allocation status of an allocatable variable changes, the allocation status of any associated alloca-
table variable changes accordingly. Allocation of an allocatable variable establishes values for the deferred type
parameters of all associated allocatable variables.

4 An unsaved allocatable local variable of a procedure has a status of unallocated at the beginning of each invocation
of the procedure. An unsaved local variable of a construct has a status of unallocated at the beginning of each
execution of the construct.

5 When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate components
have an allocation status of unallocated unless the SOURCE= specifier appears and the corresponding component
of the source-expr is allocated.

6 If the evaluation of a function would change the allocation status of a variable and if a reference to the function
appears in an expression in which the value of the function is not needed to determine the value of the expression,
the allocation status of the variable after evaluation of the expression is processor-dependent.

6.7.1.4 Allocation of pointer targets

1 Allocation of a pointer creates an object that implicitly has the TARGET attribute. Following successful execution
of an ALLOCATE statement for a pointer, the pointer is associated with the target and may be used to reference
or define the target. Additional pointers may become associated with the pointer target or a part of the pointer
target by pointer assignment. It is not an error to allocate a pointer that is already associated with a target.
In this case, a new pointer target is created as required by the attributes of the pointer and any array bounds,
type, and type parameters specified by the ALLOCATE statement. The pointer is then associated with this
new target. Any previous association of the pointer with a target is broken. If the previous target had been
created by allocation, it becomes inaccessible unless other pointers are associated with it. The intrinsic function
ASSOCIATED (13.7.16) may be used to determine whether a pointer that does not have undefined association
status is associated.

2 At the beginning of execution of a function whose result is a pointer, the association status of the result pointer
is undefined. Before such a function returns, it shall either associate a target with this pointer or cause the
association status of this pointer to become disassociated.

6.7.2 NULLIFY statement

1 The NULLIFY statement causes pointers to be disassociated.

R638 nullify-stmt is NULLIFY ( pointer-object-list )

R639 pointer-object is variable-name
or structure-component
or proc-pointer-name
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C645 (R639) Each pointer-object shall have the POINTER attribute.

2 A pointer-object shall not depend on the value, bounds, or association status of another pointer-object in the
same NULLIFY statement.

NOTE 6.21
When a NULLIFY statement is applied to a polymorphic pointer (4.3.1.3), its dynamic type becomes the
declared type.

6.7.3 DEALLOCATE statement

6.7.3.1 Syntax

1 The DEALLOCATE statement causes allocatable variables to be deallocated; it causes pointer targets to be
deallocated and the pointers to be disassociated.

R640 deallocate-stmt is DEALLOCATE ( allocate-object-list [ , dealloc-opt-list ] )

R641 dealloc-opt is STAT = stat-variable
or ERRMSG = errmsg-variable

C646 (R641) No dealloc-opt shall appear more than once in a given dealloc-opt-list.

2 An allocate-object shall not depend on the value, bounds, allocation status, or association status of another
allocate-object in the same DEALLOCATE statement; it also shall not depend on the value of the stat-variable
or errmsg-variable in the same DEALLOCATE statement.

3 The set of error conditions for a DEALLOCATE statement is processor dependent. If an error condition occurs
during execution of a DEALLOCATE statement that does not contain the STAT= specifier, error termination is
initiated. The STAT= specifier is described in 6.7.4. The ERRMSG= specifier is described in 6.7.5.

4 When more than one allocated object is deallocated by execution of a DEALLOCATE statement, the order of
deallocation is processor dependent.

NOTE 6.22
An example of a DEALLOCATE statement is:

DEALLOCATE (X, B)

6.7.3.2 Deallocation of allocatable variables

1 Deallocating an unallocated allocatable variable causes an error condition in the DEALLOCATE statement.
Deallocating an allocatable variable with the TARGET attribute causes the pointer association status of any
pointer associated with it to become undefined.

2 When the execution of a procedure is terminated by execution of a RETURN or END statement, an unsaved
allocatable local variable of the procedure retains its allocation and definition status if it is a function result
variable or a subobject thereof; otherwise, it is deallocated.

3 When a BLOCK construct terminates, an unsaved allocatable local variable of the construct is deallocated.

NOTE 6.23
The intrinsic function ALLOCATED may be used to determine whether a variable is allocated or unallo-
cated.

4 If an executable construct references a function whose result is either allocatable or a structure with a subobject
that is allocatable, and the function reference is executed, an allocatable result and any subobject that is an
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allocated allocatable entity in the result returned by the function is deallocated after execution of the innermost
executable construct containing the reference.

5 If a function whose result is either allocatable or a structure with an allocatable subobject is referenced in the
specification part of a scoping unit or BLOCK construct, and the function reference is executed, an allocatable
result and any subobject that is an allocated allocatable entity in the result returned by the function is deallocated
before execution of the executable constructs of the scoping unit or block.

6 When a procedure is invoked, any allocated allocatable object that is an actual argument corresponding to an
INTENT (OUT) allocatable dummy argument is deallocated; any allocated allocatable object that is a subobject
of an actual argument corresponding to an INTENT (OUT) dummy argument is deallocated.

7 When an intrinsic assignment statement (7.2.1.3) is executed, any noncoarray allocated allocatable subobject of
the variable is deallocated before the assignment takes place.

8 When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated.

9 If an allocatable component is a subobject of a finalizable object, that object is finalized before the component
is automatically deallocated.

10 The effect of automatic deallocation is the same as that of a DEALLOCATE statement without a dealloc-opt-list.

NOTE 6.24
In the following example:

SUBROUTINE PROCESS
REAL, ALLOCATABLE :: TEMP(:)
REAL, ALLOCATABLE, SAVE :: X(:)
...

END SUBROUTINE PROCESS

on return from subroutine PROCESS, the allocation status of X is preserved because X has the SAVE
attribute. TEMP does not have the SAVE attribute, so it will be deallocated if it was allocated. On the
next invocation of PROCESS, TEMP will have an allocation status of unallocated.

11 When a DEALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit
synchronization of all images. On each image, execution of the segment (8.5.2) following the statement is delayed
until all other images have executed the same statement the same number of times. If the coarray is a dummy
argument, its ultimate argument (12.5.2.3) shall be the same coarray on every image.

12 There is also an implicit synchronization of all images in association with the deallocation of a coarray or coarray
subcomponent caused by the execution of a RETURN or END statement or the termination of a BLOCK
construct.

6.7.3.3 Deallocation of pointer targets

1 If a pointer appears in a DEALLOCATE statement, its association status shall be defined. Deallocating a pointer
that is disassociated or whose target was not created by an ALLOCATE statement causes an error condition
in the DEALLOCATE statement. If a pointer is associated with an allocatable entity, the pointer shall not be
deallocated.

2 If a pointer appears in a DEALLOCATE statement, it shall be associated with the whole of an object that was
created by allocation. The pointer shall have the same dynamic type and type parameters as the allocated object,
and if the allocated object is an array the pointer shall be an array whose elements are the same as those of the
allocated object in array element order. Deallocating a pointer target causes the pointer association status of any
other pointer that is associated with the target or a portion of the target to become undefined.
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6.7.4 STAT= specifier

1 The stat-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement.

2 If the STAT= specifier appears, successful execution of the ALLOCATE or DEALLOCATE statement causes the
stat-variable to become defined with a value of zero.

3 If an ALLOCATE or DEALLOCATE statement with a coarray allocate-object is executed when one or more
images has initiated termination of execution, the stat-variable becomes defined with the processor-dependent
positive integer value of the constant STAT STOPPED IMAGE from the intrinsic module ISO FORTRAN -
ENV (13.8.2). If any other error condition occurs during execution of the ALLOCATE or DEALLOCATE
statement, the stat-variable becomes defined with a processor-dependent positive integer value different from
STAT STOPPED IMAGE. In either case, each allocate-object has a processor-dependent status:

• each allocate-object that was successfully allocated shall have an allocation status of allocated or a pointer
association status of associated;
• each allocate-object that was successfully deallocated shall have an allocation status of unallocated or a

pointer association status of disassociated;
• each allocate-object that was not successfully allocated or deallocated shall retain its previous allocation

status or pointer association status.

NOTE 6.25
The status of objects that were not successfully allocated or deallocated can be individually checked with
the intrinsic functions ALLOCATED or ASSOCIATED.

6.7.5 ERRMSG= specifier

1 The errmsg-variable shall not be allocated or deallocated within the ALLOCATE or DEALLOCATE statement
in which it appears; nor shall it depend on the value, bounds, deferred type parameters, allocation status, or
association status of any allocate-object in that statement.

2 If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement, the processor shall
assign an explanatory message to errmsg-variable. If no such condition occurs, the processor shall not change
the value of errmsg-variable.
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7 Expressions and assignment

7.1 Expressions

7.1.1 General

1 An expression represents either a data reference or a computation, and its value is either a scalar or an array. An
expression is formed from operands, operators, and parentheses.

2 An operand is either a scalar or an array. An operation is either intrinsic (7.1.5) or defined (7.1.6). More
complicated expressions can be formed using operands which are themselves expressions.

3 Evaluation of an expression produces a value, which has a type, type parameters (if appropriate), and a shape
(7.1.9). The corank of an expression that is not a variable is zero.

7.1.2 Form of an expression

7.1.2.1 Expression categories

1 An expression is defined in terms of several categories: primary, level-1 expression, level-2 expression, level-3
expression, level-4 expression, and level-5 expression.

2 These categories are related to the different operator precedence levels and, in general, are defined in terms of
other categories. The simplest form of each expression category is a primary .

7.1.2.2 Primary

R701 primary is constant
or designator
or array-constructor
or structure-constructor
or function-reference
or type-param-inquiry
or type-param-name
or ( expr )

C701 (R701) The type-param-name shall be the name of a type parameter.

C702 (R701) The designator shall not be a whole assumed-size array.

NOTE 7.1
Examples of a primary are:

Example Syntactic class
1.0 constant
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’ (I:I) designator
[ 1.0, 2.0 ] array-constructor
PERSON (12, ’Jones’) structure-constructor
F (X, Y) function-reference
X%KIND type-param-inquiry

KIND type-param-name
(S + T) (expr)
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7.1.2.3 Level-1 expressions

1 Defined unary operators have the highest operator precedence (Table 7.2). Level-1 expressions are primaries
optionally operated on by defined unary operators:

R702 level-1-expr is [ defined-unary-op ] primary

R703 defined-unary-op is . letter [ letter ] ... .

C703 (R703) A defined-unary-op shall not contain more than 63 letters and shall not be the same as any
intrinsic-operator or logical-literal-constant .

NOTE 7.2
Simple examples of a level-1 expression are:

Example Syntactic class
A primary (R701)
.INVERSE. B level-1-expr (R702)

A more complicated example of a level-1 expression is:

.INVERSE. (A + B)

7.1.2.4 Level-2 expressions

1 Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op, mult-op, and
add-op.

R704 mult-operand is level-1-expr [ power-op mult-operand ]

R705 add-operand is [ add-operand mult-op ] mult-operand

R706 level-2-expr is [ [ level-2-expr ] add-op ] add-operand

R707 power-op is **

R708 mult-op is *
or /

R709 add-op is +
or –

NOTE 7.3
Simple examples of a level-2 expression are:

Example Syntactic class Remarks
A level-1-expr A is a primary . (R702)
B ** C mult-operand B is a level-1-expr , ** is a power-op,

and C is a mult-operand . (R704)
D * E add-operand D is an add-operand , * is a mult-op,

and E is a mult-operand . (R705)
+1 level-2-expr + is an add-op

and 1 is an add-operand . (R706)
F - I level-2-expr F is a level-2-expr , – is an add-op,

and I is an add-operand . (R706)
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NOTE 7.3 (cont.)

A more complicated example of a level-2 expression is:

- A + D * E + B ** C

7.1.2.5 Level-3 expressions

1 Level-3 expressions are level-2 expressions optionally involving the character operator concat-op.

R710 level-3-expr is [ level-3-expr concat-op ] level-2-expr

R711 concat-op is //

NOTE 7.4
Simple examples of a level-3 expression are:

Example Syntactic class
A level-2-expr (R706)
B // C level-3-expr (R710)

A more complicated example of a level-3 expression is:

X // Y // ’ABCD’

7.1.2.6 Level-4 expressions

1 Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.

R712 level-4-expr is [ level-3-expr rel-op ] level-3-expr

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=

NOTE 7.5
Simple examples of a level-4 expression are:

Example Syntactic class
A level-3-expr (R710)
B == C level-4-expr (R712)
D < E level-4-expr (R712)

A more complicated example of a level-4 expression is:

(A + B) /= C
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7.1.2.7 Level-5 expressions

1 Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op, or-op, and
equiv-op.

R714 and-operand is [ not-op ] level-4-expr

R715 or-operand is [ or-operand and-op ] and-operand

R716 equiv-operand is [ equiv-operand or-op ] or-operand

R717 level-5-expr is [ level-5-expr equiv-op ] equiv-operand

R718 not-op is .NOT.

R719 and-op is .AND.

R720 or-op is .OR.

R721 equiv-op is .EQV.
or .NEQV.

NOTE 7.6
Simple examples of a level-5 expression are:

Example Syntactic class
A level-4-expr (R712)
.NOT. B and-operand (R714)
C .AND. D or-operand (R715)
E .OR. F equiv-operand (R716)
G .EQV. H level-5-expr (R717)
S .NEQV. T level-5-expr (R717)

A more complicated example of a level-5 expression is:

A .AND. B .EQV. .NOT. C

7.1.2.8 General form of an expression

1 Expressions are level-5 expressions optionally involving defined binary operators. Defined binary operators have
the lowest operator precedence (Table 7.2).

R722 expr is [ expr defined-binary-op ] level-5-expr

R723 defined-binary-op is . letter [ letter ] ... .

C704 (R723) A defined-binary-op shall not contain more than 63 letters and shall not be the same as any
intrinsic-operator or logical-literal-constant .

NOTE 7.7
Simple examples of an expression are:

Example Syntactic class
A level-5-expr (R717)
B.UNION.C expr (R722)

More complicated examples of an expression are:
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NOTE 7.7 (cont.)

(B .INTERSECT. C) .UNION. (X - Y)
A + B == C * D
.INVERSE. (A + B)
A + B .AND. C * D
E // G == H (1:10)

7.1.3 Precedence of operators

1 There is a precedence among the intrinsic and extension operations corresponding to the form of expressions
specified in 7.1.2, which determines the order in which the operands are combined unless the order is changed by
the use of parentheses. This precedence order is summarized in Table 7.2.

Table 7.2: Categories of operations and relative precedence
Category of operation Operators Precedence

Extension defined-unary-op Highest
Numeric ** .
Numeric *, / .
Numeric unary +, – .
Numeric binary +, – .

Character // .
Relational .EQ., .NE., .LT., .LE., .GT., .GE.,

==, /=, <, <=, >, >= .
Logical .NOT. .
Logical .AND. .
Logical .OR. .
Logical .EQV., .NEQV. .

Extension defined-binary-op Lowest

2 The precedence of a definedoperation is that of its operator.

NOTE 7.8
For example, in the expression

-A ** 2

the exponentiation operator (**) has precedence over the negation operator (–); therefore, the operands of
the exponentiation operator are combined to form an expression that is used as the operand of the negation
operator. The interpretation of the above expression is the same as the interpretation of the expression

- (A ** 2)

3 The general form of an expression (7.1.2) also establishes a precedence among operators in the same syntactic class.
This precedence determines the order in which the operands are to be combined in determining the interpretation
of the expression unless the order is changed by the use of parentheses.

NOTE 7.9
In interpreting a level-2-expr containing two or more binary operators + or –, each operand (add-operand)
is combined from left to right. Similarly, the same left-to-right interpretation for a mult-operand in add-
operand , as well as for other kinds of expressions, is a consequence of the general form. However, for
interpreting a mult-operand expression when two or more exponentiation operators ** combine level-1-expr
operands, each level-1-expr is combined from right to left.

For example, the expressions
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NOTE 7.9 (cont.)

2.1 + 3.4 + 4.9
2.1 * 3.4 * 4.9
2.1 / 3.4 / 4.9
2 ** 3 ** 4
’AB’ // ’CD’ // ’EF’

have the same interpretations as the expressions

(2.1 + 3.4) + 4.9
(2.1 * 3.4) * 4.9
(2.1 / 3.4) / 4.9
2 ** (3 ** 4)
(’AB’ // ’CD’) // ’EF’

As a consequence of the general form (7.1.2), only the first add-operand of a level-2-expr may be preceded
by the identity (+) or negation (–) operator. These formation rules do not permit expressions containing
two consecutive numeric operators, such as A ** –B or A + –B. However, expressions such as A ** (–B)
and A + (–B) are permitted. The rules do allow a binary operator or an intrinsic unary operator to be
followed by a defined unary operator, such as:

A * .INVERSE. B
- .INVERSE. (B)

As another example, in the expression

A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR. operator; therefore,
the interpretation of the above expression is the same as the interpretation of the expression

A .OR. (B .AND. C)

NOTE 7.10
An expression may contain more than one category of operator. The logical expression

L .OR. A + B >= C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a relational
operator, and a logical operator. This expression would be interpreted the same as the expression

L .OR. ((A + B) >= C)

NOTE 7.11
If

• the operator ** is extended to type logical,
• the operator .STARSTAR. is defined to duplicate the function of ** on type real,
• .MINUS. is defined to duplicate the unary operator –, and
• L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ** L2 is higher than X * Y; X * Y is higher than X .STARSTAR. Y; and .MINUS. X
is higher than –X.
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7.1.4 Evaluation of operations

1 An intrinsic operation requires the values of its operands.

2 The evaluation of a function reference shall neither affect nor be affected by the evaluation of any other entity
within the statement. If a function reference causes definition or undefinition of an actual argument of the
function, that argument or any associated entities shall not appear elsewhere in the same statement. However,
execution of a function reference in the logical expression in an IF statement (8.1.7.4), the mask expression in a
WHERE statement (7.2.3.1), or the forall-limits and forall-steps in a FORALL statement (7.2.4) is permitted to
define variables in the statement that is conditionally executed.

NOTE 7.12
For example, the statements

A (I) = F (I)
Y = G (X) + X

are prohibited if the reference to F defines or undefines I or the reference to G defines or undefines X.

However, in the statements

IF (F (X)) A = X
WHERE (G (X)) B = X

F or G may define X.

3 The appearance of an array constructor requires the evaluation of each scalar-int-expr of the ac-implied-do-control
in any ac-implied-do it may contain.

4 When an elemental binary operation is applied to a scalar and an array or to two arrays of the same shape, the
operation is performed element-by-element on corresponding array elements of the array operands.

NOTE 7.13
For example, the array expression

A + B

produces an array of the same shape as A and B. The individual array elements of the result have the
values of the first element of A added to the first element of B, the second element of A added to the second
element of B, etc.

5 When an elemental unary operator operates on an array operand, the operation is performed element-by-element,
and the result is the same shape as the operand.

NOTE 7.14
If an elemental operation is intrinsically pure or is implemented by a pure elemental function (12.8), the
element operations may be performed simultaneously or in any order.

7.1.5 Intrinsic operations

7.1.5.1 Intrinsic operation classification

1 An intrinsic operation is either a unary or binary operation. An intrinsic unary operation is an operation of the
form intrinsic-operator x2 where x2 is of an intrinsic type (4.4) listed in Table 7.3 for the unary intrinsic operator.

2 An intrinsic binary operation is an operation of the form x1 intrinsic-operator x2 where x1 and x2 are conformable
and of the intrinsic types (4.4) listed in Table 7.3 for the binary intrinsic operator.
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3 A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric operator (+,
–, *, /, or **). A numeric intrinsic operator is the operator in a numeric intrinsic operation.

4 The character intrinsic operation is the intrinsic operation for which the intrinsic-operator is (//) and both
operands are of type character with the same kind type parameter. The character intrinsic operator is the
operator in a character intrinsic operation.

5 A logical intrinsic operation is an intrinsic operation for which the intrinsic-operator is .AND., .OR., .XOR.,
.NOT., .EQV., or .NEQV. and both operands are of type logical. A logical intrinsic operator is the operator in
a logical intrinsic operation.

6 A relational intrinsic operator is an intrinsic-operator that is .EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >,
>=, <, or <=. A relational intrinsic operation is an intrinsic operation for which the intrinsic-operator is a
relational intrinsic operator. A numeric relational intrinsic operation is a relational intrinsic operation for which
both operands are of numeric type. A character relational intrinsic operation is a relational intrinsic operation for
which both operands are of type character. The kind type parameters of the operands of a character relational
intrinsic operation shall be the same.

7 The interpretations defined in subclause 7.1.5 apply to both scalars and arrays; the interpretation for arrays is
obtained by applying the interpretation for scalars element by element.

NOTE 7.15
For example, if X is of type real, J is of type integer, and INT is the real-to-integer intrinsic conversion
function, the expression INT (X + J) is an integer expression and X + J is a real expression.

Table 7.3: Type of operands and results for intrinsic operators
Intrinsic operator Type of Type of Type of

op x1 x2 [x1] op x2

Unary +, – I, R, Z I, R, Z
I I, R, Z I, R, Z

Binary +, –, *, /, ** R I, R, Z R, R, Z
Z I, R, Z Z, Z, Z

// C C C
I I, R, Z L, L, L

.EQ., .NE., R I, R, Z L, L, L
==, /= Z I, R, Z L, L, L

C C L
I I, R L, L

.GT., .GE., .LT., .LE. R I, R L, L
>, >=, <, <= C C L

.NOT. L L
.AND., .OR., .EQV., .NEQV. L L L
Note: The symbols I, R, Z, C, and L stand for the types integer, real, complex,

character, and logical, respectively. Where more than one type for x2 is
given, the type of the result of the operation is given in the same relative
position in the next column.

7.1.5.2 Numeric intrinsic operations

7.1.5.2.1 Interpretation of numeric intrinsic operations

1 The two operands of numeric intrinsic binary operations may be of different numeric types or different kind type
parameters. Except for a value raised to an integer power, if the operands have different types or kind type
parameters, the effect is as if each operand that differs in type or kind type parameter from those of the result is
converted to the type and kind type parameter of the result before the operation is performed. When a value of
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type real or complex is raised to an integer power, the integer operand need not be converted.

2 A numeric operation is used to express a numeric computation. Evaluation of a numeric operation produces a
numeric value. The permitted data types for operands of the numeric intrinsic operations are specified in 7.1.5.1.

3 The numeric operators and their interpretation in an expression are given in Table 7.4, where x1 denotes the
operand to the left of the operator and x2 denotes the operand to the right of the operator.

Table 7.4: Interpretation of the numeric intrinsic operators
Operator Representing Use of operator Interpretation

** Exponentiation x1 ** x2 Raise x1 to the power x2

/ Division x1 / x2 Divide x1 by x2

* Multiplication x1 * x2 Multiply x1 by x2

- Subtraction x1 - x2 Subtract x2 from x1

- Negation - x2 Negate x2

+ Addition x1 + x2 Add x1 and x2

+ Identity + x2 Same as x2

4 The interpretation of a division operation depends on the types of the operands (7.1.5.2.2).

5 If x1 and x2 are of type integer and x2 has a negative value, the interpretation of x1 ** x2 is the same as the
interpretation of 1/(x1 ** ABS (x2)), which is subject to the rules of integer division (7.1.5.2.2).

NOTE 7.16
For example, 2 ** (−3) has the value of 1/(2 ** 3), which is zero.

7.1.5.2.2 Integer division

1 One operand of type integer may be divided by another operand of type integer. Although the mathematical
quotient of two integers is not necessarily an integer, Table 7.3 specifies that an expression involving the division
operator with two operands of type integer is interpreted as an expression of type integer. The result of such an
operation is the integer closest to the mathematical quotient and between zero and the mathematical quotient
inclusively.

NOTE 7.17
For example, the expression (−8) / 3 has the value (−2).

7.1.5.2.3 Complex exponentiation

1 In the case of a complex value raised to a complex power, the value of the operation x1 ** x2 is the principal
value of xx2

1 .

7.1.5.2.4 Evaluation of numeric intrinsic operations

1 The execution of any numeric operation whose result is not defined by the arithmetic used by the processor is
prohibited. Raising a negative-valued primary of type real to a real power is prohibited.

2 Once the interpretation of a numeric intrinsic operation is established, the processor may evaluate any mathe-
matically equivalent expression, provided that the integrity of parentheses is not violated.

3 Two expressions of a numeric type are mathematically equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically equivalent expressions of numeric type may produce
different computational results.
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NOTE 7.18
Any difference between the values of the expressions (1./3.)*3. and 1. is a computational difference,
not a mathematical difference. The difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

The mathematical definition of integer division is given in 7.1.5.2.2.

NOTE 7.19
The following are examples of expressions with allowable alternative forms that may be used by the processor
in the evaluation of those expressions. A, B, and C represent arbitrary real or complex operands; I and J
represent arbitrary integer operands; and X, Y, and Z represent arbitrary operands of numeric type.

Expression Allowable alternative form
X + Y Y + X
X * Y Y * X
-X + Y Y - X
X + Y + Z X + (Y + Z)
X - Y + Z X - (Y - Z)
X * A / Z X * (A / Z)
X * Y - X * Z X * (Y - Z)
A / B / C A / (B * C)
A / 5.0 0.2 * A

The following are examples of expressions with forbidden alternative forms that shall not be used by a
processor in the evaluation of those expressions.

Expression Forbidden alternative form
I / 2 0.5 * I
X * I / J X * (I / J)
I / J / A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X * Y - X * Z

NOTE 7.20
In addition to the parentheses required to establish the desired interpretation, parentheses may be included
to restrict the alternative forms that may be used by the processor in the actual evaluation of the expression.
This is useful for controlling the magnitude and accuracy of intermediate values developed during the
evaluation of an expression.

For example, in the expression

A + (B - C)

the parenthesized expression (B – C) shall be evaluated and then added to A.

The inclusion of parentheses may change the mathematical value of an expression. For example, the two
expressions

A * I / J
A * (I / J)

may have different mathematical values if I and J are of type integer.
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NOTE 7.21
Each operand in a numeric intrinsic operation has a type that may depend on the order of evaluation used
by the processor.

For example, in the evaluation of the expression

Z + R + I

where Z, R, and I represent data objects of complex, real, and integer type, respectively, the type of the
operand that is added to I may be either complex or real, depending on which pair of operands (Z and R,
R and I, or Z and I) is added first.

7.1.5.3 Character intrinsic operation

7.1.5.3.1 Interpretation of the character intrinsic operation

1 The character intrinsic operator // is used to concatenate two operands of type character with the same kind
type parameter. Evaluation of the character intrinsic operation produces a result of type character.

2 The interpretation of the character intrinsic operator // when used to form an expression is given in Table 7.6,
where x1 denotes the operand to the left of the operator and x2 denotes the operand to the right of the operator.

Table 7.6: Interpretation of the character intrinsic operator //
Operator Representing Use of operator Interpretation

// Concatenation x1 // x2 Concatenate x1 with x2

3 The result of the character intrinsic operation // is a character string whose value is the value of x1 concatenated
on the right with the value of x2 and whose length is the sum of the lengths of x1 and x2. Parentheses used to
specify the order of evaluation have no effect on the value of a character expression.

NOTE 7.22
For example, the value of (’AB’ // ’CDE’) // ’F’ is the string ’ABCDEF’. Also, the value of
’AB’ // (’CDE’ // ’F’) is the string ’ABCDEF’.

7.1.5.3.2 Evaluation of the character intrinsic operation

1 A processor is only required to evaluate as much of the character intrinsic operation as is required by the context
in which the expression appears.

NOTE 7.23
For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
C1 = C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to determine the
value of C1 because C1 and C2 both have a length of 2.

7.1.5.4 Logical intrinsic operations

7.1.5.4.1 Interpretation of logical intrinsic operations

1 A logical operation is used to express a logical computation. Evaluation of a logical operation produces a result
of type logical. The permitted types for operands of the logical intrinsic operations are specified in 7.1.5.1.
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2 The logical operators and their interpretation when used to form an expression are given in Table 7.7, where x1

denotes the operand to the left of the operator and x2 denotes the operand to the right of the operator.

Table 7.7: Interpretation of the logical intrinsic operators
Operator Representing Use of operator Interpretation
.NOT. Logical negation .NOT. x2 True if x2 is false
.AND. Logical conjunction x1 .AND. x2 True if x1 and x2 are both true
.OR. Logical inclusive disjunction x1 .OR. x2 True if x1 and/or x2 is true

.EQV. Logical equivalence x1 .EQV. x2
True if both x1 and x2 are true or
both are false

.NEQV. Logical nonequivalence x1 .NEQV. x2
True if either x1 or x2 is true, but
not both

3 The values of the logical intrinsic operations are shown in Table 7.8.

Table 7.8: The values of operations involving logical intrinsic operators
x1 x2 .NOT. x2 x1 .AND. x2 x1 .OR. x2 x1 .EQV. x2 x1 .NEQV. x2

true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

7.1.5.4.2 Evaluation of logical intrinsic operations

1 Once the interpretation of a logical intrinsic operation is established, the processor may evaluate any other
expression that is logically equivalent, provided that the integrity of parentheses in any expression is not violated.

NOTE 7.24
For example, for the variables L1, L2, and L3 of type logical, the processor may choose to evaluate the
expression

L1 .AND. L2 .AND. L3

as

L1 .AND. (L2 .AND. L3)

2 Two expressions of type logical are logically equivalent if their values are equal for all possible values of their
primaries.

7.1.5.5 Relational intrinsic operations

7.1.5.5.1 Interpretation of relational intrinsic operations

1 A relational intrinsic operation is used to compare values of two operands using the relational intrinsic operators
.LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted types for operands of the
relational intrinsic operators are specified in 7.1.5.1.

2 The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

NOTE 7.25
As shown in Table 7.3, a relational intrinsic operator cannot be used to compare the value of an expression
of a numeric type with one of type character or logical. Also, two operands of type logical cannot be
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NOTE 7.25 (cont.)

compared, a complex operand may be compared with another numeric operand only when the operator is
.EQ., .NE., ==, or /=, and two character operands cannot be compared unless they have the same kind
type parameter value.

3 Evaluation of a relational intrinsic operation produces a default logical result.

4 The interpretation of the relational intrinsic operators is given in Table 7.9, where x1 denotes the operand to the
left of the operator and x2 denotes the operand to the right of the operator.

Table 7.9: Interpretation of the relational intrinsic operators
Operator Representing Use of operator Interpretation

.LT. Less than x1 .LT. x2 x1 less than x2

< Less than x1 < x2 x1 less than x2

.LE. Less than or equal to x1 .LE. x2 x1 less than or equal to x2

<= Less than or equal to x1 <= x2 x1 less than or equal to x2

.GT. Greater than x1 .GT. x2 x1 greater than x2

> Greater than x1 > x2 x1 greater than x2

.GE. Greater than or equal to x1 .GE. x2 x1 greater than or equal to x2

>= Greater than or equal to x1 >= x2 x1 greater than or equal to x2

.EQ. Equal to x1 .EQ. x2 x1 equal to x2

== Equal to x1 == x2 x1 equal to x2

.NE. Not equal to x1 .NE. x2 x1 not equal to x2

/= Not equal to x1 /= x2 x1 not equal to x2

5 A numeric relational intrinsic operation is interpreted as having the logical value true if and only if the values of
the operands satisfy the relation specified by the operator.

6 In the numeric relational operation

x1 rel-op x2

7 if the types or kind type parameters of x1 and x2 differ, their values are converted to the type and kind type
parameter of the expression x1 + x2 before evaluation.

8 A character relational intrinsic operation is interpreted as having the logical value true if and only if the values
of the operands satisfy the relation specified by the operator.

9 For a character relational intrinsic operation, the operands are compared one character at a time in order,
beginning with the first character of each character operand. If the operands are of unequal length, the shorter
operand is treated as if it were extended on the right with blanks to the length of the longer operand. If both
x1 and x2 are of zero length, x1 is equal to x2; if every character of x1 is the same as the character in the
corresponding position in x2, x1 is equal to x2. Otherwise, at the first position where the character operands
differ, the character operand x1 is considered to be less than x2 if the character value of x1 at this position
precedes the value of x2 in the collating sequence (1.3); x1 is greater than x2 if the character value of x1 at this
position follows the value of x2 in the collating sequence.

NOTE 7.26
The collating sequence depends partially on the processor; however, the result of the use of the operators
.EQ., .NE., ==, and /= does not depend on the collating sequence.

For nondefault character kinds, the blank padding character is processor dependent.
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7.1.5.5.2 Evaluation of relational intrinsic operations

1 Once the interpretation of a relational intrinsic operation is established, the processor may evaluate any other
expression that is relationally equivalent, provided that the integrity of parentheses in any expression is not
violated.

2 Two relational intrinsic operations are relationally equivalent if their logical values are equal for all possible values
of their primaries.

7.1.6 Defined operations

7.1.6.1 Definitions

1 A defined operation is either a unary operation or a binary operation. A unary defined operation is an operation
that has the form defined-unary-op x2 or intrinsic-operator x2 and that is defined by a function and a generic
interface (4.5.2, 12.4.3.4).

2 A function defines the unary operation op x2 if

(1) the function is specified with a FUNCTION (12.6.2.2) or ENTRY (12.6.2.6) statement that specifies one
dummy argument d2,

(2) either

(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERATOR (op),
or

(b) there is a generic binding (4.5.2) in the declared type of x2 with a generic-spec of OPERA-
TOR (op) and there is a corresponding binding to the function in the dynamic type of x2,

(3) the type of d2 is compatible with the dynamic type of x2,
(4) the type parameters, if any, of d2 match the corresponding type parameters of x2, and
(5) either

(a) the rank of x2 matches that of d2 or
(b) the function is elemental and there is no other function that defines the operation.

3 If d2 is an array, the shape of x2 shall match the shape of d2.

4 A binary defined operation is an operation that has the form x1 defined-binary-op x2 or x1 intrinsic-operator x2

and that is defined by a function and a generic interface.

5 A function defines the binary operation x1 op x2 if

(1) the function is specified with a FUNCTION (12.6.2.2) or ENTRY (12.6.2.6) statement that specifies
two dummy arguments, d1 and d2,

(2) either

(a) a generic interface (12.4.3.2) provides the function with a generic-spec of OPERATOR (op),
or

(b) there is a generic binding (4.5.2) in the declared type of x1 or x2 with a generic-spec of
OPERATOR (op) and there is a corresponding binding to the function in the dynamic type
of x1 or x2, respectively,

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,
(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1 and x2,

respectively, and
(5) either

(a) the ranks of x1 and x2 match those of d1 and d2 or
(b) the function is elemental, x1 and x2 are conformable, and there is no other function that defines

the operation.
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6 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively.

NOTE 7.27
An intrinsic operator may be used as the operator in a defined operation. In such a case, the generic
properties of the operator are extended.

7.1.6.2 Interpretation of a defined operation

1 The interpretation of a defined operation is provided by the function that defines the operation.

2 The operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT., .LE.,
.GT., .GE., .EQ., and .NE., respectively.

7.1.6.3 Evaluation of a defined operation

1 Once the interpretation of a defined operation is established, the processor may evaluate any other expression
that is equivalent, provided that the integrity of parentheses is not violated.

2 Two expressions of derived type are equivalent if their values are equal for all possible values of their primaries.

7.1.7 Evaluation of operands

1 It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate entirely each
operand, if the value of the expression can be determined otherwise.

NOTE 7.28
This principle is most often applicable to logical expressions, zero-sized arrays, and zero-length strings, but
it applies to all expressions.

For example, in evaluating the expression

X > Y .OR. L (Z)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need not be
evaluated if X is greater than Y. Similarly, in the array expression

W (Z) + A

where A is of size zero and W is a function, the function reference W (Z) need not be evaluated.

2 If a statement contains a function reference in a part of an expression that need not be evaluated, all entities that
would have become defined in the execution of that reference become undefined at the completion of evaluation
of the expression containing the function reference.

NOTE 7.29
In the examples in Note 7.28, if L or W defines its argument, evaluation of the expressions under the specified
conditions causes Z to become undefined, no matter whether or not L(Z) or W(Z) is evaluated.

3 If a statement contains a function reference in a part of an expression that need not be evaluated, no invocation
of that function in that part of the expression shall execute an image control statement other than CRITICAL
or END CRITICAL.

NOTE 7.30
This restriction is intended to avoid inadvertant deadlock caused by optimization.
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7.1.8 Integrity of parentheses

1 The rules for evaluation specified in subclause 7.1.5 state certain conditions under which a processor may evaluate
an expression that is different from the one specified by applying the rules given in 7.1.2 and rules for interpretation
specified in subclause 7.1.5. However, any expression in parentheses shall be treated as a data entity.

NOTE 7.31
For example, in evaluating the expression A + (B – C) where A, B, and C are of numeric types, the
difference of B and C shall be evaluated before the addition operation is performed; the processor shall not
evaluate the mathematically equivalent expression (A + B) – C.

7.1.9 Type, type parameters, and shape of an expression

7.1.9.1 General

1 The type, type parameters, and shape of an expression depend on the operators and on the types, type parameters,
and shapes of the primaries used in the expression, and are determined recursively from the syntactic form of the
expression. The type of an expression is one of the intrinsic types (4.4) or a derived type (4.5).

2 If an expression is a polymorphic primary or defined operation, the type parameters and the declared and dynamic
types of the expression are the same as those of the primary or defined operation. Otherwise the type parameters
and dynamic type of the expression are the same as its declared type and type parameters; they are referred to
simply as the type and type parameters of the expression.

R724 logical-expr is expr

C705 (R724) logical-expr shall be of type logical.

R725 default-char-expr is expr

C706 (R725) default-char-expr shall be default character.

R726 int-expr is expr

C707 (R726) int-expr shall be of type integer.

R727 numeric-expr is expr

C708 (R727) numeric-expr shall be of type integer, real, or complex.

7.1.9.2 Type, type parameters, and shape of a primary

1 The type, type parameters, and shape of a primary are determined according to whether the primary is a
constant, variable, array constructor, structure constructor, function reference, type parameter inquiry, type
parameter name, or parenthesized expression. If a primary is a constant, its type, type parameters, and shape
are those of the constant. If it is a structure constructor, it is scalar and its type and type parameters are as
described in 4.5.10. If it is an array constructor, its type, type parameters, and shape are as described in 4.8.
If it is a variable or function reference, its type, type parameters, and shape are those of the variable (5.2, 5.3)
or the function reference (12.5.3), respectively. If the function reference is generic (12.4.3.2, 13.5) then its type,
type parameters, and shape are those of the specific function referenced, which is determined by the types, type
parameters, and ranks of its actual arguments as specified in 12.5.5.2. If it is a type parameter inquiry or type
parameter name, it is a scalar integer with the kind of the type parameter.

2 If a primary is a parenthesized expression, its type, type parameters, and shape are those of the expression.

3 The associated target object is referenced if a pointer appears as

• a primary in an intrinsic or defined operation,
• the expr of a parenthesized primary, or

148 Expressions and assignment 7.1.8



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

• the only primary on the right-hand side of an intrinsic assignment statement.

4 The type, type parameters, and shape of the primary are those of the target. If the pointer is not associated with
a target, it may appear as a primary only as an actual argument in a reference to a procedure whose corresponding
dummy argument is declared to be a pointer, or as the target in a pointer assignment statement.

5 A disassociated array pointer or an unallocated allocatable array has no shape but does have rank. The type,
type parameters, and rank of the result of the intrinsic function NULL (13.7.125) depend on context.

7.1.9.3 Type, type parameters, and shape of the result of an operation

1 The type of the result of an intrinsic operation [x1] op x2 is specified by Table 7.3. The shape of the result of an
intrinsic operation is the shape of x2 if op is unary or if x1 is scalar, and is the shape of x1 otherwise.

2 The type, type parameters, and shape of the result of a defined operation [x1] op x2 are specified by the function
defining the operation (7.1.6).

3 An expression of an intrinsic type has a kind type parameter. An expression of type character also has a character
length parameter.

4 The type parameters of the result of an intrinsic operation are as follows.

• For an expression x1 // x2 where // is the character intrinsic operator and x1 and x2 are of type character,
the character length parameter is the sum of the lengths of the operands and the kind type parameter is
the kind type parameter of x1, which shall be the same as the kind type parameter of x2.
• For an expression op x2 where op is an intrinsic unary operator and x2 is of type integer, real, complex, or

logical, the kind type parameter of the expression is that of the operand.
• For an expression x1 op x2 where op is a numeric intrinsic binary operator with one operand of type integer

and the other of type real or complex, the kind type parameter of the expression is that of the real or
complex operand.
• For an expression x1 op x2 where op is a numeric intrinsic binary operator with both operands of the same

type and kind type parameters, or with one real and one complex with the same kind type parameters, the
kind type parameter of the expression is identical to that of each operand. In the case where both operands
are integer with different kind type parameters, the kind type parameter of the expression is that of the
operand with the greater decimal exponent range if the decimal exponent ranges are different; if the decimal
exponent ranges are the same, the kind type parameter of the expression is processor dependent, but it is
the same as that of one of the operands. In the case where both operands are any of type real or complex
with different kind type parameters, the kind type parameter of the expression is that of the operand with
the greater decimal precision if the decimal precisions are different; if the decimal precisions are the same,
the kind type parameter of the expression is processor dependent, but it is the same as that of one of the
operands.
• For an expression x1 op x2 where op is a logical intrinsic binary operator with both operands of the same

kind type parameter, the kind type parameter of the expression is identical to that of each operand. In the
case where both operands are of type logical with different kind type parameters, the kind type parameter
of the expression is processor dependent, but it is the same as that of one of the operands.
• For an expression x1 op x2 where op is a relational intrinsic operator, the expression has the default logical

kind type parameter.

7.1.10 Conformability rules for elemental operations

1 An elemental operation is an intrinsic operation or a defined operation for which the function is elemental (12.8).

2 For all elemental binary operations, the two operands shall be conformable. In the case where one is a scalar and
the other an array, the scalar is treated as if it were an array of the same shape as the array operand with every
element, if any, of the array equal to the value of the scalar.
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7.1.11 Specification expression

1 A specification expression is an expression with limitations that make it suitable for use in specifications such as
length type parameters (C404) and array bounds (R517, R518). A specification-expr shall be a constant expression
unless it is in an interface body (12.4.3.2), the specification part of a subprogram or BLOCK construct, a derived
type definition, or the declaration-type-spec of a FUNCTION statement (12.6.2.2).

R728 specification-expr is scalar-int-expr

C709 (R728) The scalar-int-expr shall be a restricted expression.

2 A restricted expression is an expression in which each operation is intrinsic or defined by a specification function
and each primary is

(1) a constant or subobject of a constant,
(2) an object designator with a base object that is a dummy argument that has neither the OPTIONAL

nor the INTENT (OUT) attribute,
(3) an object designator with a base object that is in a common block,
(4) an object designator with a base object that is made accessible by use or host association,
(5) an object designator with a base object that is a local variable of the procedure containing the

BLOCK construct in which the restricted expression appears,
(6) an object designator with a base object that is a local variable of an outer BLOCK construct contai-

ning the BLOCK construct in which the restricted expression appears,
(7) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a

restricted expression,
(8) a structure constructor where each component is a restricted expression,
(9) a specification inquiry where each designator or function argument is

(a) a restricted expression or
(b) a variable whose properties inquired about are not

(i) dependent on the upper bound of the last dimension of an assumed-size array,
(ii) deferred, or
(iii) defined by an expression that is not a restricted expression,

(10) a reference to any other standard intrinsic function where each argument is a restricted expression,
(11) a reference to a specification function where each argument is a restricted expression,
(12) a type parameter of the derived type being defined,
(13) an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-

implied-do-control is a restricted expression, or
(14) a restricted expression enclosed in parentheses,

3 where each subscript, section subscript, substring starting point, substring ending point, and type parameter
value is a restricted expression, and where any final subroutine that is invoked is pure.

4 A specification inquiry is a reference to

(1) an intrinsic inquiry function,
(2) a type parameter inquiry (6.4.5),
(3) an inquiry function from the intrinsic modules IEEE ARITHMETIC and IEEE EXCEPTIONS

(14.10),
(4) the function C SIZEOF from the intrinsic module ISO C BINDING (15.2.3.7), or
(5) the COMPILER VERSION or COMPILER OPTIONS inquiry function from the intrinsic module

ISO FORTRAN ENV (13.8.2.6, 13.8.2.7).

5 A function is a specification function if it is a pure function, is not a standard intrinsic function, is not an internal
function, is not a statement function, and does not have a dummy procedure argument.
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6 Evaluation of a specification expression shall not directly or indirectly cause a procedure defined by the subpro-
gram in which it appears to be invoked.

NOTE 7.32
Specification functions are nonintrinsic functions that may be used in specification expressions to determine
the attributes of data objects. The requirement that they be pure ensures that they cannot have side effects
that could affect other objects being declared in the same specification-part . The requirement that they
not be internal ensures that they cannot inquire, via host association, about other objects being declared
in the same specification-part . The prohibition against recursion avoids the creation of a new instance of a
procedure while construction of one is in progress.

7 A variable in a specification expression shall have its type and type parameters, if any, specified by a previous
declaration in the same scoping unit, by the implicit typing rules in effect for the scoping unit, or by host or use
association. If a variable in a specification expression is typed by the implicit typing rules, its appearance in any
subsequent type declaration statement shall confirm the implied type and type parameters.

8 If a specification expression includes a specification inquiry that depends on a type parameter or an array bound
of an entity specified in the same specification-part , the type parameter or array bound shall be specified in a prior
specification of the specification-part . The prior specification may be to the left of the specification inquiry in the
same statement, but shall not be within the same entity-decl . If a specification expression includes a reference to
the value of an element of an array specified in the same specification-part , the array shall be completely specified
in prior declarations.

9 If a specification expression in the specification-part of a module or submodule includes a reference to a generic
entity, that generic entity shall have no specific procedures defined in the module or submodule subsequent to
the specification expression.

NOTE 7.33
The following are examples of specification expressions:

LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array
M + LEN (C) ! M and C are dummy arguments
2 * PRECISION (A) ! A is a real variable made accessible

! by a USE statement

7.1.12 Constant expression

1 A constant expression is an expression with limitations that make it suitable for use as a kind type parameter,
initializer, or named constant. It is an expression in which each operation is intrinsic, and each primary is

(1) a constant or subobject of a constant,
(2) an array constructor where each element and each scalar-int-expr of each ac-implied-do-control is a

constant expression,
(3) a structure constructor where each component-spec corresponding to

(a) an allocatable component is a reference to the intrinsic function NULL,
(b) a pointer component is an initialization target or a reference to the intrinsic function NULL,

and
(c) any other component is a constant expression,

(4) a specification inquiry where each designator or function argument is

(a) a constant expression or
(b) a variable whose properties inquired about are not

(i) assumed,
(ii) deferred, or
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(iii) defined by an expression that is not a constant expression,

(5) a reference to an elemental standard intrinsic function, where each argument is a constant expression,
(6) a reference to a transformational standard intrinsic function other than COMMAND ARGUMENT -

COUNT, NULL, NUM IMAGES, THIS IMAGE, where each argument is a constant expression,
(7) A reference to the intrinsic function NULL that does not have an argument with a type parameter

that is assumed or is defined by an expression that is not a constant expression,
(8) a reference to the transformational function IEEE SELECTED REAL KIND from the intrinsic mo-

dule IEEE ARITHMETIC(14), where each argument is a constant expression,
(9) a kind type parameter of the derived type being defined,
(10) a data-i-do-variable within a data-implied-do,
(11) an ac-do-variable within an array constructor where each scalar-int-expr of the corresponding ac-

implied-do-control is a constant expression, or
(12) a constant expression enclosed in parentheses,

2 and where each subscript, section subscript, substring starting point, substring ending point, and type parameter
value is a constant expression.

R729 constant-expr is expr

C710 (R729) constant-expr shall be a constant expression.

R730 default-char-constant-expr is default-char-expr

C711 (R730) default-char-constant-expr shall be a constant expression.

R731 int-constant-expr is int-expr

C712 (R731) int-constant-expr shall be a constant expression.

3 If a constant expression includes a specification inquiry that depends on a type parameter or an array bound of
an entity specified in the same specification-part , the type parameter or array bound shall be specified in a prior
specification of the specification-part . The prior specification may be to the left of the specification inquiry in the
same statement, but shall not be within the same entity-decl .

4 If a constant expression in the specification-part of a module or submodule includes a reference to a generic
entity, that generic entity shall have no specific procedures defined in the module or submodule subsequent to
the constant expression.

NOTE 7.34
The following are examples of constant expressions:

3
-3 + 4
’AB’
’AB’ // ’CD’
(’AB’ // ’CD’) // ’EF’
SIZE (A)
DIGITS (X) + 4
4.0 * atan(1.0)
ceiling(number_of_decimal_digits / log10(radix(0.0)))

where A is an explicit-shape array with constant bounds and X is default real.
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7.2 Assignment

7.2.1 Assignment statement

7.2.1.1 General form

R732 assignment-stmt is variable = expr

C713 (R732) The variable shall not be a whole assumed-size array.

NOTE 7.35
Examples of an assignment statement are:

A = 3.5 + X * Y
I = INT (A)

1 An assignment-stmt shall meet the requirements of either a defined assignment statement or an intrinsic assign-
ment statement.

7.2.1.2 Intrinsic assignment statement

1 An intrinsic assignment statement is an assignment statement that is not a defined assignment statement (7.2.1.4).
In an intrinsic assignment statement,

(1) if the variable is polymorphic it shall be allocatable and not a coarray,
(2) if expr is an array then the variable shall also be an array,
(3) the variable and expr shall be conformable unless the variable is an allocatable array that has the

same rank as expr and is neither a coarray nor a coindexed object,
(4) if the variable is polymorphic it shall be type compatible with expr ; otherwise the declared types of

the variable and expr shall conform as specified in Table 7.10,
(5) if the variable is of type character and of ISO 10646, ASCII, or default character kind, expr shall be

of ISO 10646, ASCII, of default character kind,
(6) otherwise if the variable is of type character expr shall have the same kind type parameter,
(7) if the variable is of derived type each kind type parameter of the variable shall have the same value

as the corresponding kind type parameter of expr , and
(8) if the variable is of derived type each length type parameter of the variable shall have the same value

as the corresponding type parameter of expr unless the variable is an allocatable noncoarray and its
corresponding type parameter is deferred.

Table 7.10: Type conformance for the intrinsic assignment statement
Type of the variable Type of expr

integer integer, real, complex
real integer, real, complex

complex integer, real, complex
character character

logical logical
derived type same derived type as the variable

2 If variable is a coindexed object, the variable
• shall not be polymorphic,
• shall not have an allocatable ultimate component, and
• each deferred length type parameter shall have the same value as the corresponding type parameter of expr .
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3 If the variable is a pointer, it shall be associated with a definable target such that the type, type parameters, and
shape of the target and expr conform.

7.2.1.3 Interpretation of intrinsic assignments

1 Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all expressions
within variable (7.1), the possible conversion of expr to the type and type parameters of the variable (Table 7.11),
and the definition of the variable with the resulting value. The execution of the assignment shall have the same
effect as if the evaluation of expr and the evaluation of all expressions in variable occurred before any portion
of the variable is defined by the assignment. The evaluation of expressions within variable shall neither affect
nor be affected by the evaluation of expr . No value is assigned to the variable if it is of type character and zero
length, or is an array of size zero.

2 If the variable is a pointer, the value of expr is assigned to the target of the variable.

3 If the variable is an unallocated allocatable array, expr shall have the same rank. If the variable is an allocated
allocatable variable, it is deallocated if expr is an array of different shape, any of the corresponding length type
parameter values of the variable and expr differ, or the variable is polymorphic and the dynamic type of the
variable and expr differ. If the variable is or becomes an unallocated allocatable variable, it is then allocated with

• if the variable is polymorphic, the same dynamic type as expr ,
• each deferred type parameter equal to the corresponding type parameter of expr ,
• if the variable is an array and expr is scalar, the same bounds as before, and
• if expr is an array, the shape of expr with each lower bound equal to the corresponding element of

LBOUND (expr).

NOTE 7.36
For example, given the declaration

CHARACTER(:),ALLOCATABLE :: NAME

then after the assignment statement

NAME = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

NAME will have the length LEN(FIRST NAME)+LEN(SURNAME)+5, even if it had previously been
unallocated, or allocated with a different length. However, for the assignment statement

NAME(:) = ’Dr. ’//FIRST_NAME//’ ’//SURNAME

NAME must already be allocated at the time of the assignment; the assigned value is truncated or blank
padded to the previously allocated length of NAME.

4 Both variable and expr may contain references to any portion of the variable.

NOTE 7.37
For example, in the character intrinsic assignment statement:

STRING (2:5) = STRING (1:4)

the assignment of the first character of STRING to the second character does not affect the evaluation of
STRING (1:4). If the value of STRING prior to the assignment was ’ABCDEF’, the value following the
assignment is ’AABCDF’.

5 If expr is a scalar and the variable is an array, the expr is treated as if it were an array of the same shape as the
variable with every element of the array equal to the scalar value of expr .
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6 If the variable is an array, the assignment is performed element-by-element on corresponding array elements of
the variable and expr .

NOTE 7.38
For example, if A and B are arrays of the same shape, the array intrinsic assignment

A = B

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned to the first
element of A, the second element of B is assigned to the second element of A, etc.

If C is an allocatable array of rank 1, then

C = PACK(ARRAY,ARRAY>0)

will cause C to contain all the positive elements of ARRAY in array element order; if C is not allocated or
is allocated with the wrong size, it will be re-allocated to be of the correct size to hold the result of PACK.

7 The processor may perform the element-by-element assignment in any order.

NOTE 7.39
For example, the following program segment results in the values of the elements of array X being reversed:

REAL X (10)
...

X (1:10) = X (10:1:-1)

8 For an intrinsic assignment statement where the variable is of numeric type, the expr may have a different numeric
type or kind type parameter, in which case the value of expr is converted to the type and kind type parameter
of the variable according to the rules of Table 7.11.

Table 7.11: Numeric conversion and the assignment statement
Type of the variable Value Assigned
integer INT (expr , KIND = KIND (variable))
real REAL (expr , KIND = KIND (variable))
complex CMPLX (expr , KIND = KIND (variable))
Note: INT, REAL, CMPLX, and KIND are the generic names of

functions defined in 13.7.

9 For an intrinsic assignment statement where the variable is of type logical, the expr may have a different kind
type parameter, in which case the value of expr is converted to the kind type parameter of the variable.

10 For an intrinsic assignment statement where the variable is of type character, the expr may have a different
character length parameter in which case the conversion of expr to the length of the variable is as follows.

(1) If the length of the variable is less than that of expr , the value of expr is truncated from the right
until it is the same length as the variable.

(2) If the length of the variable is greater than that of expr , the value of expr is extended on the right
with blanks until it is the same length as the variable.

11 For an intrinsic assignment statement where the variable is of type character, if expr has a different kind type para-
meter, each character c in expr is converted to the kind type parameter of the variable by ACHAR (IACHAR(c),
KIND (variable)).
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NOTE 7.40
For nondefault character kinds, the blank padding character is processor dependent. When assigning a cha-
racter expression to a variable of a different kind, each character of the expression that is not representable
in the kind of the variable is replaced by a processor-dependent character.

12 For an intrinsic assignment of the type C PTR or C FUNPTR, the variable becomes undefined if the variable
and expr are not on the same image.

NOTE 7.41
An intrinsic assignment statement for a variable of type C PTR or C FUNPTR is not permitted to involve
a coindexed object, see C614, which prevents inappropriate copying from one image to another. However,
such copying may occur as an intrinsic assignment for a component in a derived-type assignment, in which
case the copy is regarded as undefined.

13 An intrinsic assignment where the variable is of derived type is performed as if each component of the variable
were assigned from the corresponding component of expr using pointer assignment (7.2.2) for each pointer com-
ponent, defined assignment for each nonpointer nonallocatable component of a type that has a type-bound defined
assignment consistent with the component, intrinsic assignment for each other nonpointer nonallocatable com-
ponent, and intrinsic assignment for each allocated coarray component. For unallocated coarray components,
the corresponding component of the variable shall be unallocated. For a noncoarray allocatable component the
following sequence of operations is applied.

(1) If the component of the variable is allocated, it is deallocated.
(2) If the component of the value of expr is allocated, the corresponding component of the variable is

allocated with the same dynamic type and type parameters as the component of the value of expr .
If it is an array, it is allocated with the same bounds. The value of the component of the value of
expr is then assigned to the corresponding component of the variable using defined assignment if the
declared type of the component has a type-bound defined assignment consistent with the component,
and intrinsic assignment for the dynamic type of that component otherwise.

14 The processor may perform the component-by-component assignment in any order or by any means that has the
same effect.

NOTE 7.42
For an example of a derived-type intrinsic assignment statement, if C and D are of the same derived type
with a pointer component P and nonpointer components S, T, U, and V of type integer, logical, character,
and another derived type, respectively, the intrinsic

C = D

pointer assigns D%P to C%P. It assigns D%S to C%S, D%T to C%T, and D%U to C%U using intrinsic
assignment. It assigns D%V to C%V using defined assignment if objects of that type have a compatible
type-bound defined assignment, and intrinsic assignment otherwise.

NOTE 7.43
If an allocatable component of expr is unallocated, the corresponding component of the variable has an
allocation status of unallocated after execution of the assignment.

7.2.1.4 Defined assignment statement

1 A defined assignment statement is an assignment statement that is defined by a subroutine and a generic interface
(4.5.2, 12.4.3.4.3) that specifies ASSIGNMENT (=).

2 A subroutine defines the defined assignment x1 = x2 if
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(1) the subroutine is specified with a SUBROUTINE (12.6.2.3) or ENTRY (12.6.2.6) statement that specifies
two dummy arguments, d1 and d2,

(2) either

(a) a generic interface (12.4.3.2) provides the subroutine with a generic-spec of ASSIGNMENT (=),
or

(b) there is a generic binding (4.5.2) in the declared type of x1 or x2 with a generic-spec of
ASSIGNMENT (=) and there is a corresponding binding to the subroutine in the dynamic
type of x1 or x2, respectively,

(3) the types of d1 and d2 are compatible with the dynamic types of x1 and x2, respectively,
(4) the type parameters, if any, of d1 and d2 match the corresponding type parameters of x1 and x2,

respectively, and
(5) either

(a) the ranks of x1 and x2 match those of d1 and d2 or
(b) the subroutine is elemental, x1 and x2 are conformable, and there is no other subroutine that

defines the assignment.

3 If d1 or d2 is an array, the shapes of x1 and x2 shall match the shapes of d1 and d2, respectively.

7.2.1.5 Interpretation of defined assignment statements

1 The interpretation of a defined assignment is provided by the subroutine that defines it.

2 If the defined assignment is an elemental assignment and the variable in the assignment is an array, the defined
assignment is performed element-by-element, on corresponding elements of the variable and expr . If expr is a
scalar, it is treated as if it were an array of the same shape as the variable with every element of the array equal
to the scalar value of expr .

NOTE 7.44
The rules of defined assignment (12.4.3.4.3), procedure references (12.5), subroutine references (12.5.4), and
elemental subroutine arguments (12.8.3) ensure that the defined assignment has the same effect as if the
evaluation of all operations in x2 and x1 occurs before any portion of x1 is defined. If an elemental assignment
is defined by a pure elemental subroutine, the element assignments may be performed simultaneously or in
any order.

7.2.2 Pointer assignment

7.2.2.1 General

1 Pointer assignment causes a pointer to become associated with a target or causes its pointer association status
to become disassociated or undefined. Any previous association between the pointer and a target is broken.

2 Pointer assignment for a pointer component of a structure may also take place by execution of a derived-type
intrinsic assignment statement (7.2.1.3).

7.2.2.2 Syntax of the pointer assignment statement

R733 pointer-assignment-stmt is data-pointer-object [ (bounds-spec-list) ] => data-target
or data-pointer-object (bounds-remapping-list ) => data-target
or proc-pointer-object => proc-target

R734 data-pointer-object is variable-name
or scalar-variable % data-pointer-component-name

C714 (R733) If data-target is not unlimited polymorphic, data-pointer-object shall be type compatible (4.3.1.3)
with it and the corresponding kind type parameters shall be equal.
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C715 (R733) If data-target is unlimited polymorphic, data-pointer-object shall be unlimited polymorphic, or of
a type with the BIND attribute or the SEQUENCE attribute.

C716 (R733) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of data-pointer-
object .

C717 (R733) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the rank of
data-pointer-object .

C718 (R733) If bounds-remapping-list is not specified, the ranks of data-pointer-object and data-target shall be
the same.

C719 (R733) A coarray data-target shall have the VOLATILE attribute if and only if the data-pointer-object
has the VOLATILE attribute.

C720 (R734) A variable-name shall have the POINTER attribute.

C721 (R734) A scalar-variable shall be a data-ref .

C722 (R734) A data-pointer-component-name shall be the name of a component of scalar-variable that is a
data pointer.

C723 (R734) A data-pointer-object shall not be a coindexed object.

R735 bounds-spec is lower-bound-expr :

R736 bounds-remapping is lower-bound-expr : upper-bound-expr

R737 data-target is variable
or expr

C724 (R737) A variable shall have either the TARGET or POINTER attribute, and shall not be an array
section with a vector subscript.

C725 (R737) A data-target shall not be a coindexed object.

NOTE 7.45
A data pointer and its target are always on the same image. A coarray may be of a derived type with pointer
or allocatable subcomponents. For example, if PTR is a pointer component, Z[P]%PTR is a reference to the
target of component PTR of Z on image P. This target is on image P and its association with Z[P]%PTR
must have been established by the execution of an ALLOCATE statement or a pointer assignment on image
P.

C726 (R737) An expr shall be a reference to a function whose result is a data pointer.

R738 proc-pointer-object is proc-pointer-name
or proc-component-ref

R739 proc-component-ref is scalar-variable % procedure-component-name

C727 (R739) The scalar-variable shall be a data-ref that is not a coindexed object.

C728 (R739) The procedure-component-name shall be the name of a procedure pointer component of the
declared type of scalar-variable.

R740 proc-target is expr
or procedure-name
or proc-component-ref

C729 (R740) An expr shall be a reference to a function whose result is a procedure pointer.
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C730 (R740) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a
procedure pointer, or a specific intrinsic function listed in 13.6 and not marked with a bullet (•).

C731 (R740) The proc-target shall not be a nonintrinsic elemental procedure.

1 In a pointer assignment statement, data-pointer-object or proc-pointer-object denotes the pointer object and
data-target or proc-target denotes the pointer target.

2 For pointer assignment performed by a derived-type intrinsic assignment statement, the pointer object is the
pointer component of the variable and the pointer target is the corresponding component of expr .

7.2.2.3 Data pointer assignment

1 If the pointer object is not polymorphic (4.3.1.3) and the pointer target is polymorphic with dynamic type that
differs from its declared type, the assignment target is the ancestor component of the pointer target that has the
type of the pointer object. Otherwise, the assignment target is the pointer target.

2 If the pointer target is not a pointer, the pointer object becomes pointer associated with the assignment target;
if the pointer target is a pointer with a target that is not on the same image, the pointer association status of the
pointer object becomes undefined. Otherwise, the pointer association status of the pointer object becomes that
of the pointer target; if the pointer target is associated with an object, the pointer object becomes associated
with the assignment target. If the pointer target is allocatable, it shall be allocated.

NOTE 7.46
A pointer assignment statement is not permitted to involve a coindexed pointer or target, see C723 and
C725. This prevents a pointer assignment statement from associating a pointer with a target on another
image. If such an association would otherwise be implied, the association status of the pointer becomes
undefined. For example, a derived-type intrinsic assignment where the variable and expr are on different
images and the variable has an ultimate pointer component.

3 If the pointer object is polymorphic, it assumes the dynamic type of the pointer target. If the pointer object is
of a type with the BIND attribute or the SEQUENCE attribute, the dynamic type of the pointer target shall be
that type.

4 If the pointer target is a disassociated pointer, all nondeferred type parameters of the declared type of the pointer
object that correspond to nondeferred type parameters of the pointer target shall have the same values as the
corresponding type parameters of the pointer target.

5 Otherwise, all nondeferred type parameters of the declared type of the pointer object shall have the same values
as the corresponding type parameters of the pointer target.

6 If the pointer object has nondeferred type parameters that correspond to deferred type parameters of the pointer
target, the pointer target shall not be a pointer with undefined association status.

7 If the pointer object has the CONTIGUOUS attribute, the pointer target shall be contiguous.

8 If the target of a pointer is a coarray, the pointer shall have the VOLATILE attribute if and only if the coarray
has the VOLATILE attribute.

9 If bounds-remapping-list is specified, the pointer target shall be simply contiguous (6.5.4) or of rank one. It shall
not be a disassociated or undefined pointer, and the size of the pointer target shall not be less than the size of
the pointer object. The elements of the target of the pointer object, in array element order (6.5.3.2), are the first
SIZE (data-pointer-object) elements of the pointer target.

10 If no bounds-remapping-list is specified, the extent of a dimension of the pointer object is the extent of the
corresponding dimension of the pointer target. If bounds-spec-list appears, it specifies the lower bounds; otherwise,
the lower bound of each dimension is the result of the intrinsic function LBOUND (13.7.90) applied to the
corresponding dimension of the pointer target. The upper bound of each dimension is one less than the sum of
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the lower bound and the extent.

7.2.2.4 Procedure pointer assignment

1 If the the pointer target is not a pointer, the pointer object becomes pointer associated with the pointer target.
Otherwise, the pointer association status of the pointer object becomes that of the pointer target; if the pointer
target is associated with a procedure, the pointer object becomes associated with the same procedure.

2 The host instance (12.6.2.4) of an associated procedure pointer is the host instance of its target.

3 If the pointer object has an explicit interface, its characteristics shall be the same as the pointer target except
that the pointer target may be pure even if the pointer object is not pure and the pointer target may be an
elemental intrinsic procedure even if the pointer object is not elemental.

4 If the characteristics of the pointer object or the pointer target are such that an explicit interface is required,
both the pointer object and the pointer target shall have an explicit interface.

5 If the pointer object has an implicit interface and is explicitly typed or referenced as a function, the pointer target
shall be a function. If the pointer object has an implicit interface and is referenced as a subroutine, the pointer
target shall be a subroutine.

6 If the pointer object is a function with an implicit interface, the pointer target shall be a function with the same
type; corresponding type parameters shall either both be deferred or both have the same value.

7 If procedure-name is a specific procedure name that is also a generic name, only the specific procedure is associated
with the pointer object.

7.2.2.5 Examples

NOTE 7.47
The following are examples of pointer assignment statements. (See Note 12.15 for declarations of P and
BESSEL.)

NEW_NODE % LEFT => CURRENT_NODE
SIMPLE_NAME => TARGET_STRUCTURE % SUBSTRUCT % COMPONENT
PTR => NULL ( )
ROW => MAT2D (N, :)
WINDOW => MAT2D (I-1:I+1, J-1:J+1)
POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)
EVERY_OTHER => VECTOR (1:N:2)
WINDOW2 (0:, 0:) => MAT2D (ML:MU, NL:NU)
! P is a procedure pointer and BESSEL is a procedure with a
! compatible interface.
P => BESSEL

! Likewise for a structure component.
STRUCT % COMPONENT => BESSEL

NOTE 7.48
It is possible to obtain different-rank views of parts of an object by specifying upper bounds in pointer
assignment statements. This requires that the object be either rank one or contiguous. Consider the
following example, in which a matrix is under consideration. The matrix is stored as a rank-one object in
MYDATA because its diagonal is needed for some reason – the diagonal cannot be gotten as a single object
from a rank-two representation. The matrix is represented as a rank-two view of MYDATA.

real, target :: MYDATA ( NR*NC ) ! An automatic array
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NOTE 7.48 (cont.)

real, pointer :: MATRIX ( :, : ) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG ( : )
MATRIX( 1:NR, 1:NC ) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA( 1::NR+1 ) ! The diagonal of MATRIX

Rows, columns, or blocks of the matrix can be accessed as sections of MATRIX.

Rank remapping can be applied to CONTIGUOUS arrays, for example:

REAL, CONTIGUOUS, POINTER :: A(:)
REAL, CONTIGUOUS, TARGET :: B(:,:) ! Dummy argument
A(1:SIZE(B)) => B ! Linear view of a rank-2 array

7.2.3 Masked array assignment – WHERE

7.2.3.1 General form of the masked array assignment

1 A masked array assignment is either a WHERE statement or a WHERE construct. It is used to mask the
evaluation of expressions and assignment of values in array assignment statements, according to the value of a
logical array expression.

R741 where-stmt is WHERE ( mask-expr ) where-assignment-stmt

R742 where-construct is where-construct-stmt
[ where-body-construct ] ...

[ masked-elsewhere-stmt
[ where-body-construct ] ... ] ...

[ elsewhere-stmt
[ where-body-construct ] ... ]

end-where-stmt

R743 where-construct-stmt is [where-construct-name:] WHERE ( mask-expr )

R744 where-body-construct is where-assignment-stmt
or where-stmt
or where-construct

R745 where-assignment-stmt is assignment-stmt

R746 mask-expr is logical-expr

R747 masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name]

R748 elsewhere-stmt is ELSEWHERE [where-construct-name]

R749 end-where-stmt is END WHERE [where-construct-name]

C732 (R745) A where-assignment-stmt that is a defined assignment shall be elemental.

C733 (R742) If the where-construct-stmt is identified by a where-construct-name, the corresponding end-where-
stmt shall specify the same where-construct-name. If the where-construct-stmt is not identified by a
where-construct-name, the corresponding end-where-stmt shall not specify a where-construct-name. If
an elsewhere-stmt or a masked-elsewhere-stmt is identified by a where-construct-name, the corresponding
where-construct-stmt shall specify the same where-construct-name.

C734 (R744) A statement that is part of a where-body-construct shall not be a branch target statement.
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2 If a where-construct contains a where-stmt , a masked-elsewhere-stmt , or another where-construct then each mask-
expr within the where-construct shall have the same shape. In each where-assignment-stmt , the mask-expr and
the variable being defined shall be arrays of the same shape.

NOTE 7.49
Examples of a masked array assignment are:

WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP
WHERE (PRESSURE <= 1.0)

PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0

ELSEWHERE
RAINING = .TRUE.

END WHERE

7.2.3.2 Interpretation of masked array assignments

1 When a WHERE statement or a where-construct-stmt is executed, a control mask is established. In addition,
when a WHERE construct statement is executed, a pending control mask is established. If the statement does
not appear as part of a where-body-construct , the mask-expr of the statement is evaluated, and the control mask is
established to be the value of mask-expr . The pending control mask is established to have the value .NOT. mask-
expr upon execution of a WHERE construct statement that does not appear as part of a where-body-construct .
The mask-expr is evaluated only once.

2 Each statement in a WHERE construct is executed in sequence.

3 Upon execution of a masked-elsewhere-stmt , the following actions take place in sequence.

(1) The control mask mc is established to have the value of the pending control mask.
(2) The pending control mask is established to have the value mc .AND. (.NOT. mask-expr).
(3) The control mask mc is established to have the value mc .AND. mask-expr .

4 The mask-expr is evaluated at most once.

5 Upon execution of an ELSEWHERE statement, the control mask is established to have the value of the pending
control mask. No new pending control mask value is established.

6 Upon execution of an ENDWHERE statement, the control mask and pending control mask are established to
have the values they had prior to the execution of the corresponding WHERE construct statement. Following
the execution of a WHERE statement that appears as a where-body-construct , the control mask is established to
have the value it had prior to the execution of the WHERE statement.

NOTE 7.50
The establishment of control masks and the pending control mask is illustrated with the following example:

WHERE(cond1) ! Statement 1
. . .
ELSEWHERE(cond2) ! Statement 2
. . .
ELSEWHERE ! Statement 3
. . .
END WHERE

Following execution of statement 1, the control mask has the value cond1 and the pending
control mask has the value .NOT. cond1. Following execution of statement 2, the control
mask has the value (.NOT. cond1) .AND. cond2 and the pending control mask has the value
(.NOT. cond1) .AND. (.NOT. cond2). Following execution of statement 3, the control mask has the value
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NOTE 7.50 (cont.)

(.NOT. cond1) .AND. (.NOT. cond2). The false condition values are propagated through the execution of
the masked ELSEWHERE statement.

7 Upon execution of a WHERE construct statement that is part of a where-body-construct , the pending control
mask is established to have the value mc .AND. (.NOT. mask-expr). The control mask is then established to
have the value mc .AND. mask-expr . The mask-expr is evaluated at most once.

8 Upon execution of a WHERE statement that is part of a where-body-construct , the control mask is established
to have the value mc .AND. mask-expr . The pending control mask is not altered.

9 If a nonelemental function reference occurs in the expr or variable of a where-assignment-stmt or in a mask-expr ,
the function is evaluated without any masked control; that is, all of its argument expressions are fully evaluated
and the function is fully evaluated. If the result is an array and the reference is not within the argument list
of a nonelemental function, elements corresponding to true values in the control mask are selected for use in
evaluating the expr , variable or mask-expr .

10 If an elemental operation or function reference occurs in the expr or variable of a where-assignment-stmt or in a
mask-expr , and is not within the argument list of a nonelemental function reference, the operation is performed
or the function is evaluated only for the elements corresponding to true values of the control mask.

11 If an array constructor appears in a where-assignment-stmt or in a mask-expr , the array constructor is evaluated
without any masked control and then the where-assignment-stmt is executed or the mask-expr is evaluated.

12 When a where-assignment-stmt is executed, the values of expr that correspond to true values of the control mask
are assigned to the corresponding elements of the variable.

13 The value of the control mask is established by the execution of a WHERE statement, a WHERE construct
statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an ENDWHERE statement.
Subsequent changes to the value of entities in a mask-expr have no effect on the value of the control mask. The
execution of a function reference in the mask expression of a WHERE statement is permitted to affect entities in
the assignment statement.

NOTE 7.51
Examples of function references in masked array assignments are:

WHERE (A > 0.0)
A = LOG (A) ! LOG is invoked only for positive elements.
A = A / SUM (LOG (A)) ! LOG is invoked for all elements

! because SUM is transformational
END WHERE

7.2.4 FORALL

7.2.4.1 Form of the FORALL Construct

1 The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and nested FORALL
constructs and statements to be controlled by a single forall-triplet-spec-list and scalar-mask-expr .

R750 forall-construct is forall-construct-stmt
[forall-body-construct ] ...
end-forall-stmt

R751 forall-construct-stmt is [forall-construct-name :] FORALL forall-header

R752 forall-header is ( [ type-spec :: ] forall-triplet-spec-list [, scalar-mask-expr ] )
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R753 forall-triplet-spec is index-name = forall-limit : forall-limit [ : forall-step]

R754 forall-limit is scalar-int-expr

R755 forall-step is scalar-int-expr

R756 forall-body-construct is forall-assignment-stmt
or where-stmt
or where-construct
or forall-construct
or forall-stmt

R757 forall-assignment-stmt is assignment-stmt
or pointer-assignment-stmt

R758 end-forall-stmt is END FORALL [forall-construct-name ]

C735 (R758) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have the same
forall-construct-name. If the end-forall-stmt has a forall-construct-name, the forall-construct-stmt shall
have the same forall-construct-name.

C736 (R752) type-spec shall specify type integer.

C737 (R752) The scalar-mask-expr shall be scalar and of type logical.

C738 (R752) Any procedure referenced in the scalar-mask-expr , including one referenced by a defined operation,
shall be a pure procedure (12.7).

C739 (R753) The index-name shall be a named scalar variable of type integer.

C740 (R753) A forall-limit or forall-step in a forall-triplet-spec shall not contain a reference to any index-name
in the forall-triplet-spec-list in which it appears.

C741 (R756) A statement in a forall-body-construct shall not define an index-name of the forall-construct .

C742 (R756) Any procedure referenced in a forall-body-construct , including one referenced by a defined opera-
tion, assignment, or finalization, shall be a pure procedure.

C743 (R756) A forall-body-construct shall not be a branch target.

2 The scope and attributes of an index-name in a forall-header are described in 16.4.

NOTE 7.52
An example of a FORALL construct is:

REAL :: A(10, 10), B(10, 10) = 1.0
. . .
FORALL (I = 1:10, J = 1:10, B(I, J) /= 0.0)

A(I, J) = REAL (I + J - 2)
B(I, J) = A(I, J) + B(I, J) * REAL (I * J)

END FORALL

7.2.4.2 Execution of the FORALL construct

7.2.4.2.1 Execution stages

1 There are three stages in the execution of a FORALL construct:

(1) determination of the values for index-name variables,
(2) evaluation of the scalar-mask-expr , and
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(3) execution of the FORALL body constructs.

7.2.4.2.2 Determination of the values for index variables

1 The forall-limit and forall-step expressions in the forall-triplet-spec-list are evaluated. These expressions may be
evaluated in any order. The set of values that a particular index-name variable assumes is determined as follows.

(1) The lower bound m1, the upper bound m2, and the step m3 are of type integer with the same kind
type parameter as the index-name. Their values are established by evaluating the first forall-limit ,
the second forall-limit , and the forall-step expressions, respectively, including, if necessary, conversion
to the kind type parameter of the index-name according to the rules for numeric conversion (Table
7.11). If forall-step does not appear, m3 has the value 1. The value m3 shall not be zero.

(2) Let the value of max be (m2 −m1 +m3)/m3. If max≤ 0 for some index-name, the execution of the
construct is complete. Otherwise, the set of values for the index-name is

m1 + (k − 1)×m3 where k = 1, 2, ..., max.

2 The set of combinations of index-name values is the Cartesian product of the sets defined by each triplet specifi-
cation. An index-name becomes defined when this set is evaluated.

7.2.4.2.3 Evaluation of the mask expression

1 The scalar-mask-expr , if any, is evaluated for each combination of index-name values. If there is no scalar-
mask-expr , it is as if it appeared with the value true. The index-name variables may be primaries in the
scalar-mask-expr .

2 The set of active combinations of index-name values is the subset of all possible combinations (7.2.4.2.2) for which
the scalar-mask-expr has the value true.

NOTE 7.53
The index-name variables may appear in the mask, for example

FORALL (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)
. . .

7.2.4.2.4 Execution of the FORALL body constructs

1 The forall-body-constructs are executed in the order in which they appear. Each construct is executed for all
active combinations of the index-name values with the following interpretation:

2 Execution of a forall-assignment-stmt that is an assignment-stmt causes the evaluation of expr and all expressions
within variable for all active combinations of index-name values. These evaluations may be done in any order.
After all these evaluations have been performed, each expr value is assigned to the corresponding variable. The
assignments may occur in any order.

3 Execution of a forall-assignment-stmt that is a pointer-assignment-stmt causes the evaluation of all expressions wi-
thin data-target and data-pointer-object or proc-target and proc-pointer-object , the determination of any pointers
within data-pointer-object or proc-pointer-object , and the determination of the target for all active combinations of
index-name values. These evaluations may be done in any order. After all these evaluations have been performed,
each data-pointer-object or proc-pointer-object is associated with the corresponding target. These associations
may occur in any order.

4 In a forall-assignment-stmt , a defined assignment subroutine shall not reference any variable that becomes defined
by the statement.
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NOTE 7.54
The following FORALL construct contains two assignment statements. The assignment to array B uses
the values of array A computed in the previous statement, not the values A had prior to execution of the
FORALL.

FORALL (I = 2:N-1, J = 2:N-1 )
A (I, J) = A(I, J-1) + A(I, J+1) + A(I-1, J) + A(I+1, J)
B (I, J) = 1.0 / A(I, J)

END FORALL

Computations that would otherwise cause error conditions can be avoided by using an appropriate scalar-
mask-expr that limits the active combinations of the index-name values. For example:

FORALL (I = 1:N, Y(I) /= 0.0)
X(I) = 1.0 / Y(I)

END FORALL

5 Each statement in a where-construct (7.2.3) within a forall-construct is executed in sequence. When a where-stmt ,
where-construct-stmt or masked-elsewhere-stmt is executed, the statement’s mask-expr is evaluated for all active
combinations of index-name values as determined by the outer forall-constructs, masked by any control mask
corresponding to outer where-constructs. Any where-assignment-stmt is executed for all active combinations of
index-name values, masked by the control mask in effect for the where-assignment-stmt .

NOTE 7.55
This FORALL construct contains a WHERE statement and an assignment statement.

INTEGER A(5,4), B(5,4)
FORALL ( I = 1:5 )

WHERE ( A(I,:) == 0 ) A(I,:) = I
B (I,:) = I / A(I,:)

END FORALL

When executed with the input array

0 0 0 0
1 1 1 0

A = 2 2 0 2
1 0 2 3
0 0 0 0

the results will be

1 1 1 1 1 1 1 1
1 1 1 2 2 2 2 1

A = 2 2 3 2 B = 1 1 1 1
1 4 2 3 4 1 2 1
5 5 5 5 1 1 1 1

For an example of a FORALL construct containing a WHERE construct with an ELSEWHERE statement,
see C.4.5.

6 Execution of a forall-stmt or forall-construct causes the evaluation of the forall-limit and forall-step expressions
in the forall-triplet-spec-list for all active combinations of the index-name values of the outer FORALL construct.
The set of combinations of index-name values for the inner FORALL is the union of the sets defined by these
limits and steps for each active combination of the outer index-name values; it also includes the outer index-
name values. The scalar-mask-expr is then evaluated for all combinations of the index-name values of the inner
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construct to produce a set of active combinations for the inner construct. If there is no scalar-mask-expr , it is
as if it appeared with the value true. Each statement in the inner FORALL is then executed for each active
combination of the index-name values.

NOTE 7.56
This FORALL construct contains a nested FORALL construct. It assigns the transpose of the strict lower
triangle of array A (the section below the main diagonal) to the strict upper triangle of A.

INTEGER A (3, 3)
FORALL (I = 1:N-1 )

FORALL ( J=I+1:N )
A(I,J) = A(J,I)

END FORALL
END FORALL

If prior to execution N = 3 and

0 3 6
A = 1 4 7

2 5 8

then after execution

0 1 2
A = 1 4 5

2 5 8

7.2.4.3 The FORALL statement

1 The FORALL statement allows a single assignment statement or pointer assignment statement to be controlled
by a set of index values and an optional mask expression.

R759 forall-stmt is FORALL forall-header forall-assignment-stmt

2 A FORALL statement is equivalent to a FORALL construct containing a single forall-body-construct that is a
forall-assignment-stmt .

3 The scope of an index-name in a forall-stmt is the statement itself (16.4).

NOTE 7.57
Examples of FORALL statements are:

FORALL (I=1:N) A(I,I) = X(I)

This statement assigns the elements of vector X to the elements of the main diagonal of matrix A.

FORALL (I = 1:N, J = 1:N) X(I,J) = 1.0 / REAL (I+J-1)

Array element X(I,J) is assigned the value (1.0 / REAL (I+J-1)) for values of I and J between 1 and N,
inclusive.

FORALL (I=1:N, J=1:N, Y(I,J) /= 0 .AND. I /= J) X(I,J) = 1.0 / Y(I,J)

This statement takes the reciprocal of each nonzero off-diagonal element of array Y(1:N, 1:N) and assigns it
to the corresponding element of array X. Elements of Y that are zero or on the diagonal do not participate,
and no assignments are made to the corresponding elements of X. The results from the execution of the
example in Note 7.56 could be obtained with a single FORALL statement:
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NOTE 7.57 (cont.)

FORALL ( I = 1:N-1, J=1:N, J > I ) A(I,J) = A(J,I)

For more examples of FORALL statements, see C.4.6.

7.2.4.4 Restrictions on FORALL constructs and statements

1 A many-to-one assignment is more than one assignment to the same object, or association of more than one target
with the same pointer, whether the object is referenced directly or indirectly through a pointer. A many-to-one
assignment shall not occur within a single statement in a FORALL construct or statement. It is possible to assign
or pointer assign to the same object in different assignment statements in a FORALL construct.

NOTE 7.58
The appearance of each index-name in the identification of the left-hand side of an assignment statement
is helpful in eliminating many-to-one assignments, but it is not sufficient to guarantee there will be none.
For example, the following is allowed

FORALL (I = 1:10)
A (INDEX (I)) = B(I)

END FORALL

if and only if INDEX(1:10) contains no repeated values.

2 Within the scope of a FORALL construct, a nested FORALL statement or FORALL construct shall not have the
same index-name. The forall-header expressions within a nested FORALL may depend on the values of outer
index-name variables.
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8 Execution control

8.1 Executable constructs containing blocks

8.1.1 General

1 The following are executable constructs that contain blocks:

• ASSOCIATE construct;
• BLOCK construct;
• CRITICAL construct;
• DO construct;
• IF construct;
• SELECT CASE construct;
• SELECT TYPE construct.

2 There is also a nonblock form of the DO construct.

R801 block is [ execution-part-construct ] ...

3 Executable constructs may be used to control which blocks of a program are executed or how many times a
block is executed. Blocks are always bounded by statements that are particular to the construct in which they
are embedded; however, in some forms of the DO construct, a sequence of executable constructs without a terminating boundary

statement shall obey all other rules governing blocks (8.1.2).

NOTE 8.1
A block need not contain any executable constructs. Execution of such a block has no effect.

NOTE 8.2
An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! These two statements
C = LOG (A) ! form a block.

END IF

8.1.2 Rules governing blocks

8.1.2.1 Control flow in blocks

1 Transfer of control to the interior of a block from outside the block is prohibited, except for the return from a
procedure invoked within the block. Transfers within a block and transfers from the interior of a block to outside
the block may occur.

2 Subroutine and function references (12.5.3, 12.5.4) may appear in a block.

8.1.2.2 Execution of a block

1 Execution of a block begins with the execution of the first executable construct in the block. Execution of the
block is completed when the last executable construct in the sequence is executed, when a branch (8.2) within
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the block that has a branch target outside the block occurs, when a RETURN statement within the block is
executed, or when an EXIT or CYCLE statement that belongs to a construct that contains the block is executed.

NOTE 8.3
The action that takes place at the terminal boundary depends on the particular construct and on the block
within that construct.

8.1.3 ASSOCIATE construct

8.1.3.1 Purpose and form of the ASSOCIATE construct

1 The ASSOCIATE construct associates named entities with expressions or variables during the execution of its
block. These named construct entities (16.4) are associating entities (16.5.1.6). The names are associate names.

R802 associate-construct is associate-stmt
block
end-associate-stmt

R803 associate-stmt is [ associate-construct-name : ] ASSOCIATE
(association-list )

R804 association is associate-name => selector

R805 selector is expr
or variable

C801 (R804) If selector is not a variable or is a variable that has a vector subscript, associate-name shall not
appear in a variable definition context (16.6.7).

C802 (R804) An associate-name shall not be the same as another associate-name in the same associate-stmt .

C803 (R805) variable shall not be a coindexed object.

C804 (R805) expr shall not be a variable.

R806 end-associate-stmt is END ASSOCIATE [ associate-construct-name ]

C805 (R806) If the associate-stmt of an associate-construct specifies an associate-construct-name, the corres-
ponding end-associate-stmt shall specify the same associate-construct-name. If the associate-stmt of an
associate-construct does not specify an associate-construct-name, the corresponding end-associate-stmt
shall not specify an associate-construct-name.

8.1.3.2 Execution of the ASSOCIATE construct

1 Execution of an ASSOCIATE construct causes evaluation of every expression within every selector that is a
variable designator and evaluation of every other selector , followed by execution of its block. During execution of
that block each associate name identifies an entity which is associated (16.5.1.6) with the corresponding selector.
The associating entity assumes the declared type and type parameters of the selector. If and only if the selector
is polymorphic, the associating entity is polymorphic.

2 The other attributes of the associating entity are described in 8.1.3.3.

3 It is permissible to branch to an end-associate-stmt only from within its ASSOCIATE construct.

8.1.3.3 Attributes of associate names

1 Within an ASSOCIATE or SELECT TYPE construct, each associating entity has the same rank and corank
as its associated selector. The lower bound of each dimension is the result of the intrinsic function LBOUND
(13.7.90) applied to the corresponding dimension of selector . The upper bound of each dimension is one less
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than the sum of the lower bound and the extent. The cobounds of each codimension of the associating entity are
the same as those of the selector. The associating entity has the ASYNCHRONOUS or VOLATILE attribute if
and only if the selector is a variable and has the attribute. The associating entity has the TARGET attribute
if and only if the selector is a variable and has either the TARGET or POINTER attribute. If the associating
entity is polymorphic, it assumes the dynamic type and type parameter values of the selector. If the selector has
the OPTIONAL attribute, it shall be present. The associating entity is contiguous if and only if the selector is
contiguous.

2 If the selector is not permitted to appear in a variable definition context (16.6.7), the associate name shall not
appear in a variable definition context.

8.1.3.4 Examples of the ASSOCIATE construct

NOTE 8.4
The following example illustrates an association with an expression.

ASSOCIATE ( Z => EXP(-(X**2+Y**2)) * COS(THETA) )
PRINT *, A+Z, A-Z

END ASSOCIATE

The following example illustrates an association with a derived-type variable.

ASSOCIATE ( XC => AX%B(I,J)%C )
XC%DV = XC%DV + PRODUCT(XC%EV(1:N))

END ASSOCIATE

The following example illustrates association with an array section.

ASSOCIATE ( ARRAY => AX%B(I,:)%C )
ARRAY(N)%EV = ARRAY(N-1)%EV

END ASSOCIATE

The following example illustrates multiple associations.

ASSOCIATE ( W => RESULT(I,J)%W, ZX => AX%B(I,J)%D, ZY => AY%B(I,J)%D )
W = ZX*X + ZY*Y

END ASSOCIATE

8.1.4 BLOCK construct

1 The BLOCK construct is an executable construct that may contain declarations.

R807 block-construct is block-stmt
[ specification-part ]
block
end-block-stmt

R808 block-stmt is [ block-construct-name : ] BLOCK

R809 end-block-stmt is END BLOCK [ block-construct-name ]

C806 (R807) The specification-part of a BLOCK construct shall not contain a COMMON, EQUIVALENCE,
IMPLICIT, INTENT, NAMELIST, OPTIONAL, statement function, or VALUE statement.

C807 (R807) A SAVE statement in a BLOCK construct shall contain a saved-entity-list that does not specify
a common-block-name.
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C808 (R807) If the block-stmt of a block-construct specifies a block-construct-name, the corresponding end-block-
stmt shall specify the same block-construct-name. If the block-stmt does not specify a block-construct-
name, the corresponding end-block-stmt shall not specify a block-construct-name.

2 Except for the ASYNCHRONOUS and VOLATILE statements, specifications in a BLOCK construct declare
construct entities whose scope is that of the BLOCK construct (16.4). The appearance of the name of an object
that is not a construct entity in an ASYNCHRONOUS or VOLATILE statement in a BLOCK construct specifies
that the object has the attribute within the construct even if it does not have the attribute outside the construct.

3 Execution of a BLOCK construct causes evaluation of the specification expressions within its specification part
in a processor-dependent order, followed by execution of its block.

8.1.5 CRITICAL construct

1 A CRITICAL construct limits execution of a block to one image at a time.

R810 critical-construct is critical-stmt
block
end-critical-stmt

R811 critical-stmt is [ critical-construct-name : ] CRITICAL

R812 end-critical-stmt is END CRITICAL [ critical-construct-name ]

C809 (R810) If the critical-stmt of a critical-construct specifies a critical-construct-name, the corresponding
end-critical-stmt shall specify the same critical-construct-name. If the critical-stmt of a critical-construct
does not specify a critical-construct-name, the corresponding end-critical-stmt shall not specify a critical-
construct-name.

C810 (R810) The block of a critical-construct shall not contain a RETURN statement or an image control
statement.

C811 A statement that branches from the block of a critical-construct to outside the critical-construct is
not permitted. A CYCLE or EXIT statement in a critical-construct that transfers control outside the
critical-construct is not permitted.

2 Execution of the CRITICAL construct is completed when execution of its block is completed. A procedure
invoked, directly or indirectly, from a CRITICAL construct shall not execute an image control statement.

3 The processor shall ensure that once an image has commenced executing block , no other image shall commence
executing block until this image has completed executing block . The image shall not execute an image control
statement during the execution of block . The sequence of executed statements is therefore a segment (8.5.2). If
image T is the next to execute the construct after image M, the segment on image M precedes the segment on
image T.

NOTE 8.5
If more than one image executes the block of a CRITICAL construct, its execution by one image always
either precedes or succeeds its execution by another image. Typically no other statement ordering is needed.
Consider the following example:

CRITICAL
GLOBAL_COUNTER[1] = GLOBAL_COUNTER[1] + 1

END CRITICAL

The definition of GLOBAL COUNTER [1] by a particular image will always precede the reference to the
same variable by the next image to execute the block.
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NOTE 8.6
The following example permits a large number of jobs to be shared among the images:

INTEGER :: NUM_JOBS[*], JOB

IF (THIS_IMAGE() == 1) READ(*,*) NUM_JOBS
SYNC ALL
DO

CRITICAL
JOB = NUM_JOBS[1]
NUM_JOBS[1] = JOB - 1

END CRITICAL
IF (JOB > 0) THEN

! Work on JOB
ELSE

EXIT
END IF

END DO
SYNC ALL

8.1.6 DO construct

8.1.6.1 Purpose and form of the DO construct

1 The DO construct specifies the repeated execution of a sequence of executable constructs. Such a repeated
sequence is called a loop.

2 The number of iterations of a loop can be determined at the beginning of execution of the DO construct, or can
be left indefinite (“DO forever” or DO WHILE). The execution order of the iterations can be left indeterminate
(DO CONCURRENT); except in this case, the loop can be terminated immediately (8.1.6.6.4). An iteration of
the loop can be curtailed by executing a CYCLE statement (8.1.6.6.3).

3 There are three phases in the execution of a DO construct: initiation of the loop, execution of the range of the
loop, and termination of the loop.

4 The scope and attributes of an index-name in a forall-header (DO CONCURRENT) are described in 16.4.

5 The DO construct can be written in either a block form or a nonblock form.

R813 do-construct is block-do-construct
or nonblock-do-construct

8.1.6.2 Form of the block DO construct

R814 block-do-construct is do-stmt
do-block
end-do

R815 do-stmt is label-do-stmt
or nonlabel-do-stmt

R816 label-do-stmt is [ do-construct-name : ] DO label [ loop-control ]

R817 nonlabel-do-stmt is [ do-construct-name : ] DO [ loop-control ]

R818 loop-control is [ , ] do-variable = scalar-int-expr , scalar-int-expr
[ , scalar-int-expr ]

8.1.6 Execution control 173



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

or [ , ] WHILE ( scalar-logical-expr )
or [ , ] CONCURRENT forall-header

R819 do-variable is scalar-int-variable-name

C812 (R819) The do-variable shall be a variable of type integer.

R820 do-block is block

R821 end-do is end-do-stmt
or continue-stmt

R822 end-do-stmt is END DO [ do-construct-name ]

C813 (R814) If the do-stmt of a block-do-construct specifies a do-construct-name, the corresponding end-do
shall be an end-do-stmt specifying the same do-construct-name. If the do-stmt of a block-do-construct
does not specify a do-construct-name, the corresponding end-do shall not specify a do-construct-name.

C814 (R814) If the do-stmt is a nonlabel-do-stmt , the corresponding end-do shall be an end-do-stmt .

C815 (R814) If the do-stmt is a label-do-stmt , the corresponding end-do shall be identified with the same label .

8.1.6.3 Form of the nonblock DO construct

R823 nonblock-do-construct is action-term-do-construct
or outer-shared-do-construct

R824 action-term-do-construct is label-do-stmt
do-body
do-term-action-stmt

R825 do-body is [ execution-part-construct ] ...

R826 do-term-action-stmt is action-stmt

C816 (R826) A do-term-action-stmt shall not be an allstop-stmt , arithmetic-if-stmt , continue-stmt , cycle-stmt , end-function-
stmt , end-mp-subprogram-stmt , end-program-stmt , end-subroutine-stmt , exit-stmt , goto-stmt , return-stmt , or stop-stmt .

C817 (R823) The do-term-action-stmt shall be identified with a label and the corresponding label-do-stmt shall refer to the same
label.

R827 outer-shared-do-construct is label-do-stmt
do-body
shared-term-do-construct

R828 shared-term-do-construct is outer-shared-do-construct
or inner-shared-do-construct

R829 inner-shared-do-construct is label-do-stmt
do-body
do-term-shared-stmt

R830 do-term-shared-stmt is action-stmt

C818 (R830) A do-term-shared-stmt shall not be an allstop-stmt , arithmetic-if-stmt , cycle-stmt , end-function-stmt , end-program-
stmt , end-mp-subprogram-stmt , end-subroutine-stmt , exit-stmt , goto-stmt , return-stmt , or stop-stmt .

C819 (R828) The do-term-shared-stmt shall be identified with a label and all of the label-do-stmts of the inner-shared-do-construct
and outer-shared-do-construct shall refer to the same label.

1 Within a scoping unit, all DO constructs whose DO statements refer to the same label are nonblock DO constructs, and share the

statement identified by that label.
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8.1.6.4 Range of the DO construct

1 The range of a block DO construct is the do-block , which shall satisfy the rules for blocks (8.1.2). In particular,
transfer of control to the interior of such a block from outside the block is prohibited. It is permitted to branch
to the end-do of a block DO construct only from within the range of that DO construct.

2 The do-term-action-stmt , do-term-shared-stmt , or shared-term-do-construct following the do-body of a nonblock DO construct is

called the DO termination of that construct. The range of a nonblock DO construct consists of the do-body and the following DO

termination. The end of such a range is not bounded by a particular statement as for the other executable constructs (e.g., END

IF); nevertheless, the range satisfies the rules for blocks (8.1.2). Transfer of control into the do-body or to the DO termination from

outside the range is prohibited; in particular, it is permitted to branch to a do-term-shared-stmt only from within the range of the

corresponding inner-shared-do-construct .

8.1.6.5 Active and inactive DO constructs

1 A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only when its DO
statement is executed.

2 Once active, the DO construct becomes inactive only when it terminates (8.1.6.6.4).

8.1.6.6 Execution of a DO construct

8.1.6.6.1 Loop initiation

1 When the DO statement is executed, the DO construct becomes active. If loop-control is

2 [ , ] do-variable = scalar-int-expr1 , scalar-int-expr2 [ , scalar-int-expr3 ]

3 the following steps are performed in sequence.

(1) The initial parameter m1, the terminal parameter m2, and the incrementation parameter m3 are
of type integer with the same kind type parameter as the do-variable. Their values are established
by evaluating scalar-int-expr1, scalar-int-expr2, and scalar-int-expr3, respectively, including, if ne-
cessary, conversion to the kind type parameter of the do-variable according to the rules for numeric
conversion (Table 7.11). If scalar-int-expr3 does not appear, m3 has the value 1. The value of m3

shall not be zero.
(2) The DO variable becomes defined with the value of the initial parameter m1.
(3) The iteration count is established and is the value of the expression (m2−m1 +m3)/m3, unless that

value is negative, in which case the iteration count is 0.

NOTE 8.7
The iteration count is zero whenever:

m1 > m2 and m3 > 0, or
m1 < m2 and m3 < 0.

4 If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration count,
impossible to decrement to zero, were established. If loop-control is [ , ] WHILE (scalar-logical-expr), the effect
is as if loop-control were omitted and the following statement inserted as the first statement of the do-block :

5 IF (.NOT. (scalar- logical-expr )) EXIT

6 For a DO CONCURRENT construct, the values of the index variables for the iterations of the construct are
determined by the rules for the index variables of the FORALL construct (7.2.4.2.2 and 7.2.4.2.3).

7 At the completion of the execution of the DO statement, the execution cycle begins.
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8.1.6.6.2 The execution cycle

1 The execution cycle of a DO construct that is not a DO CONCURRENT construct consists of the following steps
performed in sequence repeatedly until termination.

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO construct becomes
inactive. If loop-control is [ , ] WHILE (scalar-logical-expr), the scalar-logical-expr is evaluated; if
the value of this expression is false, the loop terminates and the DO construct becomes inactive. If, as

a result, all of the DO constructs sharing the do-term-shared-stmt are inactive, the execution of all of these constructs

is complete. However, if some of the DO constructs sharing the do-term-shared-stmt are active, execution continues

with step (3) of the execution cycle of the active DO construct whose DO statement was most recently executed.

(2) The range of the loop is executed.
(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented by the

value of the incrementation parameter m3.

2 Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall neither be redefined
nor become undefined while the DO construct is active.

3 The range of a DO CONCURRENT construct is executed for every active combination of the index-name values
(7.2.4.2.3). Each execution of the range is an iteration. The executions may occur in any order.

8.1.6.6.3 CYCLE statement

1 Execution of the range of the loop may be curtailed by executing a CYCLE statement from within the range of
the loop.

R831 cycle-stmt is CYCLE [ do-construct-name ]

C820 (R831) If a do-construct-name appears, the CYCLE statement shall be within the range of that do-
construct ; otherwise, it shall be within the range of at least one do-construct .

C821 (R831) A cycle-stmt shall not appear within the range of a DO CONCURRENT construct if it belongs
to an outer construct.

2 A CYCLE statement belongs to a particular DO construct. If the CYCLE statement contains a DO construct
name, it belongs to that DO construct; otherwise, it belongs to the innermost DO construct in which it appears.

3 Execution of a CYCLE statement that belongs to a DO construct that is not a DO CONCURRENT construct
causes immediate progression to step (3) of the execution cycle of the DO construct to which it belongs. If this

construct is a nonblock DO construct, the do-term-action-stmt or do-term-shared-stmt is not executed.

4 Execution of a CYCLE statement that belongs to a DO CONCURRENT construct completes execution of that
iteration of the construct.

5 In a block DO construct, a transfer of control to the end-do has the same effect as execution of a CYCLE statement
belonging to that construct. In a nonblock DO construct, transfer of control to the do-term-action-stmt or do-term-shared-stmt

causes that statement to be executed. Unless a further transfer of control results, step (3) of the execution cycle of the DO construct

is then executed.

8.1.6.6.4 Loop termination

1 For a DO construct that is not a DO CONCURRENT construct, the loop terminates, and the DO construct
becomes inactive, when any of the following occurs.

• The iteration count is determined to be zero or the scalar-logical-expr is false, when tested during step (1)
of the above execution cycle.

• An EXIT statement that belongs to the DO construct is executed.
• An EXIT or CYCLE statement that belongs to an outer construct and is within the range of the DO

construct is executed.
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• Control is transferred from a statement within the range of a DO construct to a statement that is neither
the end-do nor within the range of the same DO construct.
• A RETURN statement within the range of the DO construct is executed.

2 For a DO CONCURRENT construct, the loop terminates, and the DO construct becomes inactive when all of
the iterations have completed execution.

3 When a DO construct becomes inactive, the DO variable, if any, of the DO construct retains its last defined
value.

8.1.6.7 Restrictions on DO CONCURRENT constructs

C822 A RETURN statement shall not appear within a DO CONCURRENT construct.

C823 An image control statement shall not appear within a DO CONCURRENT construct.

C824 A branch (8.2) within a DO CONCURRENT construct shall not have a branch target that is outside
the construct.

C825 A reference to a nonpure procedure shall not appear within a DO CONCURRENT construct.

C826 A reference to the procedure IEEE GET FLAG, IEEE SET HALTING MODE, or IEEE GET HAL-
TING MODE from the intrinsic module IEEE EXCEPTIONS, shall not appear within a DO CONCUR-
RENT construct.

1 The following additional restrictions apply to execution of a DO CONCURRENT construct.

• A variable that is referenced in an iteration shall either be previously defined during that iteration, or
shall not be defined or become undefined during any other iteration. A variable that is defined or becomes
undefined by more than one iteration becomes undefined when the loop terminates.
• A pointer that is referenced in an iteration either shall be previously pointer associated during that iteration,

or shall not have its pointer association changed during any iteration. A pointer that has its pointer
association changed in more than one iteration has an association status of undefined when the construct
terminates.
• An allocatable object that is allocated in more than one iteration shall be subsequently deallocated during

the same iteration in which it was allocated. An object that is allocated or deallocated in only one iteration
shall not be deallocated, allocated, referenced, defined, or become undefined in a different iteration.
• An input/output statement shall not write data to a file record or position in one iteration and read from

the same record or position in a different iteration.
• Records written by output statements in the range of the loop to a sequential access file appear in the file

in an indeterminate order.

NOTE 8.8
The restrictions on referencing variables defined in an iteration of a DO CONCURRENT construct apply
to any procedure invoked within the loop.

NOTE 8.9
The restrictions on the statements in the range of a DO CONCURRENT construct are designed to ensure
there are no data dependencies between iterations of the loop. This permits code optimizations that might
otherwise be difficult or impossible because they would depend on properties of the program not visible to
the compiler.

NOTE 8.10
A variable that is effectively local to each iteration of a DO CONCURRENT construct can be declared in
a BLOCK construct within it. For example:

8.1.6.7 Execution control 177



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

NOTE 8.10 (cont.)

DO CONCURRENT (I = 1:N)
BLOCK

REAL :: T
T = A(I) + B(I)
C(I) = T + SQRT(T)

END BLOCK
END DO

8.1.6.8 Examples of DO constructs

NOTE 8.11
The following program fragment computes a tensor product of two arrays:

DO I = 1, M
DO J = 1, N

C (I, J) = DOT_PRODUCT (A (I, J, :), B(:, I, J))
END DO

END DO

NOTE 8.12
The following program fragment contains a DO construct that uses the WHILE form of loop-control . The
loop will continue to execute until an end-of-file or input/output error is encountered, at which point the
DO statement terminates the loop. When a negative value of X is read, the program skips immediately to
the next READ statement, bypassing most of the range of the loop.

READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X
DO WHILE (IOS == 0)

IF (X >= 0.) THEN
CALL SUBA (X)
CALL SUBB (X)

...
CALL SUBZ (X)

ENDIF
READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X

END DO

NOTE 8.13
The following example behaves exactly the same as the one in Note 8.12. However, the READ statement
has been moved to the interior of the range, so that only one READ statement is needed. Also, a CYCLE
statement has been used to avoid an extra level of IF nesting.

DO ! A "DO WHILE + 1/2" loop
READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X
IF (IOS /= 0) EXIT
IF (X < 0.) CYCLE
CALL SUBA (X)
CALL SUBB (X)

. . .
CALL SUBZ (X)

END DO
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NOTE 8.14
The following example represents a case in which the user knows that there are no repeated values in the
index array IND. The DO CONCURRENT construct makes it easier for the processor to generate vector
gather/scatter code, unroll the loop, or parallelize the code for this loop, potentially improving performance.

INTEGER :: A(N),IND(N)

DO CONCURRENT (I=1:M)
A(IND(I)) = I

END DO

NOTE 8.15
Additional examples of DO constructs are in C.5.3.

8.1.7 IF construct and statement

8.1.7.1 Purpose and form of the IF construct

1 The IF construct selects for execution at most one of its constituent blocks. The selection is based on a sequence
of logical expressions.

R832 if-construct is if-then-stmt
block

[ else-if-stmt
block ] ...

[ else-stmt
block ]

end-if-stmt

R833 if-then-stmt is [ if-construct-name : ] IF ( scalar-logical-expr ) THEN

R834 else-if-stmt is ELSE IF ( scalar-logical-expr ) THEN [ if-construct-name ]

R835 else-stmt is ELSE [ if-construct-name ]

R836 end-if-stmt is END IF [ if-construct-name ]

C827 (R832) If the if-then-stmt of an if-construct specifies an if-construct-name, the corresponding end-if-
stmt shall specify the same if-construct-name. If the if-then-stmt of an if-construct does not specify an
if-construct-name, the corresponding end-if-stmt shall not specify an if-construct-name. If an else-if-
stmt or else-stmt specifies an if-construct-name, the corresponding if-then-stmt shall specify the same
if-construct-name.

8.1.7.2 Execution of an IF construct

1 At most one of the blocks in the IF construct is executed. If there is an ELSE statement in the construct,
exactly one of the blocks in the construct is executed. The scalar logical expressions are evaluated in the order
of their appearance in the construct until a true value is found or an ELSE statement or END IF statement is
encountered. If a true value or an ELSE statement is found, the block immediately following is executed and this
completes the execution of the construct. The scalar logical expressions in any remaining ELSE IF statements of
the IF construct are not evaluated. If none of the evaluated expressions is true and there is no ELSE statement,
the execution of the construct is completed without the execution of any block within the construct.

2 It is permissible to branch to an END IF statement only from within its IF construct. Execution of an END IF
statement has no effect.
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8.1.7.3 Examples of IF constructs

NOTE 8.16

IF (CVAR == ’RESET’) THEN
I = 0; J = 0; K = 0

END IF
PROOF_DONE: IF (PROP) THEN

WRITE (3, ’(’’QED’’)’)
STOP

ELSE
PROP = NEXTPROP

END IF PROOF_DONE
IF (A > 0) THEN

B = C/A
IF (B > 0) THEN

D = 1.0
END IF

ELSE IF (C > 0) THEN
B = A/C
D = -1.0

ELSE
B = ABS (MAX (A, C))
D = 0

END IF

8.1.7.4 IF statement

1 The IF statement controls the execution of a single action statement based on a single logical expression.

R837 if-stmt is IF ( scalar-logical-expr ) action-stmt

C828 (R837) The action-stmt in the if-stmt shall not be an end-function-stmt , end-mp-subprogram-stmt , end-
program-stmt , end-subroutine-stmt , or if-stmt .

2 Execution of an IF statement causes evaluation of the scalar logical expression. If the value of the expression is
true, the action statement is executed. If the value is false, the action statement is not executed and execution
continues.

3 The execution of a function reference in the scalar logical expression may affect entities in the action statement.

NOTE 8.17
An example of an IF statement is:

IF (A > 0.0) A = LOG (A)

8.1.8 SELECT CASE construct

8.1.8.1 Purpose and form of the SELECT CASE construct

1 The SELECT CASE construct selects for execution at most one of its constituent blocks. The selection is based
on the value of an expression.

R838 case-construct is select-case-stmt
[ case-stmt

block ] ...
end-select-stmt
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R839 select-case-stmt is [ case-construct-name : ] SELECT CASE ( case-expr )

R840 case-stmt is CASE case-selector [case-construct-name]

R841 end-select-stmt is END SELECT [ case-construct-name ]

C829 (R838) If the select-case-stmt of a case-construct specifies a case-construct-name, the corresponding end-
select-stmt shall specify the same case-construct-name. If the select-case-stmt of a case-construct does
not specify a case-construct-name, the corresponding end-select-stmt shall not specify a case-construct-
name. If a case-stmt specifies a case-construct-name, the corresponding select-case-stmt shall specify the
same case-construct-name.

R842 case-expr is scalar-expr

C830 case-expr shall be of type character, integer, or logical.

R843 case-selector is ( case-value-range-list )
or DEFAULT

C831 (R838) No more than one of the selectors of one of the CASE statements shall be DEFAULT.

R844 case-value-range is case-value
or case-value :
or : case-value
or case-value : case-value

R845 case-value is scalar-constant-expr

C832 (R838) For a given case-construct , each case-value shall be of the same type as case-expr . For character
type, the kind type parameters shall be the same; character length differences are allowed.

C833 (R838) A case-value-range using a colon shall not be used if case-expr is of type logical.

C834 (R838) For a given case-construct , there shall be no possible value of the case-expr that matches more
than one case-value-range.

8.1.8.2 Execution of a SELECT CASE construct

1 The execution of the SELECT CASE statement causes the case expression to be evaluated. For a case value
range list, a match occurs if the case expression value matches any of the case value ranges in the list. For a case
expression with a value of c, a match is determined as follows.

(1) If the case value range contains a single value v without a colon, a match occurs for type logical if
the expression c .EQV. v is true, and a match occurs for type integer or character if the expression
c == v is true.

(2) If the case value range is of the form low : high, a match occurs if the expression low <= c .AND.
c <= high is true.

(3) If the case value range is of the form low :, a match occurs if the expression low <= c is true.
(4) If the case value range is of the form : high, a match occurs if the expression c <= high is true.
(5) If no other selector matches and a DEFAULT selector appears, it matches the case index.
(6) If no other selector matches and the DEFAULT selector does not appear, there is no match.

2 The block following the CASE statement containing the matching selector, if any, is executed. This completes
execution of the construct.

3 It is permissible to branch to an end-select-stmt only from within its SELECT CASE construct.
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8.1.8.3 Examples of SELECT CASE constructs

NOTE 8.18
An integer signum function:

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)
CASE (:-1)

SIGNUM = -1
CASE (0)

SIGNUM = 0
CASE (1:)

SIGNUM = 1
END SELECT
END

NOTE 8.19
A code fragment to check for balanced parentheses:

CHARACTER (80) :: LINE
...

LEVEL = 0
SCAN_LINE: DO I = 1, 80

CHECK_PARENS: SELECT CASE (LINE (I:I))
CASE (’(’)

LEVEL = LEVEL + 1
CASE (’)’)

LEVEL = LEVEL - 1
IF (LEVEL < 0) THEN

PRINT *, ’UNEXPECTED RIGHT PARENTHESIS’
EXIT SCAN_LINE

END IF
CASE DEFAULT

! Ignore all other characters
END SELECT CHECK_PARENS

END DO SCAN_LINE
IF (LEVEL > 0) THEN

PRINT *, ’MISSING RIGHT PARENTHESIS’
END IF

NOTE 8.20
The following three fragments are equivalent:

IF (SILLY == 1) THEN
CALL THIS

ELSE
CALL THAT

END IF
SELECT CASE (SILLY == 1)
CASE (.TRUE.)

CALL THIS
CASE (.FALSE.)

CALL THAT
END SELECT
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NOTE 8.20 (cont.)

SELECT CASE (SILLY)
CASE DEFAULT

CALL THAT
CASE (1)

CALL THIS
END SELECT

NOTE 8.21
A code fragment showing several selections of one block:

SELECT CASE (N)
CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8

CALL SUB
CASE DEFAULT

CALL OTHER
END SELECT

8.1.9 SELECT TYPE construct

8.1.9.1 Purpose and form of the SELECT TYPE construct

1 The SELECT TYPE construct selects for execution at most one of its constituent blocks. The selection is based
on the dynamic type of an expression. A name is associated with the expression or variable (16.4, 16.5.1.6), in
the same way as for the ASSOCIATE construct.

R846 select-type-construct is select-type-stmt
[ type-guard-stmt

block ] ...
end-select-type-stmt

R847 select-type-stmt is [ select-construct-name : ] SELECT TYPE
( [ associate-name => ] selector )

C835 (R847) If selector is not a named variable, associate-name => shall appear.

C836 (R847) If selector is not a variable or is a variable that has a vector subscript, associate-name shall not
appear in a variable definition context (16.6.7).

C837 (R847) The selector in a select-type-stmt shall be polymorphic.

R848 type-guard-stmt is TYPE IS ( type-spec ) [ select-construct-name ]
or CLASS IS ( derived-type-spec ) [ select-construct-name ]
or CLASS DEFAULT [ select-construct-name ]

C838 (R848) The type-spec or derived-type-spec shall specify that each length type parameter is assumed.

C839 (R848) The type-spec or derived-type-spec shall not specify a type with the BIND attribute or the SE-
QUENCE attribute.

C840 (R846) If selector is not unlimited polymorphic, each TYPE IS or CLASS IS type-guard-stmt shall specify
an extension of the declared type of selector .

C841 (R846) For a given select-type-construct , the same type and kind type parameter values shall not be
specified in more than one TYPE IS type-guard-stmt and shall not be specified in more than one CLASS
IS type-guard-stmt .
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C842 (R846) For a given select-type-construct , there shall be at most one CLASS DEFAULT type-guard-stmt .

R849 end-select-type-stmt is END SELECT [ select-construct-name ]

C843 (R846) If the select-type-stmt of a select-type-construct specifies a select-construct-name, the correspon-
ding end-select-type-stmt shall specify the same select-construct-name. If the select-type-stmt of a select-
type-construct does not specify a select-construct-name, the corresponding end-select-type-stmt shall not
specify a select-construct-name. If a type-guard-stmt specifies a select-construct-name, the corresponding
select-type-stmt shall specify the same select-construct-name.

2 The associate name of a SELECT TYPE construct is the associate-name if specified; otherwise it is the name
that constitutes the selector .

8.1.9.2 Execution of the SELECT TYPE construct

1 Execution of a SELECT TYPE construct causes evaluation of every expression within a selector that is a variable
designator, or evaluation of a selector that is not a variable designator.

2 A SELECT TYPE construct selects at most one block to be executed. During execution of that block, the
associate name identifies an entity which is associated (16.5.1.6) with the selector.

3 A TYPE IS type guard statement matches the selector if the dynamic type and kind type parameter values of
the selector are the same as those specified by the statement. A CLASS IS type guard statement matches the
selector if the dynamic type of the selector is an extension of the type specified by the statement and the kind
type parameter values specified by the statement are the same as the corresponding type parameter values of the
dynamic type of the selector.

4 The block to be executed is selected as follows.

(1) If a TYPE IS type guard statement matches the selector, the block following that statement is
executed.

(2) Otherwise, if exactly one CLASS IS type guard statement matches the selector, the block following
that statement is executed.

(3) Otherwise, if several CLASS IS type guard statements match the selector, one of these statements
must specify a type that is an extension of all the types specified in the others; the block following
that statement is executed.

(4) Otherwise, if there is a CLASS DEFAULT type guard statement, the block following that statement
is executed.

(5) Otherwise, no block is executed.

NOTE 8.22
This algorithm does not examine the type guard statements in source text order when it looks for a match;
it selects the most particular type guard when there are several potential matches.

5 Within the block following a TYPE IS type guard statement, the associating entity (16.5.5) is not polymorphic
(4.3.1.3), has the type named in the type guard statement, and has the type parameter values of the selector.

6 Within the block following a CLASS IS type guard statement, the associating entity is polymorphic and has the
declared type named in the type guard statement. The type parameter values of the associating entity are the
corresponding type parameter values of the selector.

7 Within the block following a CLASS DEFAULT type guard statement, the associating entity is polymorphic and
has the same declared type as the selector. The type parameter values of the associating entity are those of the
declared type of the selector.
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NOTE 8.23
If the declared type of the selector is T, specifying CLASS DEFAULT has the same effect as specifying
CLASS IS (T).

8 The other attributes of the associating entity are described in 8.1.3.3.

9 It is permissible to branch to an end-select-type-stmt only from within its SELECT TYPE construct.

8.1.9.3 Examples of the SELECT TYPE construct

NOTE 8.24

TYPE POINT
REAL :: X, Y

END TYPE POINT
TYPE, EXTENDS(POINT) :: POINT_3D
REAL :: Z

END TYPE POINT_3D
TYPE, EXTENDS(POINT) :: COLOR_POINT
INTEGER :: COLOR

END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3
TYPE(COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C
P_OR_C => C
SELECT TYPE ( A => P_OR_C )
CLASS IS ( POINT )
! "CLASS ( POINT ) :: A" implied here
PRINT *, A%X, A%Y ! This block gets executed

TYPE IS ( POINT_3D )
! "TYPE ( POINT_3D ) :: A" implied here
PRINT *, A%X, A%Y, A%Z

END SELECT

NOTE 8.25
The following example illustrates the omission of associate-name. It uses the declarations from Note 8.24.

P_OR_C => P3
SELECT TYPE ( P_OR_C )
CLASS IS ( POINT )
! "CLASS ( POINT ) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y

TYPE IS ( POINT_3D )
! "TYPE ( POINT_3D ) :: P_OR_C" implied here
PRINT *, P_OR_C%X, P_OR_C%Y, P_OR_C%Z ! This block gets executed

END SELECT

8.1.10 EXIT statement

1 The EXIT statement provides one way of terminating a loop, or completing execution of another construct.

R850 exit-stmt is EXIT [ construct-name ]
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C844 If a construct-name appears, the EXIT statement shall be within that construct; otherwise, it shall be
within the range (8.1.6.4) of at least one do-construct .

2 An EXIT statement belongs to a particular construct. If a construct name appears, the EXIT statement belongs
to that construct; otherwise, it belongs to the innermost DO construct in which it appears.

C845 An exit-stmt shall not belong to a DO CONCURRENT construct, nor shall it appear within the range
of a DO CONCURRENT construct if it belongs to a construct that contains that DO CONCURRENT
construct.

3 When an EXIT statement that belongs to a DO construct is executed, it terminates the loop (8.1.6.6.4) and
any active loops contained within the terminated loop. When an EXIT statement that belongs to a non-DO
construct is executed, it terminates any active loops contained within that construct, and completes execution of
that construct.

8.2 Branching

8.2.1 Branch concepts

1 Branching is used to alter the normal execution sequence. A branch causes a transfer of control from one
statement in a scoping unit to a labeled branch target statement in the same scoping unit. Branching may be
caused by a GO TO statement, a computed GO TO statement, an arithmetic IF statement, a CALL statement

that has an alt-return-spec, or an input/output statement that has an END=, EOR=, or ERR= specifier. Although
procedure references and control constructs can cause transfer of control, they are not branches. A branch target
statement is an action-stmt , an associate-stmt , an end-associate-stmt , an if-then-stmt , an end-if-stmt , a select-
case-stmt , an end-select-stmt , a select-type-stmt , an end-select-type-stmt , a do-stmt , an end-do-stmt , block-stmt ,
end-block-stmt , critical-stmt , end-critical-stmt , a forall-construct-stmt , a do-term-action-stmt , a do-term-shared-stmt ,

or a where-construct-stmt .

8.2.2 GO TO statement

R851 goto-stmt is GO TO label

C846 (R851) The label shall be the statement label of a branch target statement that appears in the same
scoping unit as the goto-stmt .

1 Execution of a GO TO statement causes a branch to the branch target statement identified by the label.

8.2.3 Computed GO TO statement

R852 computed-goto-stmt is GO TO ( label-list ) [ , ] scalar-int-expr

C847 (R852 Each label in label-list shall be the statement label of a branch target statement that appears in the same scoping
unit as the computed-goto-stmt .

NOTE 8.26

The same statement label may appear more than once in a label list.

1 Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is i such that 1 ≤ i ≤ n

where n is the number of labels in label-list, a branch occurs to the branch target statement identified by the ith label in the list of

labels. If i is less than 1 or greater than n, the execution sequence continues as though a CONTINUE statement were executed.

8.2.4 Arithmetic IF statement

R853 arithmetic-if-stmt is IF ( scalar-numeric-expr ) label , label , label

C848 (R853) Each label shall be the label of a branch target statement that appears in the same scoping unit as the arithmetic-
if-stmt .
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C849 (R853) The scalar-numeric-expr shall not be of type complex.

NOTE 8.27

The same label may appear more than once in one arithmetic IF statement.

1 Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a branch. The branch target

statement identified by the first label, the second label, or the third label is executed next depending on whether the value of the

numeric expression is less than zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE statement

1 Execution of a CONTINUE statement has no effect.

R854 continue-stmt is CONTINUE

8.4 STOP and ALL STOP statements

R855 stop-stmt is STOP [ stop-code ]
R856 allstop-stmt is ALL STOP [ stop-code ]
R857 stop-code is scalar-default-char-constant-expr

or scalar-int-constant-expr

C850 (R857) The scalar-int-constant-expr shall be of default kind.

1 Execution of a STOP statement initiates normal termination of execution. Execution of an ALL STOP statement
initiates error termination of execution.

2 When an image is terminated by a STOP or ALL STOP statement, its stop code, if any, is made available in a
processor-dependent manner. If any exception (14) is signaling on that image, the processor shall issue a warning
indicating which exceptions are signaling; this warning shall be on the unit identified by the named constant
ERROR UNIT (13.8.2.8). It is recommended that the stop code is made available by formatted output to the
same unit.

NOTE 8.28
When normal termination occurs on more than one image, it is expected that a processor-dependent sum-
mary of any stop codes and signaling exceptions will be made available.

NOTE 8.29
If the stop-code is an integer, it is recommended that the value also be used as the process exit status, if the
processor supports that concept. If the integer stop-code is used as the process exit status, the processor
might be able to interpret only values within a limited range, or only a limited portion of the integer value
(for example, only the least-significant 8 bits).

If the stop-code is of type character or does not appear, or if an end-program-stmt is executed, it is recom-
mended that the value zero be supplied as the process exit status, if the processor supports that concept.

8.5 Image execution control

8.5.1 Image control statements

1 The execution sequence on each image is specified in 2.3.5.

2 Execution of an image control statement divides the execution sequence on an image into segments. Each of the
following is an image control statement:
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• SYNC ALL statement;
• SYNC IMAGES statement;
• SYNC MEMORY statement;
• ALLOCATE or DEALLOCATE statement that has a coarray allocate-object ;
• CRITICAL or END CRITICAL (8.1.5);
• LOCK or UNLOCK statement;
• any statement that completes execution of a block or procedure and which results in the implicit deallocation

of a coarray;
• STOP statement;
• END statement of a main program.

3 All image control statements except CRITICAL, END CRITICAL, LOCK, and UNLOCK include the effect of
executing a SYNC MEMORY statement (8.5.5).

4 During an execution of a statement that invokes more than one procedure, at most one invocation shall cause
execution of an image control statement other than CRITICAL or END CRITICAL.

8.5.2 Segments

1 On each image, the sequence of statements executed before the first execution of an image control statement,
between the execution of two image control statements, or after the last execution of an image control statement
is a segment. The segment executed immediately before the execution of an image control statement includes the
evaluation of all expressions within the statement.

2 By execution of image control statements or user-defined ordering (8.5.5), the program can ensure that the
execution of the ith segment on image P, Pi, either precedes or succeeds the execution of the jth segment on
another image Q, Qj . If the program does not ensure this, segments Pi and Qj are unordered; depending on the
relative execution speeds of the images, some or all of the execution of the segment Pi may take place at the same
time as some or all of the execution of the segment Qj .

3 A coarray may be referenced or defined by execution of an atomic subroutine during the execution of a segment
that is unordered relative to the execution of a segment in which the coarray is referenced or defined by execution
of an atomic subroutine. Otherwise,

• if a variable is defined on an image in a segment, it shall not be referenced, defined, or become undefined
in a segment on another image unless the segments are ordered,
• if the allocation of an allocatable subobject of a coarray or the pointer association of a pointer subobject

of a coarray is changed on an image in a segment, that subobject shall not be referenced or defined in a
segment on another image unless the segments are ordered, and
• if a procedure invocation on image P is in execution in segments Pi, Pi+1, ..., Pk and defines a noncoarray

dummy argument, the effective argument shall not be referenced, defined, or become undefined on another
image Q in a segment Qj unless Qj precedes Pi or succeeds Pk.

NOTE 8.30
The set of all segments on all images is partially ordered: the segment Pi precedes segment Qj if and only if
there is a sequence of segments starting with Pi and ending with Qj such that each segment of the sequence
precedes the next either because they are on the same image or because of the execution of image control
statements.

NOTE 8.31
If the segments S1, S2, ..., Sk on the distinct images P1, P2, ..., Pk are all unordered with respect to each
other, it is expected that the processor will ensure that each of these images is provided with an equitable
share of resources for executing its segment.
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NOTE 8.32
Because of the restrictions on references and definitions in unordered segments, the processor can apply
code motion optimizations within a segment as if it were the only image in execution, provided calls to
atomic subroutines are not involved.

NOTE 8.33
The model upon which the interpretation of a program is based is that there is a permanent memory
location for each coarray and that all images can access it.

In practice, apart from executions of atomic subroutines, an image may make a copy of a nonvolatile coarray
(in cache or a register, for example) and, as an optimization, defer copying a changed value back to the
permanent memory location while it is still being used. Since the variable is not volatile, it is safe to defer
this transfer until the end of the segment and thereafter to reload from permanent memory any coarray
that was not defined within the segment. It might not be safe to defer these actions beyond the end of the
segment since another image might reference the variable then.

The value of the ATOM argument of an atomic subroutine might be accessed or modified by another
concurrently executing image. Therefore, execution of an atomic subroutine that references the ATOM
argument cannot rely on a local copy, but instead always gets its value from its permanent memory location.
Execution of an atomic subroutine that defines the ATOM argument does not complete until the value of
its ATOM argument has been sent to its permanent memory location.

NOTE 8.34
The incorrect sequencing of image control statements can suspend execution indefinitely. For example, one
image might be executing a SYNC ALL statement while another is executing an ALLOCATE statement
for a coarray.

8.5.3 SYNC ALL statement

R858 sync-all-stmt is SYNC ALL [ ( [ sync-stat-list ] ) ]

R859 sync-stat is STAT = stat-variable
or ERRMSG = errmsg-variable

C851 No specifier shall appear more than once in a given sync-stat-list.

1 The STAT= and ERRMSG= specifiers for image control statements are described in 8.5.7.

2 Execution of a SYNC ALL statement performs a synchronization of all images. Execution on an image, M, of
the segment following the SYNC ALL statement is delayed until each other image has executed a SYNC ALL
statement as many times as has image M. The segments that executed before the SYNC ALL statement on an
image precede the segments that execute after the SYNC ALL statement on another image.

NOTE 8.35
The processor might have special hardware or employ an optimized algorithm to make the SYNC ALL
statement execute efficiently.

Here is a simple example of its use. Image 1 reads data and broadcasts it to other images:

REAL :: P[*]
...

SYNC ALL
IF (THIS_IMAGE()==1) THEN

READ (*,*) P
DO I = 2, NUM_IMAGES()
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NOTE 8.35 (cont.)

P[I] = P
END DO

END IF
SYNC ALL

8.5.4 SYNC IMAGES statement

R860 sync-images-stmt is SYNC IMAGES ( image-set [ , sync-stat-list ] )

R861 image-set is int-expr
or *

C852 An image-set that is an int-expr shall be scalar or of rank one.

1 If image-set is an array expression, the value of each element shall be positive and not greater than the number
of images, and there shall be no repeated values.

2 If image-set is a scalar expression, its value shall be positive and not greater than the number of images.

3 An image-set that is an asterisk specifies all images.

4 Execution of a SYNC IMAGES statement performs a synchronization of the image with each of the other images
in the image-set . Executions of SYNC IMAGES statements on images M and T correspond if the number of
times image M has executed a SYNC IMAGES statement with T in its image set is the same as the number of
times image T has executed a SYNC IMAGES statement with M in its image set. The segments that executed
before the SYNC IMAGES statement on either image precede the segments that execute after the corresponding
SYNC IMAGES statement on the other image.

NOTE 8.36
A SYNC IMAGES statement that specifies the single image index value THIS IMAGE ( ) in its image set is
allowed. This simplifies writing programs for an arbitrary number of images by allowing correct execution
in the limiting case of the number of images being equal to one.

NOTE 8.37
Execution of SYNC IMAGES (*) on all images has the same effect as execution of SYNC ALL on all images,
but SYNC ALL might have better performance. SYNC IMAGES statements are not required to specify
the entire image set, or even the same image set, on all images participating in the synchronization.

In the following example, image 1 will wait for each of the other images to complete its use of the data.
The other images wait for image 1 to set up the data, but do not wait on any other image.

IF (THIS_IMAGE() == 1) then
! Set up coarray data needed by all other images
SYNC IMAGES(*)

ELSE
SYNC IMAGES(1)
! Use the data set up by image 1

END IF

NOTE 8.38
In the following example, each image synchronizes with its neighbor.

INTEGER :: ME, NE, STEP, NSTEPS
NE = NUM_IMAGES()
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NOTE 8.38 (cont.)

ME = THIS_IMAGE()
! Initial calculation

SYNC ALL
DO STEP = 1, NSTEPS

IF (ME > 1) SYNC IMAGES(ME-1)
! Perform calculation

IF (ME < NE) SYNC IMAGES(ME+1)
END DO
SYNC ALL

The calculation starts on image 1 since all the others will be waiting on SYNC IMAGES (ME−1). When
this is done, image 2 can start and image 1 can perform its second calculation. This continues until they
are all executing different steps at the same time. Eventually, image 1 will finish and then the others will
finish one by one.

8.5.5 SYNC MEMORY statement

1 Execution of a SYNC MEMORY statement ends one segment and begins another; those two segments can be
ordered by a user-defined way with respect to segments on other images.

R862 sync-memory-stmt is SYNC MEMORY [ ( [ sync-stat-list ] ) ]

2 If, by execution of statements on image P,

• a variable X on image Q is defined, referenced, becomes undefined, or has its allocation status, pointer
association status, array bounds, dynamic type, or type parameters changed or inquired about by execution
of a statement,
• that statement precedes a successful execution of a SYNC MEMORY statement, and
• a variable Y on image Q is defined, referenced, becomes undefined, or has its allocation status, pointer

association status, array bounds, dynamic type, or type parameters changed or inquired about by execution
of a statement that succeeds execution of that SYNC MEMORY statement,

then the action regarding X on image Q precedes the action regarding Y on image Q.

3 User-defined ordering of segment Pi on image P to precede segment Qj on image Q occurs when

• image P executes an image control statement that ends segment Pi, and then executes statements that
initiate a cooperative synchronization between images P and Q, and
• image Q executes statements that complete the cooperative synchronization between images P and Q and

then executes an image control statement that begins segment Qj .

4 Execution of the cooperative synchronization between images P and Q shall include a dependency that forces
execution on image P of the statements that initiate the synchronization to precede the execution on image Q of
the statements that complete the synchronization. The mechanisms available for creating such a dependency are
processor dependent.

NOTE 8.39
SYNC MEMORY usually suppresses compiler optimizations that might reorder memory operations across
the segment boundary defined by the SYNC MEMORY statement and ensures that all memory operations
initiated in the preceding segments in its image complete before any memory operations in the subsequent
segment in its image are initiated. It needs to do this unless it can establish that failure to do so could not
alter processing on another image.

8.5.5 Execution control 191



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

NOTE 8.40
SYNC MEMORY can be used to implement specialized schemes for segment ordering, such as the spin-wait
loop. For example:

USE,INTRINSIC :: ISO_FORTRAN_ENV
LOGICAL(ATOMIC_LOGICAL_KIND),SAVE :: LOCKED[*] = .TRUE.
LOGICAL :: VAL
INTEGER :: IAM, P, Q
...
IAM = THIS_IMAGE()
IF (IAM == P) THEN

! Segment Pi
SYNC MEMORY ! A
CALL ATOMIC_DEFINE (LOCKED[Q], .FALSE.) ! Segment Pi+1

ELSE IF (IAM == Q) THEN
VAL = .TRUE.
DO WHILE (VAL) ! Segment Qj−1

CALL ATOMIC_REF (VAL, LOCKED)
END DO
SYNC MEMORY ! B

! Segment Qj
END IF

The DO WHILE loop does not complete until VAL is defined with the value false. This is the cooperative
synchronization that provides the dependency that image Q does not complete segment Qj−1 until the
CALL statement in segment Pi+1 completes. This ensures that the execution of segment Pi on image P
precedes execution of segment Qj on image Q.

The first SYNC MEMORY statement (A) ensures that the compiler does not reorder the following statement
(segment Pi+1) with the previous statements, since the lock should be freed only after the work in segment
Pi has been completed.

The second SYNC MEMORY statement (B) marks the beginning of a new segment, informing the compiler
that the values of coarrays referenced in that segment might have been changed by other images in preceding
segments, so need to be loaded from memory.

NOTE 8.41
As a second example, the user might have access to an external procedure that performs synchronization
between images. That library procedure might not be aware of the mechanisms used by the processor to
manage remote data references and definitions, and therefore not, by itself, be able to ensure the correct
memory state before and after its reference. The SYNC MEMORY statement provides the needed memory
ordering that enables the safe use of the external synchronization routine. For example:

INTEGER :: IAM
REAL :: X[*]

IAM = THIS_IMAGE()
IF (IAM == 1) X = 1.0
SYNC MEMORY
CALL EXTERNAL_SYNC()
SYNC MEMORY
IF (IAM == 2) WRITE(*,*) X[1]

where executing the subroutine EXTERNAL SYNC has an image synchronization effect similar to executing
a SYNC ALL statement.
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8.5.6 LOCK and UNLOCK statements

R863 lock-stmt is LOCK ( lock-variable [ , lock-stat-list ] )

R864 lock-stat is ACQUIRED LOCK = scalar-logical-variable
or sync-stat

R865 unlock-stmt is UNLOCK ( lock-variable [ , sync-stat-list ] )

R866 lock-variable is scalar-variable

C853 (R866) A lock-variable shall be of type LOCK TYPE (13.8.2.16).

1 A lock variable is unlocked if its value is equal to that of LOCK TYPE ( ). If it has any other value, it is locked.
A lock variable is locked by an image if it was locked by execution of a LOCK statement on that image and has
not been subsequently unlocked by execution of an UNLOCK statement on the same image.

2 Successful execution of a LOCK statement without an ACQUIRED LOCK= specifier causes the lock variable
to become locked by that image. If the lock variable is already locked by another image, that LOCK statement
causes the lock variable to become defined after the other image causes the lock variable to become unlocked.

3 If the lock variable is unlocked, successful execution of a LOCK statement with an ACQUIRED LOCK= specifier
causes the lock variable to become locked by that image and the scalar logical variable to become defined with the
value true. If the lock variable is already locked by a different image, successful execution of a LOCK statement
with an ACQUIRED LOCK= specifier leaves the lock variable unchanged and causes the scalar logical variable
to become defined with the value false.

4 Successful execution of an UNLOCK statement causes the lock variable to become unlocked.

5 During the execution of the program, the value of a lock variable changes through a sequence of locked and
unlocked states due to the execution of LOCK and UNLOCK statements. If a lock variable becomes unlocked by
execution of an UNLOCK statement on image M and next becomes locked by execution of a LOCK statement
on image T, the segments preceding the UNLOCK statement on image M precede the segments following the
LOCK statement on image T. Execution of a LOCK statement that does not cause the lock variable to become
locked does not affect segment ordering.

6 An error condition occurs if the lock variable in a LOCK statement is already locked by the executing image.
An error condition occurs if the lock variable in an UNLOCK statement is not already locked by the executing
image. If an error condition occurs during execution of a LOCK or UNLOCK statement, the value of the lock
variable is not changed and the value of the ACQUIRED LOCK variable, if any, is not changed.

NOTE 8.42
A lock variable is effectively defined atomically by a LOCK or UNLOCK statement. If LOCK statements on
two images both attempt to acquire a lock, one will succeed and the other will either fail if an ACQUIRED -
LOCK= specifier appears, or will wait until the lock is later released if an ACQUIRED LOCK= specifier
does not appear.

NOTE 8.43
An image might wait for a LOCK statement to successfully complete for a long period of time if other
images frequently lock and unlock the same lock variable. This situation might result from executing
LOCK statements with ACQUIRED LOCK= specifiers inside a spin loop.

NOTE 8.44
The following example illustrates the use of LOCK and UNLOCK statements to manage a work queue:

USE, INTRINSIC :: ISO_FORTRAN_ENV
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NOTE 8.44 (cont.)

TYPE(LOCK_TYPE) :: queue_lock[*] ! Lock to manage the work queue
INTEGER :: work_queue_size[*]
TYPE(Task) :: work_queue(100)[*] ! List of tasks to perform

TYPE(Task) :: job ! Current task working on
INTEGER :: me

me = THIS_IMAGE()
DO

! Process the next item in your work queue

LOCK (queue_lock) ! New segment A starts
! This segment A is ordered with respect to
! segment B executed by image me-1 below because of lock exclusion
IF (work_queue_size>0) THEN

! Fetch the next job from the queue
job = work_queue(work_queue_size)
work_queue_size = work_queue_size-1

END IF
UNLOCK (queue_lock) ! Segment ends
... ! Actually process the task

! Add a new task on neighbors queue:
LOCK(queue_lock[me+1]) ! Starts segment B
! This segment B is ordered with respect to
! segment A executed by image me+1 above because of lock exclusion
IF (work_queue_size[me+1]<SIZE(work_queue)) THEN

work_queue_size[me+1] = work_queue_size[me+1]+1
work_queue(work_queue_size[me+1])[me+1] = job

END IF
UNLOCK (queue_lock[me+1]) ! Ends segment B

END DO

8.5.7 STAT= and ERRMSG= specifiers in image control statements

1 If the STAT= specifier appears, successful execution of the LOCK, SYNC ALL, SYNC IMAGES, SYNC ME-
MORY, or UNLOCK statement causes the specified variable to become defined with the value zero.

2 If the STAT= specifier appears in a SYNC ALL or SYNC IMAGES statement and execution of one of these
statements involves synchronization with an image that has initiated termination, the variable becomes defined
with the value of the constant STAT STOPPED IMAGE (13.8.2.24) in the intrinsic module ISO FORTRAN -
ENV(13.8.2), and the effect of executing the statement is otherwise the same as that of executing the SYNC
MEMORY statement. If any other error condition occurs during execution of one of these statements, the
variable becomes defined with a processor-dependent positive integer value that is different from the value of
STAT STOPPED IMAGE.

3 If the STAT= specifier appears in a LOCK statement and the lock variable is locked by the executing image, the
specified variable becomes defined with the value of STAT LOCKED (13.8.2.22). If the STAT= specifier appears
in an UNLOCK statement and the lock variable has the value unlocked, the variable specified by the STAT=
specifier becomes defined with the value of STAT UNLOCKED (13.8.2.25). If the STAT= specifier appears in an
UNLOCK statement and the lock variable is locked by a different image, the specified variable becomes defined
with the value STAT LOCKED OTHER IMAGE (13.8.2.23). The named constants STAT LOCKED, STAT -
UNLOCKED, and STAT LOCKED OTHER IMAGE are defined in the intrinsic module ISO FORTRAN ENV.
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If any other error condition occurs during execution of a LOCK or UNLOCK statement, the specified variable
becomes defined with a positive integer value that is different from STAT LOCKED, STAT UNLOCKED, and
STAT LOCKED OTHER IMAGE.

4 If an error condition occurs during execution of a LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, or
UNLOCK statement that does not contain the STAT= specifier, error termination is initiated.

5 If an ERRMSG= specifier appears in a LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, or UNLOCK
statement, and an error condition occurs during execution of that statement, the processor shall assign an
explanatory message to the specified variable. If no such condition occurs, the processor shall not change the
value of the variable.

6 The set of error conditions that can occur in an image control statement is processor dependent.

NOTE 8.45
A processor might detect communication failure between images and treat it as an error condition. A
processor might also treat an invalid set of images in a SYNC IMAGES statement as an error condition.
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9 Input/output statements

9.1 Input/output concepts

1 Input statements provide the means of transferring data from external media to internal storage or from an internal
file to internal storage. This process is called reading. Output statements provide the means of transferring data
from internal storage to external media or from internal storage to an internal file. This process is called writing.
Some input/output statements specify that editing of the data is to be performed.

2 In addition to the statements that transfer data, there are auxiliary input/output statements to manipulate the
external medium, or to describe or inquire about the properties of the connection to the external medium.

3 The input/output statements are the BACKSPACE, CLOSE, ENDFILE, FLUSH, INQUIRE, OPEN, PRINT,
READ, REWIND, WAIT, and WRITE statements.

4 A file is composed of either a sequence of file storage units (9.3.5) or a sequence of records, which provide an extra
level of organization to the file. A file composed of records is called a record file. A file composed of file storage
units is called a stream file. A processor may allow a file to be viewed both as a record file and as a stream file;
in this case the relationship between the file storage units when viewed as a stream file and the records when
viewed as a record file is processor dependent.

5 A file is either an external file (9.3) or an internal file (9.4).

9.2 Records

9.2.1 General

1 A record is a sequence of values or a sequence of characters. For example, a line on a terminal is usually considered
to be a record. However, a record does not necessarily correspond to a physical entity. There are three kinds of
records:

(1) formatted;
(2) unformatted;
(3) endfile.

NOTE 9.1
What is called a “record” in Fortran is commonly called a “logical record”. There is no concept in Fortran
of a “physical record.”

9.2.2 Formatted record

1 A formatted record consists of a sequence of characters that are representable in the processor; however, a
processor may prohibit some control characters (3.1.1) from appearing in a formatted record. The length of a
formatted record is measured in characters and depends primarily on the number of characters put into the record
when it is written. However, it may depend on the processor and the external medium. The length may be zero.
Formatted records shall be read or written only by formatted input/output statements.

9.2.3 Unformatted record

1 An unformatted record consists of a sequence of values in a processor-dependent form and may contain data
of any type or may contain no data. The length of an unformatted record is measured in file storage units
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(9.3.5) and depends on the output list (9.6.3) used when it is written, as well as on the processor and the external
medium. The length may be zero. Unformatted records may be read or written only by unformatted input/output
statements.

9.2.4 Endfile record

1 An endfile record is written explicitly by the ENDFILE statement; the file shall be connected for sequential
access. An endfile record is written implicitly to a file connected for sequential access when the most recent
data transfer statement referring to the file is a data transfer output statement, no intervening file positioning
statement referring to the file has been executed, and

• a REWIND or BACKSPACE statement references the unit to which the file is connected, or
• the unit is closed, either explicitly by a CLOSE statement, implicitly by normal termination, or implicitly

by another OPEN statement for the same unit.

2 An endfile record may occur only as the last record of a file. An endfile record does not have a length property.

NOTE 9.2
An endfile record does not necessarily have any physical embodiment. The processor may use a record
count or other means to register the position of the file at the time an ENDFILE statement is executed,
so that it can take appropriate action when that position is reached again during a read operation. The
endfile record, however it is implemented, is considered to exist for the BACKSPACE statement (9.8.2).

9.3 External files

9.3.1 Basic concepts

1 An external file is any file that exists in a medium external to the program.

2 At any given time, there is a processor-dependent set of allowed access methods, a processor-dependent set of
allowed forms, a processor-dependent set of allowed actions, and a processor-dependent set of allowed record
lengths for a file.

NOTE 9.3
For example, the processor-dependent set of allowed actions for a printer would likely include the write
action, but not the read action.

3 A file may have a name; a file that has a name is called a named file. The name of a named file is represented by
a character string value. The set of allowable names for a file is processor dependent. Whether a named file on
one image is the same as a file with the same name on another image is processor dependent.

NOTE 9.4
For code portability, if different files are needed on each image, different file names should be used. One
technique is to incorporate the image index as part of the name.

4 An external file that is connected to a unit has a position property (9.3.4).

NOTE 9.5
For more explanatory information on external files, see C.6.1.

9.3.2 File existence

1 At any given time, there is a processor-dependent set of external files that exist for a program. A file may be
known to the processor, yet not exist for a program at a particular time.
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NOTE 9.6
Security reasons may prevent a file from existing for a program. A newly created file may exist but contain
no records.

2 To create a file means to cause a file to exist that did not exist previously. To delete a file means to terminate
the existence of the file.

3 All input/output statements may refer to files that exist. An INQUIRE, OPEN, CLOSE, WRITE, PRINT,
REWIND, FLUSH, or ENDFILE statement also may refer to a file that does not exist. Execution of a WRITE,
PRINT, or ENDFILE statement referring to a preconnected file that does not exist creates the file. This file is a
different file from one preconnected on any other image.

9.3.3 File access

9.3.3.1 File access methods

1 There are three methods of accessing the data of an external file: sequential, direct, and stream. Some files may
have more than one allowed access method; other files may be restricted to one access method.

NOTE 9.7
For example, a processor may allow only sequential access to a file on magnetic tape. Thus, the set of
allowed access methods depends on the file and the processor.

2 The method of accessing a file is determined when the file is connected to a unit (9.5.4) or when the file is created
if the file is preconnected (9.5.5).

9.3.3.2 Sequential access

1 Sequential access is a method of accessing the records of an external record file in order.

2 When connected for sequential access, an external file has the following properties.

• The order of the records is the order in which they were written if the direct access method is not a member
of the set of allowed access methods for the file. If the direct access method is also a member of the set of
allowed access methods for the file, the order of the records is the same as that specified for direct access.
In this case, the first record accessible by sequential access is the record whose record number is 1 for direct
access. The second record accessible by sequential access is the record whose record number is 2 for direct
access, etc. A record that has not been written since the file was created shall not be read.
• The records of the file are either all formatted or all unformatted, except that the last record of the file

may be an endfile record. Unless the previous reference to the file was a data transfer output statement,
the last record, if any, of the file shall be an endfile record.
• The records of the file shall be read or written only by sequential access input/output statements.

9.3.3.3 Direct access

1 Direct access is a method of accessing the records of an external record file in arbitrary order.

2 When connected for direct access, an external file has the following properties.

• Each record of the file is uniquely identified by a positive integer called the record number. The record
number of a record is specified when the record is written. Once established, the record number of a record
can never be changed. The order of the records is the order of their record numbers.
• The records of the file are either all formatted or all unformatted. If the sequential access method is also a

member of the set of allowed access methods for the file, its endfile record, if any, is not considered to be
part of the file while it is connected for direct access. If the sequential access method is not a member of
the set of allowed access methods for the file, the file shall not contain an endfile record.
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• The records of the file shall be read or written only by direct access input/output statements.
• All records of the file have the same length.
• Records need not be read or written in the order of their record numbers. Any record may be written

into the file while it is connected to a unit. For example, it is permissible to write record 3, even though
records 1 and 2 have not been written. Any record may be read from the file while it is connected to a
unit, provided that the record has been written since the file was created, and if a READ statement for this
connection is permitted.
• The records of the file shall not be read or written using list-directed formatting (10.10), namelist formatting

(10.11), or a nonadvancing input/output statement (9.3.4.2).

NOTE 9.8
A record cannot be deleted; however, a record may be rewritten.

9.3.3.4 Stream access

1 Stream access is a method of accessing the file storage units (9.3.5) of an external stream file.

2 The properties of an external file connected for stream access depend on whether the connection is for unformatted
or formatted access.

3 When connected for unformatted stream access, an external file has the following properties.

• The file storage units of the file shall be read or written only by stream access input/output statements.
• Each file storage unit in the file is uniquely identified by a positive integer called the position. The first file

storage unit in the file is at position 1. The position of each subsequent file storage unit is one greater than
that of its preceding file storage unit.
• If it is possible to position the file, the file storage units need not be read or written in order of their position.

For example, it might be permissible to write the file storage unit at position 3, even though the file storage
units at positions 1 and 2 have not been written. Any file storage unit may be read from the file while it is
connected to a unit, provided that the file storage unit has been written since the file was created, and if a
READ statement for this connection is permitted.

4 When connected for formatted stream access, an external file has the following properties.

• Some file storage units of the file may contain record markers; this imposes a record structure on the file
in addition to its stream structure. There might or might not be a record marker at the end of the file. If
there is no record marker at the end of the file, the final record is incomplete.
• No maximum length (9.5.6.15) is applicable to these records.
• Writing an empty record with no record marker has no effect.
• The file storage units of the file shall be read or written only by formatted stream access input/output

statements.
• Each file storage unit in the file is uniquely identified by a positive integer called the position. The first file

storage unit in the file is at position 1. The relationship between positions of successive file storage units is
processor dependent; not all positive integers need correspond to valid positions.
• If it is possible to position the file, the file position can be set to a position that was previously identified

by the POS= specifier in an INQUIRE statement.
• A processor may prohibit some control characters (3.1.1) from appearing in a formatted stream file.

NOTE 9.9
Because the record structure is determined from the record markers that are stored in the file itself, an
incomplete record at the end of the file is necessarily not empty.
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NOTE 9.10
There may be some character positions in the file that do not correspond to characters written; this is
because on some processors a record marker may be written to the file as a carriage-return/line-feed or
other sequence. The means of determining the position in a file connected for stream access is via the
POS= specifier in an INQUIRE statement (9.10.2.22).

9.3.4 File position

9.3.4.1 General

1 Execution of certain input/output statements affects the position of an external file. Certain circumstances can
cause the position of a file to become indeterminate.

2 The initial point of a file is the position just before the first record or file storage unit. The terminal point is the
position just after the last record or file storage unit. If there are no records or file storage units in the file, the
initial point and the terminal point are the same position.

3 If a record file is positioned within a record, that record is the current record; otherwise, there is no current
record.

4 Let n be the number of records in the file. If 1 < i ≤ n and a file is positioned within the ith record or between
the (i − 1)th record and the ith record, the (i − 1)th record is the preceding record. If n ≥ 1 and the file is
positioned at its terminal point, the preceding record is the nth and last record. If n = 0 or if a file is positioned
at its initial point or within the first record, there is no preceding record.

5 If 1 ≤ i < n and a file is positioned within the ith record or between the ith and (i + 1)th record, the (i + 1)th
record is the next record. If n ≥ 1 and the file is positioned at its initial point, the first record is the next record.
If n = 0 or if a file is positioned at its terminal point or within the nth (last) record, there is no next record.

6 For a file connected for stream access, the file position is either between two file storage units, at the initial point
of the file, at the terminal point of the file, or undefined.

9.3.4.2 Advancing and nonadvancing input/output

1 An advancing input/output statement always positions a record file after the last record read or written, unless
there is an error condition.

2 A nonadvancing input/output statement may position a record file at a character position within the current
record, or a subsequent record (10.8.2). Using nonadvancing input/output, it is possible to read or write a record
of the file by a sequence of input/output statements, each accessing a portion of the record. It is also possible
to read variable-length records and be notified of their lengths. If a nonadvancing output statement leaves a file
positioned within a current record and no further output statement is executed for the file before it is closed or a
BACKSPACE, ENDFILE, or REWIND statement is executed for it, the effect is as if the output statement were
the corresponding advancing output statement.

9.3.4.3 File position prior to data transfer

1 The positioning of the file prior to data transfer depends on the method of access: sequential, direct, or stream.

2 For sequential access on input, if there is a current record, the file position is not changed. Otherwise, the file is
positioned at the beginning of the next record and this record becomes the current record. Input shall not occur
if there is no next record or if there is a current record and the last data transfer statement accessing the file
performed output.

3 If the file contains an endfile record, the file shall not be positioned after the endfile record prior to data transfer.
However, a REWIND or BACKSPACE statement may be used to reposition the file.

9.3.4 Input/output statements 201



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

4 For sequential access on output, if there is a current record, the file position is not changed and the current record
becomes the last record of the file. Otherwise, a new record is created as the next record of the file; this new
record becomes the last and current record of the file and the file is positioned at the beginning of this record.

5 For direct access, the file is positioned at the beginning of the record specified by the REC= specifier. This record
becomes the current record.

6 For stream access, the file is positioned immediately before the file storage unit specified by the POS= specifier;
if there is no POS= specifier, the file position is not changed.

7 File positioning for child data transfer statements is described in 9.6.4.8.

9.3.4.4 File position after data transfer

1 If an error condition (9.11) occurred, the position of the file is indeterminate. If no error condition occurred, but
an end-of-file condition (9.11) occurred as a result of reading an endfile record, the file is positioned after the
endfile record.

2 For unformatted stream input/output, if no error condition occurred, the file position is not changed. For
unformatted stream output, if the file position exceeds the previous terminal point of the file, the terminal point
is set to the file position.

NOTE 9.11
An unformatted stream output statement with a POS= specifier and an empty output list can have the
effect of extending the terminal point of a file without actually writing any data.

3 For formatted stream input, if an end-of-file condition occurred, the file position is not changed.

4 For nonadvancing input, if no error condition or end-of-file condition occurred, but an end-of-record condition
(9.11) occurred, the file is positioned after the record just read. If no error condition, end-of-file condition, or
end-of-record condition occurred in a nonadvancing input statement, the file position is not changed. If no error
condition occurred in a nonadvancing output statement, the file position is not changed.

5 In all other cases, the file is positioned after the record just read or written and that record becomes the preceding
record.

6 For a formatted stream output statement, if no error condition occurred, the terminal point of the file is set to
the highest-numbered position to which data was transferred by the statement.

NOTE 9.12
The highest-numbered position might not be the current one if the output involved T or TL edit descriptors
(10.8.1.1) and the statement is a nonadvancing output statement.

9.3.5 File storage units

1 A file storage unit is the basic unit of storage in a stream file or an unformatted record file. It is the unit of file
position for stream access, the unit of record length for unformatted files, and the unit of file size for all external
files.

2 Every value in a stream file or an unformatted record file shall occupy an integer number of file storage units; if
the stream or record file is unformatted, this number shall be the same for all scalar values of the same type and
type parameters. The number of file storage units required for an item of a given type and type parameters may
be determined using the IOLENGTH= specifier of the INQUIRE statement (9.10.3).

3 For a file connected for unformatted stream access, the processor shall not have alignment restrictions that prevent
a value of any type from being stored at any positive integer file position.

4 The number of bits in a file storage unit is given by the constant FILE STORAGE SIZE (13.8.2.9) defined in the
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intrinsic module ISO FORTRAN ENV. It is recommended that the file storage unit be an 8-bit octet where this
choice is practical.

NOTE 9.13
The requirement that every data value occupy an integer number of file storage units implies that data
items inherently smaller than a file storage unit will require padding. This suggests that the file storage
unit be small to avoid wasted space. Ideally, the file storage unit would be chosen such that padding is
never required. A file storage unit of one bit would always meet this goal, but would likely be impractical
because of the alignment requirements.

The prohibition on alignment restrictions prohibits the processor from requiring data alignments larger than
the file storage unit.

The 8-bit octet is recommended as a good compromise that is small enough to accommodate the requi-
rements of many applications, yet not so small that the data alignment requirements are likely to cause
significant performance problems.

9.4 Internal files

1 Internal files provide a means of transferring and converting data from internal storage to internal storage.

2 An internal file is a record file with the following properties.

• The file is a variable of default, ASCII, or ISO 10646 character that is not an array section with a vector
subscript.
• A record of an internal file is a scalar character variable.
• If the file is a scalar character variable, it consists of a single record whose length is the same as the length

of the scalar character variable. If the file is a character array, it is treated as a sequence of character array
elements. Each array element, if any, is a record of the file. The ordering of the records of the file is the
same as the ordering of the array elements in the array (6.5.3.2) or the array section (6.5.3.3). Every record
of the file has the same length, which is the length of an array element in the array.
• A record of the internal file becomes defined by writing the record. If the number of characters written in

a record is less than the length of the record, the remaining portion of the record is filled with blanks. The
number of characters to be written shall not exceed the length of the record.
• A record may be read only if the record is defined.
• A record of an internal file may become defined (or undefined) by means other than an output statement.

For example, the character variable may become defined by a character assignment statement.
• An internal file is always positioned at the beginning of the first record prior to data transfer, except for

child data transfer statements (9.6.4.8). This record becomes the current record.
• The initial value of a connection mode (9.5.2) is the value that would be implied by an initial OPEN

statement without the corresponding keyword.
• Reading and writing records shall be accomplished only by sequential access formatted input/output sta-

tements.
• An internal file shall not be specified as the unit in a CLOSE, INQUIRE, or OPEN statement.

9.5 File connection

9.5.1 Referring to a file

1 A unit, specified by an io-unit , provides a means for referring to a file.

R901 io-unit is file-unit-number
or *
or internal-file-variable
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R902 file-unit-number is scalar-int-expr

R903 internal-file-variable is char-variable

C901 (R903) The char-variable shall not be an array section with a vector subscript.

C902 (R903) The char-variable shall be default character, ASCII character, or ISO 10646 character.

2 A unit is either an external unit or an internal unit. An external unit is used to refer to an external file and
is specified by an asterisk or a file-unit-number . The value of file-unit-number shall be nonnegative, equal to
one of the named constants INPUT UNIT, OUTPUT UNIT, or ERROR UNIT of the intrinsic module ISO -
FORTRAN ENV (13.8.2), or a NEWUNIT value (9.5.6.12). An internal unit is used to refer to an internal file
and is specified by an internal-file-variable or a file-unit-number whose value is equal to the unit argument of an
active defined input/output procedure (9.6.4.8). The value of a file-unit-number shall identify a valid unit.

3 The external unit identified by a particular value of a scalar-int-expr is the same external unit in all program
units of the program.

NOTE 9.14
In the example:

SUBROUTINE A
READ (6) X

...
SUBROUTINE B

N = 6
REWIND N

the value 6 used in both program units identifies the same external unit.

4 In a READ statement, an io-unit that is an asterisk identifies an external unit that is preconnected for sequential
formatted input on image 1 only (9.6.4.3). This unit is also identified by the value of the named constant
INPUT UNIT of the intrinsic module ISO FORTRAN ENV (13.8.2.10). In a WRITE statement, an io-unit that
is an asterisk identifies an external unit that is preconnected for sequential formatted output. This unit is also
identified by the value of the named constant OUTPUT UNIT of the intrinsic module ISO FORTRAN ENV
(13.8.2.19).

5 This part of ISO/IEC 1539 identifies a processor-dependent external unit for the purpose of error reporting. This
unit shall be preconnected for sequential formatted output. The processor may define this to be the same as the
output unit identified by an asterisk. This unit is also identified by a unit number defined by the named constant
ERROR UNIT of the intrinsic module ISO FORTRAN ENV.

NOTE 9.15
Even though OUTPUT UNIT is connected to a separate file on each image, it is expected that the processor
could merge the sequences of records from these files into a single sequence of records that is sent to the
physical device associated with this unit, such as the user’s terminal. If ERROR UNIT is associated with
the same physical device, the sequences of records from files connected to ERROR UNIT on each of the
images could be merged into the same sequence generated from the OUTPUT UNIT files. Otherwise, it
is expected that the sequence of records in the files connected to ERROR UNIT on each image could be
merged into a single sequence of records that is sent to the physical device associated with ERROR UNIT.

9.5.2 Connection modes

1 A connection for formatted input/output has several changeable modes: these are the blank interpretation mode
(10.8.6), delimiter mode (10.10.4, 10.11.4.2), sign mode (10.8.4), decimal edit mode (10.8.8), I/O rounding mode
(10.7.2.3.7), pad mode (9.6.4.5.3), and scale factor (10.8.5). A connection for unformatted input/output has no
changeable modes.
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2 Values for the modes of a connection are established when the connection is initiated. If the connection is initiated
by an OPEN statement, the values are as specified, either explicitly or implicitly, by the OPEN statement. If the
connection is initiated other than by an OPEN statement (that is, if the file is an internal file or preconnected file)
the values established are those that would be implied by an initial OPEN statement without the corresponding
keywords.

3 The scale factor cannot be explicitly specified in an OPEN statement; it is implicitly 0.

4 The modes of a connection to an external file may be changed by a subsequent OPEN statement that modifies
the connection.

5 The modes of a connection may be temporarily changed by a corresponding keyword specifier in a data transfer
statement or by an edit descriptor. Keyword specifiers take effect at the beginning of execution of the data
transfer statement. Edit descriptors take effect when they are encountered in format processing. When a data
transfer statement terminates, the values for the modes are reset to the values in effect immediately before the
data transfer statement was executed.

9.5.3 Unit existence

1 At any given time, there is a processor-dependent set of external units that exist for a program.

2 All input/output statements may refer to units that exist. The CLOSE, INQUIRE, and WAIT statements also
may refer to units that do not exist.

9.5.4 Connection of a file to a unit

1 An external unit has a property of being connected or not connected. If connected, it refers to an external file. An
external unit may become connected by preconnection or by the execution of an OPEN statement. The property
of connection is symmetric; the unit is connected to a file if and only if the file is connected to the unit.

2 Every input/output statement except an OPEN, CLOSE, INQUIRE, or WAIT statement shall refer to a unit
that is connected to a file and thereby make use of or affect that file.

3 A file may be connected and not exist (9.3.2).

NOTE 9.16
An example is a preconnected external file that has not yet been written.

4 A unit shall not be connected to more than one file at the same time, and a file shall not be connected to more
than one unit at the same time. However, means are provided to change the status of an external unit and to
connect a unit to a different file.

5 This part of ISO/IEC 1539 defines means of portable interoperation with C. C streams are described in 7.19.2 of
ISO/IEC 9899:1999. Whether a unit can be connected to a file that is also connected to a C stream is processor
dependent. If a unit is connected to a file that is also connected to a C stream, the results of performing
input/output operations on such a file are processor dependent. It is processor dependent whether the files
connected to the units INPUT UNIT, OUTPUT UNIT, and ERROR UNIT correspond to the predefined C text
streams standard input, standard output, and standard error. If a main program or procedure defined by means of
Fortran and a main program or procedure defined by means other than Fortran perform input/output operations
on the same external file, the results are processor dependent. A main program or procedure defined by means
of Fortran and a main program or procedure defined by means other than Fortran can perform input/output
operations on different external files without interference.

6 After an external unit has been disconnected by the execution of a CLOSE statement, it may be connected again
within the same program to the same file or to a different file. After an external file has been disconnected by
the execution of a CLOSE statement, it may be connected again within the same program to the same unit or
to a different unit.
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NOTE 9.17
The only means of referencing a file that has been disconnected is by the appearance of its name in an OPEN
or INQUIRE statement. There might be no means of reconnecting an unnamed file once it is disconnected.

7 An internal unit is always connected to the internal file designated by the variable that identifies the unit.

NOTE 9.18
For more explanatory information on file connection properties, see C.6.4.

9.5.5 Preconnection

1 Preconnection means that the unit is connected to a file at the beginning of execution of the program and therefore
it may be specified in input/output statements without the prior execution of an OPEN statement.

9.5.6 OPEN statement

9.5.6.1 General

1 An OPEN statement initiates or modifies the connection between an external file and a specified unit. The OPEN
statement may be used to connect an existing file to a unit, create a file that is preconnected, create a file and
connect it to a unit, or change certain modes of a connection between a file and a unit.

2 An external unit may be connected by an OPEN statement in the main program or any subprogram and, once
connected, a reference to it may appear in any program unit of the program.

3 If the file to be connected to the unit does not exist but is the same as the file to which the unit is preconnected,
the modes specified by an OPEN statement become a part of the connection.

4 If the file to be connected to the unit is not the same as the file to which the unit is connected, the effect is as
if a CLOSE statement without a STATUS= specifier had been executed for the unit immediately prior to the
execution of an OPEN statement.

5 If a unit is connected to a file that exists, execution of an OPEN statement for that unit is permitted. If the
FILE= specifier is not included in such an OPEN statement, the file to be connected to the unit is the same as
the file to which the unit is already connected.

6 If the file to be connected to the unit is the same as the file to which the unit is connected, only the specifiers for
changeable modes (9.5.2) may have values different from those of the existing connection. If the POSITION=
specifier appears in such an OPEN statement, the value specified shall not disagree with the current position of
the file. If the STATUS= specifier is included in such an OPEN statement, it shall be specified with the value
OLD. Execution of such an OPEN statement causes any new values of the specifiers for changeable modes to
be in effect, but does not cause any change in any of the unspecified specifiers and the position of the file is
unaffected. The ERR=, IOSTAT=, and IOMSG= specifiers from an OPEN statement have no effect on any
subsequent OPEN statement.

7 A STATUS= specifier with a value of OLD is always allowed when the file to be connected to the unit is the same
as the file to which the unit is connected. In this case, if the status of the file was SCRATCH before execution of
the OPEN statement, the file will still be deleted when the unit is closed, and the file is still considered to have
a status of SCRATCH.

8 If a file is already connected to a unit, an OPEN statement on that file with a different unit shall not be executed.

9.5.6.2 Syntax

R904 open-stmt is OPEN ( connect-spec-list )

R905 connect-spec is [ UNIT = ] file-unit-number
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or ACCESS = scalar-default-char-expr
or ACTION = scalar-default-char-expr
or ASYNCHRONOUS = scalar-default-char-expr
or BLANK = scalar-default-char-expr
or DECIMAL = scalar-default-char-expr
or DELIM = scalar-default-char-expr
or ENCODING = scalar-default-char-expr
or ERR = label
or FILE = file-name-expr
or FORM = scalar-default-char-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or NEWUNIT = scalar-int-variable
or PAD = scalar-default-char-expr
or POSITION = scalar-default-char-expr
or RECL = scalar-int-expr
or ROUND = scalar-default-char-expr
or SIGN = scalar-default-char-expr
or STATUS = scalar-default-char-expr

R906 file-name-expr is scalar-default-char-expr

R907 iomsg-variable is scalar-default-char-variable

C903 No specifier shall appear more than once in a given connect-spec-list.

C904 (R904) If the NEWUNIT= specifier does not appear, a file-unit-number shall be specified; if the optional
characters UNIT= are omitted, the file-unit-number shall be the first item in the connect-spec-list.

C905 (R904) The label used in the ERR= specifier shall be the statement label of a branch target statement
that appears in the same scoping unit as the OPEN statement.

C906 (R904) If a NEWUNIT= specifier appears, a file-unit-number shall not appear.

1 If the STATUS= specifier has the value NEW or REPLACE, the FILE= specifier shall appear. If the STATUS=
specifier has the value SCRATCH, the FILE= specifier shall not appear. If the STATUS= specifier has the value
OLD, the FILE= specifier shall appear unless the unit is connected and the file connected to the unit exists.

2 If the NEWUNIT= specifier appears in an OPEN statement, either the FILE= specifier shall appear, or the
STATUS= specifier shall appear with a value of SCRATCH. The unit identified by a NEWUNIT value shall not
be preconnected.

3 A specifier that requires a scalar-default-char-expr may have a limited list of character values. These values are
listed for each such specifier. Any trailing blanks are ignored. The value specified is without regard to case. Some
specifiers have a default value if the specifier is omitted.

4 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

NOTE 9.19
An example of an OPEN statement is:

OPEN (10, FILE = ’employee.names’, ACTION = ’READ’, PAD = ’YES’)

NOTE 9.20
For more explanatory information on the OPEN statement, see C.6.3.
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9.5.6.3 ACCESS= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to SEQUENTIAL, DIRECT, or STREAM. The ACCESS= specifier
specifies the access method for the connection of the file as being sequential, direct, or stream. If this specifier is
omitted, the default value is SEQUENTIAL. For an existing file, the specified access method shall be included in
the set of allowed access methods for the file. For a new file, the processor creates the file with a set of allowed
access methods that includes the specified method.

9.5.6.4 ACTION= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to READ, WRITE, or READWRITE. READ specifies that the
WRITE, PRINT, and ENDFILE statements shall not refer to this connection. WRITE specifies that READ
statements shall not refer to this connection. READWRITE permits any input/output statements to refer to this
connection. If this specifier is omitted, the default value is processor dependent. If READWRITE is included in
the set of allowable actions for a file, both READ and WRITE also shall be included in the set of allowed actions
for that file. For an existing file, the specified action shall be included in the set of allowed actions for the file.
For a new file, the processor creates the file with a set of allowed actions that includes the specified action.

9.5.6.5 ASYNCHRONOUS= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to YES or NO. If YES is specified, asynchronous input/output on
the unit is allowed. If NO is specified, asynchronous input/output on the unit is not allowed. If this specifier is
omitted, the default value is NO.

9.5.6.6 BLANK= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to NULL or ZERO. The BLANK= specifier is permitted only for a
connection for formatted input/output. It specifies the blank interpretation mode (10.8.6, 9.6.2.6) for input for
this connection. This mode has no effect on output. It is a changeable mode (9.5.2). If this specifier is omitted
in an OPEN statement that initiates a connection, the default value is NULL.

9.5.6.7 DECIMAL= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to COMMA or POINT. The DECIMAL= specifier is permitted only
for a connection for formatted input/output. It specifies the decimal edit mode (10.6, 10.8.8, 9.6.2.7) for this
connection. This is a changeable mode (9.5.2). If this specifier is omitted in an OPEN statement that initiates a
connection, the default value is POINT.

9.5.6.8 DELIM= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= specifier is
permitted only for a connection for formatted input/output. It specifies the delimiter mode (9.6.2.8) for list-
directed (10.10.4) and namelist (10.11.4.2) output for the connection. This mode has no effect on input. It is
a changeable mode (9.5.2). If this specifier is omitted in an OPEN statement that initiates a connection, the
default value is NONE.

9.5.6.9 ENCODING= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to UTF-8 or DEFAULT. The ENCODING= specifier is permitted
only for a connection for formatted input/output. The value UTF-8 specifies that the encoding form of the file
is UTF-8 as specified in ISO/IEC 10646. Such a file is called a Unicode file, and all characters therein are of ISO
10646 character kind. The value UTF-8 shall not be specified if the processor does not support the ISO 10646
character kind. The value DEFAULT specifies that the encoding form of the file is processor dependent. If this
specifier is omitted in an OPEN statement that initiates a connection, the default value is DEFAULT.
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9.5.6.10 FILE= specifier in the OPEN statement

1 The value of the FILE= specifier is the name of the file to be connected to the specified unit. Any trailing blanks
are ignored. The file-name-expr shall be a name that is allowed by the processor. If this specifier is omitted and
the unit is not connected to a file, the STATUS= specifier shall be specified with a value of SCRATCH; in this
case, the connection is made to a processor-dependent file. The interpretation of case is processor dependent.

9.5.6.11 FORM= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to FORMATTED or UNFORMATTED. The FORM= specifier deter-
mines whether the file is being connected for formatted or unformatted input/output. If this specifier is omitted,
the default value is UNFORMATTED if the file is being connected for direct access or stream access, and the
default value is FORMATTED if the file is being connected for sequential access. For an existing file, the specified
form shall be included in the set of allowed forms for the file. For a new file, the processor creates the file with a
set of allowed forms that includes the specified form.

9.5.6.12 NEWUNIT= specifier in the OPEN statement

1 The variable is defined with a processor determined NEWUNIT value if no error occurs during the execution of
the OPEN statement. If an error occurs, the processor shall not change the value of the variable.

2 A NEWUNIT value is a negative number, and shall not be equal to −1, any of the named constants ERROR -
UNIT, INPUT UNIT, or OUTPUT UNIT from the intrinsic module ISO FORTRAN ENV (13.8.2), any value
used by the processor for the unit argument to a defined input/output procedure, nor any previous NEWUNIT
value that identifies a file that is connected.

9.5.6.13 PAD= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to YES or NO. The PAD= specifier is permitted only for a connection
for formatted input/output. It specifies the pad mode (9.6.4.5.3, 9.6.2.10) for input for this connection. This
mode has no effect on output. It is a changeable mode (9.5.2). If this specifier is omitted in an OPEN statement
that initiates a connection, the default value is YES.

9.5.6.14 POSITION= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to ASIS, REWIND, or APPEND. The connection shall be for sequen-
tial or stream access. A new file is positioned at its initial point. REWIND positions an existing file at its initial
point. APPEND positions an existing file such that the endfile record is the next record, if it has one. If an
existing file does not have an endfile record, APPEND positions the file at its terminal point. ASIS leaves the
position unchanged if the file exists and already is connected. ASIS leaves the position unspecified if the file exists
but is not connected. If this specifier is omitted, the default value is ASIS.

9.5.6.15 RECL= specifier in the OPEN statement

1 The value of the RECL= specifier shall be positive. It specifies the length of each record in a file being connected
for direct access, or specifies the maximum length of a record in a file being connected for sequential access. This
specifier shall not appear when a file is being connected for stream access. This specifier shall appear when a
file is being connected for direct access. If this specifier is omitted when a file is being connected for sequential
access, the default value is processor dependent. If the file is being connected for formatted input/output, the
length is the number of characters for all records that contain only characters of default kind. When a record
contains any nondefault characters, the effect of the RECL= specifier is processor dependent. If the file is being
connected for unformatted input/output, the length is measured in file storage units. For an existing file, the
value of the RECL= specifier shall be included in the set of allowed record lengths for the file. For a new file, the
processor creates the file with a set of allowed record lengths that includes the specified value.
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9.5.6.16 ROUND= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to one of UP, DOWN, ZERO, NEAREST, COMPATIBLE, or PRO-
CESSOR DEFINED. The ROUND= specifier is permitted only for a connection for formatted input/output. It
specifies the I/O rounding mode (10.7.2.3.7, 9.6.2.13) for this connection. This is a changeable mode (9.5.2). If
this specifier is omitted in an OPEN statement that initiates a connection, the I/O rounding mode is processor
dependent; it shall be one of the above modes.

NOTE 9.21
A processor is free to select any I/O rounding mode for the default mode. The mode might correspond
to UP, DOWN, ZERO, NEAREST, or COMPATIBLE; or it might be a completely different I/O rounding
mode.

9.5.6.17 SIGN= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to one of PLUS, SUPPRESS, or PROCESSOR DEFINED. The
SIGN= specifier is permitted only for a connection for formatted input/output. It specifies the sign mode
(10.8.4, 9.6.2.14) for this connection. This is a changeable mode (9.5.2). If this specifier is omitted in an OPEN
statement that initiates a connection, the default value is PROCESSOR DEFINED.

9.5.6.18 STATUS= specifier in the OPEN statement

1 The scalar-default-char-expr shall evaluate to OLD, NEW, SCRATCH, REPLACE, or UNKNOWN. If OLD is
specified, the file shall exist. If NEW is specified, the file shall not exist.

2 Successful execution of an OPEN statement with NEW specified creates the file and changes the status to OLD.
If REPLACE is specified and the file does not already exist, the file is created and the status is changed to OLD.
If REPLACE is specified and the file does exist, the file is deleted, a new file is created with the same name, and
the status is changed to OLD. If SCRATCH is specified, the file is created and connected to the specified unit
for use by the program but is deleted at the execution of a CLOSE statement referring to the same unit or at
the normal termination of the program.

NOTE 9.22
SCRATCH shall not be specified with a named file.

3 If UNKNOWN is specified, the status is processor dependent. If this specifier is omitted, the default value is
UNKNOWN.

9.5.7 CLOSE statement

9.5.7.1 General

1 The CLOSE statement is used to terminate the connection of a specified unit to an external file.

2 Execution of a CLOSE statement for a unit may occur in any program unit of a program and need not occur in
the same program unit as the execution of an OPEN statement referring to that unit.

3 Execution of a CLOSE statement performs a wait operation for any pending asynchronous data transfer operations
for the specified unit.

4 Execution of a CLOSE statement specifying a unit that does not exist or has no file connected to it is permitted
and affects no file or unit.

5 After a unit has been disconnected by execution of a CLOSE statement, it may be connected again within the
same program, either to the same file or to a different file. After a named file has been disconnected by execution
of a CLOSE statement, it may be connected again within the same program, either to the same unit or to a
different unit, provided that the file still exists.
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6 During the completion step (2.3.5) of termination of execution of a program, all units that are connected are closed.
Each unit is closed with status KEEP unless the file status prior to termination of execution was SCRATCH, in
which case the unit is closed with status DELETE.

NOTE 9.23
The effect is as though a CLOSE statement without a STATUS= specifier were executed on each connected
unit.

9.5.7.2 Syntax

R908 close-stmt is CLOSE ( close-spec-list )

R909 close-spec is [ UNIT = ] file-unit-number
or IOSTAT = scalar-int-variable
or IOMSG = iomsg-variable
or ERR = label
or STATUS = scalar-default-char-expr

C907 No specifier shall appear more than once in a given close-spec-list.

C908 A file-unit-number shall be specified in a close-spec-list ; if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the close-spec-list.

C909 (R909) The label used in the ERR= specifier shall be the statement label of a branch target statement
that appears in the same scoping unit as the CLOSE statement.

1 The scalar-default-char-expr has a limited list of character values. Any trailing blanks are ignored. The value
specified is without regard to case.

2 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

NOTE 9.24
An example of a CLOSE statement is:

CLOSE (10, STATUS = ’KEEP’)

NOTE 9.25
For more explanatory information on the CLOSE statement, see C.6.5.

9.5.7.3 STATUS= specifier in the CLOSE statement

1 The scalar-default-char-expr shall evaluate to KEEP or DELETE. The STATUS= specifier determines the dispo-
sition of the file that is connected to the specified unit. KEEP shall not be specified for a file whose status prior
to execution of a CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file continues
to exist after the execution of a CLOSE statement. If KEEP is specified for a file that does not exist, the file
will not exist after the execution of a CLOSE statement. If DELETE is specified, the file will not exist after the
execution of a CLOSE statement. If this specifier is omitted, the default value is KEEP, unless the file status
prior to execution of the CLOSE statement is SCRATCH, in which case the default value is DELETE.

9.6 Data transfer statements

9.6.1 General

1 The READ statement is the data transfer input statement. The WRITE statement and the PRINT statement
are the data transfer output statements.
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R910 read-stmt is READ ( io-control-spec-list ) [ input-item-list ]
or READ format [ , input-item-list ]

R911 write-stmt is WRITE ( io-control-spec-list ) [ output-item-list ]

R912 print-stmt is PRINT format [ , output-item-list ]

NOTE 9.26
Examples of data transfer statements are:

READ (6, *) SIZE
READ 10, A, B
WRITE (6, 10) A, S, J
PRINT 10, A, S, J

10 FORMAT (2E16.3, I5)

9.6.2 Control information list

9.6.2.1 Syntax

1 A control information list is an io-control-spec-list. It governs data transfer.

R913 io-control-spec is [ UNIT = ] io-unit
or [ FMT = ] format
or [ NML = ] namelist-group-name
or ADVANCE = scalar-default-char-expr
or ASYNCHRONOUS = scalar-default-char-constant-expr
or BLANK = scalar-default-char-expr
or DECIMAL = scalar-default-char-expr
or DELIM = scalar-default-char-expr
or END = label
or EOR = label
or ERR = label
or ID = id-variable
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or PAD = scalar-default-char-expr
or POS = scalar-int-expr
or REC = scalar-int-expr
or ROUND = scalar-default-char-expr
or SIGN = scalar-default-char-expr
or SIZE = scalar-int-variable

R914 id-variable is scalar-int-variable

C910 No specifier shall appear more than once in a given io-control-spec-list.

C911 An io-unit shall be specified in an io-control-spec-list ; if the optional characters UNIT= are omitted, the
io-unit shall be the first item in the io-control-spec-list.

C912 (R913) A DELIM= or SIGN= specifier shall not appear in a read-stmt .

C913 (R913) A BLANK=, PAD=, END=, EOR=, or SIZE= specifier shall not appear in a write-stmt .

C914 (R913) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch target
statement that appears in the same scoping unit as the data transfer statement.

C915 (R913) A namelist-group-name shall be the name of a namelist group.
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C916 (R913) A namelist-group-name shall not appear if a REC= specifier, format , input-item-list, or an
output-item-list appears in the data transfer statement.

C917 (R913) An io-control-spec-list shall not contain both a format and a namelist-group-name.

C918 (R913) If format appears without a preceding FMT=, it shall be the second item in the io-control-spec-list
and the first item shall be io-unit .

C919 (R913) If namelist-group-name appears without a preceding NML=, it shall be the second item in the
io-control-spec-list and the first item shall be io-unit .

C920 (R913) If io-unit is not a file-unit-number , the io-control-spec-list shall not contain a REC= specifier or
a POS= specifier.

C921 (R913) If the REC= specifier appears, an END= specifier shall not appear, and the format , if any, shall
not be an asterisk.

C922 (R913) An ADVANCE= specifier may appear only in a formatted sequential or stream input/output
statement with explicit format specification (10.2) whose io-control-spec-list does not contain an internal-
file-variable as the io-unit .

C923 (R913) If an EOR= or SIZE= specifier appears, an ADVANCE= specifier also shall appear.

C924 (R913) The scalar-default-char-constant-expr in an ASYNCHRONOUS= specifier shall have the value
YES or NO.

C925 (R913) An ASYNCHRONOUS= specifier with a value YES shall not appear unless io-unit is a file-unit-
number .

C926 (R913) If an ID= specifier appears, an ASYNCHRONOUS= specifier with the value YES shall also
appear.

C927 (R913) If a POS= specifier appears, the io-control-spec-list shall not contain a REC= specifier.

C928 (R913) If a DECIMAL=, BLANK=, PAD=, SIGN=, or ROUND= specifier appears, a format or
namelist-group-name shall also appear.

C929 (R913) If a DELIM= specifier appears, either format shall be an asterisk or namelist-group-name shall
appear.

C930 (R914) The scalar-int-variable shall have a decimal range no smaller than that of default integer.

2 If an EOR= or SIZE= specifier appears, an ADVANCE= specifier with the value NO shall also appear.

3 If the data transfer statement contains a format or namelist-group-name, the statement is a formatted in-
put/output statement; otherwise, it is an unformatted input/output statement.

4 The ADVANCE=, ASYNCHRONOUS=, DECIMAL=, BLANK=, DELIM=, PAD=, SIGN=, and ROUND=
specifiers have a limited list of character values. Any trailing blanks are ignored. The values specified are without
regard to case.

5 The IOSTAT=, ERR=, EOR=, END=, and IOMSG= specifiers are described in 9.11.

NOTE 9.27
An example of a READ statement is:

READ (IOSTAT = IOS, UNIT = 6, FMT = ’(10F8.2)’) A, B
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9.6.2.2 Format specification in a data transfer statement

1 The format specifier supplies a format specification or specifies list-directed formatting for a formatted in-
put/output statement.

R915 format is default-char-expr
or label
or *

C931 (R915) The label shall be the label of a FORMAT statement that appears in the same scoping unit as
the statement containing the FMT= specifier.

2 The default-char-expr shall evaluate to a valid format specification (10.2.1 and 10.2.2).

3 If default-char-expr is an array, it is treated as if all of the elements of the array were specified in array element
order and were concatenated.

4 If format is *, the statement is a list-directed input/output statement.

NOTE 9.28
An example in which the format is a character expression is:

READ (6, FMT = "(" // CHAR_FMT // ")" ) X, Y, Z

where CHAR FMT is a default character variable.

9.6.2.3 NML= specifier in a data transfer statement

1 The NML= specifier supplies the namelist-group-name (5.6). This name identifies a particular collection of data
objects on which transfer is to be performed.

2 If a namelist-group-name appears, the statement is a namelist input/output statement.

9.6.2.4 ADVANCE= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to YES or NO. The ADVANCE= specifier determines whether advan-
cing input/output occurs for a nonchild input/output statement. If YES is specified for a nonchild input/output
statement, advancing input/output occurs. If NO is specified, nonadvancing input/output occurs (9.3.4.2). If this
specifier is omitted from a nonchild input/output statement that allows the specifier, the default value is YES.
A formatted child input/output statement is a nonadvancing input/output statement, and any ADVANCE=
specifier is ignored.

9.6.2.5 ASYNCHRONOUS= specifier in a data transfer statement

1 The ASYNCHRONOUS= specifier determines whether this input/output statement is synchronous or asynchro-
nous. If YES is specified, the statement and the input/output operation are asynchronous. If NO is specified or
if the specifier is omitted, the statement and the input/output operation are synchronous.

2 Asynchronous input/output is permitted only for external files opened with an ASYNCHRONOUS= specifier
with the value YES in the OPEN statement.

NOTE 9.29
Both synchronous and asynchronous input/output are allowed for files opened with an ASYNCHRONOUS=
specifier of YES. For other files, only synchronous input/output is allowed; this includes files opened with an
ASYNCHRONOUS= specifier of NO, files opened without an ASYNCHRONOUS= specifier, preconnected
files accessed without an OPEN statement, and internal files.
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NOTE 9.29 (cont.)

The ASYNCHRONOUS= specifier value in a data transfer statement is a constant expression because it
effects compiler optimizations and, therefore, needs to be known at compile time.

3 The processor may perform an asynchronous data transfer operation asynchronously, but it is not required to do
so. For each external file, records and file storage units read or written by asynchronous data transfer statements
are read, written, and processed in the same order as they would have been if the data transfer statements were
synchronous.

4 If a variable is used in an asynchronous data transfer statement as

• an item in an input/output list,
• a group object in a namelist, or
• a SIZE= specifier

the base object of the data-ref is implicitly given the ASYNCHRONOUS attribute in the scoping unit of the
data transfer statement. This attribute may be confirmed by explicit declaration.

5 When an asynchronous input/output statement is executed, the set of storage units specified by the item list or
NML= specifier, plus the storage units specified by the SIZE= specifier, is defined to be the pending input/output
storage sequence for the data transfer operation.

NOTE 9.30
A pending input/output storage sequence is not necessarily a contiguous set of storage units.

6 A pending input/output storage sequence affector is a variable of which any part is associated with a storage unit
in a pending input/output storage sequence.

9.6.2.6 BLANK= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to NULL or ZERO. The BLANK= specifier temporarily changes
(9.5.2) the blank interpretation mode (10.8.6, 9.5.6.6) for the connection. If the specifier is omitted, the mode is
not changed.

9.6.2.7 DECIMAL= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to COMMA or POINT. The DECIMAL= specifier temporarily changes
(9.5.2) the decimal edit mode (10.6, 10.8.8, 9.5.6.7) for the connection. If the specifier is omitted, the mode is
not changed.

9.6.2.8 DELIM= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to APOSTROPHE, QUOTE, or NONE. The DELIM= specifier tem-
porarily changes (9.5.2) the delimiter mode (10.10.4, 10.11.4.2, 9.5.6.8) for the connection. If the specifier is
omitted, the mode is not changed.

9.6.2.9 ID= specifier in a data transfer statement

1 Successful execution of an asynchronous data transfer statement containing an ID= specifier causes the variable
specified in the ID= specifier to become defined with a processor determined value. If this value is zero, the
data transfer operation has been completed. A nonzero value is referred to as the identifier of the data transfer
operation. This identifier is different from the identifier of any other pending data transfer operation for this unit.
It can be used in a subsequent WAIT or INQUIRE statement to identify the particular data transfer operation.

2 If an error occurs during the execution of a data transfer statement containing an ID= specifier, the variable
specified in the ID= specifier becomes undefined.
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3 A child data transfer statement shall not specify the ID= specifier.

9.6.2.10 PAD= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to YES or NO. The PAD= specifier temporarily changes (9.5.2) the
pad mode (9.6.4.5.3, 9.5.6.13) for the connection. If the specifier is omitted, the mode is not changed.

9.6.2.11 POS= specifier in a data transfer statement

1 The POS= specifier specifies the file position in file storage units. This specifier may appear in a data transfer
statement only if the statement specifies a unit connected for stream access. A child data transfer statement shall
not specify this specifier.

2 A processor may prohibit the use of POS= with particular files that do not have the properties necessary to
support random positioning. A processor may also prohibit positioning a particular file to any position prior to
its current file position if the file does not have the properties necessary to support such positioning.

NOTE 9.31
A unit that is connected to a device or data stream might not be positionable.

3 If the file is connected for formatted stream access, the file position specified by POS= shall be equal to either 1
(the beginning of the file) or a value previously returned by a POS= specifier in an INQUIRE statement for the
file.

9.6.2.12 REC= specifier in a data transfer statement

1 The REC= specifier specifies the number of the record that is to be read or written. This specifier may appear
only in an input/output statement that specifies a unit connected for direct access; it shall not appear in a child
data transfer statement. If the io-control-spec-list contains a REC= specifier, the statement is a direct access
input/output statement. A child data transfer statement is a direct access data transfer statement if the parent
is a direct access data transfer statement. Any other data transfer statement is a sequential access input/output
statement or a stream access input/output statement, depending on whether the file connection is for sequential
access or stream access.

9.6.2.13 ROUND= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to UP, DOWN, ZERO, NEAREST, COMPATIBLE or PROCESSOR -
DEFINED. The ROUND= specifier temporarily changes (9.5.2) the I/O rounding mode (10.7.2.3.7, 9.5.6.16) for
the connection. If the specifier is omitted, the mode is not changed.

9.6.2.14 SIGN= specifier in a data transfer statement

1 The scalar-default-char-expr shall evaluate to PLUS, SUPPRESS, or PROCESSOR DEFINED. The SIGN=
specifier temporarily changes (9.5.2) the sign mode (10.8.4, 9.5.6.17) for the connection. If the specifier is omitted,
the mode is not changed.

9.6.2.15 SIZE= specifier in a data transfer statement

1 When a synchronous nonadvancing input statement terminates, the variable specified in the SIZE= specifier
becomes defined with the count of the characters transferred by data edit descriptors during execution of the
input statement. Blanks inserted as padding (9.6.4.5.3) are not counted.

2 For asynchronous nonadvancing input, the storage units specified in the SIZE= specifier become defined with the
count of the characters transferred when the corresponding wait operation is executed.
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9.6.3 Data transfer input/output list

1 An input/output list specifies the entities whose values are transferred by a data transfer input/output statement.

R916 input-item is variable
or io-implied-do

R917 output-item is expr
or io-implied-do

R918 io-implied-do is ( io-implied-do-object-list , io-implied-do-control )

R919 io-implied-do-object is input-item
or output-item

R920 io-implied-do-control is do-variable = scalar-int-expr ,
scalar-int-expr [ , scalar-int-expr ]

C932 (R916) A variable that is an input-item shall not be a whole assumed-size array.

C933 (R920) The do-variable shall be a named scalar variable of type integer.

C934 (R919) In an input-item-list, an io-implied-do-object shall be an input-item. In an output-item-list, an
io-implied-do-object shall be an output-item.

C935 (R917) An expression that is an output-item shall not have a value that is a procedure pointer.

2 An input-item shall not appear as, nor be associated with, the do-variable of any io-implied-do that contains the
input-item.

NOTE 9.32
A constant, an expression involving operators or function references that does not have a pointer result, or
an expression enclosed in parentheses shall not appear as an input list item.

3 If an input item is a pointer, it shall be associated with a definable target and data are transferred from the file to
the associated target. If an output item is a pointer, it shall be associated with a target and data are transferred
from the target to the file.

NOTE 9.33
Data transfers always involve the movement of values between a file and internal storage. A pointer as such
cannot be read or written. Therefore, a pointer shall not appear as an item in an input/output list unless
it is associated with a target that can receive a value (input) or can deliver a value (output).

4 If an input item or an output item is allocatable, it shall be allocated.

5 A list item shall not be polymorphic unless it is processed by a defined input/output procedure (9.6.4.8).

6 The do-variable of an io-implied-do that is in another io-implied-do shall not appear as, nor be associated with,
the do-variable of the containing io-implied-do.

7 The following rules describing whether to expand an input/output list item are re-applied to each expanded list
item until none of the rules apply.

• If an array appears as an input/output list item, it is treated as if the elements, if any, were specified in
array element order (6.5.3.2). However, no element of that array may affect the value of any expression in
the input-item, nor may any element appear more than once in an input-item.
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NOTE 9.34
For example:

INTEGER A (100), J (100)
...

READ *, A (A) ! Not allowed
READ *, A (LBOUND (A, 1) : UBOUND (A, 1)) ! Allowed
READ *, A (J) ! Allowed if no two elements

! of J have the same value
A(1) = 1; A(10) = 10
READ *, A (A (1) : A (10)) ! Not allowed

• If a list item of derived type in an unformatted input/output statement is not processed by a defined
input/output procedure (9.6.4.8), and if any subobject of that list item would be processed by a defined
input/output procedure, the list item is treated as if all of the components of the object were specified in
the list in component order (4.5.4.7); those components shall be accessible in the scoping unit containing
the input/output statement and shall not be pointers or allocatable.
• An effective item of derived type in an unformatted input/output statement is treated as a single value in a

processor-dependent form unless the list item or a subobject thereof is processed by a defined input/output
procedure (9.6.4.8).

NOTE 9.35
The appearance of a derived-type object as an input/output list item in an unformatted input/output
statement is not equivalent to the list of its components.

Unformatted input/output involving derived-type list items forms the single exception to the rule that the
appearance of an aggregate list item (such as an array) is equivalent to the appearance of its expanded
list of component parts. This exception permits the processor greater latitude in improving efficiency or
in matching the processor-dependent sequence of values for a derived-type object to similar sequences for
aggregate objects used by means other than Fortran. However, formatted input/output of all list items and
unformatted input/output of list items other than those of derived types adhere to the above rule.

• If a list item of derived type in a formatted input/output statement is not processed by a defined in-
put/output procedure, that list item is treated as if all of the components of the list item were specified
in the list in component order; those components shall be accessible in the scoping unit containing the
input/output statement and shall not be pointers or allocatable.
• If a derived-type list item is not processed by a defined input/output procedure and is not treated as a list

of its individual components, all the subcomponents of that list item shall be accessible in the scoping unit
containing the input/output statement and shall not be pointers or allocatable.
• For an io-implied-do, the loop initialization and execution are the same as for a DO construct (8.1.6.6).

NOTE 9.36
An example of an output list with an implied DO is:

WRITE (LP, FMT = ’(10F8.2)’) (LOG (A (I)), I = 1, N + 9, K), G

8 The scalar objects resulting when a data transfer statement’s list items are expanded according to the rules in
this subclause for handling array and derived-type list items are called effective items. Zero-sized arrays and
io-implied-dos with an iteration count of zero do not contribute to the list of effective items. A scalar character
item of zero length is an effective item.

NOTE 9.37
In a formatted input/output statement, edit descriptors are associated with effective items, which are always
scalar. The rules in 9.6.3 determine the set of effective items corresponding to each actual list item in the
statement. These rules might have to be applied repetitively until all of the effective items are scalar items.
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9 An input/output list shall not contain an effective item of nondefault character kind if the input/output statement
specifies an internal file of default character kind. An input/output list shall not contain an effective item that is
nondefault character except for ISO 10646 or ASCII character if the input/output statement specifies an internal
file of ISO 10646 character kind. An input/output list shall not contain an effective item of type character of any
kind other than ASCII if the input/output statement specifies an ASCII character internal file.

9.6.4 Execution of a data transfer input/output statement

9.6.4.1 General

1 Execution of a WRITE or PRINT statement for a file that does not exist creates the file unless an error condition
occurs.

2 The effect of executing a synchronous data transfer input/output statement shall be as if the following operations
were performed in the order specified.

(1) Determine the direction of data transfer.
(2) Identify the unit.
(3) Perform a wait operation for all pending input/output operations for the unit. If an error, end-of-file,

or end-of-record condition occurs during any of the wait operations, steps 4 through 8 are skipped.
(4) Establish the format if one is specified.
(5) If the statement is not a child data transfer statement (9.6.4.8),

(a) position the file prior to data transfer (9.3.4.3), and
(b) for formatted data transfer, set the left tab limit (10.8.1.1).

(6) Transfer data between the file and the entities specified by the input/output list (if any) or namelist,
possibly mediated by defined input/output procedures (9.6.4.8).

(7) Determine whether an error, end-of-file, or end-of-record condition has occurred.
(8) Position the file after data transfer (9.3.4.4) unless the statement is a child data transfer statement

(9.6.4.8).
(9) Cause any variable specified in a SIZE= specifier to become defined.
(10) If an error, end-of-file, or end-of-record condition occurred, processing continues as specified in 9.11;

otherwise any variable specified in an IOSTAT= specifier is assigned the value zero.

3 The effect of executing an asynchronous data transfer input/output statement shall be as if the following opera-
tions were performed in the order specified.

(1) Determine the direction of data transfer.
(2) Identify the unit.
(3) Optionally, perform wait operations for one or more pending input/output operations for the unit.

If an error, end-of-file, or end-of-record condition occurs during any of the wait operations, steps 4
through 9 are skipped.

(4) Establish the format if one is specified.
(5) Position the file prior to data transfer (9.3.4.3) and, for formatted data transfer, set the left tab limit

(10.8.1.1).
(6) Establish the set of storage units identified by the input/output list. For a READ statement, this

might require some or all of the data in the file to be read if an input variable is used as a scalar-
int-expr in an io-implied-do-control in the input/output list, as a subscript , substring-range, stride,
or is otherwise referenced.

(7) Initiate an asynchronous data transfer between the file and the entities specified by the input/output
list (if any) or namelist. The asynchronous data transfer may complete (and an error, end-of-file, or
end-of-record condition may occur) during the execution of this data transfer statement or during a
later wait operation.

(8) Determine whether an error, end-of-file, or end-of-record condition has occurred. The conditions
may occur during the execution of this data transfer statement or during the corresponding wait
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operation, but not both.
(9) Position the file as if the data transfer had finished (9.3.4.4).
(10) Cause any variable specified in a SIZE= specifier to become undefined.
(11) If an error, end-of-file, or end-of-record condition occurred, processing continues as specified in 9.11;

otherwise any variable specified in an IOSTAT= specifier is assigned the value zero.

4 For an asynchronous data transfer statement, the data transfers may occur during execution of the statement,
during execution of the corresponding wait operation, or anywhere between. The data transfer operation is
considered to be pending until a corresponding wait operation is performed.

5 For asynchronous output, a pending input/output storage sequence affector (9.6.2.5) shall not be redefined,
become undefined, or have its pointer association status changed.

6 For asynchronous input, a pending input/output storage sequence affector shall not be referenced, become defined,
become undefined, become associated with a dummy argument that has the VALUE attribute, or have its pointer
association status changed.

7 Error, end-of-file, and end-of-record conditions in an asynchronous data transfer operation may occur during
execution of either the data transfer statement or the corresponding wait operation. If an ID= specifier does not
appear in the initiating data transfer statement, the conditions may occur during the execution of any subsequent
data transfer or wait operation for the same unit. When a condition occurs for a previously executed asynchronous
data transfer statement, a wait operation is performed for all pending data transfer operations on that unit. When
a condition occurs during a subsequent statement, any actions specified by IOSTAT=, IOMSG=, ERR=, END=,
and EOR= specifiers for that statement are taken.

8 If execution of the program is terminated during execution of a WRITE or PRINT statement, the contents of
the file become undefined.

NOTE 9.38
Because end-of-file and error conditions for asynchronous data transfer statements without an ID= specifier
may be reported by the processor during the execution of a subsequent data transfer statement, it may be
impossible for the user to determine which input/output statement caused the condition. Reliably detecting
which READ statement caused an end-of-file condition requires that all asynchronous READ statements
for the unit include an ID= specifier.

9.6.4.2 Direction of data transfer

1 Execution of a READ statement causes values to be transferred from a file to the entities specified by the input
list, if any, or specified within the file itself for namelist input. Execution of a WRITE or PRINT statement
causes values to be transferred to a file from the entities specified by the output list and format specification, if
any, or by the namelist-group-name for namelist output.

9.6.4.3 Identifying a unit

1 A data transfer input/output statement that contains an input/output control list includes a UNIT= specifier
that identifies an external or internal unit. A READ statement that does not contain an input/output control list
specifies a particular processor-dependent unit, which is the same as the unit identified by * in a READ statement
that contains an input/output control list (9.5.1) and is the same as the unit identified by the value of the named
constant INPUT UNIT of the intrinsic module ISO FORTRAN ENV (13.8.2.10). The PRINT statement specifies
some other processor-dependent unit, which is the same as the unit identified by * in a WRITE statement and is
the same as the unit identified by the value of the named constant OUTPUT UNIT of the intrinsic module ISO -
FORTRAN ENV (13.8.2.19). Thus, each data transfer input/output statement identifies an external or internal
unit.

2 The unit identified by an unformatted data transfer statement shall be an external unit.

3 The unit identified by a data transfer input/output statement shall be connected to a file when execution of the
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statement begins.

NOTE 9.39
The unit may be preconnected.

9.6.4.4 Establishing a format

1 If the input/output control list contains * as a format, list-directed formatting is established. If namelist-group-
name appears, namelist formatting is established. If no format or namelist-group-name is specified, unformatted
data transfer is established. Otherwise, the format specified by format is established.

2 For output to an internal file, a format specification that is in the file or is associated with the file shall not be
specified.

3 An input list item, or an entity associated with it, shall not contain any portion of an established format specifi-
cation.

9.6.4.5 Data transfer

9.6.4.5.1 General

1 Data are transferred between the file and the entities specified by the input/output list or namelist. The list items
are processed in the order of the input/output list for all data transfer input/output statements except namelist
formatted data transfer statements. The list items for a namelist input statement are processed in the order of
the entities specified within the input records. The list items for a namelist output statement are processed in
the order in which the variables are specified in the namelist-group-object-list. Effective items are derived from
the input/output list items as described in 9.6.3.

2 All values needed to determine which entities are specified by an input/output list item are determined at the
beginning of the processing of that item.

3 All values are transmitted to or from the entities specified by a list item prior to the processing of any succeeding
list item for all data transfer input/output statements.

NOTE 9.40
In the example

READ (N) N, X (N)

the old value of N identifies the unit, but the new value of N is the subscript of X.

4 All values following the name= part of the namelist entity (10.11) within the input records are transmitted to
the matching entity specified in the namelist-group-object-list prior to processing any succeeding entity within
the input record for namelist input statements. If an entity is specified more than once within the input record
during a namelist formatted data transfer input statement, the last occurrence of the entity specifies the value or
values to be used for that entity.

5 If the input/output item is a pointer, data are transferred between the file and the associated target.

6 If an internal file has been specified, an input/output list item shall not be in the file or associated with the file.

7 During the execution of an output statement that specifies an internal file, no part of that internal file shall be
referenced, defined, or become undefined as the result of evaluating any output list item.

8 During the execution of an input statement that specifies an internal file, no part of that internal file shall be
defined or become undefined as the result of transferring a value to any input list item.

9 A DO variable becomes defined and its iteration count established at the beginning of processing of the items
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that constitute the range of an io-implied-do.

10 On output, every entity whose value is to be transferred shall be defined.

9.6.4.5.2 Unformatted data transfer

1 If the file is not connected for unformatted input/output, unformatted data transfer is prohibited.

2 During unformatted data transfer, data are transferred without editing between the file and the entities specified
by the input/output list. If the file is connected for sequential or direct access, exactly one record is read or
written.

3 A value in the file is stored in a contiguous sequence of file storage units, beginning with the file storage unit
immediately following the current file position.

4 After each value is transferred, the current file position is moved to a point immediately after the last file storage
unit of the value.

5 On input from a file connected for sequential or direct access, the number of file storage units required by the
input list shall be less than or equal to the number of file storage units in the record.

6 On input, if the file storage units transferred do not contain a value with the same type and type parameters as
the input list entity, then the resulting value of the entity is processor dependent except in the following cases.

• A complex entity may correspond to two real values with the same kind type parameter as the complex
entity.
• A default character list entity of length n may correspond to n default characters stored in the file, regardless

of the length parameters of the entities that were written to these storage units of the file. If the file is
connected for stream input, the characters may have been written by formatted stream output.

7 On output to a file connected for unformatted direct access, the output list shall not specify more values than
can fit into the record. If the file is connected for direct access and the values specified by the output list do not
fill the record, the remainder of the record is undefined.

8 If the file is connected for unformatted sequential access, the record is created with a length sufficient to hold
the values from the output list. This length shall be one of the set of allowed record lengths for the file and
shall not exceed the value specified in the RECL= specifier, if any, of the OPEN statement that established the
connection.

9.6.4.5.3 Formatted data transfer

1 If the file is not connected for formatted input/output, formatted data transfer is prohibited.

2 During formatted data transfer, data are transferred with editing between the file and the entities specified by
the input/output list or by the namelist-group-name. Format control is initiated and editing is performed as
described in Clause 10.

3 The current record and possibly additional records are read or written.

4 During advancing input when the pad mode has the value NO, the input list and format specification shall not
require more characters from the record than the record contains.

5 During advancing input when the pad mode has the value YES, blank characters are supplied by the processor
if the input list and format specification require more characters from the record than the record contains.

6 During nonadvancing input when the pad mode has the value NO, an end-of-record condition (9.11) occurs if
the input list and format specification require more characters from the record than the record contains, and the
record is complete (9.3.3.4). If the record is incomplete, an end-of-file condition occurs instead of an end-of-record
condition.
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7 During nonadvancing input when the pad mode has the value YES, blank characters are supplied by the processor
if an effective item and its corresponding data edit descriptors require more characters from the record than the
record contains. If the record is incomplete, an end-of-file condition occurs; otherwise an end-of-record condition
occurs.

8 If the file is connected for direct access, the record number is increased by one as each succeeding record is read
or written.

9 On output, if the file is connected for direct access or is an internal file and the characters specified by the output
list and format do not fill a record, blank characters are added to fill the record.

10 On output, the output list and format specification shall not specify more characters for a record than have been
specified by a RECL= specifier in the OPEN statement or the record length of an internal file.

9.6.4.6 List-directed formatting

1 If list-directed formatting has been established, editing is performed as described in 10.10.

9.6.4.7 Namelist formatting

1 If namelist formatting has been established, editing is performed as described in 10.11.

2 Every allocatable namelist-group-object in the namelist group shall be allocated and every namelist-group-object
that is a pointer shall be associated with a target. If a namelist-group-object is polymorphic or has an ultimate
component that is allocatable or a pointer, that object shall be processed by a defined input/output procedure
(9.6.4.8).

9.6.4.8 Defined input/output

9.6.4.8.1 General

1 Defined input/output allows a program to override the default handling of derived-type objects and values in
data transfer input/output statements described in 9.6.3.

2 A defined input/output procedure is a procedure accessible by a defined-io-generic-spec (12.4.3.2). A particular
defined input/output procedure is selected as described in 9.6.4.8.4.

9.6.4.8.2 Executing defined input/output data transfers

1 If a defined input/output procedure is selected as specified in 9.6.4.8.4, the processor shall call the selected defined
input/output procedure for any appropriate data transfer input/output statements executed in that scoping unit.
The defined input/output procedure controls the actual data transfer operations for the derived-type list item.

2 A data transfer statement that includes a derived-type list item and that causes a defined input/output procedure
to be invoked is called a parent data transfer statement. A data transfer statement that is executed while a parent
data transfer statement is being processed and that specifies the unit passed into a defined input/output procedure
is called a child data transfer statement.

NOTE 9.41
A defined input/output procedure will usually contain child data transfer statements that read values
from or write values to the current record or at the current file position. The effect of executing the
defined input/output procedure is similar to that of substituting the list items from any child data transfer
statements into the parent data transfer statement’s list items, along with similar substitutions in the format
specification.
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NOTE 9.42
A particular execution of a READ, WRITE or PRINT statement can be both a parent and a child data
transfer statement. A defined input/output procedure can indirectly call itself or another defined in-
put/output procedure by executing a child data transfer statement containing a list item of derived type,
where a matching interface is accessible for that derived type. If a defined input/output procedure calls
itself indirectly in this manner, it shall be declared RECURSIVE.

3 A child data transfer statement is processed differently from a nonchild data transfer statement in the following
ways.

• Executing a child data transfer statement does not position the file prior to data transfer.
• An unformatted child data transfer statement does not position the file after data transfer is complete.
• Any ADVANCE= specifier in a child input/output statement is ignored.

9.6.4.8.3 Defined input/output procedures

1 For a particular derived type and a particular set of kind type parameter values, there are four possible sets of
characteristics for defined input/output procedures; one each for formatted input, formatted output, unformatted
input, and unformatted output. The user need not supply all four procedures. The procedures are specified
to be used for derived-type input/output by interface blocks (12.4.3.2) or by generic bindings (4.5.5), with a
defined-io-generic-spec (R1208). The defined-io-generic-specs for these procedures are READ (FORMATTED),
READ (UNFORMATTED), WRITE (FORMATTED), and WRITE (UNFORMATTED), for formatted input,
unformatted input, formatted output, and unformatted output respectively.

2 In the four interfaces, which specify the characteristics of defined input/output procedures, the following syntax
term is used:

R921 dtv-type-spec is TYPE( derived-type-spec )
or CLASS( derived-type-spec )

C936 (R921) If derived-type-spec specifies an extensible type, the CLASS keyword shall be used; otherwise, the
TYPE keyword shall be used.

C937 (R921) All length type parameters of derived-type-spec shall be assumed.

3 If the defined-io-generic-spec is READ (FORMATTED), the characteristics shall be the same as those specified
by the following interface:

4 SUBROUTINE my_read_routine_formatted &
(dtv, &
unit, &
iotype, v_list, &
iostat, iomsg)

! the derived-type variable
dtv-type-spec , INTENT(INOUT) :: dtv
INTEGER, INTENT(IN) :: unit ! unit number
! the edit descriptor string
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END

5 If the defined-io-generic-spec is READ (UNFORMATTED), the characteristics shall be the same as those specified
by the following interface:
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6 SUBROUTINE my_read_routine_unformatted &
(dtv, &
unit, &
iostat, iomsg)

! the derived-type variable
dtv-type-spec , INTENT(INOUT) :: dtv
INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END

7 If the defined-io-generic-spec is WRITE (FORMATTED), the characteristics shall be the same as those specified
by the following interface:

8 SUBROUTINE my_write_routine_formatted &
(dtv, &
unit, &
iotype, v_list, &
iostat, iomsg)

! the derived-type value/variable
dtv-type-spec , INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
! the edit descriptor string
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_list(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END

9 If the defined-io-generic-spec is WRITE (UNFORMATTED), the characteristics shall be the same as those
specified by the following interface:

10 SUBROUTINE my_write_routine_unformatted &
(dtv, &
unit, &
iostat, iomsg)

! the derived-type value/variable
dtv-type-spec , INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

END

11 The actual specific procedure names (the my_..._routine_... procedure names above) are not significant. In
the discussion here and elsewhere, the dummy arguments in these interfaces are referred to by the names given
above; the names are, however, arbitrary.

12 When a defined input/output procedure is invoked, the processor shall pass a unit argument that has a value as
follows.

• If the parent data transfer statement uses a file-unit-number , the value of the unit argument shall be that
of the file-unit-number .

• If the parent data transfer statement is a WRITE statement with an asterisk unit or a PRINT statement,
the unit argument shall have the same value as the named constant OUTPUT UNIT of the intrinsic module
ISO FORTRAN ENV (13.8.2).
• If the parent data transfer statement is a READ statement with an asterisk unit or a READ statement
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without an io-control-spec-list, the unit argument shall have the same value as the INPUT UNIT named
constant of the intrinsic module ISO FORTRAN ENV (13.8.2).
• Otherwise the parent data transfer statement must access an internal file, in which case the unit argument

shall have a processor-dependent negative value.

NOTE 9.43
The unit argument passed to a defined input/output procedure will be negative when the parent in-
put/output statement specified an internal unit, or specified an external unit that is a NEWUNIT value.
When an internal unit is used with the INQUIRE statement, an error condition will occur, and any variable
specified in an IOSTAT= specifier will be assigned the value IOSTAT INQUIRE INTERNAL UNIT from
the intrinsic module ISO FORTRAN ENV (13.8.2).

13 For formatted data transfer, the processor shall pass an iotype argument that has the value

• “LISTDIRECTED” if the parent data transfer statement specified list directed formatting,
• “NAMELIST” if the parent data transfer statement specified namelist formatting, or
• “DT” concatenated with the char-literal-constant , if any, of the DT edit descriptor in the format specification

of the parent data transfer statement. , if contained a and the list item’s corresponding edit descriptor was
a DT edit descriptor.

14 If the parent data transfer statement is a READ statement, the dtv dummy argument is argument associated
with the effective item that caused the defined input procedure to be invoked, as if the effective item were an
actual argument in this procedure reference (2.4.5).

15 If the parent data transfer statement is a WRITE or PRINT statement, the processor shall provide the value of
the effective item in the dtv dummy argument.

16 If the v-list of the edit descriptor appears in the parent data transfer statement, the processor shall provide the
values from it in the v_list dummy argument, with the same number of elements in the same order as v-list.
If there is no v-list in the edit descriptor or if the data transfer statement specifies list-directed or namelist
formatting, the processor shall provide v_list as a zero-sized array.

NOTE 9.44
The user’s procedure may choose to interpret an element of the v_list argument as a field width, but this
is not required. If it does, it would be appropriate to fill an output field with “*”s if the width is too small.

17 The iostat argument is used to report whether an error, end-of-record, or end-of-file condition (9.11) occurs.
If an error condition occurs, the defined input/output procedure shall assign a positive value to the iostat
argument. Otherwise, if an end-of-file condition occurs, the defined input procedure shall assign the value of
the named constant IOSTAT END (13.8.2.13) to the iostat argument. Otherwise, if an end-of-record condition
occurs, the defined input procedure shall assign the value of the named constant IOSTAT EOR (13.8.2.14) to
iostat. Otherwise, the defined input/output procedure shall assign the value zero to the iostat argument.

18 If the defined input/output procedure returns a nonzero value for the iostat argument, the procedure shall also
return an explanatory message in the iomsg argument. Otherwise, the procedure shall not change the value of
the iomsg argument.

NOTE 9.45
The values of the iostat and iomsg arguments set in a defined input/output procedure need not be passed
to all of the parent data transfer statements.

19 If the iostat argument of the defined input/output procedure has a nonzero value when that procedure returns,
and the processor therefore terminates execution of the program as described in 9.11, the processor shall make
the value of the iomsg argument available in a processor-dependent manner.
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20 When a parent READ statement is active, an input/output statement shall not read from any external unit other
than the one specified by the unit dummy argument and shall not perform output to any external unit.

21 When a parent WRITE or PRINT statement is active, an input/output statement shall not perform output to
any external unit other than the one specified by the unit dummy argument and shall not read from any external
unit.

22 When a parent data transfer statement is active, a data transfer statement that specifies an internal file is
permitted.

23 OPEN, CLOSE, BACKSPACE, ENDFILE, and REWIND statements shall not be executed while a parent data
transfer statement is active.

24 A defined input/output procedure may use a FORMAT with a DT edit descriptor for handling a component of
the derived type that is itself of a derived type. A child data transfer statement that is a list directed or namelist
input/output statement may contain a list item of derived type.

25 Because a child data transfer statement does not position the file prior to data transfer, the child data transfer
statement starts transferring data from where the file was positioned by the parent data transfer statement’s most
recently processed effective item or record positioning edit descriptor. This is not necessarily at the beginning of
a record.

26 A record positioning edit descriptor, such as TL and TR, used on unit by a child data transfer statement shall
not cause the record position to be positioned before the record position at the time the defined input/output
procedure was invoked.

NOTE 9.46
A robust defined input/output procedure may wish to use INQUIRE to determine the settings of BLANK=,
PAD=, ROUND=, DECIMAL=, and DELIM= for an external unit. The INQUIRE statement provides
values as specified in 9.10.

27 Neither a parent nor child data transfer statement shall be asynchronous.

28 A defined input/output procedure, and any procedures invoked therefrom, shall not define, nor cause to become
undefined, any storage unit referenced by any input/output list item, the corresponding format, or any specifier
in any active parent data transfer statement, except through the dtv argument.

NOTE 9.47
A child data transfer statement shall not specify the ID=, POS=, or REC= specifiers in an input/output
control list.

NOTE 9.48
A simple example of derived type formatted output follows. The derived type variable chairman has two
components. The type and an associated write formatted procedure are defined in a module so as to be
accessible from wherever they might be needed. It would also be possible to check that iotype indeed has
the value ’DT’ and to set iostat and iomsg accordingly.

MODULE p

TYPE :: person
CHARACTER (LEN=20) :: name
INTEGER :: age

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE person
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NOTE 9.48 (cont.)

CONTAINS

SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
! argument definitions

CLASS(person), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

! local variable
CHARACTER (LEN=9) :: pfmt

! vlist(1) and (2) are to be used as the field widths of the two
! components of the derived type variable. First set up the format to
! be used for output.

WRITE(pfmt,’(A,I2,A,I2,A)’ ) ’(A’, vlist(1), ’,I’, vlist(2), ’)’

! now the basic output statement
WRITE(unit, FMT=pfmt, IOSTAT=iostat) dtv%name, dtv%age

END SUBROUTINE pwf

END MODULE p

PROGRAM committee
USE p
INTEGER id, members
TYPE (person) :: chairman
...
WRITE(6, FMT="(I2, DT (15,6), I5)" ) id, chairman, members

! this writes a record with four fields, with lengths 2, 15, 6, 5
! respectively

END PROGRAM

NOTE 9.49
In the following example, the variables of the derived type node form a linked list, with a single value at
each node. The subroutine pwf is used to write the values in the list, one per line.

MODULE p

TYPE node
INTEGER :: value = 0
TYPE (NODE), POINTER :: next_node => NULL ( )

CONTAINS
PROCEDURE,PRIVATE :: pwf
GENERIC :: WRITE(FORMATTED) => pwf

END TYPE node

CONTAINS

RECURSIVE SUBROUTINE pwf (dtv,unit,iotype,vlist,iostat,iomsg)
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NOTE 9.49 (cont.)

! Write the chain of values, each on a separate line in I9 format.
CLASS(node), INTENT(IN) :: dtv
INTEGER, INTENT(IN) :: unit
CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: vlist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg

WRITE(unit,’(i9 /)’, IOSTAT = iostat) dtv%value
IF(iostat/=0) RETURN
IF(ASSOCIATED(dtv%next_node)) WRITE(unit,’(dt)’, IOSTAT=iostat) dtv%next_node

END SUBROUTINE pwf

END MODULE p

9.6.4.8.4 Resolving defined input/output procedure references

1 A suitable generic interface for defined input/output of an effective item is one that has a defined-io-generic-spec
that is appropriate to the direction (read or write) and form (formatted or unformatted) of the data transfer
as specified in 9.6.4.8.3, and has a specific interface whose dtv argument is compatible with the effective item
according to the rules for argument association in 12.5.2.4.

2 When an effective item (9.6.3) that is of derived-type is encountered during a data transfer, defined input/output
occurs if both of the following conditions are true.

(1) The circumstances of the input/output are such that defined input/output is permitted; that is,
either

(a) the transfer was initiated by a list-directed, namelist, or unformatted input/output statement,
or

(b) a format specification is supplied for the input/output statement, and the edit descriptor
corresponding to the effective item is a DT edit descriptor.

(2) A suitable defined input/output procedure is available; that is, either

(a) the declared type of the effective item has a suitable generic type-bound procedure, or
(b) a suitable generic interface is accessible.

3 If (2a) is true, the procedure referenced is determined as for explicit type-bound procedure references (12.5); that
is, the binding with the appropriate specific interface is located in the declared type of the effective item, and the
corresponding binding in the dynamic type of the effective item is selected.

4 If (2a) is false and (2b) is true, the reference is to the procedure identified by the appropriate specific interface
in the interface block.

9.6.5 Termination of data transfer statements

1 Termination of an input/output data transfer statement occurs when

• format processing encounters a colon or data edit descriptor and there are no remaining elements in the
input-item-list or output-item-list,

• unformatted or list-directed data transfer exhausts the input-item-list or output-item-list,
• namelist output exhausts the namelist-group-object-list,
• an error condition occurs,
• an end-of-file condition occurs,
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• a slash (/) is encountered as a value separator (10.10, 10.11) in the record being read during list-directed
or namelist input, or
• an end-of-record condition occurs during execution of a nonadvancing input statement (9.11).

9.7 Waiting on pending data transfer

9.7.1 Wait operation

1 Execution of an asynchronous data transfer statement in which neither an error, end-of-record, nor end-of-file
condition occurs initiates a pending data transfer operation. There may be multiple pending data transfer
operations for the same or multiple units simultaneously. A pending data transfer operation remains pending
until a corresponding wait operation is performed. A wait operation may be performed by a WAIT, INQUIRE,
FLUSH, CLOSE, data transfer, or file positioning statement.

2 A wait operation completes the processing of a pending data transfer operation. Each wait operation completes
only a single data transfer operation, although a single statement may perform multiple wait operations.

3 If the actual data transfer is not yet complete, the wait operation first waits for its completion. If the data
transfer operation is an input operation that completed without error, the storage units of the input/output
storage sequence then become defined with the values as described in 9.6.2.15 and 9.6.4.5.

4 If any error, end-of-file, or end-of-record conditions occur, the applicable actions specified by the IOSTAT=,
IOMSG=, ERR=, END=, and EOR= specifiers of the statement that performs the wait operation are taken.

5 If an error or end-of-file condition occurs during a wait operation for a unit, the processor performs a wait
operation for all pending data transfer operations for that unit.

NOTE 9.50
Error, end-of-file, and end-of-record conditions may be raised either during the data transfer statement that
initiates asynchronous input/output, a subsequent asynchronous data transfer statement for the same unit,
or during the wait operation. If such conditions are raised during a data transfer statement, they trigger
actions according to the IOSTAT=, ERR=, END=, and EOR= specifiers of that statement; if they are
raised during the wait operation, the actions are in accordance with the specifiers of the statement that
performs the wait operation.

6 After completion of the wait operation, the data transfer operation and its input/output storage sequence are no
longer considered to be pending.

9.7.2 WAIT statement

1 A WAIT statement performs a wait operation for specified pending asynchronous data transfer operations.

NOTE 9.51
The CLOSE, INQUIRE, and file positioning statements may also perform wait operations.

R922 wait-stmt is WAIT (wait-spec-list)

R923 wait-spec is [ UNIT = ] file-unit-number
or END = label
or EOR = label
or ERR = label
or ID = scalar-int-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable

C938 No specifier shall appear more than once in a given wait-spec-list.
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C939 A file-unit-number shall be specified in a wait-spec-list ; if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the wait-spec-list.

C940 (R923) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch target
statement that appears in the same scoping unit as the WAIT statement.

2 The IOSTAT=, ERR=, EOR=, END=, and IOMSG= specifiers are described in 9.11.

3 The value of the expression specified in the ID= specifier shall be zero or the identifier of a pending data transfer
operation for the specified unit. If the ID= specifier appears, a wait operation for the specified data transfer
operation, if any, is performed. If the ID= specifier is omitted, wait operations for all pending data transfers for
the specified unit are performed.

4 Execution of a WAIT statement specifying a unit that does not exist, has no file connected to it, or is not open
for asynchronous input/output is permitted, provided that the WAIT statement has no ID= specifier; such a
WAIT statement does not cause an error or end-of-file condition to occur.

NOTE 9.52
An EOR= specifier has no effect if the pending data transfer operation is not a nonadvancing read. An
END= specifier has no effect if the pending data transfer operation is not a READ.

9.8 File positioning statements

9.8.1 Syntax

R924 backspace-stmt is BACKSPACE file-unit-number
or BACKSPACE ( position-spec-list )

R925 endfile-stmt is ENDFILE file-unit-number
or ENDFILE ( position-spec-list )

R926 rewind-stmt is REWIND file-unit-number
or REWIND ( position-spec-list )

1 A unit that is connected for direct access shall not be referred to by a BACKSPACE, ENDFILE, or REWIND
statement. A unit that is connected for unformatted stream access shall not be referred to by a BACKSPACE
statement. A unit that is connected with an ACTION= specifier having the value READ shall not be referred
to by an ENDFILE statement.

R927 position-spec is [ UNIT = ] file-unit-number
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or ERR = label

C941 No specifier shall appear more than once in a given position-spec-list.

C942 A file-unit-number shall be specified in a position-spec-list ; if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the position-spec-list.

C943 (R927) The label in the ERR= specifier shall be the statement label of a branch target statement that
appears in the same scoping unit as the file positioning statement.

2 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

3 Execution of a file positioning statement performs a wait operation for all pending asynchronous data transfer
operations for the specified unit.
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9.8.2 BACKSPACE statement

1 Execution of a BACKSPACE statement causes the file connected to the specified unit to be positioned before
the current record if there is a current record, or before the preceding record if there is no current record. If the
file is at its initial point, the position of the file is not changed.

NOTE 9.53
If the preceding record is an endfile record, the file is positioned before the endfile record.

2 If a BACKSPACE statement causes the implicit writing of an endfile record, the file is positioned before the
record that precedes the endfile record.

3 Backspacing a file that is connected but does not exist is prohibited.

4 Backspacing over records written using list-directed or namelist formatting is prohibited.

NOTE 9.54
An example of a BACKSPACE statement is:

BACKSPACE (10, IOSTAT = N)

9.8.3 ENDFILE statement

1 Execution of an ENDFILE statement for a file connected for sequential access writes an endfile record as the next
record of the file. The file is then positioned after the endfile record, which becomes the last record of the file.
If the file also may be connected for direct access, only those records before the endfile record are considered to
have been written. Thus, only those records may be read during subsequent direct access connections to the file.

2 After execution of an ENDFILE statement for a file connected for sequential access, a BACKSPACE or REWIND
statement shall be used to reposition the file prior to execution of any data transfer input/output statement or
ENDFILE statement.

3 Execution of an ENDFILE statement for a file connected for stream access causes the terminal point of the file
to become equal to the current file position. Only file storage units before the current position are considered
to have been written; thus only those file storage units may be subsequently read. Subsequent stream output
statements may be used to write further data to the file.

4 Execution of an ENDFILE statement for a file that is connected but does not exist creates the file; if the file is
connected for sequential access, it is created prior to writing the endfile record.

NOTE 9.55
An example of an ENDFILE statement is:

ENDFILE K

9.8.4 REWIND statement

1 Execution of a REWIND statement causes the specified file to be positioned at its initial point.

NOTE 9.56
If the file is already positioned at its initial point, execution of this statement has no effect on the position
of the file.

2 Execution of a REWIND statement for a file that is connected but does not exist is permitted and has no effect
on any file.

232 Input/output statements 9.8.3



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

NOTE 9.57
An example of a REWIND statement is:

REWIND 10

9.9 FLUSH statement

R928 flush-stmt is FLUSH file-unit-number
or FLUSH ( flush-spec-list )

R929 flush-spec is [UNIT =] file-unit-number
or IOSTAT = scalar-int-variable
or IOMSG = iomsg-variable
or ERR = label

C944 No specifier shall appear more than once in a given flush-spec-list.

C945 A file-unit-number shall be specified in a flush-spec-list ; if the optional characters UNIT= are omitted
from the unit specifier, the file-unit-number shall be the first item in the flush-spec-list.

C946 (R929) The label in the ERR= specifier shall be the statement label of a branch target statement that
appears in the same scoping unit as the FLUSH statement.

1 The IOSTAT=, IOMSG= and ERR= specifiers are described in 9.11. The IOSTAT= variable shall be set to
a processor-dependent positive value if an error occurs, to zero if the processor-dependent flush operation was
successful, or to a processor-dependent negative value if the flush operation is not supported for the unit specified.

2 Execution of a FLUSH statement causes data written to an external file to be available to other processes, or
causes data placed in an external file by means other than Fortran to be available to a READ statement. These
actions are processor dependent.

3 Execution of a FLUSH statement for a file that is connected but does not exist is permitted and has no effect on
any file. A FLUSH statement has no effect on file position.

4 Execution of a FLUSH statement performs a wait operation for all pending asynchronous data transfer operations
for the specified unit.

NOTE 9.58
Because this standard does not specify the mechanism of file storage, the exact meaning of the flush
operation is not precisely defined. The intention is that the flush operation should make all data written
to a file available to other processes or devices, or make data recently added to a file by other processes or
devices available to the program via a subsequent read operation. This is commonly called “flushing I/O
buffers”.

NOTE 9.59
An example of a FLUSH statement is:

FLUSH (10, IOSTAT = N)

9.10 File inquiry statement

9.10.1 Forms of the INQUIRE statement

1 The INQUIRE statement may be used to inquire about properties of a particular named file or of the connection
to a particular unit. There are three forms of the INQUIRE statement: inquire by file, which uses the FILE=
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specifier, inquire by unit, which uses the UNIT= specifier, and inquire by output list, which uses only the
IOLENGTH= specifier. All specifier value assignments are performed according to the rules for assignment
statements.

2 For inquiry by unit, the unit specified need not exist or be connected to a file. If it is connected to a file, the
inquiry is being made about the connection and about the file connected.

3 An INQUIRE statement may be executed before, while, or after a file is connected to a unit. All values assigned
by an INQUIRE statement are those that are current at the time the statement is executed.

R930 inquire-stmt is INQUIRE ( inquire-spec-list )
or INQUIRE ( IOLENGTH = scalar-int-variable )

output-item-list

NOTE 9.60
Examples of INQUIRE statements are:

INQUIRE (IOLENGTH = IOL) A (1:N)
INQUIRE (UNIT = JOAN, OPENED = LOG_01, NAMED = LOG_02, &

FORM = CHAR_VAR, IOSTAT = IOS)

9.10.2 Inquiry specifiers

9.10.2.1 Syntax

1 Unless constrained, the following inquiry specifiers may be used in either of the inquire by file or inquire by unit
forms of the INQUIRE statement.

R931 inquire-spec is [ UNIT = ] file-unit-number
or FILE = file-name-expr
or ACCESS = scalar-default-char-variable
or ACTION = scalar-default-char-variable
or ASYNCHRONOUS = scalar-default-char-variable
or BLANK = scalar-default-char-variable
or DECIMAL = scalar-default-char-variable
or DELIM = scalar-default-char-variable
or DIRECT = scalar-default-char-variable
or ENCODING = scalar-default-char-variable
or ERR = label
or EXIST = scalar-logical-variable
or FORM = scalar-default-char-variable
or FORMATTED = scalar-default-char-variable
or ID = scalar-int-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or NAME = scalar-default-char-variable
or NAMED = scalar-logical-variable
or NEXTREC = scalar-int-variable
or NUMBER = scalar-int-variable
or OPENED = scalar-logical-variable
or PAD = scalar-default-char-variable
or PENDING = scalar-logical-variable
or POS = scalar-int-variable
or POSITION = scalar-default-char-variable
or READ = scalar-default-char-variable
or READWRITE = scalar-default-char-variable
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or RECL = scalar-int-variable
or ROUND = scalar-default-char-variable
or SEQUENTIAL = scalar-default-char-variable
or SIGN = scalar-default-char-variable
or SIZE = scalar-int-variable
or STREAM = scalar-default-char-variable
or UNFORMATTED = scalar-default-char-variable
or WRITE = scalar-default-char-variable

C947 No specifier shall appear more than once in a given inquire-spec-list.

C948 An inquire-spec-list shall contain one FILE= specifier or one file-unit-number , but not both.

C949 In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are omitted,
the file-unit-number shall be the first item in the inquire-spec-list.

C950 If an ID= specifier appears in an inquire-spec-list, a PENDING= specifier shall also appear.

C951 (R929) The label in the ERR= specifier shall be the statement label of a branch target statement that
appears in the same scoping unit as the INQUIRE statement.

2 If file-unit-number identifies an internal unit (9.6.4.8.3), an error condition occurs.

3 When a returned value of a specifier other than the NAME= specifier is of type character, the value returned is
in upper case.

4 If an error condition occurs during execution of an INQUIRE statement, all of the inquiry specifier variables
become undefined, except for variables in the IOSTAT= and IOMSG= specifiers (if any).

5 The IOSTAT=, ERR=, and IOMSG= specifiers are described in 9.11.

9.10.2.2 FILE= specifier in the INQUIRE statement

1 The value of the file-name-expr in the FILE= specifier specifies the name of the file being inquired about. The
named file need not exist or be connected to a unit. The value of the file-name-expr shall be of a form acceptable
to the processor as a file name. Any trailing blanks are ignored. The interpretation of case is processor dependent.

9.10.2.3 ACCESS= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the ACCESS= specifier is assigned the value SEQUENTIAL if the connection
is for sequential access, DIRECT if the connection is for direct access, or STREAM if the connection is for stream
access. If there is no connection, it is assigned the value UNDEFINED.

9.10.2.4 ACTION= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the ACTION= specifier is assigned the value READ if the connection is for
input only, WRITE if the connection is for output only, and READWRITE if the connection is for both input
and output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED.

9.10.2.5 ASYNCHRONOUS= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the ASYNCHRONOUS= specifier is assigned the value YES if the connection
allows asynchronous input/output; it is assigned the value NO if the connection does not allow asynchronous
input/output. If there is no connection, the scalar-default-char-variable is assigned the value UNDEFINED.

9.10.2.6 BLANK= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the BLANK= specifier is assigned the value ZERO or NULL, corresponding
to the blank interpretation mode in effect for a connection for formatted input/output. If there is no connection,
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or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the value
UNDEFINED.

9.10.2.7 DECIMAL= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the DECIMAL= specifier is assigned the value COMMA or POINT, corres-
ponding to the decimal edit mode in effect for a connection for formatted input/output. If there is no connection,
or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the value
UNDEFINED.

9.10.2.8 DELIM= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the DELIM= specifier is assigned the value APOSTROPHE, QUOTE, or
NONE, corresponding to the delimiter mode in effect for a connection for formatted input/output. If there is no
connection or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned the
value UNDEFINED.

9.10.2.9 DIRECT= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the DIRECT= specifier is assigned the value YES if DIRECT is included in
the set of allowed access methods for the file, NO if DIRECT is not included in the set of allowed access methods
for the file, and UNKNOWN if the processor is unable to determine whether DIRECT is included in the set of
allowed access methods for the file or if the unit identified by file-unit-number is not connected to a file.

9.10.2.10 ENCODING= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the ENCODING= specifier is assigned the value UTF-8 if the connection is
for formatted input/output with an encoding form of UTF-8, and is assigned the value UNDEFINED if the
connection is for unformatted input/output. If there is no connection, it is assigned the value UTF-8 if the
processor is able to determine that the encoding form of the file is UTF-8; if the processor is unable to determine
the encoding form of the file or if the unit identified by file-unit-number is not connected to a file, the variable is
assigned the value UNKNOWN.

NOTE 9.61
The value assigned may be something other than UTF-8, UNDEFINED, or UNKNOWN if the processor
supports other specific encoding forms (e.g. UTF-16BE).

9.10.2.11 EXIST= specifier in the INQUIRE statement

1 Execution of an INQUIRE by file statement causes the scalar-logical-variable in the EXIST= specifier to be
assigned the value true if there exists a file with the specified name; otherwise, false is assigned. Execution of an
INQUIRE by unit statement causes true to be assigned if the specified unit exists; otherwise, false is assigned.

9.10.2.12 FORM= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the FORM= specifier is assigned the value FORMATTED if the connection
is for formatted input/output, and is assigned the value UNFORMATTED if the connection is for unformatted
input/output. If there is no connection, it is assigned the value UNDEFINED.

9.10.2.13 FORMATTED= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the FORMATTED= specifier is assigned the value YES if FORMATTED is
included in the set of allowed forms for the file, NO if FORMATTED is not included in the set of allowed forms
for the file, and UNKNOWN if the processor is unable to determine whether FORMATTED is included in the
set of allowed forms for the file or if the unit identified by file-unit-number is not connected to a file.
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9.10.2.14 ID= specifier in the INQUIRE statement

1 The value of the expression specified in the ID= specifier shall be the identifier of a pending data transfer operation
for the specified unit. This specifier interacts with the PENDING= specifier (9.10.2.21).

9.10.2.15 NAME= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the NAME= specifier is assigned the value of the name of the file if the file
has a name; otherwise, it becomes undefined.

NOTE 9.62
If this specifier appears in an INQUIRE by file statement, its value is not necessarily the same as the name
given in the FILE= specifier. However, the value returned shall be suitable for use as the value of the
file-name-expr in the FILE= specifier in an OPEN statement.

The processor may return a file name qualified by a user identification, device, directory, or other relevant
information.

2 The case of the characters assigned to scalar-default-char-variable is processor dependent.

9.10.2.16 NAMED= specifier in the INQUIRE statement

1 The scalar-logical-variable in the NAMED= specifier is assigned the value true if the file has a name; otherwise,
it is assigned the value false.

9.10.2.17 NEXTREC= specifier in the INQUIRE statement

1 The scalar-int-variable in the NEXTREC= specifier is assigned the value n+ 1, where n is the record number of
the last record read from or written to the connection for direct access. If there is a connection but no records have
been read or written since the connection, the scalar-int-variable is assigned the value 1. If there is no connection,
the connection is not for direct access, or the position is indeterminate because of a previous error condition, the
scalar-int-variable becomes undefined. If there are pending data transfer operations for the specified unit, the
value assigned is computed as if all the pending data transfers had already completed.

9.10.2.18 NUMBER= specifier in the INQUIRE statement

1 Execution of an INQUIRE by file statement causes the scalar-int-variable in the NUMBER= specifier to be
assigned the value of the external unit number of the unit that is connected to the file. If there is no unit
connected to the file, the value −1 is assigned. Execution of an INQUIRE by unit statement causes the scalar-
int-variable to be assigned the value of file-unit-number .

9.10.2.19 OPENED= specifier in the INQUIRE statement

1 Execution of an INQUIRE by file statement causes the scalar-logical-variable in the OPENED= specifier to be
assigned the value true if the file specified is connected to a unit; otherwise, false is assigned. Execution of an
INQUIRE by unit statement causes the scalar-logical-variable to be assigned the value true if the specified unit
is connected to a file; otherwise, false is assigned.

9.10.2.20 PAD= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the PAD= specifier is assigned the value YES or NO, corresponding to the
pad mode in effect for a connection for formatted input/output. If there is no connection or if the connection is
not for formatted input/output, the scalar-default-char-variable is assigned the value UNDEFINED.
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9.10.2.21 PENDING= specifier in the INQUIRE statement

1 The PENDING= specifier is used to determine whether previously pending asynchronous data transfers are
complete. A data transfer operation is previously pending if it is pending at the beginning of execution of the
INQUIRE statement.

2 If an ID= specifier appears and the specified data transfer operation is complete, then the variable specified in
the PENDING= specifier is assigned the value false and the INQUIRE statement performs the wait operation
for the specified data transfer.

3 If the ID= specifier is omitted and all previously pending data transfer operations for the specified unit are
complete, then the variable specified in the PENDING= specifier is assigned the value false and the INQUIRE
statement performs wait operations for all previously pending data transfers for the specified unit.

4 In all other cases, the variable specified in the PENDING= specifier is assigned the value true and no wait
operations are performed; in this case the previously pending data transfers remain pending after the execution
of the INQUIRE statement.

NOTE 9.63
The processor has considerable flexibility in defining when it considers a transfer to be complete. Any of
the following approaches could be used:

• The INQUIRE statement could consider an asynchronous data transfer to be incomplete until after
the corresponding wait operation. In this case PENDING= would always return true unless there
were no previously pending data transfers for the unit.

• The INQUIRE statement could wait for all specified data transfers to complete and then always return
false for PENDING=.

• The INQUIRE statement could actually test the state of the specified data transfer operations.

9.10.2.22 POS= specifier in the INQUIRE statement

1 The scalar-int-variable in the POS= specifier is assigned the number of the file storage unit immediately following
the current position of a file connected for stream access. If the file is positioned at its terminal position, the
variable is assigned a value one greater than the number of the highest-numbered file storage unit in the file. If
there is no connection, the file is not connected for stream access, or if the position of the file is indeterminate
because of previous error conditions, the variable becomes undefined.

9.10.2.23 POSITION= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the POSITION= specifier is assigned the value REWIND if the connection
was opened for positioning at its initial point, APPEND if the connection was opened for positioning before its
endfile record or at its terminal point, and ASIS if the connection was opened without changing its position.
If there is no connection or if the file is connected for direct access, the scalar-default-char-variable is assigned
the value UNDEFINED. If the file has been repositioned since the connection, the scalar-default-char-variable
is assigned a processor-dependent value, which shall not be REWIND unless the file is positioned at its initial
point and shall not be APPEND unless the file is positioned so that its endfile record is the next record or at its
terminal point if it has no endfile record.

9.10.2.24 READ= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the READ= specifier is assigned the value YES if READ is included in the
set of allowed actions for the file, NO if READ is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether READ is included in the set of allowed actions for
the file or if the unit identified by file-unit-number is not connected to a file.
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9.10.2.25 READWRITE= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the READWRITE= specifier is assigned the value YES if READWRITE is
included in the set of allowed actions for the file, NO if READWRITE is not included in the set of allowed actions
for the file, and UNKNOWN if the processor is unable to determine whether READWRITE is included in the
set of allowed actions for the file or if the unit identified by file-unit-number is not connected to a file.

9.10.2.26 RECL= specifier in the INQUIRE statement

1 The scalar-int-variable in the RECL= specifier is assigned the value of the record length of a connection for direct
access, or the value of the maximum record length of a connection for sequential access. If the connection is for
formatted input/output, the length is the number of characters for all records that contain only characters of
default kind. If the connection is for unformatted input/output, the length is measured in file storage units. If
there is no connection, or if the connection is for stream access, the scalar-int-variable becomes undefined.

9.10.2.27 ROUND= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the ROUND= specifier is assigned the value UP, DOWN, ZERO, NEAREST,
COMPATIBLE, or PROCESSOR DEFINED, corresponding to the I/O rounding mode in effect for a connection
for formatted input/output. If there is no connection or if the connection is not for formatted input/output, the
scalar-default-char-variable is assigned the value UNDEFINED. The processor shall return the value PROCES-
SOR DEFINED only if the behavior of the I/O rounding mode is different from that of the UP, DOWN, ZERO,
NEAREST, and COMPATIBLE modes.

9.10.2.28 SEQUENTIAL= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the SEQUENTIAL= specifier is assigned the value YES if SEQUENTIAL is
included in the set of allowed access methods for the file, NO if SEQUENTIAL is not included in the set of allowed
access methods for the file, and UNKNOWN if the processor is unable to determine whether SEQUENTIAL is
included in the set of allowed access methods for the file or if the unit identified by file-unit-number is not
connected to a file.

9.10.2.29 SIGN= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the SIGN= specifier is assigned the value PLUS, SUPPRESS, or PROCES-
SOR DEFINED, corresponding to the sign mode in effect for a connection for formatted input/output. If there is
no connection, or if the connection is not for formatted input/output, the scalar-default-char-variable is assigned
the value UNDEFINED.

9.10.2.30 SIZE= specifier in the INQUIRE statement

1 The scalar-int-variable in the SIZE= specifier is assigned the size of the file in file storage units. If the file size
cannot be determined or if the unit identified by file-unit-number is not connected to a file, the variable is assigned
the value −1.

2 For a file that may be connected for stream access, the file size is the number of the highest-numbered file storage
unit in the file.

3 For a file that may be connected for sequential or direct access, the file size may be different from the number of
storage units implied by the data in the records; the exact relationship is processor dependent.

9.10.2.31 STREAM= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the STREAM= specifier is assigned the value YES if STREAM is included in
the set of allowed access methods for the file, NO if STREAM is not included in the set of allowed access methods
for the file, and UNKNOWN if the processor is unable to determine whether STREAM is included in the set of
allowed access methods for the file or if the unit identified by file-unit-number is not connected to a file.
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9.10.2.32 UNFORMATTED= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the UNFORMATTED= specifier is assigned the value YES if UNFORMAT-
TED is included in the set of allowed forms for the file, NO if UNFORMATTED is not included in the set of
allowed forms for the file, and UNKNOWN if the processor is unable to determine whether UNFORMATTED is
included in the set of allowed forms for the file or if the unit identified by file-unit-number is not connected to a
file.

9.10.2.33 WRITE= specifier in the INQUIRE statement

1 The scalar-default-char-variable in the WRITE= specifier is assigned the value YES if WRITE is included in the
set of allowed actions for the file, NO if WRITE is not included in the set of allowed actions for the file, and
UNKNOWN if the processor is unable to determine whether WRITE is included in the set of allowed actions for
the file or if the unit identified by file-unit-number is not connected to a file.

9.10.3 Inquire by output list

1 The scalar-int-variable in the IOLENGTH= specifier is assigned the processor-dependent number of file storage
units that would be required to store the data of the output list in an unformatted file. The value shall be suitable
as a RECL= specifier in an OPEN statement that connects a file for unformatted direct access when there are
input/output statements with the same input/output list.

2 The output list in an INQUIRE statement shall not contain any derived-type list items that require a defined
input/output procedure as described in subclause 9.6.3. If a derived-type list item appears in the output list, the
value returned for the IOLENGTH= specifier assumes that no defined input/output procedure will be invoked.

9.11 Error, end-of-record, and end-of-file conditions

9.11.1 General

1 The set of input/output error conditions is processor dependent.

2 An end-of-record condition occurs when a nonadvancing input statement attempts to transfer data from a position
beyond the end of the current record, unless the file is a stream file and the current record is at the end of the
file (an end-of-file condition occurs instead).

3 An end-of-file condition occurs when

• an endfile record is encountered during the reading of a file connected for sequential access,
• an attempt is made to read a record beyond the end of an internal file, or
• an attempt is made to read beyond the end of a stream file.

4 An end-of-file condition may occur at the beginning of execution of an input statement. An end-of-file condition
also may occur during execution of a formatted input statement when more than one record is required by the
interaction of the input list and the format. An end-of-file condition also may occur during execution of a stream
input statement.

9.11.2 Error conditions and the ERR= specifier

1 If an error condition occurs during execution of an input/output statement, the position of the file becomes
indeterminate.

2 If an error condition occurs during execution of an input/output statement that contains neither an ERR= nor
IOSTAT= specifier, error termination is initiated. If an error condition occurs during execution of an input/output
statement that contains either an ERR= specifier or an IOSTAT= specifier then:
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(1) processing of the input/output list, if any, terminates;
(2) if the statement is a data transfer statement or the error occurs during a wait operation, all do-

variables in the statement that initiated the transfer become undefined;
(3) if an IOSTAT= specifier appears, the scalar-int-variable in the IOSTAT= specifier becomes defined

as specified in 9.11.5;
(4) if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 9.11.6;
(5) if the statement is a READ statement and it contains a SIZE= specifier, the scalar-int-variable in

the SIZE= specifier becomes defined as specified in 9.6.2.15;
(6) if the statement is a READ statement or the error condition occurs in a wait operation for a transfer

initiated by a READ statement, all input items or namelist group objects in the statement that
initiated the transfer become undefined;

(7) if an ERR= specifier appears, a branch to the statement labeled by the label in the ERR= specifier
occurs.

9.11.3 End-of-file condition and the END= specifier

1 If an end-of-file condition occurs during execution of an input/output statement that contains neither an END=
specifier nor an IOSTAT= specifier, error termination is initiated. If an end-of-file condition occurs during
execution of an input/output statement that contains either an END= specifier or an IOSTAT= specifier, and
an error condition does not occur then:

(1) processing of the input list, if any, terminates;
(2) if the statement is a data transfer statement or the end-of-file condition occurs during a wait operation,

all do-variables in the statement that initiated the transfer become undefined;
(3) if the statement is a READ statement or the end-of-file condition occurs during a wait operation

for a transfer initiated by a READ statement, all input list items or namelist group objects in the
statement that initiated the transfer become undefined;

(4) if the file specified in the input statement is an external record file, it is positioned after the endfile
record;

(5) if an IOSTAT= specifier appears, the scalar-int-variable in the IOSTAT= specifier becomes defined
as specified in 9.11.5;

(6) if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 9.11.6;
(7) if an END= specifier appears, a branch to the statement labeled by the label in the END= specifier

occurs.

9.11.4 End-of-record condition and the EOR= specifier

1 If an end-of-record condition occurs during execution of an input/output statement that contains neither an
EOR= specifier nor an IOSTAT= specifier, error termination is initiated. If an end-of-record condition occurs
during execution of an input/output statement that contains either an EOR= specifier or an IOSTAT= specifier,
and an error condition does not occur then:

(1) if the pad mode has the value

(a) YES, the record is padded with blanks to satisfy the effective item (9.6.4.5.3) and corresponding
data edit descriptors that require more characters than the record contains,

(b) NO, the input list item becomes undefined;

(2) processing of the input list, if any, terminates;
(3) if the statement is a data transfer statement or the end-of-record condition occurs during a wait

operation, all do-variables in the statement that initiated the transfer become undefined;
(4) the file specified in the input statement is positioned after the current record;
(5) if an IOSTAT= specifier appears, the scalar-int-variable in the IOSTAT= specifier becomes defined

as specified in 9.11.5;
(6) if an IOMSG= specifier appears, the iomsg-variable becomes defined as specified in 9.11.6;
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(7) if a SIZE= specifier appears, the scalar-int-variable in the SIZE= specifier becomes defined as spe-
cified in (9.6.2.15);

(8) if an EOR= specifier appears, a branch to the statement labeled by the label in the EOR= specifier
occurs.

9.11.5 IOSTAT= specifier

1 Execution of an input/output statement containing the IOSTAT= specifier causes the scalar-int-variable in the
IOSTAT= specifier to become defined with

• a zero value if neither an error condition, an end-of-file condition, nor an end-of-record condition occurs,
• the processor-dependent positive integer value of the constant IOSTAT INQUIRE INTERNAL UNIT from

the intrinsic module ISO FORTRAN ENV(13.8.2) if a unit number in an INQUIRE statement identifies an
internal file,
• a processor-dependent positive integer value different from IOSTAT INQUIRE INTERNAL UNIT if any

other error condition occurs,
• the processor-dependent negative integer value of the constant IOSTAT END (13.8.2.13) if an end-of-file

condition occurs and no error condition occurs, or
• the processor-dependent negative integer value of the constant IOSTAT EOR (13.8.2.14) if an end-of-record

condition occurs and no error condition or end-of-file condition occurs.

NOTE 9.64
An end-of-file condition may occur only for sequential or stream input and an end-of-record condition may
occur only for nonadvancing input.

For example,

READ (FMT = "(E8.3)", UNIT = 3, IOSTAT = IOSS) X
IF (IOSS < 0) THEN

! Perform end-of-file processing on the file connected to unit 3.
CALL END_PROCESSING

ELSE IF (IOSS > 0) THEN
! Perform error processing
CALL ERROR_PROCESSING

END IF

9.11.6 IOMSG= specifier

1 If an error, end-of-file, or end-of-record condition occurs during execution of an input/output statement, the
processor shall assign an explanatory message to iomsg-variable. If no such condition occurs, the processor shall
not change the value of iomsg-variable.

9.12 Restrictions on input/output statements

1 If a unit, or a file connected to a unit, does not have all of the properties required for the execution of certain
input/output statements, those statements shall not refer to the unit.

2 An input/output statement that is executed while another input/output statement is being executed is a recursive
input/output statement. A recursive input/output statement shall not identify an external unit that is identified
by another input/output statement being executed except that a child data transfer statement may identify its
parent data transfer statement external unit.

3 An input/output statement shall not cause the value of any established format specification to be modified.
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4 A recursive input/output statement shall not modify the value of any internal unit except that a recursive WRITE
statement may modify the internal unit identified by that recursive WRITE statement.

5 The value of a specifier in an input/output statement shall not depend on any input-item, io-implied-do do-
variable, or on the definition or evaluation of any other specifier in the io-control-spec-list or inquire-spec-list in
that statement.

6 The value of any subscript or substring bound of a variable that appears in a specifier in an input/output
statement shall not depend on any input-item, io-implied-do do-variable, or on the definition or evaluation of any
other specifier in the io-control-spec-list or inquire-spec-list in that statement.

7 In a data transfer statement, the variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier, if any, shall
not be associated with any entity in the data transfer input/output list (9.6.3) or namelist-group-object-list, nor
with a do-variable of an io-implied-do in the data transfer input/output list.

8 In a data transfer statement, if a variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier is an array
element reference, its subscript values shall not be affected by the data transfer, the io-implied-do processing, or
the definition or evaluation of any other specifier in the io-control-spec-list.

9 A variable that may become defined or undefined as a result of its use in a specifier in an INQUIRE statement,
or any associated entity, shall not appear in another specifier in the same INQUIRE statement.

NOTE 9.65
Restrictions on the evaluation of expressions (7.1.4) prohibit certain side effects.
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10 Input/output editing

10.1 Format specifications

1 A format used in conjunction with an input/output statement provides information that directs the editing
between the internal representation of data and the characters of a sequence of formatted records.

2 A format (9.6.2.2) in an input/output statement may refer to a FORMAT statement or to a character expression
that contains a format specification. A format specification provides explicit editing information. The format
alternatively may be an asterisk (*), which indicates list-directed formatting (10.10). Namelist formatting (10.11)
may be indicated by specifying a namelist-group-name instead of a format .

10.2 Explicit format specification methods

10.2.1 FORMAT statement

R1001 format-stmt is FORMAT format-specification

R1002 format-specification is ( [ format-items ] )
or ( [ format-items, ] unlimited-format-item )

C1001 (R1001) The format-stmt shall be labeled.

1 Blank characters may precede the initial left parenthesis of the format specification. Additional blank characters
may appear at any point within the format specification, with no effect on the interpretation of the format
specification, except within a character string edit descriptor (10.9).

NOTE 10.1
Examples of FORMAT statements are:

5 FORMAT (1PE12.4, I10)
9 FORMAT (I12, /, ’ Dates: ’, 2 (2I3, I5))

10.2.2 Character format specification

1 A character expression used as a format in a formatted input/output statement shall evaluate to a character
string whose leading part is a valid format specification.

NOTE 10.2
The format specification begins with a left parenthesis and ends with a right parenthesis.

2 All character positions up to and including the final right parenthesis of the format specification shall be defined
at the time the input/output statement is executed, and shall not become redefined or undefined during the
execution of the statement. Character positions, if any, following the right parenthesis that ends the format
specification need not be defined and may contain any character data with no effect on the interpretation of the
format specification.

3 If the format is a character array, it is treated as if all of the elements of the array were specified in array element
order and were concatenated. However, if a format is a character array element, the format specification shall be
entirely within that array element.
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NOTE 10.3
If a character constant is used as a format in an input/output statement, care shall be taken that the value
of the character constant is a valid format specification. In particular, if a format specification delimited
by apostrophes contains a character constant edit descriptor delimited with apostrophes, two apostrophes
shall be written to delimit the edit descriptor and four apostrophes shall be written for each apostrophe
that occurs within the edit descriptor. For example, the text:

2 ISN’T 3

may be written by various combinations of output statements and format specifications:

WRITE (6, 100) 2, 3
100 FORMAT (1X, I1, 1X, ’ISN’’T’, 1X, I1)

WRITE (6, ’(1X, I1, 1X, ’’ISN’’’’T’’, 1X, I1)’) 2, 3
WRITE (6, ’(A)’) ’ 2 ISN’’T 3’

Doubling of internal apostrophes usually can be avoided by using quotation marks to delimit the format
specification and doubling of internal quotation marks usually can be avoided by using apostrophes as
delimiters.

10.3 Form of a format item list

10.3.1 Syntax

R1003 format-items is format-item [ [ , ] format-item ] ...

R1004 format-item is [ r ] data-edit-desc
or control-edit-desc
or char-string-edit-desc
or [ r ] ( format-items )

R1005 unlimited-format-item is * ( format-items )

R1006 r is int-literal-constant

C1002 (R1003) The optional comma shall not be omitted except

• between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit descriptor
(10.8.5), possibly preceded by a repeat specification,

• before a slash edit descriptor when the optional repeat specification does not appear (10.8.2),

• after a slash edit descriptor, or

• before or after a colon edit descriptor (10.8.3)

C1003 (R1006) r shall be positive.

C1004 (R1006) A kind parameter shall not be specified for r .

1 The integer literal constant r is called a repeat specification.

10.3.2 Edit descriptors

1 An edit descriptor is a data edit descriptor (data-edit-desc), control edit descriptor (control-edit-desc), or character
string edit descriptor (char-string-edit-desc).

R1007 data-edit-desc is I w [ . m ]
or B w [ . m ]
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or O w [ . m ]
or Z w [ . m ]
or F w . d
or E w . d [ E e ]
or EN w . d [ E e ]
or ES w . d [ E e ]
or G w [ . d [ E e ] ]
or L w
or A [ w ]
or D w . d
or DT [ char-literal-constant ] [ ( v-list ) ]

R1008 w is int-literal-constant

R1009 m is int-literal-constant

R1010 d is int-literal-constant

R1011 e is int-literal-constant

R1012 v is signed-int-literal-constant

C1005 (R1011) e shall be positive.

C1006 (R1008) w shall be zero or positive for the I, B, O, Z, F, and G edit descriptors. w shall be positive for
all other edit descriptors.

C1007 (R1007) For the G edit descriptor, d shall be specified if w is not zero.

C1008 (R1007) For the G edit descriptor, e shall not be specified if w is zero.

C1009 (R1007) A kind parameter shall not be specified for the char-literal-constant in the DT edit descriptor,
or for w , m, d , e, and v .

2 I, B, O, Z, F, E, EN, ES, G, L, A, D, and DT indicate the manner of editing.

R1013 control-edit-desc is position-edit-desc
or [ r ] /
or :
or sign-edit-desc
or k P
or blank-interp-edit-desc
or round-edit-desc
or decimal-edit-desc

R1014 k is signed-int-literal-constant

C1010 (R1014) A kind parameter shall not be specified for k .

3 In k P, k is called the scale factor.

R1015 position-edit-desc is T n
or TL n
or TR n
or n X

R1016 n is int-literal-constant

C1011 (R1016) n shall be positive.
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C1012 (R1016) A kind parameter shall not be specified for n.

R1017 sign-edit-desc is SS
or SP
or S

R1018 blank-interp-edit-desc is BN
or BZ

R1019 round-edit-desc is RU
or RD
or RZ
or RN
or RC
or RP

R1020 decimal-edit-desc is DC
or DP

4 T, TL, TR, X, slash, colon, SS, SP, S, P, BN, BZ, RU, RD, RZ, RN, RC, RP, DC, and DP indicate the manner
of editing.

R1021 char-string-edit-desc is char-literal-constant

C1013 (R1021) A kind parameter shall not be specified for the char-literal-constant .

5 Each rep-char in a character string edit descriptor shall be one of the characters capable of representation by the
processor.

6 The character string edit descriptors provide constant data to be output, and are not valid for input.

7 The edit descriptors are without regard to case except for the characters in the character constants.

10.3.3 Fields

1 A field is a part of a record that is read on input or written on output when format control encounters a data
edit descriptor or a character string edit descriptor. The field width is the size in characters of the field.

10.4 Interaction between input/output list and format

1 The start of formatted data transfer using a format specification initiates format control (9.6.4.5.3). Each action
of format control depends on information jointly provided by the next edit descriptor in the format specification
and the next effective item in the input/output list, if one exists.

2 If an input/output list specifies at least one effective item, at least one data edit descriptor shall exist in the
format specification.

NOTE 10.4
An empty format specification of the form ( ) may be used only if the input/output list has no effective
item (9.6.4.5). A zero length character item is an effective item, but a zero sized array and an implied DO
list with an iteration count of zero is not.

3 A format specification is interpreted from left to right. The exceptions are format items preceded by a repeat
specification r , and format reversion (described below).

4 A format item preceded by a repeat specification is processed as a list of r items, each identical to the format
item but without the repeat specification and separated by commas.
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NOTE 10.5
An omitted repeat specification is treated in the same way as a repeat specification whose value is one.

5 To each data edit descriptor interpreted in a format specification, there corresponds one effective item specified by
the input/output list (9.6.3), except that an input/output list item of type complex requires the interpretation of
two F, E, EN, ES, D, or G edit descriptors. For each control edit descriptor or character edit descriptor, there is
no corresponding item specified by the input/output list, and format control communicates information directly
with the record.

6 Whenever format control encounters a data edit descriptor in a format specification, it determines whether
there is a corresponding effective item specified by the input/output list. If there is such an item, it transmits
appropriately edited information between the item and the record, and then format control proceeds. If there is
no such item, format control terminates.

7 If format control encounters a colon edit descriptor in a format specification and another effective item is not
specified, format control terminates.

8 If format control encounters the rightmost parenthesis of a complete format specification and another effective
item is not specified, format control terminates. However, if another effective item is specified, format control
then reverts to the beginning of the format item terminated by the last preceding right parenthesis that is not
part of a DT edit descriptor. If there is no such preceding right parenthesis, format control reverts to the first
left parenthesis of the format specification. If any reversion occurs, the reused portion of the format specification
shall contain at least one data edit descriptor. If format control reverts to a parenthesis that is preceded by a
repeat specification, the repeat specification is reused. Reversion of format control, of itself, has no effect on the
changeable modes (9.5.2). If format control reverts to a parenthesis that is not the beginning of an unlimited-
format-item, the file is positioned in a manner identical to the way it is positioned when a slash edit descriptor
is processed (10.8.2).

NOTE 10.6
Example: The format specification:

10 FORMAT (1X, 2(F10.3, I5))

with an output list of

WRITE (10,10) 10.1, 3, 4.7, 1, 12.4, 5, 5.2, 6

produces the same output as the format specification:

10 FORMAT (1X, F10.3, I5, F10.3, I5/F10.3, I5, F10.3, I5)

NOTE 10.7
The effect of an unlimited-format-item is as if its enclosed list were preceded by a very large repeat count.
There is no file positioning implied by unlimited-format-item reversion. This may be used to write what is
commonly called a comma separated value record.

For example,

WRITE( 10, ’( "IARRAY =", *( I0, :, ","))’) IARRAY

produces a single record with a header and a comma separated list of integer values.
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10.5 Positioning by format control

1 After each data edit descriptor or character string edit descriptor is processed, the file is positioned after the last
character read or written in the current record.

2 After each T, TL, TR, or X edit descriptor is processed, the file is positioned as described in 10.8.1. After each
slash edit descriptor is processed, the file is positioned as described in 10.8.2.

3 During formatted stream output, processing of an A edit descriptor can cause file positioning to occur (10.7.4).

4 If format control reverts as described in 10.4, the file is positioned in a manner identical to the way it is positioned
when a slash edit descriptor is processed (10.8.2).

5 During a read operation, any unprocessed characters of the current record are skipped whenever the next record
is read.

10.6 Decimal symbol

1 The decimal symbol is the character that separates the whole and fractional parts in the decimal representation
of a real number in an internal or external file. When the decimal edit mode is POINT, the decimal symbol is a
decimal point. When the decimal edit mode is COMMA, the decimal symbol is a comma.

2 If the decimal edit mode is COMMA during list-directed input/output, the character used as a value separator
is a semicolon in place of a comma.

10.7 Data edit descriptors

10.7.1 General

1 Data edit descriptors cause the conversion of data to or from its internal representation; during formatted stream
output, the A data edit descriptor may also cause file positioning. On input, the specified variable becomes
defined unless an error condition, an end-of-file condition, or an end-of-record condition occurs. On output, the
specified expression is evaluated.

2 During input from a Unicode file,

• characters in the record that correspond to an ASCII character variable shall have a position in the ISO
10646 character collating sequence of 127 or less, and
• characters in the record that correspond to a default character variable shall be representable as default

characters.

3 During input from a non-Unicode file,

• characters in the record that correspond to a character variable shall have the kind of the character variable,
and
• characters in the record that correspond to a numericor logical variable shall be default characters.

4 During output to a Unicode file, all characters transmitted to the record are of ISO 10646 character kind. If a
character input/output list item or character string edit descriptor contains a character that is not representable
as an ISO 10646 character, the result is processor dependent.

5 During output to a non-Unicode file, characters transmitted to the record as a result of processing a character
string edit descriptor or as a result of evaluating a numeric, logical, or default character data entity, are of default
kind.
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10.7.2 Numeric editing

10.7.2.1 General rules

1 The I, B, O, Z, F, E, EN, ES, D, and G edit descriptors may be used to specify the input/output of integer, real,
and complex data. The following general rules apply.

(1) On input, leading blanks are not significant. When the input field is not an IEEE exceptional
specification (10.7.2.3.2), the interpretation of blanks, other than leading blanks, is determined by
the blank interpretation mode (10.8.6). Plus signs may be omitted. A field containing only blanks
is considered to be zero.

(2) On input, with F, E, EN, ES, D, and G editing, a decimal symbol appearing in the input field
overrides the portion of an edit descriptor that specifies the decimal symbol location. The input field
may have more digits than the processor uses to approximate the value of the datum.

(3) On output with I, F, E, EN, ES, D, and G editing, the representation of a positive or zero internal
value in the field may be prefixed with a plus sign, as controlled by the S, SP, and SS edit descriptors
or the processor. The representation of a negative internal value in the field shall be prefixed with a
minus sign.

(4) On output, the representation is right justified in the field. If the number of characters produced by
the editing is smaller than the field width, leading blanks are inserted in the field.

(5) On output, if an exponent exceeds its specified or implied width using the E, EN, ES, D, or G edit
descriptor, or the number of characters produced exceeds the field width, the processor shall fill the
entire field of width w with asterisks. However, the processor shall not produce asterisks if the field
width is not exceeded when optional characters are omitted.

NOTE 10.8
When the sign mode is PLUS, a plus sign is not optional.

(6) On output, with I, B, O, Z, F, and G editing, the specified value of the field width w may be zero.
In such cases, the processor selects the smallest positive actual field width that does not result in a
field filled with asterisks. The specified value of w shall not be zero on input.

(7) On output of a real zero value, the digits in the exponent field shall all be zero.

10.7.2.2 Integer editing

1 The Iw and Iw .m edit descriptors indicate that the field to be edited occupies w positions, except when w is zero.
When w is zero, the processor selects the field width. On input, w shall not be zero. The specified input/output
list item shall be of type integer. The G, B, O, and Z edit descriptor also may be used to edit integer data
(10.7.5.2.1, 10.7.2.4).

2 On input, m has no effect.

3 In the input field for the I edit descriptor, the character string shall be a signed-digit-string (R409), except for
the interpretation of blanks.

4 The output field for the Iw edit descriptor consists of zero or more leading blanks followed by a minus sign if the
internal value is negative, or an optional plus sign otherwise, followed by the magnitude of the internal value as
a digit-string without leading zeros.

NOTE 10.9
A digit-string always consists of at least one digit.

5 The output field for the Iw .m edit descriptor is the same as for the Iw edit descriptor, except that the digit-string
consists of at least m digits. If necessary, sufficient leading zeros are included to achieve the minimum of m digits.
The value of m shall not exceed the value of w , except when w is zero. If m is zero and the internal value is
zero, the output field consists of only blank characters, regardless of the sign control in effect. When m and w
are both zero, and the internal value is zero, one blank character is produced.
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10.7.2.3 Real and complex editing

10.7.2.3.1 General

1 The F, E, EN, ES, and D edit descriptors specify the editing of real and complex data. An input/output list
item corresponding to an F, E, EN, ES, or D edit descriptor shall be real or complex. The G, B, O, and Z edit
descriptors also may be used to edit real and complex data (10.7.5.2.2, 10.7.2.4).

10.7.2.3.2 F editing

1 The Fw .d edit descriptor indicates that the field occupies w positions, the fractional part of which consists of d
digits. When w is zero, the processor selects the field width. On input, w shall not be zero.

2 A lower-case letter is equivalent to the corresponding upper-case letter in an IEEE exceptional specification or
the exponent in a numeric input field.

3 The input field is either an IEEE exceptional specification or consists of an optional sign, followed by a string of
one or more digits optionally containing a decimal symbol, including any blanks interpreted as zeros. The d has
no effect on input if the input field contains a decimal symbol. If the decimal symbol is omitted, the rightmost
d digits of the string, with leading zeros assumed if necessary, are interpreted as the fractional part of the value
represented. The string of digits may contain more digits than a processor uses to approximate the value. The
basic form may be followed by an exponent of one of the following forms:

• a sign followed by a digit-string ;
• the letter E followed by zero or more blanks, followed by a signed-digit-string ;
• the letter D followed by zero or more blanks, followed by a signed-digit-string .

4 An exponent containing a D is processed identically to an exponent containing an E.

NOTE 10.10
If the input field does not contain an exponent, the effect is as if the basic form were followed by an exponent
with a value of −k, where k is the established scale factor (10.8.5).

5 An input field that is an IEEE exceptional specification consists of optional blanks, followed by either

• an optional sign, followed by the string ’INF’ or the string ’INFINITY’, or
• an optional sign, followed by the string ’NAN’, optionally followed by zero or more alphanumeric characters

enclosed in parentheses,

optionally followed by blanks.

6 The value specified by ’INF’ or ’INFINITY’ is an IEEE infinity; this form shall not be used if the processor does
not support IEEE infinities for the input variable. The value specified by ’NAN’ is an IEEE NaN; this form shall
not be used if the processor does not support IEEE NaNs for the input variable. The NaN value is a quiet NaN if
the only nonblank characters in the field are ’NAN’ or ’NAN()’; otherwise, the NaN value is processor dependent.
The interpretation of a sign in a NaN input field is processor dependent.

7 For an internal value that is an IEEE infinity, the output field consists of blanks, if necessary, followed by a
minus sign for negative infinity or an optional plus sign otherwise, followed by the letters ’Inf’ or ’Infinity’, right
justified within the field. If w is less than 3, the field is filled with asterisks; otherwise, if w is less than 8, ’Inf’ is
produced.

8 For an internal value that is an IEEE NaN, the output field consists of blanks, if necessary, followed by the
letters ’NaN’ and optionally followed by one to w−5 alphanumeric processor-dependent characters enclosed in
parentheses, right justified within the field. If w is less than 3, the field is filled with asterisks.
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NOTE 10.11
The processor-dependent characters following ’NaN’ may convey additional information about that parti-
cular NaN.

9 For an internal value that is neither an IEEE infinity nor a NaN, the output field consists of blanks, if necessary,
followed by a minus sign if the internal value is negative, or an optional plus sign otherwise, followed by a string
of digits that contains a decimal symbol and represents the magnitude of the internal value, as modified by the
established scale factor and rounded (10.7.2.3.7) to d fractional digits. Leading zeros are not permitted except
for an optional zero immediately to the left of the decimal symbol if the magnitude of the value in the output
field is less than one. The optional zero shall appear if there would otherwise be no digits in the output field.

10.7.2.3.3 E and D editing

1 The Ew .d , Dw .d , and Ew .d Ee edit descriptors indicate that the external field occupies w positions, the fractional
part of which consists of d digits, unless a scale factor greater than one is in effect, and the exponent part consists
of e digits. The e has no effect on input.

2 The form and interpretation of the input field is the same as for Fw .d editing (10.7.2.3.2).

3 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw .d .

4 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field for a scale factor
of zero is

[ ± ] [0].x1x2 . . . xdexp
where:

• ± signifies a plus sign or a minus sign;
• . signifies a decimal symbol (10.6);
• x1x2 . . . xd are the d most significant digits of the internal value after rounding (10.7.2.3.7);
• exp is a decimal exponent having one of the forms specified in table 10.1.

Table 10.1: E and D exponent forms
Edit Absolute Value Form of

Descriptor of Exponent Exponent1

Ew .d |exp| ≤ 99 E±z1z2 or ±0z1z2
99 < |exp| ≤ 999 ±z1z2z3

Ew .d Ee |exp| ≤ 10e − 1 E±z1z2 . . . ze
Dw .d |exp| ≤ 99 D±z1z2 or E±z1z2

or ±0z1z2
99 < |exp| ≤ 999 ±z1z2z3

(1) where each z is a digit.

5 The sign in the exponent is produced. A plus sign is produced if the exponent value is zero.

6 The scale factor k controls the decimal normalization (10.3.2, 10.8.5). If −d < k ≤ 0, the output field contains
exactly |k| leading zeros and d− |k| significant digits after the decimal symbol. If 0 < k < d+ 2, the output field
contains exactly k significant digits to the left of the decimal symbol and d− k + 1 significant digits to the right
of the decimal symbol. Other values of k are not permitted.

10.7.2.3.4 EN editing

1 The EN edit descriptor produces an output field in the form of a real number in engineering notation such that
the decimal exponent is divisible by three and the absolute value of the significand (R414) is greater than or
equal to 1 and less than 1000, except when the output value is zero. The scale factor has no effect on output.
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2 The forms of the edit descriptor are ENw .d and ENw .d Ee indicating that the external field occupies w positions,
the fractional part of which consists of d digits and the exponent part consists of e digits.

3 The form and interpretation of the input field is the same as for Fw .d editing (10.7.2.3.2).

4 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw .d .

5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is
[ ± ] yyy . x1x2 . . . xdexp

where:

• ± signifies a plus sign or a minus sign;
• yyy are the 1 to 3 decimal digits representative of the most significant digits of the internal value after

rounding (10.7.2.3.7);
• yyy is an integer such that 1 ≤ yyy < 1000 or, if the output value is zero, yyy = 0;
• . signifies a decimal symbol (10.6);
• x1x2 . . . xd are the d next most significant digits of the internal value after rounding;
• exp is a decimal exponent, divisible by three, having one of the forms specified in table 10.2.

Table 10.2: EN exponent forms
Edit Absolute Value Form of

Descriptor of Exponent Exponent1

ENw .d |exp| ≤ 99 E±z1z2 or ±0z1z2
99 < |exp| ≤ 999 ±z1z2z3

ENw .d Ee |exp| ≤ 10e − 1 E±z1z2 . . . ze
(1) where each z is a digit.

6 The sign in the exponent is produced. A plus sign is produced if the exponent value is zero.

NOTE 10.12
Examples:

Internal Value Output field Using SS, EN12.3
6.421 6.421E+00
-.5 -500.000E-03
.00217 2.170E-03

4721.3 4.721E+03

10.7.2.3.5 ES editing

1 The ES edit descriptor produces an output field in the form of a real number in scientific notation such that the
absolute value of the significand (R414) is greater than or equal to 1 and less than 10, except when the output
value is zero. The scale factor has no effect on output.

2 The forms of the edit descriptor are ESw .d and ESw .d Ee indicating that the external field occupies w positions,
the fractional part of which consists of d digits and the exponent part consists of e digits.

3 The form and interpretation of the input field is the same as for Fw .d editing (10.7.2.3.2).

4 For an internal value that is an IEEE infinity or NaN, the form of the output field is the same as for Fw .d .

5 For an internal value that is neither an IEEE infinity nor a NaN, the form of the output field is
[ ± ] y . x1x2 . . . xdexp

where:

• ± signifies a plus sign or a minus sign;
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• y is a decimal digit representative of the most significant digit of the internal value after rounding (10.7.2.3.7);
• . signifies a decimal symbol (10.6);
• x1x2 . . . xd are the d next most significant digits of the internal value after rounding;
• exp is a decimal exponent having one of the forms specified in table 10.3.

Table 10.3: ES exponent forms
Edit Absolute Value Form of

Descriptor of Exponent Exponent1

ESw .d |exp| ≤ 99 E±z1z2 or ±0z1z2
99 < |exp| ≤ 999 ±z1z2z3

ESw .d Ee |exp| ≤ 10e − 1 E±z1z2 . . . ze
(1) where each z is a digit.

6 The sign in the exponent is produced. A plus sign is produced if the exponent value is zero.

NOTE 10.13
Examples:

Internal Value Output field Using SS, ES12.3
6.421 6.421E+00
-.5 -5.000E-01
.00217 2.170E-03

4721.3 4.721E+03

10.7.2.3.6 Complex editing

1 A complex datum consists of a pair of separate real data. The editing of a scalar datum of complex type is
specified by two edit descriptors each of which specifies the editing of real data. The first of the edit descriptors
specifies the real part; the second specifies the imaginary part. The two edit descriptors may be different. Control
and character string edit descriptors may be processed between the edit descriptor for the real part and the edit
descriptor for the imaginary part.

10.7.2.3.7 I/O rounding mode

1 The I/O rounding mode can be specified by an OPEN statement (9.5.2), a data transfer input/output statement
(9.6.2.13), or an edit descriptor (10.8.7).

2 In what follows, the term “decimal value” means the exact decimal number as given by the character string, while
the term “internal value” means the number actually stored in the processor. For example, in dealing with the
decimal constant 0.1, the decimal value is the mathematical quantity 1/10, which has no exact representation
in binary form. Formatted output of real data involves conversion from an internal value to a decimal value;
formatted input involves conversion from a decimal value to an internal value.

3 When the I/O rounding mode is UP, the value resulting from conversion shall be the smallest representable value
that is greater than or equal to the original value. When the I/O rounding mode is DOWN, the value resulting
from conversion shall be the largest representable value that is less than or equal to the original value. When the
I/O rounding mode is ZERO, the value resulting from conversion shall be the value closest to the original value
and no greater in magnitude than the original value. When the I/O rounding mode is NEAREST, the value
resulting from conversion shall be the closer of the two nearest representable values if one is closer than the other.
If the two nearest representable values are equidistant from the original value, it is processor dependent which
one of them is chosen. When the I/O rounding mode is COMPATIBLE, the value resulting from conversion shall
be the closer of the two nearest representable values or the value away from zero if halfway between them. When
the I/O rounding mode is PROCESSOR DEFINED, rounding during conversion shall be a processor-dependent
default mode, which may correspond to one of the other modes.
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4 On processors that support IEEE rounding on conversions (14.4), NEAREST shall correspond to round to nearest,
as specified in IEC 60559:1989.

NOTE 10.14
On processors that support IEEE rounding on conversions, the I/O rounding modes COMPATIBLE and
NEAREST will produce the same results except when the datum is halfway between the two representable
values. In that case, NEAREST will pick the even value, but COMPATIBLE will pick the value away from
zero. The I/O rounding modes UP, DOWN, and ZERO have the same effect as those specified in IEC
60559:1989 for round toward +∞, round toward −∞, and round toward 0, respectively.

10.7.2.4 B, O, and Z editing

1 The Bw , Bw .m, Ow , Ow .m, Zw , and Zw .m edit descriptors indicate that the field to be edited occupies w
positions, except when w is zero. When w is zero, the processor selects the field width. On input, w shall not be
zero. The corresponding input/output list item shall be of type integer, real, or complex.

2 On input, m has no effect.

3 In the input field for the B, O, and Z edit descriptors the character string shall consist of binary, octal, or
hexadecimal digits (as in R464, R465, R466) in the respective input field. The lower-case hexadecimal digits a
through f in a hexadecimal input field are equivalent to the corresponding upper-case hexadecimal digits.

4 The value is INT (X) if the input list item is of type integer and REAL (X) if the input list item is of type real
or complex, where X is a boz-literal-constant that specifies the same bit sequence as the digits of the input field.

5 The output field for the Bw , Ow , and Zw descriptors consists of zero or more leading blanks followed by the
internal value in a form identical to the digits of a binary, octal, or hexadecimal constant, respectively, that
specifies the same bit sequence but without leading zero bits.

NOTE 10.15
A binary, octal, or hexadecimal constant always consists of at least one digit or hexadecimal digit.

R1022 hex-digit-string is hex-digit [ hex-digit ] ...

6 The output field for the Bw .m, Ow .m, and Zw .m edit descriptor is the same as for the Bw , Ow , and Zw edit
descriptor, except that the digit-string or hex-digit-string consists of at least m digits. If necessary, sufficient
leading zeros are included to achieve the minimum of m digits. The value of m shall not exceed the value of w ,
except when w is zero. If m is zero and the internal value consists of all zero bits, the output field consists of
only blank characters. When m and w are both zero, and the internal value consists of all zero bits, one blank
character is produced.

10.7.3 Logical editing

1 The Lw edit descriptor indicates that the field occupies w positions. The specified input/output list item shall
be of type logical. The G edit descriptor also may be used to edit logical data (10.7.5.3).

2 The input field consists of optional blanks, optionally followed by a period, followed by a T for true or F for false.
The T or F may be followed by additional characters in the field, which are ignored.

3 A lower-case letter is equivalent to the corresponding upper-case letter in a logical input field.

NOTE 10.16
The logical constants .TRUE. and .FALSE. are acceptable input forms.

4 The output field consists of w−1 blanks followed by a T or F, depending on whether the internal value is true or
false, respectively.
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10.7.4 Character editing

1 The A[w ] edit descriptor is used with an input/output list item of type character. The G edit descriptor also may
be used to edit character data (10.7.5.4). The kind type parameter of all characters transferred and converted
under control of one A or G edit descriptor is implied by the kind of the corresponding list item.

2 If a field width w is specified with the A edit descriptor, the field consists of w characters. If a field width w is
not specified with the A edit descriptor, the number of characters in the field is the length of the corresponding
list item, regardless of the value of the kind type parameter.

3 Let len be the length of the input/output list item. If the specified field width w for an A edit descriptor
corresponding to an input item is greater than or equal to len, the rightmost len characters will be taken from the
input field. If the specified field width w is less than len, the w characters will appear left justified with len−w
trailing blanks in the internal value.

4 If the specified field width w for an A edit descriptor corresponding to an output item is greater than len, the
output field will consist of w−len blanks followed by the len characters from the internal value. If the specified
field width w is less than or equal to len, the output field will consist of the leftmost w characters from the
internal value.

NOTE 10.17
For nondefault character kinds, the blank padding character is processor dependent.

5 If the file is connected for stream access, the output may be split across more than one record if it contains
newline characters. A newline character is a nonblank character returned by the intrinsic function NEW LINE.
Beginning with the first character of the output field, each character that is not a newline is written to the current
record in successive positions; each newline character causes file positioning at that point as if by slash editing
(the current record is terminated at that point, a new empty record is created following the current record, this
new record becomes the last and current record of the file, and the file is positioned at the beginning of this new
record).

NOTE 10.18
If the intrinsic function NEW LINE returns a blank character for a particular character kind, then the
processor does not support using a character of that kind to cause record termination in a formatted stream
file.

10.7.5 Generalized editing

10.7.5.1 Overview

1 The Gw , Gw .d and Gw .d Ee edit descriptors are used with an input/output list item of any intrinsic type. When
w is nonzero, these edit descriptors indicate that the external field occupies w positions. For real or complex
data the fractional part consists of a maximum of d digits and the exponent part consists of e digits. When these
edit descriptors are used to specify the input/output of integer, logical, or character data, d and e have no effect.
When w is zero the processor selects the field width. On input, w shall not be zero.

10.7.5.2 Generalized numeric editing

1 When used to specify the input/output of integer, real, and complex data, the Gw , Gw .d and Gw .d Ee edit
descriptors follow the general rules for numeric editing (10.7.2).

NOTE 10.19
The Gw .d Ee edit descriptor follows any additional rules for the Ew .d Ee edit descriptor.
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10.7.5.2.1 Generalized integer editing

1 When used to specify the input/output of integer data, the Gw .d and Gw .d Ee edit descriptors follow the rules
for the Iw edit descriptor (10.7.2.2), except that w shall not be zero. When used to specify the output of integer
data, the G0 edit descriptor follows the rules for the I0 edit descriptor.

10.7.5.2.2 Generalized real and complex editing

1 The form and interpretation of the input field is the same as for Fw .d editing (10.7.2.3.2).

2 When used to specify the output of real or complex data that is not an IEEE infinity or NaN, the G0 and G0.d
edit descriptors follow the rules for the Gw .dEe edit descriptor, except that any leading or trailing blanks are
removed. Reasonable processor-dependent values of w , d (if not specified), and e are used with each output
value.

3 For an internal value that is an IEEE infinity or NaN, the form of the output field for the Gw .d and Gw .d Ee
edit descriptors is the same as for Fw .d , and the form of the output field for the G0 and G0.d edit descriptors is
the same as for F0.0.

4 Otherwise, the method of representation in the output field depends on the magnitude of the internal value being
edited. Let N be the magnitude of the internal value and r be the rounding mode value defined in the table
below. If 0 < N < 0.1− r × 10−d−1 or N ≥ 10d − r, or N is identically 0 and d is 0, Gw .d output editing is the
same as k PEw .d output editing and Gw .d Ee output editing is the same as k PEw .d Ee output editing, where
k is the scale factor (10.8.5). If 0.1− r× 10−d−1 ≤ N < 10d − r or N is identically 0 and d is not zero, the scale
factor has no effect, and the value of N determines the editing as follows:

Magnitude of Internal Value Equivalent Conversion
N = 0 F(w−n).(d− 1), n(’b’)
0.1− r × 10−d−1 ≤ N < 1− r × 10−d F(w−n).d, n(’b’)
1− r × 10−d ≤ N < 10− r × 10−d+1 F(w−n).(d− 1), n(’b’)
10− r × 10−d+1 ≤ N < 100− r × 10−d+2 F(w−n).(d− 2), n(’b’)
· ·
· ·
· ·
10d−2 − r × 10−2 ≤ N < 10d−1 − r × 10−1 F(w−n).1, n(’b’)
10d−1 − r × 10−1 ≤ N < 10d − r F(w−n).0, n(’b’)

where b is a blank, n is 4 for Gw .d and e + 2 for Gw .d Ee, and r is defined for each rounding mode as follows:

I/O Rounding Mode r

COMPATIBLE 0.5

NEAREST 0.5 if the higher value is even
−0.5 if the lower value is even

UP 1
DOWN 0

ZERO
1 if internal value is negative
0 if internal value is positive

5 The value of w−n shall be positive.

NOTE 10.20
The scale factor has no effect on output unless the magnitude of the datum to be edited is outside the range
that permits effective use of F editing.
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10.7.5.3 Generalized logical editing

1 When used to specify the input/output of logical data, the Gw .d and Gw .d Ee edit descriptors follow the rules
for the Lw edit descriptor (10.7.3). When used to specify the output of logical data, the G0 edit descriptor follows
the rules for the L1 edit descriptor.

10.7.5.4 Generalized character editing

1 When used to specify the input/output of character data, the Gw .d and Gw .d Ee edit descriptors follow the rules
for the Aw edit descriptor (10.7.4). When used to specify the output of character data, the G0 edit descriptor
follows the rules for the A edit descriptor with no field width.

10.7.6 User-defined derived-type editing

1 The DT edit descriptor specifies that a user-provided procedure shall be used instead of the processor’s default
input/output formatting for processing a list item of derived type.

2 The DT edit descriptor may include a character literal constant. The character value “DT” concatenated with the
character literal constant is passed to the defined input/output procedure as the iotype argument (9.6.4.8). The
v values of the edit descriptor are passed to the defined input/output procedure as the v_list array argument.

NOTE 10.21
For the edit descriptor DT’Link List’(10, 4, 2), iotype is "DTLink List" and v_list is [10, 4, 2].

3 If a derived-type variable or value corresponds to a DT edit descriptor, there shall be an accessible interface to
a corresponding defined input/output procedure for that derived type (9.6.4.8). A DT edit descriptor shall not
correspond to a list item that is not of a derived type.

10.8 Control edit descriptors

10.8.1 Position editing

1 The T, TL, TR, and X edit descriptors specify the position at which the next character will be transmitted to or
from the record. If any character skipped by a T, TL, TR, or X edit descriptor is of type nondefault character,
and the unit is a default character internal file or an external non-Unicode file, the result of that position editing
is processor dependent.

2 The position specified by a T edit descriptor may be in either direction from the current position. On input, this
allows portions of a record to be processed more than once, possibly with different editing.

3 The position specified by an X edit descriptor is forward from the current position. On input, a position beyond
the last character of the record may be specified if no characters are transmitted from such positions.

NOTE 10.22
An nX edit descriptor has the same effect as a TRn edit descriptor.

4 On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to be transmitted and therefore
does not by itself affect the length of the record. If characters are transmitted to positions at or after the position
specified by a T, TL, TR, or X edit descriptor, positions skipped and not previously filled are filled with blanks.
The result is as if the entire record were initially filled with blanks.

5 On output, a character in the record may be replaced. However, a T, TL, TR, or X edit descriptor never directly
causes a character already placed in the record to be replaced. Such edit descriptors may result in positioning
such that subsequent editing causes a replacement.
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10.8.1.1 T, TL, and TR editing

1 The left tab limit affects file positioning by the T and TL edit descriptors. Immediately prior to nonchild data
transfer (9.6.4.8.2), the left tab limit becomes defined as the character position of the current record or the current
position of the stream file. If, during data transfer, the file is positioned to another record, the left tab limit
becomes defined as character position one of that record.

2 The Tn edit descriptor indicates that the transmission of the next character to or from a record is to occur at
the nth character position of the record, relative to the left tab limit.

3 The TLn edit descriptor indicates that the transmission of the next character to or from the record is to occur at
the character position n characters backward from the current position. However, if n is greater than the difference
between the current position and the left tab limit, the TLn edit descriptor indicates that the transmission of
the next character to or from the record is to occur at the left tab limit.

4 The TRn edit descriptor indicates that the transmission of the next character to or from the record is to occur
at the character position n characters forward from the current position.

NOTE 10.23
The n in a Tn, TLn, or TRn edit descriptor shall be specified and shall be greater than zero.

10.8.1.2 X editing

1 The nX edit descriptor indicates that the transmission of the next character to or from a record is to occur at
the character position n characters forward from the current position.

NOTE 10.24
The n in an nX edit descriptor shall be specified and shall be greater than zero.

10.8.2 Slash editing

1 The slash edit descriptor indicates the end of data transfer to or from the current record.

2 On input from a file connected for sequential or stream access, the remaining portion of the current record is
skipped and the file is positioned at the beginning of the next record. This record becomes the current record.
On output to a file connected for sequential or stream access, a new empty record is created following the current
record; this new record then becomes the last and current record of the file and the file is positioned at the
beginning of this new record.

3 For a file connected for direct access, the record number is increased by one and the file is positioned at the
beginning of the record that has that record number, if there is such a record, and this record becomes the
current record.

NOTE 10.25
A record that contains no characters may be written on output. If the file is an internal file or a file
connected for direct access, the record is filled with blank characters.

An entire record may be skipped on input.

4 The repeat specification is optional in the slash edit descriptor. If it is not specified, the default value is one.

10.8.3 Colon editing

1 The colon edit descriptor terminates format control if there are no more effective items in the input/output list
(9.6.3). The colon edit descriptor has no effect if there are more effective items in the input/output list.
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10.8.4 SS, SP, and S editing

1 The SS, SP, and S edit descriptors temporarily change (9.5.2) the sign mode (9.5.6.17, 9.6.2.14) for the connection.
The edit descriptors SS, SP, and S set the sign mode corresponding to the SIGN= specifier values SUPPRESS,
PLUS, and PROCESSOR DEFINED, respectively.

2 The sign mode controls optional plus characters in numeric output fields. When the sign mode is PLUS, the
processor shall produce a plus sign in any position that normally contains an optional plus sign. When the
sign mode is SUPPRESS, the processor shall not produce a plus sign in such positions. When the sign mode is
PROCESSOR DEFINED, the processor has the option of producing a plus sign or not in such positions, subject
to 10.7.2(5).

3 The SS, SP, and S edit descriptors affect only I, F, E, EN, ES, D, and G editing during the execution of an output
statement. The SS, SP, and S edit descriptors have no effect during the execution of an input statement.

10.8.5 P editing

1 The kP edit descriptor temporarily changes (9.5.2) the scale factor for the connection to k . The scale factor
affects the editing done by the F, E, EN, ES, D, and G edit descriptors for numeric quantities.

2 The scale factor k affects the appropriate editing in the following manner.

• On input, with F, E, EN, ES, D, and G editing (provided that no exponent exists in the field), the effect
is that the externally represented number equals the internally represented number multiplied by 10k; the
scale factor is applied to the external decimal value and then this is converted using the I/O rounding mode.
• On input, with F, E, EN, ES, D, and G editing, the scale factor has no effect if there is an exponent in the

field.
• On output, with F output editing, the effect is that the externally represented number equals the internally

represented number multiplied by 10k; the internal value is converted using the I/O rounding mode and
then the scale factor is applied to the converted decimal value.
• On output, with E and D editing, the effect is that the significand (R414) part of the quantity to be

produced is multiplied by 10k and the exponent is reduced by k.
• On output, with G editing, the effect is suspended unless the magnitude of the datum to be edited is outside

the range that permits the use of F editing. If the use of E editing is required, the scale factor has the same
effect as with E output editing.
• On output, with EN and ES editing, the scale factor has no effect.

10.8.6 BN and BZ editing

1 The BN and BZ edit descriptors temporarily change (9.5.2) the blank interpretation mode (9.5.6.6, 9.6.2.6) for the
connection. The edit descriptors BN and BZ set the blank interpretation mode corresponding to the BLANK=
specifier values NULL and ZERO, respectively.

2 The blank interpretation mode controls the interpretation of nonleading blanks in numeric input fields. Such
blank characters are interpreted as zeros when the blank interpretation mode has the value ZERO; they are
ignored when the blank interpretation mode has the value NULL. The effect of ignoring blanks is to treat the
input field as if blanks had been removed, the remaining portion of the field right justified, and the blanks replaced
as leading blanks. However, a field containing only blanks has the value zero.

3 The blank interpretation mode affects only numeric editing (10.7.2) and generalized numeric editing (10.7.5.2)
on input. It has no effect on output.

10.8.7 RU, RD, RZ, RN, RC, and RP editing

1 The round edit descriptors temporarily change (9.5.2) the connection’s I/O rounding mode (9.5.6.16, 9.6.2.13,
10.7.2.3.7). The round edit descriptors RU, RD, RZ, RN, RC, and RP set the I/O rounding mode corresponding to
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the ROUND= specifier values UP, DOWN, ZERO, NEAREST, COMPATIBLE, and PROCESSOR DEFINED,
respectively. The I/O rounding mode affects the conversion of real and complex values in formatted input/output.
It affects only D, E, EN, ES, F, and G editing.

10.8.8 DC and DP editing

1 The decimal edit descriptors temporarily change (9.5.2) the decimal edit mode (9.5.6.7, 9.6.2.7, 10.6) for the
connection. The edit descriptors DC and DP set the decimal edit mode corresponding to the DECIMAL=
specifier values COMMA and POINT, respectively.

2 The decimal edit mode controls the representation of the decimal symbol (10.6) during conversion of real and
complex values in formatted input/output. The decimal edit mode affects only D, E, EN, ES, F, and G editing.

10.9 Character string edit descriptors

1 A character string edit descriptor shall not be used on input.

2 The character string edit descriptor causes characters to be written from the enclosed characters of the edit
descriptor itself, including blanks. For a character string edit descriptor, the width of the field is the number of
characters between the delimiting characters. Within the field, two consecutive delimiting characters are counted
as a single character.

NOTE 10.26
A delimiter for a character string edit descriptor is either an apostrophe or quote.

10.10 List-directed formatting

10.10.1 General

1 List-directed input/output allows data editing according to the type of the list item instead of by a format
specification. It also allows data to be free-field, that is, separated by commas (or semicolons) or blanks.

10.10.2 Values and value separators

1 The characters in one or more list-directed records constitute a sequence of values and value separators. The end
of a record has the same effect as a blank character, unless it is within a character constant. Any sequence of two
or more consecutive blanks is treated as a single blank, unless it is within a character constant.

2 Each value is either a null value, c, r*c, or r*, where c is a literal constant, optionally signed if integer or real,
or an undelimited character constant and r is an unsigned, nonzero, integer literal constant. Neither c nor r
shall have kind type parameters specified. The constant c is interpreted as though it had the same kind type
parameter as the corresponding list item. The r*c form is equivalent to r successive appearances of the constant
c, and the r* form is equivalent to r successive appearances of the null value. Neither of these forms may contain
embedded blanks, except where permitted within the constant c.

3 A value separator is

• a comma optionally preceded by one or more contiguous blanks and optionally followed by one or more
contiguous blanks, unless the decimal edit mode is COMMA, in which case a semicolon is used in place of
the comma,

• a slash optionally preceded by one or more contiguous blanks and optionally followed by one or more
contiguous blanks, or

• one or more contiguous blanks between two nonblank values or following the last nonblank value, where a
nonblank value is a constant, an r*c form, or an r* form.
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NOTE 10.27
Although a slash encountered in an input record is referred to as a separator, it actually causes termination
of list-directed and namelist input statements; it does not actually separate two values.

NOTE 10.28
If no list items are specified in a list-directed input/output statement, one input record is skipped or one
empty output record is written.

10.10.3 List-directed input

1 Input forms acceptable to edit descriptors for a given type are acceptable for list-directed formatting, except as
noted below. The form of the input value shall be acceptable for the type of the next effective item in the list.
Blanks are never used as zeros, and embedded blanks are not permitted in constants, except within character
constants and complex constants as specified below.

2 For the r*c form of an input value, the constant c is interpreted as an undelimited character constant if the first
list item corresponding to this value is default, ASCII, or ISO 10646 character, there is a nonblank character
immediately after r*, and that character is not an apostrophe or a quotation mark; otherwise, c is interpreted
as a literal constant.

NOTE 10.29
The end of a record has the effect of a blank, except when it appears within a character constant.

3 When the next effective item is of type integer, the value in the input record is interpreted as if an Iw edit
descriptor with a suitable value of w were used.

4 When the next effective item is of type real, the input form is that of a numeric input field. A numeric input field
is a field suitable for F editing (10.7.2.3.2) that is assumed to have no fractional digits unless a decimal symbol
appears within the field.

5 When the next effective item is of type complex, the input form consists of a left parenthesis followed by an
ordered pair of numeric input fields separated by a comma (if the decimal edit mode is POINT) or semicolon
(if the decimal edit mode is COMMA), and followed by a right parenthesis. The first numeric input field is the
real part of the complex constant and the second is the imaginary part. Each of the numeric input fields may be
preceded or followed by any number of blanks and ends of records. The end of a record may occur after the real
part or before the imaginary part.

6 When the next effective item is of type logical, the input form shall not include value separators among the
optional characters permitted for L editing.

7 When the next effective item is of type character, the input form consists of a possibly delimited sequence of zero
or more rep-chars whose kind type parameter is implied by the kind of the effective item. Character sequences
may be continued from the end of one record to the beginning of the next record, but the end of record shall
not occur between a doubled apostrophe in an apostrophe-delimited character sequence, nor between a doubled
quote in a quote-delimited character sequence. The end of the record does not cause a blank or any other
character to become part of the character sequence. The character sequence may be continued on as many
records as needed. The characters blank, comma, semicolon, and slash may appear in default, ASCII, or ISO
10646 character sequences.

8 If the next effective item is default, ASCII, or ISO 10646 character and

• the character sequence does not contain value separators,
• the character sequence does not cross a record boundary,
• the first nonblank character is not a quotation mark or an apostrophe,
• the leading characters are not digits followed by an asterisk, and
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• the character sequence contains at least one character,

the delimiting apostrophes or quotation marks are not required. If the delimiters are omitted, the character
sequence is terminated by the first blank, comma (if the decimal edit mode is POINT), semicolon (if the decimal
edit mode is COMMA), slash, or end of record; in this case apostrophes and quotation marks within the datum
are not to be doubled.

9 Let len be the length of the next effective item, and let w be the length of the character sequence. If len is less
than or equal to w, the leftmost len characters of the sequence are transmitted to the next effective item. If len
is greater than w, the sequence is transmitted to the leftmost w characters of the next effective item and the
remaining len−w characters of the next effective item are filled with blanks. The effect is as though the sequence
were assigned to the next effective item in an intrinsic assignment statement (7.2.1.3).

10.10.3.1 Null values

1 A null value is specified by

• the r* form,
• no characters between consecutive value separators, or
• no characters before the first value separator in the first record read by each execution of a list-directed

input statement.

NOTE 10.30
The end of a record following any other value separator, with or without separating blanks, does not specify
a null value in list-directed input.

2 A null value has no effect on the definition status of the next effective item. A null value shall not be used for
either the real or imaginary part of a complex constant, but a single null value may represent an entire complex
constant.

3 A slash encountered as a value separator during execution of a list-directed input statement causes termination
of execution of that input statement after the transference of the previous value. Any characters remaining in the
current record are ignored. If there are additional items in the input list, the effect is as if null values had been
supplied for them. Any do-variable in the input list becomes defined as if enough null values had been supplied
for any remaining input list items.

NOTE 10.31
All blanks in a list-directed input record are considered to be part of some value separator except for

• blanks embedded in a character sequence,
• embedded blanks surrounding the real or imaginary part of a complex constant, and
• leading blanks in the first record read by each execution of a list-directed input statement, unless

immediately followed by a slash or comma.

NOTE 10.32
List-directed input example:

INTEGER I; REAL X (8); CHARACTER (11) P;
COMPLEX Z; LOGICAL G
...

READ *, I, X, P, Z, G
...

The input data records are:
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NOTE 10.32 (cont.)

12345,12345,,2*1.5,4*
ISN’T_BOB’S,(123,0),.TEXAS$

The results are:

Variable Value
I 12345
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T BOB’S
Z (123.0,0.0)
G true

10.10.4 List-directed output

1 The form of the values produced is the same as that required for input, except as noted otherwise. With the
exception of adjacent undelimited character sequences, the values are separated by one or more blanks or by
a comma, or a semicolon if the decimal edit mode is comma, optionally preceded by one or more blanks and
optionally followed by one or more blanks. Two undelimited character sequences are considered adjacent when
both were written using list-directed input/output, no intervening data transfer or file positioning operations on
that unit occurred, and both were written either by a single data transfer statement, or during the execution of a
parent data transfer statement along with its child data transfer statements. The form of the values produced by
defined output (9.6.4.8) is determined by the defined output procedure; this form need not be compatible with
list-directed input.

2 The processor may begin new records as necessary, but the end of record shall not occur within a constant except
as specified for complex constants and character sequences. The processor shall not insert blanks within character
sequences or within constants, except as specified for complex constants.

3 Logical output values are T for the value true and F for the value false.

4 Integer output constants are produced with the effect of an Iw edit descriptor.

5 Real constants are produced with the effect of either an F edit descriptor or an E edit descriptor, depending on
the magnitude x of the value and a range 10d1 ≤ x < 10d2 , where d1 and d2 are processor-dependent integers. If
the magnitude x is within this range or is zero, the constant is produced using 0PFw .d ; otherwise, 1PEw .d Ee
is used.

6 For numeric output, reasonable processor-dependent values of w , d , and e are used for each of the numeric
constants output.

7 Complex constants are enclosed in parentheses with a separator between the real and imaginary parts, each
produced as defined above for real constants. The separator is a comma if the decimal edit mode is POINT; it
is a semicolon if the decimal edit mode is COMMA. The end of a record may occur between the separator and
the imaginary part only if the entire constant is as long as, or longer than, an entire record. The only embedded
blanks permitted within a complex constant are between the separator and the end of a record and one blank at
the beginning of the next record.

8 Character sequences produced when the delimiter mode has a value of NONE

• are not delimited by apostrophes or quotation marks,
• are not separated from each other by value separators,
• have each internal apostrophe or quotation mark represented externally by one apostrophe or quotation
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mark, and
• have a blank character inserted by the processor at the beginning of any record that begins with the

continuation of a character sequence from the preceding record.

9 Character sequences produced when the delimiter mode has a value of QUOTE are delimited by quotes, are
preceded and followed by a value separator, and have each internal quote represented on the external medium by
two contiguous quotes.

10 Character sequences produced when the delimiter mode has a value of APOSTROPHE are delimited by apos-
trophes, are preceded and followed by a value separator, and have each internal apostrophe represented on the
external medium by two contiguous apostrophes.

11 If two or more successive values in an output record have identical values, the processor has the option of producing
a repeated constant of the form r*c instead of the sequence of identical values.

12 Slashes, as value separators, and null values are not produced as output by list-directed formatting.

13 Except for continuation of delimited character sequences, each output record begins with a blank character.

NOTE 10.33
The length of the output records is not specified and may be processor dependent.

10.11 Namelist formatting

10.11.1 General

1 Namelist input/output allows data editing with name-value subsequences. This facilitates documentation of input
and output files and more flexibility on input.

10.11.2 Name-value subsequences

1 The characters in one or more namelist records constitute a sequence of name-value subsequences, each of which
consists of an object designator followed by an equals and followed by one or more values and value separators.
The equals may optionally be preceded or followed by one or more contiguous blanks. The end of a record has the
same effect as a blank character, unless it is within a character constant. Any sequence of two or more consecutive
blanks is treated as a single blank, unless it is within a character constant.

2 Each object designator shall begin with a name from the namelist-group-object-list (5.6) and shall follow the
syntax of designator (R601). It shall not contain a vector subscript or an image-selector and shall not designate a
zero-sized array, a zero-sized array section, or a zero-length character string. Each subscript, stride, and substring
range expression shall be an optionally signed integer literal constant with no kind type parameter specified. If
a section subscript list appears, the number of section subscripts shall be equal to the rank of the object. If
the namelist group object is of derived type, the designator in the input record may be either the name of the
variable or the designator of one of its components, indicated by qualifying the variable name with the appropriate
component name. Successive qualifications may be applied as appropriate to the shape and type of the variable
represented. Each designator may be preceded and followed by one or more optional blanks but shall not contain
embedded blanks.

3 A value separator for namelist formatting is the same as for list-directed formatting (10.10.2), or one or more
contiguous blanks between a nonblank value and the following object designator or namelist comment (10.11.3.6).

10.11.3 Namelist input

10.11.3.1 Overall syntax

1 Input for a namelist input statement consists of
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(1) optional blanks and namelist comments,
(2) the character & followed immediately by the namelist-group-name as specified in the NAMELIST

statement,
(3) one or more blanks,
(4) a sequence of zero or more name-value subsequences separated by value separators, and
(5) a slash to terminate the namelist input.

NOTE 10.34
A slash encountered in a namelist input record causes the input statement to terminate. A slash cannot be
used to separate two values in a namelist input statement.

2 The order of the name-value subsequences in the input records need not match the order of the namelist-group-
object-list. The input records need not specify all objects in the namelist-group-object-list. They may specify a
part of an object more than once.

3 A group name or object name is without regard to case.

10.11.3.2 Namelist input processing

1 The name-value subsequences are evaluated serially, in left-to-right order. A namelist group object designator
may appear in more than one name-value subsequence. The definition status of an object that is not a subobject
of a designator in any name-value subsequence remains unchanged.

2 When the designator in the input record represents an array variable or a variable of derived type, the effect is
as if the variable represented were expanded into a sequence of scalar list items, in the same way that formatted
input/output list items are expanded (9.6.3). Each input value following the equals shall then be acceptable to
format specifications for the type of the list item in the corresponding position in the expanded sequence, except
as noted in this subclause. The number of values following the equals shall not exceed the number of list items
in the expanded sequence, but may be less; in the latter case, the effect is as if sufficient null values had been
appended to match any remaining list items in the expanded sequence.

NOTE 10.35
For example, if the designator in the input record designates an integer array of size 100, at most 100 values,
each of which is either a digit string or a null value, may follow the equals; these values would then be
assigned to the elements of the array in array element order.

3 A slash encountered as a value separator during the execution of a namelist input statement causes termination
of execution of that input statement after transference of the previous value. If there are additional items in the
namelist group object being transferred, the effect is as if null values had been supplied for them.

4 A namelist comment may appear after any value separator except a slash. A namelist comment is also permitted
to start in the first nonblank position of an input record except within a character literal constant.

5 Successive namelist records are read by namelist input until a slash is encountered; the remainder of the record
is ignored and need not follow the rules for namelist input values.

10.11.3.3 Namelist input values

1 Each value is either a null value (10.11.3.4), c, r*c, or r*, where c is a literal constant, optionally signed if integer
or real, and r is an unsigned, nonzero, integer literal constant. A kind type parameter shall not be specified for c
or r. The constant c is interpreted as though it had the same kind type parameter as the corresponding effective
item. The r*c form is equivalent to r successive appearances of the constant c, and the r* form is equivalent to
r successive null values. Neither of these forms may contain embedded blanks, except where permitted within
the constant c.

2 The datum c (10.11) is any input value acceptable to format specifications for a given type, except for a restriction
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on the form of input values corresponding to list items of types logical, integer, and character as specified in this
subclause. The form of a real or complex value is dependent on the decimal edit mode in effect (10.6). The form
of an input value shall be acceptable for the type of the namelist group object list item. The number and forms
of the input values that may follow the equals in a name-value subsequence depend on the shape and type of
the object represented by the name in the input record. When the name in the input record is that of a scalar
variable of an intrinsic type, the equals shall not be followed by more than one value. Blanks are never used
as zeros, and embedded blanks are not permitted in constants except within character constants and complex
constants as specified in this subclause.

3 When the next effective item is of type real, the input form of the input value is that of a numeric input field. A
numeric input field is a field suitable for F editing (10.7.2.3.2) that is assumed to have no fractional digits unless
a decimal symbol appears within the field.

4 When the next effective item is of type complex, the input form of the input value consists of a left parenthesis
followed by an ordered pair of numeric input fields separated by a comma (if the decimal edit mode is POINT) or
a semicolon (if the decimal edit mode is COMMA), and followed by a right parenthesis. The first numeric input
field is the real part of the complex constant and the second field is the imaginary part. Each of the numeric
input fields may be preceded or followed by any number of blanks and ends of records. The end of a record may
occur between the real part and the comma or semicolon, or between the comma or semicolon and the imaginary
part.

5 When the next effective item is of type logical, the input form of the input value shall not include equals or value
separators among the optional characters permitted for L editing (10.7.3).

6 When the next effective item is of type integer, the value in the input record is interpreted as if an Iw edit
descriptor with a suitable value of w were used.

7 When the next effective item is of type character, the input form consists of a delimited sequence of zero or more
rep-chars whose kind type parameter is implied by the kind of the corresponding list item. Such a sequence
may be continued from the end of one record to the beginning of the next record, but the end of record shall
not occur between a doubled apostrophe in an apostrophe-delimited sequence, nor between a doubled quote in a
quote-delimited sequence. The end of the record does not cause a blank or any other character to become part
of the sequence. The sequence may be continued on as many records as needed. The characters blank, comma,
semicolon, and slash may appear in such character sequences.

NOTE 10.36
A character sequence corresponding to a namelist input item of character type shall be delimited either with
apostrophes or with quotes. The delimiter is required to avoid ambiguity between undelimited character
sequences and object names. The value of the DELIM= specifier, if any, in the OPEN statement for an
external file is ignored during namelist input (9.5.6.8).

8 Let len be the length of the next effective item, and let w be the length of the character sequence. If len is less
than or equal to w, the leftmost len characters of the sequence are transmitted to the next effective item. If len
is greater than w, the constant is transmitted to the leftmost w characters of the next effective item and the
remaining len−w characters of the next effective item are filled with blanks. The effect is as though the sequence
were assigned to the next effective item in an intrinsic assignment statement (7.2.1.3).

10.11.3.4 Null values

1 A null value is specified by

• the r* form,
• blanks between two consecutive nonblank value separators following an equals,
• zero or more blanks preceding the first value separator and following an equals, or
• two consecutive nonblank value separators.
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2 A null value has no effect on the definition status of the corresponding input list item. If the namelist group
object list item is defined, it retains its previous value; if it is undefined, it remains undefined. A null value shall
not be used as either the real or imaginary part of a complex constant, but a single null value may represent an
entire complex constant.

NOTE 10.37
The end of a record following a value separator, with or without intervening blanks, does not specify a null
value in namelist input.

10.11.3.5 Blanks

1 All blanks in a namelist input record are considered to be part of some value separator except for

• blanks embedded in a character constant,
• embedded blanks surrounding the real or imaginary part of a complex constant,
• leading blanks following the equals unless followed immediately by a slash or comma, or a semicolon if the

decimal edit mode is comma, and
• blanks between a name and the following equals.

10.11.3.6 Namelist comments

1 Except within a character literal constant, a “!” character after a value separator or in the first nonblank position
of a namelist input record initiates a comment. The comment extends to the end of the record and may contain
any graphic character in the processor-dependent character set. The comment is ignored. A slash within the
namelist comment does not terminate execution of the namelist input statement. Namelist comments are not
allowed in stream input because comments depend on record structure.

NOTE 10.38
Namelist input example:

INTEGER I; REAL X (8); CHARACTER (11) P; COMPLEX Z;
LOGICAL G
NAMELIST / TODAY / G, I, P, Z, X
READ (*, NML = TODAY)

The input data records are:

&TODAY I = 12345, X(1) = 12345, X(3:4) = 2*1.5, I=6, ! This is a comment.
P = ’’ISN’T_BOB’S’’, Z = (123,0)/

The results stored are:

Variable Value
I 6
X (1) 12345.0
X (2) unchanged
X (3) 1.5
X (4) 1.5
X (5) – X (8) unchanged
P ISN’T BOB’S
Z (123.0,0.0)
G unchanged
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10.11.4 Namelist output

10.11.4.1 Form of namelist output

1 The form of the output produced by intrinsic namelist output shall be suitable for input, except for character
output. The names in the output are in upper case. With the exception of adjacent undelimited character
values, the values are separated by one or more blanks or by a comma, or a semicolon if the decimal edit mode is
COMMA, optionally preceded by one or more blanks and optionally followed by one or more blanks. The form of
the output produced by defined output (9.6.4.8) is determined by the defined output procedure; this form need
not be compatible with namelist input.

2 Namelist output shall not include namelist comments.

3 The processor may begin new records as necessary. However, except for complex constants and character values,
the end of a record shall not occur within a constant, character value, or name, and blanks shall not appear
within a constant, character value, or name.

NOTE 10.39
The length of the output records is not specified exactly and may be processor dependent.

10.11.4.2 Namelist output editing

1 Values in namelist output records are edited as for list-directed output (10.10.4).

NOTE 10.40
Namelist output records produced with a DELIM= specifier with a value of NONE and which contain a
character sequence might not be acceptable as namelist input records.

10.11.4.3 Namelist output records

1 If two or more successive values for the same namelist group item in an output record produced have identical
values, the processor has the option of producing a repeated constant of the form r*c instead of the sequence of
identical values.

2 The name of each namelist group object list item is placed in the output record followed by an equals and a list
of values of the namelist group object list item.

3 An ampersand character followed immediately by a namelist-group-name will be produced by namelist formatting
at the start of the first output record to indicate which particular group of data objects is being output. A slash
is produced by namelist formatting to indicate the end of the namelist formatting.

4 A null value is not produced by namelist formatting.

5 Except for new records created by explicit formatting within a defined output procedure or by continuation of
delimited character sequences, each output record begins with a blank character.
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11 Program units

11.1 Main program

1 A Fortran main program is a program unit that does not contain a SUBROUTINE, FUNCTION, MODULE,
SUBMODULE, or BLOCK DATA statement as its first statement.

R1101 main-program is [ program-stmt ]
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-program-stmt

R1102 program-stmt is PROGRAM program-name

R1103 end-program-stmt is END [ PROGRAM [ program-name ] ]

C1101 (R1101) The program-name may be included in the end-program-stmt only if the optional program-stmt
is used and, if included, shall be identical to the program-name specified in the program-stmt .

NOTE 11.1
The program name is global to the program (16.2). For explanatory information about uses for the program
name, see subclause C.8.1.

NOTE 11.2
An example of a main program is:

PROGRAM ANALYZE
REAL A, B, C (10,10) ! Specification part
CALL FIND ! Execution part

CONTAINS
SUBROUTINE FIND ! Internal subprogram

...
END SUBROUTINE FIND

END PROGRAM ANALYZE

2 The main program may be defined by means other than Fortran; in that case, the program shall not contain a
main-program program unit.

3 A reference to a Fortran main-program shall not appear in any program unit in the program, including itself.

11.2 Modules

11.2.1 General

1 A module contains specifications and definitions that are to be accessible to other program units by use association.
A module that is provided as an inherent part of the processor is an intrinsic module. A nonintrinsic module is
defined by a module program unit or a means other than Fortran.

2 Procedures and types defined in an intrinsic module are not themselves intrinsic.
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R1104 module is module-stmt
[ specification-part ]
[ module-subprogram-part ]
end-module-stmt

R1105 module-stmt is MODULE module-name

R1106 end-module-stmt is END [ MODULE [ module-name ] ]

R1107 module-subprogram-part is contains-stmt
[ module-subprogram ] ...

R1108 module-subprogram is function-subprogram
or subroutine-subprogram
or separate-module-subprogram

C1102 (R1104) If the module-name is specified in the end-module-stmt , it shall be identical to the module-name
specified in the module-stmt .

C1103 (R1104) A module specification-part shall not contain a stmt-function-stmt, an entry-stmt , or a format-stmt .

NOTE 11.3
The module name is global to the program (16.2).

NOTE 11.4
Although statement function definitions, ENTRY statements, and FORMAT statements shall not appear in
the specification part of a module, they may appear in the specification part of a module subprogram in
the module.

NOTE 11.5
For a discussion of the impact of modules on dependent compilation, see subclause C.8.2.

NOTE 11.6
For examples of the use of modules, see subclause C.8.3.

3 If a procedure declared in the scoping unit of a module has an implicit interface, it shall be given the EXTERNAL
attribute in that scoping unit; if it is a function, its type and type parameters shall be explicitly declared in a
type declaration statement in that scoping unit.

4 If an intrinsic procedure is declared in the scoping unit of a module, it shall explicitly be given the INTRINSIC
attribute in that scoping unit or be used as an intrinsic procedure in that scoping unit.

11.2.2 The USE statement and use association

1 The USE statement specifies use association. A USE statement is a reference to the module it specifies. At the
time a USE statement is processed, the public portions of the specified module shall be available. A module shall
not reference itself, either directly or indirectly.

2 The USE statement provides the means by which a scoping unit or BLOCK construct accesses named data
objects, derived types, procedures, abstract interfaces, generic identifiers, and namelist groups in a module. The
entities in the scoping unit or BLOCK construct are use associated with the entities in the module. The accessed
entities have the attributes specified in the module, except that a local entity may have a different accessibility
attribute, it may have the ASYNCHRONOUS attribute even if the associated module entity does not, and if it is
not a coarray it may have the VOLATILE attribute even if the associated module entity does not. The entities
made accessible are identified by the names or generic identifiers used to identify them in the module. By default,
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the local entities are identified by the same identifiers in the scoping unit or BLOCK construct containing the
USE statement, but it is possible to specify that different local identifiers are used.

NOTE 11.7
The accessibility of module entities may be controlled by accessibility attributes (4.5.2.2, 5.3.2), and the
ONLY option of the USE statement. Definability of module entities can be controlled by the PROTECTED
attribute (5.3.15).

R1109 use-stmt is USE [ [ , module-nature ] :: ] module-name [ , rename-list ]
or USE [ [ , module-nature ] :: ] module-name ,

ONLY : [ only-list ]

R1110 module-nature is INTRINSIC
or NON INTRINSIC

R1111 rename is local-name => use-name
or OPERATOR (local-defined-operator) =>

OPERATOR (use-defined-operator)

R1112 only is generic-spec
or only-use-name
or rename

R1113 only-use-name is use-name

C1104 (R1109) If module-nature is INTRINSIC, module-name shall be the name of an intrinsic module.

C1105 (R1109) If module-nature is NON INTRINSIC, module-name shall be the name of a nonintrinsic module.

C1106 (R1109) A scoping unit shall not access an intrinsic module and a nonintrinsic module of the same name.

C1107 (R1111) OPERATOR(use-defined-operator) shall not identify a type-bound generic interface.

C1108 (R1112) The generic-spec shall not identify a type-bound generic interface.

NOTE 11.8
The above two constraints do not prevent accessing a generic-spec that is declared by an interface block,
even if a type-bound generic interface has the same generic-spec.

C1109 (R1112) Each generic-spec shall be a public entity in the module.

C1110 (R1113) Each use-name shall be the name of a public entity in the module.

R1114 local-defined-operator is defined-unary-op
or defined-binary-op

R1115 use-defined-operator is defined-unary-op
or defined-binary-op

C1111 (R1115) Each use-defined-operator shall be a public entity in the module.

3 A use-stmt without a module-nature provides access either to an intrinsic or to a nonintrinsic module. If the
module-name is the name of both an intrinsic and a nonintrinsic module, the nonintrinsic module is accessed.

4 The USE statement without the ONLY option provides access to all public entities in the specified module.

5 A USE statement with the ONLY option provides access only to those entities that appear as generic-specs,
use-names, or use-defined-operators in the only-list.
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6 More than one USE statement for a given module may appear in a specification part. If one of the USE statements
is without an ONLY option, all public entities in the module are accessible. If all the USE statements have ONLY
options, only those entities in one or more of the only-lists are accessible.

7 An accessible entity in the referenced module has one or more local identifiers. These identifiers are

• the identifier of the entity in the referenced module if that identifier appears as an only-use-name or as the
defined-operator of a generic-spec in any only for that module,
• each of the local-names or local-defined-operators that the entity is given in any rename for that module,

and
• the identifier of the entity in the referenced module if that identifier does not appear as a use-name or

use-defined-operator in any rename for that module.

8 Two or more accessible entities, other than generic interfaces or defined operators, may have the same local
identifier only if the identifier is not used. Generic interfaces and defined operators are handled as described in
12.4.3.4. Except for these cases, the local identifier of any entity given accessibility by a USE statement shall
differ from the local identifiers of all other entities accessible to the scoping unit through USE statements and
otherwise.

NOTE 11.9
There is no prohibition against a use-name or use-defined-operator appearing multiple times in one USE
statement or in multiple USE statements involving the same module. As a result, it is possible for one
use-associated entity to be accessible by more than one local identifier.

9 The local identifier of an entity made accessible by a USE statement shall not appear in any other nonexecutable
statement that would cause any attribute (5.3) of the entity to be specified in the scoping unit that contains the
USE statement, except that it may appear in a PUBLIC or PRIVATE statement in the scoping unit of a module
and it may be given the ASYNCHRONOUS or VOLATILE attribute.

10 The appearance of such a local identifier in a PUBLIC statement in a module causes the entity accessible by
the USE statement to be a public entity of that module. If the identifier appears in a PRIVATE statement in
a module, the entity is not a public entity of that module. If the local identifier does not appear in either a
PUBLIC or PRIVATE statement, it assumes the default accessibility attribute (5.4.1) of that scoping unit.

NOTE 11.10
The constraints in subclauses 5.7.1, 5.7.2, and 5.6 prohibit the local-name from appearing as a common-block-
object in a COMMON statement, an equivalence-object in an EQUIVALENCE statement, or a namelist-
group-name in a NAMELIST statement, respectively. There is no prohibition against the local-name
appearing as a common-block-name or a namelist-group-object .

NOTE 11.11
For a discussion of the impact of the ONLY option and renaming on dependent compilation, see subclause
C.8.2.1.

NOTE 11.12
Examples:

USE STATS_LIB

provides access to all public entities in the module STATS LIB.

USE MATH_LIB; USE STATS_LIB, SPROD => PROD

makes all public entities in both MATH LIB and STATS LIB accessible. If MATH LIB contains an entity
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NOTE 11.12 (cont.)

called PROD, it is accessible by its own name while the entity PROD of STATS LIB is accessible by the
name SPROD.

USE STATS_LIB, ONLY: YPROD; USE STATS_LIB, ONLY : PROD

makes public entities YPROD and PROD in STATS LIB accessible.

USE STATS_LIB, ONLY : YPROD; USE STATS_LIB

makes all public entities in STATS LIB accessible.

11.2.3 Submodules

1 A submodule is a program unit that extends a module or another submodule. The program unit that it extends
is its host, and is specified by the parent-identifier in the submodule-stmt .

2 A module or submodule is an ancestor program unit of all of its descendants, which are its submodules and their
descendents. The submodule identifier is the ordered pair whose first element is the ancestor module name and
whose second element is the submodule name.

NOTE 11.13
A module and its submodules stand in a tree-like relationship one to another, with the module at the root.
Therefore, a submodule has exactly one ancestor module and may optionally have one or more ancestor
submodules.

3 A submodule may provide implementations for separate module procedures (12.6.2.5), each of which is declared
(12.4.3.2) within that submodule or one of its ancestors, and declarations and definitions of other entities that
are accessible by host association in its descendants.

R1116 submodule is submodule-stmt
[ specification-part ]
[ module-subprogram-part ]

end-submodule-stmt

R1117 submodule-stmt is SUBMODULE ( parent-identifier ) submodule-name

R1118 parent-identifier is ancestor-module-name [ : parent-submodule-name ]

R1119 end-submodule-stmt is END [ SUBMODULE [ submodule-name ] ]

C1112 (R1116) A submodule specification-part shall not contain a format-stmt , entry-stmt , or stmt-function-stmt.

C1113 (R1118) The ancestor-module-name shall be the name of a nonintrinsic module; the parent-submodule-
name shall be the name of a descendant of that module.

C1114 (R1116) If a submodule-name appears in the end-submodule-stmt , it shall be identical to the one in the
submodule-stmt .

11.3 Block data program units

1 A block data program unit is used to provide initial values for data objects in named common blocks.

R1120 block-data is block-data-stmt
[ specification-part ]
end-block-data-stmt
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R1121 block-data-stmt is BLOCK DATA [ block-data-name ]

R1122 end-block-data-stmt is END [ BLOCK DATA [ block-data-name ] ]

C1115 (R1120) The block-data-name shall be included in the end-block-data-stmt only if it was provided in the
block-data-stmt and, if included, shall be identical to the block-data-name in the block-data-stmt .

C1116 (R1120) A block-data specification-part shall contain only definitions of derived-type definitions and
ASYNCHRONOUS, BIND, COMMON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT, INTRIN-
SIC, PARAMETER, POINTER, SAVE, TARGET, USE, VOLATILE, and type declaration statements.

C1117 (R1120) A type declaration statement in a block-data specification-part shall not contain ALLOCA-
TABLE, EXTERNAL, or BIND attribute specifiers.

NOTE 11.14
For explanatory information about the uses for the block-data-name, see subclause C.8.1.

2 If an object in a named common block is initially defined, all storage units in the common block storage sequence
shall be specified even if they are not all initially defined. More than one named common block may have objects
initially defined in a single block data program unit.

NOTE 11.15
In the example

BLOCK DATA INIT
REAL A, B, C, D, E, F
COMMON /BLOCK1/ A, B, C, D
DATA A /1.2/, C /2.3/
COMMON /BLOCK2/ E, F
DATA F /6.5/

END BLOCK DATA INIT

common blocks BLOCK1 and BLOCK2 both have objects that are being initialized in a single block data
program unit. B, D, and E are not initialized but they need to be specified as part of the common blocks.

3 Only an object in a named common block may be initially defined in a block data program unit.

NOTE 11.16
Objects associated with an object in a common block are considered to be in that common block.

4 The same named common block shall not be specified in more than one block data program unit in a program.

5 There shall not be more than one unnamed block data program unit in a program.

NOTE 11.17
An example of a block data program unit is:

BLOCK DATA WORK
COMMON /WRKCOM/ A, B, C (10, 10)
REAL :: A, B, C
DATA A /1.0/, B /2.0/, C /100 * 0.0/

END BLOCK DATA WORK
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12 Procedures

12.1 Concepts

1 The concept of a procedure was introduced in 2.2.3. This clause contains a complete description of procedures.
The actions specified by a procedure are performed when the procedure is invoked by execution of a reference to
it.

2 The sequence of actions encapsulated by a procedure has access to entities in the invoking scoping unit by way of
argument association (12.5.2). A name that appears as a dummy-arg-name in the SUBROUTINE, FUNCTION,
or ENTRY statement in the declaration of a procedure (R1235) is a dummy argument. Dummy arguments are
also specified for intrinsic procedures and procedures in intrinsic modules in Clauses 13, 14, and 15.

3 The entities in the invoking scoping unit are specified by actual arguments (R1223).

4 A procedure may also have access to entities in other scoping units, not necessarily the invoking scoping unit,
by use association (16.5.1.3), host association (16.5.1.4), storage association (16.5.3), or by reference to external
procedures (5.3.9).

12.2 Procedure classifications

12.2.1 Procedure classification by reference

1 The definition of a procedure specifies it to be a function or a subroutine. A reference to a function either appears
explicitly as a primary within an expression, or is implied by a defined operation (7.1.6) within an expression. A
reference to a subroutine is a CALL statement, a defined assignment statement (7.2.1.4), the appearance of an
object processed by defined input/output (9.6.4.8) in an input/output list, or finalization (4.5.6).

2 A procedure is classified as elemental if it is a procedure that may be referenced elementally (12.8).

12.2.2 Procedure classification by means of definition

12.2.2.1 Intrinsic procedures

1 A procedure that is provided as an inherent part of the processor is an intrinsic procedure.

12.2.2.2 External, internal, and module procedures

1 An external procedure is a procedure that is defined by an external subprogram or by a means other than Fortran.

2 An internal procedure is a procedure that is defined by an internal subprogram. Internal subprograms may
appear in the main program, in an external subprogram, or in a module subprogram. Internal subprograms shall
not appear in other internal subprograms. Internal subprograms are the same as external subprograms except
that the name of the internal procedure is not a global identifier, an internal subprogram shall not contain an ENTRY

statement, and the internal subprogram has access to host entities by host association.

3 A module procedure is a procedure that is defined by a module subprogram.

4 A subprogram defines a procedure for the SUBROUTINE or FUNCTION statement. If the subprogram has one or

more ENTRY statements, it also defines a procedure for each of them.
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12.2.2.3 Dummy procedures

1 A dummy argument that is specified to be a procedure or appears as the procedure designator in a procedure
reference is a dummy procedure. A dummy procedure with the POINTER attribute is a dummy procedure
pointer.

12.2.2.4 Procedure pointers

1 A procedure pointer is a procedure that has the EXTERNAL and POINTER attributes; it may be pointer
associated with an external procedure, an internal procedure, an intrinsic procedure, a module procedure, or a
dummy procedure that is not a procedure pointer.

12.2.2.5 Statement functions

1 A function that is defined by a single statement is a statement function (12.6.4).

12.3 Characteristics

12.3.1 Characteristics of procedures

1 The characteristics of a procedure are the classification of the procedure as a function or subroutine, whether it
is pure, whether it is elemental, whether it has the BIND attribute, the characteristics of its dummy arguments,
and the characteristics of its result value if it is a function.

12.3.2 Characteristics of dummy arguments

12.3.2.1 General

1 Each dummy argument has the characteristic that it is a dummy data object, a dummy procedure, or an asterisk

(alternate return indicator).

12.3.2.2 Characteristics of dummy data objects

1 The characteristics of a dummy data object are its type, its type parameters (if any), its shape, its corank, its
codimensions, its intent (5.3.10, 5.4.9), whether it is optional (5.3.12, 5.4.10), whether it is allocatable (5.3.3),
whether it has the ASYNCHRONOUS (5.3.4), CONTIGUOUS (5.3.7), VALUE (5.3.18), or VOLATILE (5.3.19)
attributes, whether it is polymorphic, and whether it is a pointer (5.3.14, 5.4.12) or a target (5.3.17, 5.4.15). If
a type parameter of an object or a bound of an array is not a constant expression, the exact dependence on the
entities in the expression is a characteristic. If a shape, size, or type parameter is assumed or deferred, it is a
characteristic.

12.3.2.3 Characteristics of dummy procedures

1 The characteristics of a dummy procedure are the explicitness of its interface (12.4.2), its characteristics as a
procedure if the interface is explicit, whether it is a pointer, and whether it is optional (5.3.12, 5.4.10).

12.3.2.4 Characteristics of asterisk dummy arguments

1 An asterisk as a dummy argument has no characteristics.

12.3.3 Characteristics of function results

1 The characteristics of a function result are its type, type parameters (if any), rank, whether it is polymorphic,
whether it is allocatable, whether it is a pointer, whether it has the CONTIGUOUS attribute, and whether it is a
procedure pointer. If a function result is an array that is not allocatable or a pointer, its shape is a characteristic.
If a type parameter of a function result or a bound of a function result array is not a constant expression, the
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exact dependence on the entities in the expression is a characteristic. If type parameters of a function result are
deferred, which parameters are deferred is a characteristic. If the length of a character function result is assumed, this is

a characteristic.

12.4 Procedure interface

12.4.1 Interface and abstract interface

1 The interface of a procedure determines the forms of reference through which it may be invoked. The procedure’s
interface consists of its name, binding label, generic identifiers, characteristics, and the names of its dummy
arguments. The characteristics and binding label of a procedure are fixed, but the remainder of the interface
may differ in different scoping units, except that for a separate module procedure body (12.6.2.5), the dummy
argument names and whether it is recursive shall be the same as in its corresponding separate interface body
(12.4.3.2).

2 An abstract interface is a set of procedure characteristics with the dummy argument names.

12.4.2 Implicit and explicit interfaces

12.4.2.1 Interfaces and scoping units

1 If a procedure is accessible in a scoping unit, its interface is either explicit or implicit in that scoping unit. The
interface of an internal procedure, module procedure, or intrinsic procedure is always explicit in such a scoping
unit. The interface of a subroutine or a function with a separate result name is explicit within the subprogram
that defines it. The interface of a statement function is always implicit. The interface of an external procedure or dummy
procedure is explicit in a scoping unit other than its own if an interface body (12.4.3.2) for the procedure is
accessible, and implicit otherwise.

NOTE 12.1
For example, the subroutine LLS of C.8.3.5 has an explicit interface.

12.4.2.2 Explicit interface

1 A procedure other than a statement function shall have an explicit interface if it is referenced and

(1) a reference to the procedure appears

(a) with an argument keyword (12.5.2), or
(b) in a context that requires it to be pure,

(2) the procedure has a dummy argument that

(a) has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET, VALUE,
or VOLATILE attribute,

(b) is an assumed-shape array,
(c) is a coarray,
(d) is of a parameterized derived type, or
(e) is polymorphic,

(3) the procedure has a result that

(a) is an array,
(b) is a pointer or is allocatable, or
(c) has a nonassumed type parameter value that is not a constant expression,

(4) the procedure is elemental, or
(5) the procedure has the BIND attribute.
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12.4.3 Specification of the procedure interface

12.4.3.1 General

1 The interface for an internal, external, module, or dummy procedure is specified by a FUNCTION, SUBROU-
TINE, or ENTRY statement and by specification statements for the dummy arguments and the result of a function.
These statements may appear in the procedure definition, in an interface body, or both, except that the ENTRY

statement shall not appear in an interface body.

NOTE 12.2
An interface body cannot be used to describe the interface of an internal procedure, a module procedure
that is not a separate module procedure, or an intrinsic procedure because the interfaces of such procedures
are already explicit. However, the name of a procedure may appear in a PROCEDURE statement in an
interface block (12.4.3.2).

12.4.3.2 Interface block

R1201 interface-block is interface-stmt
[ interface-specification ] ...
end-interface-stmt

R1202 interface-specification is interface-body
or procedure-stmt

R1203 interface-stmt is INTERFACE [ generic-spec ]
or ABSTRACT INTERFACE

R1204 end-interface-stmt is END INTERFACE [ generic-spec ]

R1205 interface-body is function-stmt
[ specification-part ]
end-function-stmt

or subroutine-stmt
[ specification-part ]
end-subroutine-stmt

R1206 procedure-stmt is [ MODULE ] PROCEDURE [ :: ] procedure-name-list

R1207 generic-spec is generic-name
or OPERATOR ( defined-operator )
or ASSIGNMENT ( = )
or defined-io-generic-spec

R1208 defined-io-generic-spec is READ (FORMATTED)
or READ (UNFORMATTED)
or WRITE (FORMATTED)
or WRITE (UNFORMATTED)

C1201 (R1201) An interface-block in a subprogram shall not contain an interface-body for a procedure defined
by that subprogram.

C1202 (R1201) If the end-interface-stmt includes generic-name, the interface-stmt shall specify the same generic-
name. If the end-interface-stmt includes ASSIGNMENT(=), the interface-stmt shall specify ASSIGN-
MENT(=). If the end-interface-stmt includes defined-io-generic-spec, the interface-stmt shall specify
the same defined-io-generic-spec. If the end-interface-stmt includes OPERATOR(defined-operator), the
interface-stmt shall specify the same defined-operator . If one defined-operator is .LT., .LE., .GT., .GE.,
.EQ., or .NE., the other is permitted to be the corresponding operator <, <=, >, >=, ==, or /=.
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C1203 (R1203) If the interface-stmt is ABSTRACT INTERFACE, then the function-name in the function-stmt
or the subroutine-name in the subroutine-stmt shall not be the same as a keyword that specifies an
intrinsic type.

C1204 (R1202) A procedure-stmt is allowed only in an interface block that has a generic-spec.

C1205 (R1205) An interface-body of a pure procedure shall specify the intents of all dummy arguments except
pointer, alternate return, and procedure arguments.

C1206 (R1205) An interface-body shall not contain a data-stmt , format-stmt , entry-stmt , or stmt-function-stmt.

C1207 (R1206) A procedure-name shall be a nonintrinsic procedure that has an explicit interface.

C1208 (R1206) If MODULE appears in a procedure-stmt , each procedure-name in that statement shall be ac-
cessible as a module procedure.

C1209 (R1206) A procedure-name shall not specify a procedure that is specified previously in any procedure-stmt
in any accessible interface with the same generic identifier.

1 An external or module subprogram specifies a specific interface for each procedure defined in that subprogram.

2 An interface block introduced by ABSTRACT INTERFACE is an abstract interface block. An interface body
in an abstract interface block specifies an abstract interface. An interface block with a generic specification is
a generic interface block. An interface block with neither ABSTRACT nor a generic specification is a specific
interface block.

3 The name of the entity declared by an interface body is the function-name in the function-stmt or the subroutine-
name in the subroutine-stmt that begins the interface body.

4 A separate interface body is an interface body whose initial statement contains the keyword MODULE. It specifies
the interface for a separate module procedure (12.6.2.5). A separate module procedure is accessible by use
association if and only if its interface body is declared in the specification part of a module and is public. If
a corresponding (12.6.2.5) separate module procedure is not defined, the interface may be used to specify an
explicit specific interface but the procedure shall not be used in any other way.

5 An interface body in a generic or specific interface block specifies the EXTERNAL attribute and an explicit
specific interface for an external procedure or a dummy procedure. If the name of the declared procedure is that
of a dummy argument in the subprogram containing the interface body, the procedure is a dummy procedure;
otherwise, it is an external procedure.

6 An interface body specifies all of the characteristics of the explicit specific interface or abstract interface. The
specification part of an interface body may specify attributes or define values for data entities that do not
determine characteristics of the procedure. Such specifications have no effect.

7 If an explicit specific interface for an external procedure is specified by an interface body or a procedure declaration
statement (12.4.3.6), the characteristics shall be consistent with those specified in the procedure definition, except
that the interface may specify a procedure that is not pure if the procedure is defined to be pure. An interface

for a procedure defined by an ENTRY statement may be specified by using the entry name as the procedure name in the interface

body. If an external procedure does not exist in the program, an interface body for it may be used to specify an
explicit specific interface but the procedure shall not be used in any other way. A procedure shall not have more
than one explicit specific interface in a given scoping unit.

NOTE 12.3
The dummy argument names in an interface body may be different from the corresponding dummy argument
names in the procedure definition because the name of a dummy argument is not a characteristic.
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NOTE 12.4
An example of a specific interface block is:

INTERFACE
SUBROUTINE EXT1 (X, Y, Z)

REAL, DIMENSION (100, 100) :: X, Y, Z
END SUBROUTINE EXT1
SUBROUTINE EXT2 (X, Z)

REAL X
COMPLEX (KIND = 4) Z (2000)

END SUBROUTINE EXT2
FUNCTION EXT3 (P, Q)

LOGICAL EXT3
INTEGER P (1000)
LOGICAL Q (1000)

END FUNCTION EXT3
END INTERFACE

This interface block specifies explicit interfaces for the three external procedures EXT1, EXT2, and EXT3.
Invocations of these procedures may use argument keywords (12.5.2); for example:

PRINT *, EXT3 (Q = P_MASK (N+1 : N+1000), P = ACTUAL_P)

12.4.3.3 IMPORT statement

R1209 import-stmt is IMPORT [[ :: ] import-name-list ]

C1210 (R1209) The IMPORT statement is allowed only in an interface-body that is not a module procedure
interface body.

C1211 (R1209) Each import-name shall be the name of an entity in the host scoping unit.

1 The IMPORT statement specifies that the named entities from the host scoping unit are accessible in the interface
body by host association. An entity that is imported in this manner and is defined in the host scoping unit shall be
explicitly declared prior to the interface body. The name of an entity made accessible by an IMPORT statement
shall not appear in any of the contexts described in 16.5.1.4 that cause the host entity of that name to be
inaccessible.

2 Within an interface body, if an IMPORT statement with no import-name-list appears, each host entity not named
in an IMPORT statement also is made accessible by host association if its name does not appear in any of the
contexts described in 16.5.1.4 that cause the host entity of that name to be inaccessible. If an entity that is
made accessible by this means is accessed by host association and is defined in the host scoping unit, it shall be
explicitly declared prior to the interface body.

NOTE 12.5
The IMPORT statement can be used to allow module procedures to have dummy arguments that are
procedures with assumed-shape arguments of an opaque type. For example:

MODULE M
TYPE T
PRIVATE ! T is an opaque type
...

END TYPE
CONTAINS
SUBROUTINE PROCESS(X,Y,RESULT,MONITOR)
TYPE(T),INTENT(IN) :: X(:,:),Y(:,:)
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NOTE 12.5 (cont.)

TYPE(T),INTENT(OUT) :: RESULT(:,:)
INTERFACE
SUBROUTINE MONITOR(ITERATION_NUMBER,CURRENT_ESTIMATE)
IMPORT T
INTEGER,INTENT(IN) :: ITERATION_NUMBER
TYPE(T),INTENT(IN) :: CURRENT_ESTIMATE(:,:)

END SUBROUTINE
END INTERFACE
...

END SUBROUTINE
END MODULE

The MONITOR dummy procedure requires an explicit interface because it has an assumed-shape array
argument, but TYPE(T) would not be available inside the interface body without the IMPORT statement.

12.4.3.4 Generic interfaces

12.4.3.4.1 Generic identifiers

1 A generic interface block specifies a generic interface for each of the procedures in the interface block. The
PROCEDURE statement lists procedure pointers, external procedures, dummy procedures, or module procedures
that have this generic interface. A generic interface is always explicit.

2 The generic-spec in an interface-stmt is a generic identifier for all the procedures in the interface block. The
rules specifying how any two procedures with the same generic identifier shall differ are given in 12.4.3.4.5. They
ensure that any generic invocation applies to at most one specific procedure.

3 A generic name is a generic identifier that refers to all of the procedure names in the interface block. A generic
name may be the same as any one of the procedure names in the interface block, or the same as any accessible
generic name.

4 A generic name may be the same as a derived-type name, in which case all of the procedures in the interface
block shall be functions.

5 An interface-stmt having a defined-io-generic-spec is an interface for a defined input/output procedure (9.6.4.8).

NOTE 12.6
An example of a generic procedure interface is:

INTERFACE SWITCH
SUBROUTINE INT_SWITCH (X, Y)

INTEGER, INTENT (INOUT) :: X, Y
END SUBROUTINE INT_SWITCH
SUBROUTINE REAL_SWITCH (X, Y)

REAL, INTENT (INOUT) :: X, Y
END SUBROUTINE REAL_SWITCH
SUBROUTINE COMPLEX_SWITCH (X, Y)

COMPLEX, INTENT (INOUT) :: X, Y
END SUBROUTINE COMPLEX_SWITCH

END INTERFACE SWITCH

Any of these three subroutines (INT SWITCH, REAL SWITCH, COMPLEX SWITCH) may be referenced
with the generic name SWITCH, as well as by its specific name. For example, a reference to INT SWITCH
could take the form:
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NOTE 12.6 (cont.)

CALL SWITCH (MAX_VAL, LOC_VAL) ! MAX_VAL and LOC_VAL are of type INTEGER

12.4.3.4.2 Defined operations

1 If OPERATOR is specified in a generic specification, all of the procedures specified in the generic interface shall
be functions that may be referenced as defined operations (7.1.6, 12.5). In the case of functions of two arguments,
infix binary operator notation is implied. In the case of functions of one argument, prefix operator notation is
implied. OPERATOR shall not be specified for functions with no arguments or for functions with more than two
arguments. The dummy arguments shall be nonoptional dummy data objects and shall be specified with INTENT
(IN). The function result shall not have assumed character length. If the operator is an intrinsic-operator (R309), the
number of function arguments shall be consistent with the intrinsic uses of that operator, and the types, kind
type parameters, or ranks of the dummy arguments shall differ from those required for the intrinsic operation
(7.1.5).

2 A defined operation is treated as a reference to the function. For a unary defined operation, the operand
corresponds to the function’s dummy argument; for a binary operation, the left-hand operand corresponds to the
first dummy argument of the function and the right-hand operand corresponds to the second dummy argument.
All restrictions and constraints that apply to actual arguments in a reference to the function also apply to the
corresponding operands in the expression as if they were used as actual arguments.

3 A given defined operator may, as with generic names, apply to more than one function, in which case it is generic
in exact analogy to generic procedure names. For intrinsic operator symbols, the generic properties include the
intrinsic operations they represent. Because both forms of each relational operator have the same interpretation
(7.1.6.2), extending one form (such as <=) has the effect of defining both forms (<= and .LE.).

NOTE 12.7
An example of the use of the OPERATOR generic specification is:

INTERFACE OPERATOR ( * )
FUNCTION BOOLEAN_AND (B1, B2)

LOGICAL, INTENT (IN) :: B1 (:), B2 (SIZE (B1))
LOGICAL :: BOOLEAN_AND (SIZE (B1))

END FUNCTION BOOLEAN_AND
END INTERFACE OPERATOR ( * )

This allows, for example

SENSOR (1:N) * ACTION (1:N)

as an alternative to the function call

BOOLEAN_AND (SENSOR (1:N), ACTION (1:N)) ! SENSOR and ACTION are
! of type LOGICAL

12.4.3.4.3 Defined assignments

1 If ASSIGNMENT ( = ) is specified in a generic specification, all the procedures in the generic interface shall be
subroutines that may be referenced as defined assignments (7.2.1.4). Defined assignment may, as with generic
names, apply to more than one subroutine, in which case it is generic in exact analogy to generic procedure
names.

2 Each of these subroutines shall have exactly two dummy arguments. The dummy arguments shall be nonoptional
dummy data objects. The first argument shall have INTENT (OUT) or INTENT (INOUT) and the second
argument shall have INTENT (IN). Either the second argument shall be an array whose rank differs from that of
the first argument, the declared types and kind type parameters of the arguments shall not conform as specified
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in Table 7.10, or the first argument shall be of derived type. A defined assignment is treated as a reference to the
subroutine, with the left-hand side as the first argument and the right-hand side enclosed in parentheses as the
second argument. All restrictions and constraints that apply to actual arguments in a reference to the subroutine
also apply to the left-hand-side and to the right-hand-side enclosed in parentheses as if they were used as actual
arguments. The ASSIGNMENT generic specification specifies that assignment is extended or redefined.

NOTE 12.8
An example of the use of the ASSIGNMENT generic specification is:

INTERFACE ASSIGNMENT ( = )

SUBROUTINE LOGICAL_TO_NUMERIC (N, B)
INTEGER, INTENT (OUT) :: N
LOGICAL, INTENT (IN) :: B

END SUBROUTINE LOGICAL_TO_NUMERIC
SUBROUTINE CHAR_TO_STRING (S, C)

USE STRING_MODULE ! Contains definition of type STRING
TYPE (STRING), INTENT (OUT) :: S ! A variable-length string
CHARACTER (*), INTENT (IN) :: C

END SUBROUTINE CHAR_TO_STRING
END INTERFACE ASSIGNMENT ( = )

Example assignments are:

KOUNT = SENSOR (J) ! CALL LOGICAL_TO_NUMERIC (KOUNT, (SENSOR (J)))
NOTE = ’89AB’ ! CALL CHAR_TO_STRING (NOTE, (’89AB’))

NOTE 12.9
A procedure whose second dummy argument has the ALLOCATABLE or POINTER attribute cannot be
accessed via defined assignment, even if it given the ASSIGNMENT ( = ) generic identifier. This is because
the actual argument associated with that dummy argument is the right-hand side of the assignment enclosed
in parentheses, which makes the actual argument an expression that does not have the ALLOCATABLE,
POINTER, or TARGET attribute.

12.4.3.4.4 Defined input/output procedure interfaces

1 All of the procedures specified in an interface block for a defined input/output procedure shall be subroutines
that have interfaces as described in 9.6.4.8.3.

12.4.3.4.5 Restrictions on generic declarations

1 This subclause contains the rules that shall be satisfied by every pair of specific procedures that have the same
generic identifier within a scoping unit. If a generic procedure name is accessed from a module, the rules apply
to all the specific versions even if some of them are inaccessible by their specific names.

NOTE 12.10
In most scoping units, the possible sources of procedures with a particular generic identifier are the accessible
interface blocks and the generic bindings other than names for the accessible objects in that scoping unit.
In a type definition, they are the generic bindings, including those from a parent type.

2 A dummy argument is type, kind, and rank compatible, or TKR compatible, with another dummy argument if
the first is type compatible with the second, the kind type parameters of the first have the same values as the
corresponding kind type parameters of the second, and both have the same rank.

3 Two dummy arguments are distinguishable if
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• one is a procedure and the other is a data object,
• they are both data objects or known to be functions, and neither is TKR compatible with the other,
• one has the ALLOCATABLE attribute and the other has the POINTER attribute, or
• one is a function with nonzero rank and the other is not known to be a function.

C1212 Within a scoping unit, if two procedures have the same generic operator and the same number of argu-
ments or both define assignment, one shall have a dummy argument that corresponds by position in the
argument list to a dummy argument of the other that is distinguishable from it.

C1213 Within a scoping unit, if two procedures have the same defined-io-generic-spec (12.4.3.2), they shall be
distinguishable.

C1214 Within a scoping unit, two procedures that have the same generic name shall both be subroutines or
both be functions, and

(1) there is a non-passed-object dummy data object in one or the other of them such that

(a) the number of dummy data objects in one that are nonoptional, are not passed-object, and
with which that dummy data object is TKR compatible, possibly including that dummy
data object itself,

exceeds

(b) the number of non-passed-object dummy data objects, both optional and nonoptional, in
the other that are not distinguishable from that dummy data object,

(2) both have passed-object dummy arguments and the passed-object dummy arguments are distin-
guishable, or

(3) at least one of them shall have both

(a) a nonoptional non-passed-object dummy argument at an effective position such that either
the other procedure has no dummy argument at that effective position or the dummy argu-
ment at that position is distinguishable from it, and

(b) a nonoptional non-passed-object dummy argument whose name is such that either the other
procedure has no dummy argument with that name or the dummy argument with that name
is distinguishable from it.

and the dummy argument that disambiguates by position shall either be the same as or occur
earlier in the argument list than the one that disambiguates by name.

4 The effective position of a dummy argument is its position in the argument list after any passed-object dummy
argument has been removed.

5 Within a scoping unit, if a generic name is the same as the generic name of an intrinsic procedure, the intrinsic
procedure is not accessible by its generic name if the procedures in the interface and the intrinsic procedure are
not all functions or not all subroutines. If a generic invocation applies to both a specific procedure from an
interface and an accessible intrinsic procedure, it is the specific procedure from the interface that is referenced.

NOTE 12.11
An extensive explanation of the application of these rules is in C.9.6.

12.4.3.5 EXTERNAL statement

1 An EXTERNAL statement specifies the EXTERNAL attribute (5.3.9) for a list of names.

R1210 external-stmt is EXTERNAL [ :: ] external-name-list

2 The appearance of the name of a block data program unit in an EXTERNAL statement confirms that the block
data program unit is a part of the program.
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NOTE 12.12
For explanatory information on potential portability problems with external procedures, see subclause C.9.1.

NOTE 12.13
An example of an EXTERNAL statement is:

EXTERNAL FOCUS

12.4.3.6 Procedure declaration statement

1 A procedure declaration statement declares procedure pointers, dummy procedures, and external procedures. It
specifies the EXTERNAL attribute (5.3.9) for all entities in the proc-decl-list.

R1211 procedure-declaration-stmt is PROCEDURE ( [ proc-interface ] )
[ [ , proc-attr-spec ] ... :: ] proc-decl-list

R1212 proc-interface is interface-name
or declaration-type-spec

R1213 proc-attr-spec is access-spec
or proc-language-binding-spec
or INTENT ( intent-spec )
or OPTIONAL
or POINTER
or SAVE

R1214 proc-decl is procedure-entity-name [ => proc-pointer-init ]

R1215 interface-name is name

R1216 proc-pointer-init is null-init
or initial-proc-target

R1217 initial-proc-target is procedure-name

C1215 (R1215) The name shall be the name of an abstract interface or of a procedure that has an explicit
interface. If name is declared by a procedure-declaration-stmt it shall be previously declared. If name
denotes an intrinsic procedure it shall be one that is listed in 13.6 and not marked with a bullet (•).

C1216 (R1215) The name shall not be the same as a keyword that specifies an intrinsic type.

C1217 (R1211) If a proc-interface describes an elemental procedure, each procedure-entity-name shall specify an
external procedure.

C1218 (R1214) If => appears in proc-decl , the procedure entity shall have the POINTER attribute.

C1219 (R1217) The procedure-name shall be the name of a nonelemental external or module procedure, or a
specific intrinsic function listed in 13.6 and not marked with a bullet (•).

C1220 (R1211) If proc-language-binding-spec with a NAME= is specified, then proc-decl-list shall contain exactly
one proc-decl , which shall neither have the POINTER attribute nor be a dummy procedure.

C1221 (R1211) If proc-language-binding-spec is specified, the proc-interface shall appear, it shall be an interface-
name, and interface-name shall be declared with a proc-language-binding-spec.

2 If proc-interface appears and consists of interface-name, it specifies an explicit specific interface (12.4.3.2) for the
declared procedures or procedure pointers. The abstract interface (12.4) is that specified by the interface named
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by interface-name.

3 If proc-interface appears and consists of declaration-type-spec, it specifies that the declared procedures or proce-
dure pointers are functions having implicit interfaces and the specified result type. If a type is specified for an
external function, its function definition (12.6.2.2) shall specify the same result type and type parameters.

4 If proc-interface does not appear, the procedure declaration statement does not specify whether the declared
procedures or procedure pointers are subroutines or functions.

5 If a proc-attr-spec other than a proc-language-binding-spec appears, it specifies that the declared procedures or
procedure pointers have that attribute. These attributes are described in 5.3. If a proc-language-binding-spec with
NAME= appears, it specifies a binding label or its absence, as described in 15.5.2. A proc-language-binding-spec
without a NAME= is allowed, but is redundant with the proc-interface required by C1221.

6 If => appears in a proc-decl in a procedure-declaration-stmt it specifies the initial association status of the
corresponding procedure entity, and implies the SAVE attribute, which may be confirmed by explicit specification.
If => null-init appears, the procedure entity is initially disassociated. If => initial-proc-target appears, the
procedure entity is initially associated with the target.

7 If procedure-entity-name has an explicit interface, its characteristics shall be the same as initial-proc-target except
that initial-proc-target may be pure even if procedure-entity-name is not pure and initial-proc-target may be an
elemental intrinsic procedure.

8 If the characteristics of procedure-entity-name or initial-proc-target are such that an explicit interface is required,
both procedure-entity-name and initial-proc-target shall have an explicit interface.

9 If procedure-entity-name has an implicit interface and is explicitly typed or referenced as a function, initial-proc-
target shall be a function. If procedure-entity-name has an implicit interface and is referenced as a subroutine,
initial-proc-target shall be a subroutine.

10 If initial-proc-target and procedure-entity-name are functions, their results shall have the same characteristics.

NOTE 12.14
In contrast to the EXTERNAL statement, it is not possible to use the procedure declaration statement to
identify a BLOCK DATA subprogram.

NOTE 12.15
The following code illustrates procedure declaration statements. Note 7.47 illustrates the use of the P and
BESSEL defined by this code.

ABSTRACT INTERFACE
FUNCTION REAL_FUNC (X)
REAL, INTENT (IN) :: X
REAL :: REAL_FUNC

END FUNCTION REAL_FUNC
END INTERFACE

INTERFACE
SUBROUTINE SUB (X)
REAL, INTENT (IN) :: X

END SUBROUTINE SUB
END INTERFACE

!-- Some external or dummy procedures with explicit interface.
PROCEDURE (REAL_FUNC) :: BESSEL, GFUN
PROCEDURE (SUB) :: PRINT_REAL
!-- Some procedure pointers with explicit interface,
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NOTE 12.15 (cont.)

!-- one initialized to NULL().
PROCEDURE (REAL_FUNC), POINTER :: P, R => NULL()
PROCEDURE (REAL_FUNC), POINTER :: PTR_TO_GFUN
!-- A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE

PROCEDURE (REAL_FUNC), POINTER :: COMPONENT
END TYPE STRUCT_TYPE
!-- ... and a variable of that type.
TYPE(STRUCT_TYPE) :: STRUCT
!-- An external or dummy function with implicit interface
PROCEDURE (REAL) :: PSI

12.4.3.7 INTRINSIC statement

1 An INTRINSIC statement specifies the INTRINSIC attribute (5.3.11) for a list of names.

R1218 intrinsic-stmt is INTRINSIC [ :: ] intrinsic-procedure-name-list

C1222 (R1218) Each intrinsic-procedure-name shall be the name of an intrinsic procedure.

NOTE 12.16
A name shall not be explicitly specified to have both the EXTERNAL and INTRINSIC attributes in the
same scoping unit.

12.4.3.8 Implicit interface specification

1 In a scoping unit where the interface of a function is implicit, the type and type parameters of the function result
are specified by an implicit or explicit type specification of the function name. The type, type parameters, and
shape of dummy arguments of a procedure invoked from a scoping unit where the interface of the procedure is
implicit shall be such that the actual arguments are consistent with the characteristics of the dummy arguments.

12.5 Procedure reference

12.5.1 Syntax of a procedure reference

1 The form of a procedure reference is dependent on the interface of the procedure or procedure pointer, but is
independent of the means by which the procedure is defined. The forms of procedure references are as follows.

R1219 function-reference is procedure-designator ( [ actual-arg-spec-list ] )

C1223 (R1219) The procedure-designator shall designate a function.

C1224 (R1219) The actual-arg-spec-list shall not contain an alt-return-spec.

R1220 call-stmt is CALL procedure-designator [ ( [ actual-arg-spec-list ] ) ]

C1225 (R1220) The procedure-designator shall designate a subroutine.

R1221 procedure-designator is procedure-name
or proc-component-ref
or data-ref % binding-name

C1226 (R1221) A procedure-name shall be the name of a procedure or procedure pointer.

C1227 (R1221) A binding-name shall be a binding name (4.5.5) of the declared type of data-ref .
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C1228 (R1221) A data-ref shall not be a polymorphic subobject of a coindexed object.

C1229 (R1221) If data-ref is an array, the referenced type-bound procedure shall have the PASS attribute.

2 The data-ref in a procedure-designator shall not be an unallocated allocatable variable or a pointer that is not
associated.

3 Resolving references to type-bound procedures is described in 12.5.6.

4 A function may also be referenced as a defined operation (7.1.6). A subroutine may also be referenced as a defined
assignment (7.2.1.4, 7.2.1.5), by defined input/output (9.6.4.8), or by finalization (4.5.6).

NOTE 12.17
When resolving type-bound procedure references, constraints on the use of coindexed objects ensure that
the coindexed object (on the remote image) has the same dynamic type as the corresponding object on the
local image. Thus a processor can resolve the type-bound procedure using the coarray variable on its own
image and pass the coindexed object as the actual argument.

R1222 actual-arg-spec is [ keyword = ] actual-arg

R1223 actual-arg is expr
or variable
or procedure-name
or proc-component-ref
or alt-return-spec

R1224 alt-return-spec is * label

C1230 (R1222) The keyword = shall not appear if the interface of the procedure is implicit in the scoping unit.

C1231 (R1222) The keyword = shall not be omitted from an actual-arg-spec unless it has been omitted from
each preceding actual-arg-spec in the argument list.

C1232 (R1222) Each keyword shall be the name of a dummy argument in the explicit interface of the procedure.

C1233 (R1223) A nonintrinsic elemental procedure shall not be used as an actual argument.

C1234 (R1223) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a
specific intrinsic function listed in 13.6 and not marked with a bullet (•), or a procedure pointer.

C1235 (R1224) The label shall be the statement label of a branch target statement that appears in the same scoping unit as the

call-stmt .

C1236 An actual argument that is a coindexed object shall not have a pointer ultimate component.

NOTE 12.18
Examples of procedure reference using procedure pointers:

P => BESSEL
WRITE (*, *) P(2.5) !-- BESSEL(2.5)

S => PRINT_REAL
CALL S(3.14)

NOTE 12.19
An internal procedure cannot be invoked using a procedure pointer from either Fortran or C after the host
instance completes execution, because the pointer is then undefined. While the host instance is active,
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NOTE 12.19 (cont.)

however, the internal procedure may be invoked from outside of the host procedure scoping unit if that
internal procedure was passed as an actual argument or is the target of a procedure pointer.

Let us assume there is a procedure with the following interface that calculates
∫ b
a
f(x) dx.

INTERFACE
FUNCTION INTEGRATE(F, A, B) RESULT(INTEGRAL) BIND(C)

USE ISO_C_BINDING
INTERFACE

FUNCTION F(X) BIND(C) ! Integrand
USE ISO_C_BINDING
REAL(C_FLOAT), VALUE :: X
REAL(C_FLOAT) :: F

END FUNCTION
END INTERFACE
REAL(C_FLOAT), VALUE :: A, B ! Bounds
REAL(C_FLOAT) :: INTEGRAL

END FUNCTION INTEGRATE
END INTERFACE

This procedure can be called from Fortran or C, and could be written in either Fortran or C. The argument F
representing the mathematical function f(x) can be written as an internal procedure; this internal procedure
will have access to any host instance local variables necessary to actually calculate f(x). For example:

REAL FUNCTION MY_INTEGRATION(N, A, B) RESULT(INTEGRAL)
! Integrate f(x)=x^n over [a,b]
USE ISO_C_BINDING
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A, B

INTEGRAL = INTEGRATE(MY_F, REAL(A, C_FLOAT), REAL(B, C_FLOAT))
! This will call the internal function MY_F to calculate f(x).
! The above interface of INTEGRATE must be explicit and available.

CONTAINS

REAL(C_FLOAT) FUNCTION MY_F(X) BIND(C) ! Integrand
REAL(C_FLOAT), VALUE :: X
MY_F = X**N ! N is taken from the host instance of MY_INTEGRATION.

END FUNCTION

END FUNCTION MY_INTEGRATION

The function INTEGRATE shall not retain a function pointer to MY F and use it after INTEGRATE has
finished execution, because the host instance of MY F might no longer exist, making the pointer undefined.
If such a pointer is retained, then it can only be used to invoke MY F during the execution of the host
instance of MY INTEGRATION called from INTEGRATE.

12.5.2 Actual arguments, dummy arguments, and argument association

12.5.2.1 Argument correspondence

1 In either a subroutine reference or a function reference, the actual argument list identifies the correspondence
between the actual arguments and the dummy arguments of the procedure. This correspondence may be establi-
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shed either by keyword or by position. If an argument keyword appears, the actual argument corresponds to the
dummy argument whose name is the same as the argument keyword (using the dummy argument names from
the interface accessible in the scoping unit containing the procedure reference). In the absence of an argument
keyword, an actual argument corresponds to the dummy argument occupying the corresponding position in the
reduced dummy argument list; that is, the first actual argument corresponds to the first dummy argument in
the reduced list, the second actual argument corresponds to the second dummy argument in the reduced list,
etc. The reduced dummy argument list is either the full dummy argument list or, if there is a passed-object
dummy argument (4.5.4.5), the dummy argument list with the passed-object dummy argument omitted. Exactly
one actual argument shall correspond to each nonoptional dummy argument. At most one actual argument shall
correspond to each optional dummy argument. Each actual argument shall correspond to a dummy argument.

NOTE 12.20
For example, the procedure defined by

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE

FUNCTION FUNCT (X)
REAL FUNCT, X

END FUNCTION FUNCT
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT
...

may be invoked with

CALL SOLVE (FUN, SOL, PRINT = 6)

provided its interface is explicit; if the interface is specified by an interface block, the name of the last
argument shall be PRINT.

12.5.2.2 The passed-object dummy argument and argument correspondence

1 In a reference to a type-bound procedure, or a procedure pointer component, that has a passed-object dummy
argument (4.5.4.5), the data-ref of the function-reference or call-stmt corresponds, as an actual argument, with
the passed-object dummy argument.

12.5.2.3 Argument association

1 Except in references to intrinsic inquiry functions, a pointer actual argument that corresponds to a nonoptional
nonpointer dummy argument shall be pointer associated with a target.

2 If a nonpointer dummy argument without the VALUE attribute corresponds to a pointer actual argument that
is pointer associated with a target, the dummy argument becomes argument associated with that target.

3 If a present nonpointer dummy argument without the VALUE attribute corresponds to a nonpointer actual
argument it becomes argument associated with that actual argument.

4 A present dummy argument with the VALUE attribute becomes argument associated with a definable anonymous
data object whose initial value is the value of the actual argument.

5 A present pointer dummy argument that corresponds to a pointer actual argument becomes argument associated
with that actual argument. A present pointer dummy argument that does not correspond to a pointer actual
argument is not argument associated.

6 The entity that is argument associated with a dummy argument is called its effective argument.

7 The ultimate argument is the effective argument if the effective argument is not a dummy argument or a subobject
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of a dummy argument. If the effective argument is a dummy argument, the ultimate argument is the ultimate
argument of that dummy argument. If the effective argument is a subobject of a dummy argument, the ultimate
argument is the corresponding subobject of the ultimate argument of that dummy argument.

NOTE 12.21
For the sequence of subroutine calls

INTEGER :: X(100)
CALL SUBA (X)
...
SUBROUTINE SUBA(A)
INTEGER :: A(:)
CALL SUBB (A(1:5), A(5:1:-1))
...
SUBROUTINE SUBB(B, C)
INTEGER :: B(:), C(:)

the ultimate argument of B is X(1:5). The ultimate argument of C is X(5:1:-1) and this is not the same
object as the ultimate argument of B.

NOTE 12.22
Fortran argument association is usually similar to call by reference and call by value-result. If the VALUE
attribute is specified, the effect is as if the actual argument is assigned to a temporary, and the temporary is
then argument associated with the dummy argument. Subsequent changes to the value or definition status
of the dummy argument do not affect the actual argument. The actual mechanism by which this happens
is determined by the processor.

12.5.2.4 Ordinary dummy variables

1 The requirements in this subclause apply to actual arguments that correspond to nonallocatable nonpointer
dummy data objects.

2 The dummy argument shall be type compatible with the actual argument. If the actual argument is a polymorphic
coindexed object, the dummy argument shall not be polymorphic.

3 The type parameter values of the actual argument shall agree with the corresponding ones of the dummy argument
that are not assumed, except for the case of the character length parameter of a default character or character
with the C character kind (15.2.2) actual argument associated with a dummy argument that is not assumed
shape.

4 If a scalar dummy argument is default character or of type character with the C character kind, the length len
of the dummy argument shall be less than or equal to the length of the actual argument. The dummy argument
becomes associated with the leftmost len characters of the actual argument. If an array dummy argument is
default character or of type character with the C character kind and is not assumed shape, it becomes associated
with the leftmost characters of the actual argument element sequence (12.5.2.11).

5 The values of assumed type parameters of a dummy argument are assumed from the corresponding type para-
meters of the actual argument.

6 If the actual argument is a coindexed object with an allocatable ultimate component, the dummy argument shall
have the INTENT (IN) or the VALUE attribute.

NOTE 12.23
If the actual argument is a coindexed object, a processor that uses distributed memory might create a copy
on the executing image of the actual argument, including copies of any allocated allocatable subcomponents,
and associate the dummy argument with that copy. If necessary, on return from the procedure, the value
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NOTE 12.23 (cont.)

of the copy would be copied back to the actual argument.

7 Except in references to intrinsic inquiry functions, if the dummy argument is nonoptional and the actual argument
is allocatable, the corresponding actual argument shall be allocated.

8 If the dummy argument does not have the TARGET attribute, any pointers associated with the effective argument
do not become associated with the corresponding dummy argument on invocation of the procedure. If such a
dummy argument is used as an actual argument that corresponds to a dummy argument with the TARGET
attribute, whether any pointers associated with the original effective argument become associated with the dummy
argument with the TARGET attribute is processor dependent.

9 If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and either the effective
argument is simply contiguous or the dummy argument is a scalar or an assumed-shape array that does not have
the CONTIGUOUS attribute, and the effective argument has the TARGET attribute but is not a coindexed
object or an array section with a vector subscript then

• any pointers associated with the effective argument become associated with the corresponding dummy
argument on invocation of the procedure, and
• when execution of the procedure completes, any pointers that do not become undefined (16.5.2.5) and are

associated with the dummy argument remain associated with the effective argument.

10 If the dummy argument has the TARGET attribute and is an explicit-shape array, an assumed-shape array with
the CONTIGUOUS attribute, or an assumed-size array, and the effective argument has the TARGET attribute
but is not simply contiguous and is not an array section with a vector subscript then

• on invocation of the procedure, whether any pointers associated with the effective argument become asso-
ciated with the corresponding dummy argument is processor dependent, and
• when execution of the procedure completes, the pointer association status of any pointer that is pointer

associated with the dummy argument is processor dependent.

11 If the dummy argument has the TARGET attribute and the effective argument does not have the TARGET
attribute or is an array section with a vector subscript, any pointers associated with the dummy argument
become undefined when execution of the procedure completes.

12 If the dummy argument has the TARGET attribute and the VALUE attribute, any pointers associated with the
dummy argument become undefined when execution of the procedure completes.

13 If the actual argument is a coindexed scalar, the corresponding dummy argument shall be scalar. If the actual
argument is a noncoindexed scalar, the corresponding dummy argument shall be scalar unless the actual argument
is default character, of type character with the C character kind (15.2.2), or is an element or substring of an element
of an array that is not an assumed-shape, pointer, or polymorphic array. If the procedure is nonelemental and is
referenced by a generic name or as a defined operator or defined assignment, the ranks of the actual arguments
and corresponding dummy arguments shall agree.

14 If a dummy argument is an assumed-shape array, the rank of the actual argument shall be the same as the rank
of the dummy argument; the actual argument shall not be an assumed-size array (including an array element
designator or an array element substring designator).

15 Except when a procedure reference is elemental (12.8), each element of an array actual argument or of a sequence
in a sequence association (12.5.2.11) is associated with the element of the dummy array that has the same position
in array element order (6.5.3.2).

NOTE 12.24
For default character sequence associations, the interpretation of element is provided in 12.5.2.11.
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16 A scalar dummy argument of a nonelemental procedure shall correspond only to a scalar actual argument.

17 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be definable. If a
dummy argument has INTENT (OUT), the actual argument becomes undefined at the time the association is
established, except for direct components of an object of derived type for which default initialization has been
specified. If the dummy argument is not polymorphic and the type of the effective argument is an extension of
the type of the dummy argument, only the part of the effective argument that is of the same type as the dummy
argument becomes undefined.

18 If the actual argument is an array section having a vector subscript, the dummy argument is not definable and
shall not have the ASYNCHRONOUS, INTENT (OUT), INTENT (INOUT), or VOLATILE attributes.

NOTE 12.25
Argument intent specifications serve several purposes. See Note 5.17.

NOTE 12.26
For more explanatory information on targets as dummy arguments, see subclause C.9.4.

C1237 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute shall
not correspond to a dummy argument that has either the ASYNCHRONOUS or VOLATILE attribute.

C1238 (R1223) If an actual argument is a nonpointer array that has the ASYNCHRONOUS or VOLATILE
attribute but is not simply contiguous (6.5.4), and the corresponding dummy argument has either the
VOLATILE or ASYNCHRONOUS attribute, that dummy argument shall be an assumed-shape array
that does not have the CONTIGUOUS attribute.

C1239 (R1223) If an actual argument is an array pointer that has the ASYNCHRONOUS or VOLATILE
attribute but does not have the CONTIGUOUS attribute, and the corresponding dummy argument has
either the VOLATILE or ASYNCHRONOUS attribute, that dummy argument shall be an array pointer
or an assumed-shape array that does not have the CONTIGUOUS attribute.

NOTE 12.27
The constraints on an actual argument with the ASYNCHRONOUS or VOLATILE attribute that corres-
ponds to a dummy argument with either the ASYNCHRONOUS or VOLATILE attribute are designed to
avoid forcing a processor to use the so-called copy-in/copy-out argument passing mechanism. Making a copy
of an actual argument whose value is likely to change due to an asynchronous I/O operation completing or
in some unpredictable manner will cause the new value to be lost when a called procedure returns and the
copy-out overwrites the actual argument.

12.5.2.5 Allocatable and pointer dummy variables

1 The requirements in this subclause apply to actual arguments that correspond to either allocatable or pointer
dummy data objects.

2 The actual argument shall be polymorphic if and only if the associated dummy argument is polymorphic, and
either both the actual and dummy arguments shall be unlimited polymorphic, or the declared type of the actual
argument shall be the same as the declared type of the dummy argument.

NOTE 12.28
The dynamic type of a polymorphic allocatable or pointer dummy argument may change as a result of
execution of an ALLOCATE statement or pointer assignment in the subprogram. Because of this the
corresponding actual argument needs to be polymorphic and have a declared type that is the same as the
declared type of the dummy argument or an extension of that type. However, type compatibility requires
that the declared type of the dummy argument be the same as, or an extension of, the type of the actual
argument. Therefore, the dummy and actual arguments need to have the same declared type.
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NOTE 12.28 (cont.)

Dynamic type information is not maintained for a nonpolymorphic allocatable or pointer dummy argument.
However, allocating or pointer assigning such a dummy argument would require maintenance of this infor-
mation if the corresponding actual argument is polymorphic. Therefore, the corresponding actual argument
needs to be nonpolymorphic.

3 The rank of the actual argument shall be the same as that of the dummy argument. The type parameter values
of the actual argument shall agree with the corresponding ones of the dummy argument that are not assumed or
deferred.

4 The values of assumed type parameters of a dummy argument are assumed from the corresponding type para-
meters of its effective argument.

5 The actual argument shall have deferred the same type parameters as the dummy argument.

6 If the actual argument is a coindexed object, the dummy argument shall have the INTENT (IN) attribute.

12.5.2.6 Allocatable dummy variables

1 The requirements in this subclause apply to actual arguments that correspond to allocatable dummy data objects.

2 The actual argument shall be allocatable. It is permissible for the actual argument to have an allocation status
of unallocated.

3 The corank of the actual argument shall be the same as that of the dummy argument.

4 If the dummy argument does not have the TARGET attribute, any pointers associated with the actual argument
do not become associated with the corresponding dummy argument on invocation of the procedure. If such a
dummy argument is used as an actual argument that is associated with a dummy argument with the TARGET
attribute, whether any pointers associated with the original actual argument become associated with the dummy
argument with the TARGET attribute is processor dependent.

5 If the dummy argument has the TARGET attribute, does not have the INTENT (OUT) or VALUE attribute,
and the corresponding actual argument has the TARGET attribute then

• any pointers associated with the actual argument become associated with the corresponding dummy argu-
ment on invocation of the procedure, and
• when execution of the procedure completes, any pointers that do not become undefined (16.5.2.5) and are

associated with the dummy argument remain associated with the actual argument.

6 If a dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument shall be definable. If
a dummy argument has INTENT (OUT), an allocated actual argument is deallocated on procedure invocation
(6.7.3.2).

12.5.2.7 Pointer dummy variables

1 The requirements in this subclause apply to actual arguments that correspond to dummy data pointers.

C1240 The actual argument corresponding to a dummy pointer with the CONTIGUOUS attribute shall be
simply contiguous (6.5.4).

C1241 The actual argument corresponding to a dummy pointer shall not be a coindexed object.

2 If the dummy argument does not have the INTENT (IN), the actual argument shall be a pointer. Otherwise, the
actual argument shall be a pointer or a valid target for the dummy pointer in a pointer assignment statement. If
the actual argument is not a pointer, the dummy pointer becomes pointer associated with the actual argument.

3 The nondeferred type parameters and ranks shall agree.
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4 If the dummy argument has INTENT (OUT), the pointer association status of the actual argument becomes
undefined on invocation of the procedure.

5 If the dummy argument is nonoptional and the actual argument is allocatable, the actual argument shall be
allocated.

NOTE 12.29
For more explanatory information on pointers as dummy arguments, see subclause C.9.4.

12.5.2.8 Coarray dummy variables

1 If the dummy argument is a coarray, the corresponding actual argument shall be a coarray and shall have the
VOLATILE attribute if and only if the dummy argument has the VOLATILE attribute.

2 If the dummy argument is an array coarray that has the CONTIGUOUS attribute or is not of assumed shape,
the corresponding actual argument shall be simply contiguous.

NOTE 12.30

Consider the invocation of a procedure on a particular image. Each dummy coarray is associated with its
ultimate argument on the image. In addition, during this execution of the procedure, this image can access
the coarray corresponding to the ultimate argument on any other image. For example, consider

INTERFACE
SUBROUTINE SUB(X)

REAL :: X[*]
END SUBROUTINE SUB

END INTERFACE
...
REAL :: A(1000)[:]
...
CALL SUB(A(10))

During execution of this invocation of SUB, the executing image has access through the syntax X[P] to
A(10) on image P.

NOTE 12.31
Each invocation of a procedure with a nonallocatable coarray dummy argument establishes a dummy coarray
for the image with its own bounds and cobounds. During this execution of the procedure, this image may
use its own bounds and cobounds to access the coarray corresponding to the ultimate argument on any
other image. For example, consider

INTERFACE
SUBROUTINE SUB(X,N)

INTEGER :: N
REAL :: X(N,N)[N,*]

END SUBROUTINE SUB
END INTERFACE
...
REAL :: A(1000)[:]
...
CALL SUB(A,10)

During execution of this invocation of SUB, the executing image has access through the syntax X(1,2)[3,4]
to A(11) on the image with image index 33.
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NOTE 12.32
The requirements on an actual argument that corresponds to a dummy coarray that is not of assumed-
shape or has the CONTIGUOUS attribute are designed to avoid forcing a processor to use the so-called
copy-in/copy-out argument passing mechanism.

12.5.2.9 Actual arguments associated with dummy procedure entities

1 If the interface of a dummy procedure is explicit, its characteristics as a procedure (12.3.1) shall be the same as
those of its effective argument, except that a pure effective argument may be associated with a dummy argument
that is not pure and an elemental intrinsic actual procedure may be associated with a dummy procedure (which
cannot be elemental).

2 If the interface of a dummy procedure is implicit and either the dummy argument is explicitly typed or referenced
as a function, it shall not be referenced as a subroutine and any corresponding actual argument shall be a function,
function procedure pointer, or dummy procedure.

3 If the interface of a dummy procedure is implicit and a reference to it appears as a subroutine reference, any
corresponding actual argument shall be a subroutine, subroutine procedure pointer, or dummy procedure.

4 If a dummy argument is a dummy procedure without the POINTER attribute, its effective argument shall be an
external, internal, module, or dummy procedure, or a specific intrinsic procedure listed in 13.6 and not marked
with a bullet (•). If the specific name is also a generic name, only the specific procedure is associated with the
dummy argument.

5 If a dummy argument is a procedure pointer, the corresponding actual argument shall be a procedure pointer, a
reference to a function that returns a procedure pointer, a reference to the intrinsic function NULL, or a valid
target for the dummy pointer in a pointer assignment statement. If the actual argument is not a pointer, the
dummy argument shall have the INTENT (IN) and becomes pointer associated with the actual argument.

6 When the actual argument is a procedure, the host instance of the dummy argument is the host instance of the
actual argument (12.6.2.4).

7 If an external procedure name or a dummy procedure name is used as an actual argument, its interface shall be
explicit or it shall be explicitly declared to have the EXTERNAL attribute.

12.5.2.10 Actual arguments associated with alternate return indicators

1 If a dummy argument is an asterisk (12.6.2.3), the corresponding actual argument shall be an alternate return specifier (R1224).

12.5.2.11 Sequence association

1 An actual argument represents an element sequence if it is an array expression, an array element designator, a
default character scalar, or a scalar of type character with the C character kind (15.2.2). If the actual argument is
an array expression, the element sequence consists of the elements in array element order. If the actual argument
is an array element designator, the element sequence consists of that array element and each element that follows
it in array element order.

2 If the actual argument is default character or of type character with the C character kind, and is an array
expression, array element, or array element substring designator, the element sequence consists of the storage
units beginning with the first storage unit of the actual argument and continuing to the end of the array. The
storage units of an array element substring designator are viewed as array elements consisting of consecutive
groups of storage units having the character length of the dummy array.

3 If the actual argument is default character or of type character with the C character kind, and is a scalar that is
not an array element or array element substring designator, the element sequence consists of the storage units of
the actual argument.
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NOTE 12.33
Some of the elements in the element sequence may consist of storage units from different elements of the
original array.

4 An actual argument that represents an element sequence and corresponds to a dummy argument that is an array
is sequence associated with the dummy argument if the dummy argument is an explicit-shape or assumed-size
array. The rank and shape of the actual argument need not agree with the rank and shape of the dummy
argument, but the number of elements in the dummy argument shall not exceed the number of elements in the
element sequence of the actual argument. If the dummy argument is assumed-size, the number of elements in the
dummy argument is exactly the number of elements in the element sequence.

12.5.2.12 Argument presence and restrictions on arguments not present

1 A dummy argument or an entity that is host associated with a dummy argument is not present if the dummy
argument

• does not correspond to an actual argument,
• corresponds to an actual argument that is not present, or
• does not have the ALLOCATABLE or POINTER attribute, and corresponds to an actual argument that

– has the ALLOCATABLE attribute and is not allocated, or
– has the POINTER attribute and is disassociated.

2 Otherwise, it is present. A nonoptional dummy argument shall be present. If an optional nonpointer dummy
argument corresponds to a present pointer actual argument, the pointer association status of the actual argument
shall not be undefined.

3 An optional dummy argument that is not present is subject to the following restrictions.

(1) If it is a data object, it shall not be referenced or be defined. If it is of a type that has default
initialization, the initialization has no effect.

(2) It shall not be used as the data-target or proc-target of a pointer assignment.
(3) If it is a procedure or procedure pointer, it shall not be invoked.
(4) It shall not be supplied as an actual argument corresponding to a nonoptional dummy argument

other than as the argument of the intrinsic function PRESENT or as an argument of a function
reference that is a constant expression.

(5) A designator with it as the base object and with one or more subobject selectors shall not be supplied
as an actual argument.

(6) If it is an array, it shall not be supplied as an actual argument to an elemental procedure unless an
array of the same rank is supplied as an actual argument corresponding to a nonoptional dummy
argument of that elemental procedure.

(7) If it is a pointer, it shall not be allocated, deallocated, nullified, pointer-assigned, or supplied as an
actual argument corresponding to an optional nonpointer dummy argument.

(8) If it is allocatable, it shall not be allocated, deallocated, or supplied as an actual argument corres-
ponding to an optional nonallocatable dummy argument.

(9) If it has length type parameters, they shall not be the subject of an inquiry.
(10) It shall not be used as the selector in a SELECT TYPE or ASSOCIATE construct.
(11) It shall not be supplied as the data-ref in a procedure-designator .
(12) If shall not be supplied as the scalar-variable in a proc-component-ref .

4 Except as noted in the list above, it may be supplied as an actual argument corresponding to an optional dummy
argument, which is then also considered not to be present.
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12.5.2.13 Restrictions on entities associated with dummy arguments

1 While an entity is associated with a dummy argument, the following restrictions hold.

(1) Action that affects the allocation status of the entity or a subobject thereof shall be taken through
the dummy argument. Action that affects the value of the entity or any subobject of it shall be taken
only through the dummy argument unless

(a) the dummy argument has the POINTER attribute or
(b) the dummy argument has the TARGET attribute, the dummy argument does not have INTENT

(IN), the dummy argument is a scalar object or an assumed-shape array without the CONTI-
GUOUS attribute, and the actual argument is a target other than an array section with a
vector subscript.

NOTE 12.34
In

SUBROUTINE OUTER
REAL, POINTER :: A (:)
...
ALLOCATE (A (1:N))
...
CALL INNER (A)
...

CONTAINS
SUBROUTINE INNER (B)

REAL :: B (:)
...

END SUBROUTINE INNER
SUBROUTINE SET (C, D)

REAL, INTENT (OUT) :: C
REAL, INTENT (IN) :: D
C = D

END SUBROUTINE SET
END SUBROUTINE OUTER

an assignment statement such as

A (1) = 1.0

would not be permitted during the execution of INNER because this would be changing A without using
B, but statements such as

B (1) = 1.0

or

CALL SET (B (1), 1.0)

would be allowed. Similarly,

DEALLOCATE (A)

would not be allowed because this affects the allocation of B without using B. In this case,

DEALLOCATE (B)

also would not be permitted. If B were declared with the POINTER attribute, either of the statements
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NOTE 12.34 (cont.)

DEALLOCATE (A)

and

DEALLOCATE (B)

would be permitted, but not both.

NOTE 12.35
If there is a partial or complete overlap between the effective arguments of two different dummy arguments
of the same procedure and the dummy arguments have neither the POINTER nor TARGET attribute,
the overlapped portions shall not be defined, redefined, or become undefined during the execution of the
procedure. For example, in

CALL SUB (A (1:5), A (3:9))

A (3:5) shall not be defined, redefined, or become undefined through the first dummy argument because it
is part of the argument associated with the second dummy argument and shall not be defined, redefined,
or become undefined through the second dummy argument because it is part of the argument associated
with the first dummy argument. A (1:2) remains definable through the first dummy argument and A (6:9)
remains definable through the second dummy argument.

NOTE 12.36
This restriction applies equally to pointer targets. In

REAL, DIMENSION (10), TARGET :: A
REAL, DIMENSION (:), POINTER :: B, C
B => A (1:5)
C => A (3:9)
CALL SUB (B, C) ! The dummy arguments of SUB are neither pointers nor targets.

B (3:5) cannot be defined because it is part of the argument associated with the second dummy argument.
C (1:3) cannot be defined because it is part of the argument associated with the first dummy argument.
A (1:2) [which is B (1:2)] remains definable through the first dummy argument and A (6:9) [which is C (4:7)]
remains definable through the second dummy argument.

NOTE 12.37
Because a nonpointer dummy argument declared with INTENT (IN) shall not be used to change its effective
argument, its effective argument remains constant throughout the execution of the procedure.

(2) If the allocation status of the entity or a subobject thereof is affected through the dummy argument,
then at any time during the invocation and execution of the procedure, either before or after the
allocation or deallocation, it shall be referenced only through the dummy argument. If the value of
the entity or any subobject of it is affected through the dummy argument, then at any time during the
invocation and execution of the procedure, either before or after the definition, it may be referenced
only through that dummy argument unless

(a) the dummy argument has the POINTER attribute or
(b) the dummy argument has the TARGET attribute, the dummy argument does not have INTENT

(IN), the dummy argument is a scalar object or an assumed-shape array without the CONTI-
GUOUS attribute, and the actual argument is a target other than an array section with a
vector subscript.
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NOTE 12.38
In

MODULE DATA
REAL :: W, X, Y, Z

END MODULE DATA

PROGRAM MAIN
USE DATA

...
CALL INIT (X)

...
END PROGRAM MAIN
SUBROUTINE INIT (V)

USE DATA
...

READ (*, *) V
...

END SUBROUTINE INIT

variable X shall not be directly referenced at any time during the execution of INIT because it is being
defined through the dummy argument V. X may be (indirectly) referenced through V. W, Y, and Z may
be directly referenced. X may, of course, be directly referenced once execution of INIT is complete.

NOTE 12.39
The restrictions on entities associated with dummy arguments are intended to facilitate a variety of optimi-
zations in the translation of the subprogram, including implementations of argument association in which
the value of an actual argument that is neither a pointer nor a target is maintained in a register or in local
storage.

12.5.3 Function reference

1 A function is invoked during expression evaluation by a function-reference or by a defined operation (7.1.6).
When it is invoked, all actual argument expressions are evaluated, then the arguments are associated, and then
the function is executed. When execution of the function is complete, the value of the function result is available
for use in the expression that caused the function to be invoked. The characteristics of the function result (12.3.3)
are determined by the interface of the function. If a reference to an elemental function (12.8) is an elemental
reference, all array arguments shall have the same shape.

12.5.4 Subroutine reference

1 A subroutine is invoked by execution of a CALL statement, execution of a defined assignment statement (7.2.1.4),
defined input/output (9.6.4.8.2), or finalization(4.5.6). When a subroutine is invoked, all actual argument ex-
pressions are evaluated, then the arguments are associated, and then the subroutine is executed. When the
actions specified by the subroutine are completed, the execution of the CALL statement, the execution of the
defined assignment statement, the processing of an input or output list item, or finalization of an object is also
completed. If a CALL statement includes one or more alternate return specifiers among its arguments, control may be transferred

to one of the statements indicated, depending on the action specified by the subroutine. If a reference to an elemental subrou-
tine (12.8) is an elemental reference, at least one actual argument shall correspond to an INTENT (OUT) or
INTENT (INOUT) dummy argument, all such actual arguments shall be arrays, and all actual arguments shall
be conformable.
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12.5.5 Resolving named procedure references

12.5.5.1 Establishment of procedure names

1 The rules for interpreting a procedure reference depend on whether the procedure name in the reference is
established by the available declarations and specifications to be generic in the scoping unit containing the
reference, is established to be only specific in the scoping unit containing the reference, or is not established.

2 A procedure name is established to be generic in a scoping unit

(1) if that scoping unit contains an interface block with that name;
(2) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the generic

name of an intrinsic procedure;
(3) if that scoping unit contains a USE statement that makes that procedure name accessible and the

corresponding name in the module is established to be generic; or
(4) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping unit,

and that name is established to be generic in the host scoping unit.

3 A procedure name is established to be only specific in a scoping unit if it is established to be specific and not
established to be generic. It is established to be specific

(1) if that scoping unit contains a module subprogram, internal subprogram, or statement function that
defines a procedure with that name;

(2) if that scoping unit contains an INTRINSIC attribute specification for that name and it is the name
of a specific intrinsic procedure;

(3) if that scoping unit contains an explicit EXTERNAL attribute specification for that name;
(4) if that scoping unit contains a USE statement that makes that procedure name accessible and the

corresponding name in the module is established to be specific; or
(5) if that scoping unit contains no declarations of that name, that scoping unit has a host scoping unit,

and that name is established to be specific in the host scoping unit.

4 A procedure name is not established in a scoping unit if it is neither established to be generic nor established to
be specific.

12.5.5.2 Resolving procedure references to names established to be generic

1 If the reference is consistent with a nonelemental reference to one of the specific interfaces of a generic interface
that has that name and either is defined in the scoping unit in which the reference appears or is made accessible
by a USE statement in the scoping unit, the reference is to the specific procedure in the interface block that
provides that interface. The rules in 12.4.3.4.5 ensure that there can be at most one such specific procedure.

2 Otherwise, if the reference is consistent with an elemental reference to one of the specific interfaces of a generic
interface that has that name and either is defined in the scoping unit in which the reference appears or is made
accessible by a USE statement in the scoping unit, the reference is to the specific elemental procedure in the
interface block that provides that interface. The rules in 12.4.3.4.5 ensure that there can be at most one such
specific elemental procedure.

3 Otherwise, if the scoping unit contains either an INTRINSIC attribute specification for that name or a USE
statement that makes that name accessible from a module in which the corresponding name is specified to have
the INTRINSIC attribute, and if the reference is consistent with the interface of that intrinsic procedure, the
reference is to that intrinsic procedure.

4 Otherwise, if the scoping unit has a host scoping unit, the name is established to be generic in that host scoping
unit, and there is agreement between the scoping unit and the host scoping unit as to whether the name is a
function name or a subroutine name, the name is resolved by applying the rules in this subclause to the host
scoping unit.

5 Otherwise, if the name is that of an intrinsic procedure and the reference is consistent with that intrinsic procedure,
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the reference is to that intrinsic procedure.

NOTE 12.40
These rules allow particular specific procedures with the same generic identifier to be used for particular
array ranks and a general elemental version to be used for other ranks. For example, given an interface
block such as:

INTERFACE RANF
ELEMENTAL FUNCTION SCALAR_RANF(X)
REAL, INTENT(IN) :: X
END FUNCTION SCALAR_RANF
FUNCTION VECTOR_RANDOM(X)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(X))
END FUNCTION VECTOR_RANDOM

END INTERFACE RANF

and a declaration such as:

REAL A(10,10), AA(10,10)

then the statement

A = RANF(AA)

is an elemental reference to SCALAR RANF. The statement

A(6:10,2) = RANF(AA(6:10,2))

is a nonelemental reference to VECTOR RANDOM.

NOTE 12.41
In the USE statement case, it is possible, because of the renaming facility, for the name in the reference to
be different from the name of the intrinsic procedure.

12.5.5.3 Resolving procedure references to names established to be only specific

1 If the scoping unit contains an EXTERNAL attribute specification for the name and the name is the name of
a dummy argument of the scoping unit, the dummy argument is a dummy procedure and the reference is to
that dummy procedure. That is, the procedure invoked by executing that reference is the effective argument
corresponding to that dummy procedure.

2 If the scoping unit contains an EXTERNAL attribute specification for the name and the name is not the name of
a dummy argument of the scoping unit and is not the name of a procedure pointer, the reference is to an external
procedure with that name.

3 If the scoping unit contains an EXTERNAL attribute specification for the name and the name is a procedure
pointer, the reference is to its target.

4 If the scoping unit contains a module subprogram, internal subprogram, or statement function statement that defines
a procedure with the name, the reference is to the procedure so defined.

5 If the scoping unit contains an INTRINSIC attribute specification for the name, the reference is to the intrinsic
procedure with that name.

6 If the scoping unit contains a USE statement that makes a procedure that is not a procedure pointer accessible
by the name, the reference is to that procedure.
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7 If the scoping unit contains a USE statement that makes a procedure pointer accessible by the name, the reference
is to its target.

NOTE 12.42
Because of the renaming facility of the USE statement, the name in the reference may be different from the
original name of the procedure.

8 If none of the above apply, the scoping unit shall have a host scoping unit, and the reference is resolved by
applying the rules in this subclause to the host scoping unit.

12.5.5.4 Resolving procedure references to names not established

1 If the name is the name of a dummy argument of the scoping unit, the dummy argument is a dummy procedure
and the reference is to that dummy procedure. That is, the procedure invoked by executing that reference is the
effective argument corresponding to that dummy procedure.

2 Otherwise, if the name is the name of an intrinsic procedure, and if there is agreement between the reference and
the status of the intrinsic procedure as being a function or subroutine, the reference is to that intrinsic procedure.

3 Otherwise, the reference is to an external procedure with that name.

12.5.6 Resolving type-bound procedure references

1 If the binding-name in a procedure-designator (R1221) is that of a specific type-bound procedure, the procedure
referenced is the one bound to that name in the dynamic type of the data-ref .

2 If the binding-name in a procedure-designator is that of a generic type bound procedure, the generic binding with
that name in the declared type of the data-ref is used to select a specific binding using the following criteria.

• If the reference is consistent with one of the specific bindings of that generic binding, that specific binding
is selected.

• Otherwise, the reference shall be consistent with an elemental reference to one of the specific bindings of
that generic binding; that specific binding is selected.

3 The reference is to the procedure bound to the same name as the selected specific binding in the dynamic type
of the data-ref .

12.6 Procedure definition

12.6.1 Intrinsic procedure definition

1 Intrinsic procedures are defined as an inherent part of the processor. A standard-conforming processor shall
include the intrinsic procedures described in Clause 13, but may include others. However, a standard-conforming
program shall not make use of intrinsic procedures other than those described in Clause 13.

12.6.2 Procedures defined by subprograms

12.6.2.1 General

1 A subprogram defines one or more procedures. A procedure is defined by the initial SUBROUTINE or FUNC-
TION statement, and each ENTRY statement defines an additional procedure (12.6.2.6).

2 A subprogram is specified to be elemental (12.8), pure (12.7), recursive, or a separate module subprogram
(12.6.2.5) by a prefix-spec in its initial SUBROUTINE or FUNCTION statement.

R1225 prefix is prefix-spec [ prefix-spec ] ...
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R1226 prefix-spec is declaration-type-spec
or ELEMENTAL
or IMPURE
or MODULE
or PURE
or RECURSIVE

C1242 (R1225) A prefix shall contain at most one of each prefix-spec.

C1243 (R1225) A prefix shall not specify both PURE and IMPURE.

C1244 (R1225) A prefix shall not specify both ELEMENTAL and RECURSIVE.

C1245 An elemental procedure shall not have the BIND attribute.

C1246 (R1225) MODULE shall appear only in the function-stmt or subroutine-stmt of a module subprogram or
of a nonabstract interface body that is declared in the scoping unit of a module or submodule.

C1247 (R1225) If MODULE appears in the prefix of a module subprogram, an accessible separate interface body
(12.6.2.5) shall appear in the specification part of the module or submodule in which the subprogram
appears, or shall appear in an ancestor of that program unit.

C1248 (R1225) If MODULE appears in the prefix of a module subprogram, it shall have been declared to be a
separate module procedure in the containing program unit or an ancestor of that program unit.

C1249 (R1225) If MODULE appears in the prefix of a module subprogram, the subprogram shall specify the
same characteristics and dummy argument names as its corresponding separate interface body.

C1250 (R1225) If MODULE appears in the prefix of a module subprogram and a binding label is specified, it
shall be the same as the binding label specified in the corresponding separate interface body.

C1251 (R1225) If MODULE appears in the prefix of a module subprogram, RECURSIVE shall appear if and
only if RECURSIVE appears in the prefix in the corresponding separate interface body.

3 The RECURSIVE prefix-spec shall appear if any procedure defined by the subprogram directly or indirectly
invokes itself or any other procedure defined by the subprogram.

4 If the prefix-spec PURE appears, or the prefix-spec ELEMENTAL appears and IMPURE does not appear, the
subprogram is a pure subprogram and shall meet the additional constraints of 12.7.

5 If the prefix-spec ELEMENTAL appears, the subprogram is an elemental subprogram and shall meet the additional
constraints of 12.8.1.

12.6.2.2 Function subprogram

1 A function subprogram is a subprogram that has a FUNCTION statement as its first statement.

R1227 function-subprogram is function-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-function-stmt

R1228 function-stmt is [ prefix ] FUNCTION function-name
( [ dummy-arg-name-list ] ) [ suffix ]

C1252 (R1228) If RESULT appears, result-name shall not be the same as function-name and shall not be the same

as the entry-name in any ENTRY statement in the subprogram.

C1253 (R1228) If RESULT appears, the function-name shall not appear in any specification statement in the
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scoping unit of the function subprogram.

R1229 proc-language-binding-spec is language-binding-spec

C1254 (R1229) A proc-language-binding-spec with a NAME= specifier shall not be specified in the function-stmt
or subroutine-stmt of an internal procedure, or of an interface body for an abstract interface or a dummy
procedure.

C1255 (R1229) If proc-language-binding-spec is specified for a procedure, each of the procedure’s dummy ar-
guments shall be a nonoptional interoperable variable (15.3.5, 15.3.6) or a nonoptional interoperable
procedure (15.3.7). If proc-language-binding-spec is specified for a function, the function result shall be
an interoperable scalar variable.

R1230 dummy-arg-name is name

C1256 (R1230) A dummy-arg-name shall be the name of a dummy argument.

R1231 suffix is proc-language-binding-spec [ RESULT ( result-name ) ]
or RESULT ( result-name ) [ proc-language-binding-spec ]

R1232 end-function-stmt is END [ FUNCTION [ function-name ] ]

C1257 (R1227) An internal function subprogram shall not contain an internal-subprogram-part .

C1258 (R1232) If a function-name appears in the end-function-stmt , it shall be identical to the function-name
specified in the function-stmt .

2 The name of the function is function-name.

3 The type and type parameters (if any) of the result of the function defined by a function subprogram may be
specified by a type specification in the FUNCTION statement or by the name of the result variable appearing
in a type declaration statement in the specification part of the function subprogram. They shall not be specified
both ways. If they are not specified either way, they are determined by the implicit typing rules in effect within
the function subprogram. If the function result is an array, allocatable, or a pointer, this shall be specified by
specifications of the name of the result variable within the function body. The specifications of the function
result attributes, the specification of dummy argument attributes, and the information in the procedure heading
collectively define the characteristics of the function (12.3.1).

4 If RESULT appears, the name of the result variable of the function is result-name and all occurrences of the
function name in execution-part statements in the scoping unit refer to the function itself. If RESULT does not
appear, the name of the result variable is function-name and all occurrences of the function name in execution-part
statements in the scoping unit are references to the result variable. The characteristics (12.3.3) of the function
result are those of the result variable. On completion of execution of the function, the value returned is that of its
result variable. If the function result is a pointer, the shape of the value returned by the function is determined
by the shape of the result variable when the execution of the function is completed. If the result variable is not
a pointer, its value shall be defined by the function. If the function result is a pointer, on return the pointer
association status of the result variable shall not be undefined.

NOTE 12.43
The result variable is similar to any other variable local to a function subprogram. Its existence begins
when execution of the function is initiated and ends when execution of the function is terminated. However,
because the final value of this variable is used subsequently in the evaluation of the expression that invoked
the function, an implementation may wish to defer releasing the storage occupied by that variable until
after its value has been used in expression evaluation.

NOTE 12.44
An example of a recursive function is:
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NOTE 12.44 (cont.)

RECURSIVE FUNCTION CUMM_SUM (ARRAY) RESULT (C_SUM)
REAL, INTENT (IN), DIMENSION (:) :: ARRAY
REAL, DIMENSION (SIZE (ARRAY)) ::C_SUM
INTEGER N
N = SIZE (ARRAY)
IF (N <= 1) THEN

C_SUM = ARRAY
ELSE

N = N / 2
C_SUM (:N) = CUMM_SUM (ARRAY (:N))
C_SUM (N+1:) = C_SUM (N) + CUMM_SUM (ARRAY (N+1:))

END IF
END FUNCTION CUMM_SUM

NOTE 12.45
The following is an example of the declaration of an interface body with the BIND attribute, and a reference
to the procedure declared.

USE, INTRINSIC :: ISO_C_BINDING

INTERFACE
FUNCTION JOE (I, J, R) BIND(C,NAME="FrEd")
USE, INTRINSIC :: ISO_C_BINDING
INTEGER(C_INT) :: JOE
INTEGER(C_INT), VALUE :: I, J
REAL(C_FLOAT), VALUE :: R

END FUNCTION JOE
END INTERFACE

INT = JOE(1_C_INT, 3_C_INT, 4.0_C_FLOAT)
END PROGRAM

The invocation of the function JOE results in a reference to a function with a binding label "FrEd". FrEd
may be a C function described by the C prototype

int FrEd(int n, int m, float x);

12.6.2.3 Subroutine subprogram

1 A subroutine subprogram is a subprogram that has a SUBROUTINE statement as its first statement.

R1233 subroutine-subprogram is subroutine-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-subroutine-stmt

R1234 subroutine-stmt is [ prefix ] SUBROUTINE subroutine-name
[ ( [ dummy-arg-list ] ) [ proc-language-binding-spec ] ]

C1259 (R1234) The prefix of a subroutine-stmt shall not contain a declaration-type-spec.

R1235 dummy-arg is dummy-arg-name
or *

308 Procedures 12.6.2.3



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

R1236 end-subroutine-stmt is END [ SUBROUTINE [ subroutine-name ] ]

C1260 (R1233) An internal subroutine subprogram shall not contain an internal-subprogram-part .

C1261 (R1236) If a subroutine-name appears in the end-subroutine-stmt , it shall be identical to the subroutine-
name specified in the subroutine-stmt .

2 The name of the subroutine is subroutine-name.

12.6.2.4 Instances of a subprogram

1 When a procedure defined by a subprogram is invoked, an instance of that subprogram is created. Each instance
has an independent sequence of execution and an independent set of dummy arguments, unsaved local variables,
and procedure pointers. Saved local entities are shared by all instances of the subprogram.

2 When a statement function is invoked, an instance of that statement function is created.

3 When execution of an instance completes it ceases to exist.

4 The caller of an instance of a procedure is the instance of the main program, subprogram, or statement function

that invoked it. The call sequence of an instance of a procedure is its caller, followed by the call sequence of its
caller. The call sequence of the main program is empty. The host instance of an instance of a statement function

or an internal procedure that is invoked by its name is the first element of the call sequence that is an instance
of the host of the statement function or internal subprogram. The host instance of an internal procedure that is
invoked via a dummy procedure or procedure pointer is the host instance of the associating entity from when the
argument association or pointer association was established (16.5.5). The host instance of a module procedure is
the module or submodule in which it is defined. A main program or external subprogram has no host instance.

12.6.2.5 Separate module procedures

1 A separate module procedure is a module procedure defined by a separate-module-subprogram, by a function-
subprogram whose initial statement contains the keyword MODULE, or by a subroutine-subprogram whose initial
statement contains the keyword MODULE. Its interface is declared by a separate interface body (12.4.3.2) in the
specification-part of the program unit in which the procedure is defined, or in an ancestor thereof.

R1237 separate-module-subprogram is mp-subprogram-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-mp-subprogram-stmt

R1238 mp-subprogram-stmt is MODULE PROCEDURE procedure-name

R1239 end-mp-subprogram-stmt is END [PROCEDURE [procedure-name]]

C1262 (R1237) The procedure-name shall have been declared to be a separate module procedure in the containing
program unit or an ancestor of that program unit.

C1263 (R1239) If a procedure-name appears in the end-mp-subprogram-stmt , it shall be identical to the procedure-
name in the MODULE PROCEDURE statement.

2 A separate module procedure shall not be defined more than once.

NOTE 12.46
A separate module procedure can be accessed by use association only if its interface body is declared in the
specification part of a module and is public.
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3 If a separate module procedure is a function defined by a separate-module-subprogram, the result variable name
is determined by the FUNCTION statement in the separate interface body. Otherwise, the result variable name
is determined by the FUNCTION statement in the module subprogram.

12.6.2.6 ENTRY statement

1 An ENTRY statement permits a procedure reference to begin with a particular executable statement within the function or subroutine

subprogram in which the ENTRY statement appears.

R1240 entry-stmt is ENTRY entry-name [ ( [ dummy-arg-list ] ) [ suffix ] ]

C1264 (R1240) If RESULT appears, the entry-name shall not appear in any specification or type-declaration statement in the
scoping unit of the function program.

C1265 (R1240) An entry-stmt shall appear only in an external-subprogram or a module-subprogram that does not define a separate
module procedure. An entry-stmt shall not appear within an executable-construct .

C1266 (R1240) RESULT shall appear only if the entry-stmt is in a function subprogram.

C1267 (R1240) A dummy-arg shall not be an alternate return indicator if the ENTRY statement is in a function subprogram.

C1268 (R1240) If RESULT appears, result-name shall not be the same as the function-name in the FUNCTION statement and
shall not be the same as the entry-name in any ENTRY statement in the subprogram.

2 Optionally, a subprogram may have one or more ENTRY statements.

3 If the ENTRY statement is in a function subprogram, an additional function is defined by that subprogram. The name of the function

is entry-name and the name of its result variable is result-name or is entry-name if no result-name is provided. The characteristics

of the function result are specified by specifications of the result variable. The dummy arguments of the function are those specified

in the ENTRY statement. If the characteristics of the result of the function named in the ENTRY statement are the same as the

characteristics of the result of the function named in the FUNCTION statement, their result variables identify the same variable,

although their names need not be the same. Otherwise, they are storage associated and shall all be nonpointer, nonallocatable scalars

that are default integer, default real, double precision real, default complex, or default logical.

4 If the ENTRY statement is in a subroutine subprogram, an additional subroutine is defined by that subprogram. The name of the

subroutine is entry-name. The dummy arguments of the subroutine are those specified in the ENTRY statement.

5 The order, number, types, kind type parameters, and names of the dummy arguments in an ENTRY statement may differ from the

order, number, types, kind type parameters, and names of the dummy arguments in the FUNCTION or SUBROUTINE statement

in the containing subprogram.

6 Because an ENTRY statement defines an additional function or an additional subroutine, it is referenced in the same manner as any

other function or subroutine (12.5).

7 In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not appear in an executable statement

preceding that ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the

executable statement.

8 In a subprogram, a dummy argument specified in an ENTRY statement shall not appear in an executable statement preceding that

ENTRY statement, unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable

statement.

9 In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not appear in the expression of a statement

function unless the name is also a dummy argument of the statement function, appears in a FUNCTION or SUBROUTINE statement,

or appears in an ENTRY statement that precedes the statement function statement.

10 If a dummy argument appears in an executable statement, the execution of the executable statement is permitted during the execution

of a reference to the function or subroutine only if the dummy argument appears in the dummy argument list of the procedure name

referenced.
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11 If a dummy argument is used in a specification expression to specify an array bound or character length of an object, the appearance

of the object in a statement that is executed during a procedure reference is permitted only if the dummy argument appears in the

dummy argument list of the procedure name referenced and it is present (12.5.2.12).

12 A scoping unit containing a reference to a procedure defined by an ENTRY statement may have access to an interface body for the

procedure. The procedure header for the interface body shall be a FUNCTION statement for an entry in a function subprogram and

shall be a SUBROUTINE statement for an entry in a subroutine subprogram.

13 The keyword RECURSIVE is not used in an ENTRY statement. Instead, the presence or absence of RECURSIVE in the initial

SUBROUTINE or FUNCTION statement controls whether the procedure defined by an ENTRY statement is permitted to reference

itself or another procedure defined by the subprogram.

14 The keywords PURE and IMPURE are not used in an ENTRY statement. Instead, the procedure defined by an ENTRY statement

is pure if and only if the subprogram is a pure subprogram.

15 The keyword ELEMENTAL is not used in an ENTRY statement. Instead, the procedure defined by an ENTRY statement is elemental

if and only if ELEMENTAL is specified in the SUBROUTINE or FUNCTION statement.

12.6.2.7 RETURN statement

R1241 return-stmt is RETURN [ scalar-int-expr ]

C1269 (R1241) The return-stmt shall be in the scoping unit of a function or subroutine subprogram.

C1270 (R1241) The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.

1 Execution of the RETURN statement completes execution of the instance of the subprogram in which it appears.
If the expression appears and has a value n between 1 and the number of asterisks in the dummy argument list, the CALL statement

that invoked the subroutine branches (8.2) to the branch target statement identified by the nth alternate return specifier in the actual

argument list of the referenced procedure. If the expression is omitted or has a value outside the required range, there is no transfer

of control to an alternate return.

2 Execution of an end-function-stmt , end-mp-subprogram-stmt , or end-subroutine-stmt is equivalent to execution
of a RETURN statement with no expression.

12.6.2.8 CONTAINS statement

R1242 contains-stmt is CONTAINS

1 The CONTAINS statement separates the body of a main program, module, submodule, or subprogram from any
internal or module subprograms it may contain, or it introduces the type-bound procedure part of a derived-type
definition (4.5.2). The CONTAINS statement is not executable.

12.6.3 Definition and invocation of procedures by means other than Fortran

1 A procedure may be defined by means other than Fortran. The interface of a procedure defined by means other
than Fortran may be specified by an interface body or procedure declaration statement. A reference to such a
procedure is made as though it were defined by an external subprogram.

2 A procedure defined by means other than Fortran that is invoked by a Fortran procedure and does not cause
termination of execution shall return to its caller.

NOTE 12.47
Examples of code that might cause a transfer of control that bypasses the normal return mechanism of
a Fortran procedure are setjmp and longjmp in C and exception handling in other languages. No such
behavior is permitted by this part of ISO/IEC 1539.

3 If the interface of a procedure has a proc-language-binding-spec, the procedure is interoperable (15.5).
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4 Interoperation with C functions is described in 15.5.

NOTE 12.48
For explanatory information on definition of procedures by means other than Fortran, see subclause C.9.2.

12.6.4 Statement function

1 A statement function is a function defined by a single statement.

R1243 stmt-function-stmt is function-name ( [ dummy-arg-name-list ] ) = scalar-expr

C1271 (R1243) The primaries of the scalar-expr shall be constants (literal and named), references to variables, references to
functions, and intrinsic operations. If scalar-expr contains a reference to a function, the reference shall not require an
explicit interface, the function shall not require an explicit interface unless it is an intrinsic function, the function shall not
be a transformational intrinsic, and the result shall be scalar. If an argument to a function is an array, it shall be an array
name. If a reference to a statement function appears in scalar-expr , its definition shall have been provided earlier in the
scoping unit and shall not be the name of the statement function being defined.

C1272 (R1243) Named constants in scalar-expr shall have been declared earlier in the scoping unit or made accessible by use
or host association. If array elements appear in scalar-expr , the array shall have been declared as an array earlier in the
scoping unit or made accessible by use or host association.

C1273 (R1243) If a dummy-arg-name, variable, function reference, or dummy function reference is typed by the implicit typing
rules, its appearance in any subsequent type declaration statement shall confirm this implied type and the values of any
implied type parameters.

C1274 (R1243) The function-name and each dummy-arg-name shall be specified, explicitly or implicitly, to be scalar.

C1275 (R1243) A given dummy-arg-name shall not appear more than once in any dummy-arg-name-list.

2 The definition of a statement function with the same name as an accessible entity from the host shall be preceded by the declaration

of its type in a type declaration statement.

3 The dummy arguments have a scope of the statement function statement. Each dummy argument has the same type and type

parameters as the entity of the same name in the scoping unit containing the statement function.

4 A statement function shall not be supplied as an actual argument.

5 Execution of a statement function consists of evaluating the expression using the values of the actual arguments for the values of the

corresponding dummy arguments and, if necessary, converting the result to the declared type and type parameters of the function.

6 A function reference in the scalar expression shall not cause a dummy argument of the statement function to become redefined or

undefined.

12.7 Pure procedures

1 A pure procedure is

• a pure intrinsic procedure (13.1),
• defined by a pure subprogram,
• a dummy procedure that has been specified to be PURE, or
• a statement function that references only pure functions.

2 A pure subprogram is a subprogram that has the prefix-spec PURE or that has the prefix-spec ELEMENTAL
and does not have the prefix-spec IMPURE. The following additional constraints apply to pure subprograms.

C1276 The specification-part of a pure function subprogram shall specify that all its nonpointer dummy data
objects have the INTENT (IN) or the VALUE attribute.

C1277 The specification-part of a pure subroutine subprogram shall specify the intents of all its nonpointer
dummy data objects that do not have the VALUE attribute.
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C1278 A local variable of a pure subprogram, or of a BLOCK construct within a pure subprogram, shall not
have the SAVE attribute.

NOTE 12.49
Variable initialization in a type-declaration-stmt or a data-stmt implies the SAVE attribute; therefore, such
initialization is also disallowed.

C1279 The specification-part of a pure subprogram shall specify that all its dummy procedures are pure.

C1280 If a procedure that is neither an intrinsic procedure nor a statement function is used in a context that requires
it to be pure, then its interface shall be explicit in the scope of that use. The interface shall specify that
the procedure is pure.

C1281 All internal subprograms in a pure subprogram shall be pure.

C1282 A designator of a variable with the VOLATILE attribute shall not appear in a pure subprogram.

C1283 In a pure subprogram any designator with a base object that is in common or accessed by host or use
association, is a dummy argument with the INTENT (IN) attribute, is a coindexed object, or an object
that is storage associated with any such variable, shall not be used

(1) in a variable definition context (16.6.7),
(2) as the data-target in a pointer-assignment-stmt ,
(3) as the expr corresponding to a component with the POINTER attribute in a structure-constructor ,
(4) as the expr of an intrinsic assignment statement in which the variable is of a derived type if the

derived type has a pointer component at any level of component selection, or
(5) as an actual argument corresponding to a dummy argument with INTENT (OUT) or INTENT

(INOUT) or with the POINTER attribute.

NOTE 12.50
Item 3 requires that processors be able to determine if entities with the PRIVATE attribute or with private
components have a pointer component.

C1284 Any procedure referenced in a pure subprogram, including one referenced via a defined operation, defined
assignment, defined input/output, or finalization, shall be pure.

C1285 A pure subprogram shall not contain a print-stmt , open-stmt , close-stmt , backspace-stmt , endfile-stmt ,
rewind-stmt , flush-stmt , wait-stmt , or inquire-stmt .

C1286 A pure subprogram shall not contain a read-stmt or write-stmt whose io-unit is a file-unit-number or *.

C1287 A pure subprogram shall not contain a stop-stmt or allstop-stmt .

C1288 A pure subprogram shall not contain an image control statement (8.5.1).

NOTE 12.51
The above constraints are designed to guarantee that a pure procedure is free from side effects (modifica-
tions of data visible outside the procedure), which means that it is safe to reference it in constructs such
as a FORALL assignment-stmt or a DO CONCURRENT construct, where there is no explicit order of
evaluation.

The constraints on pure subprograms may appear complicated, but it is not necessary for a programmer to be
intimately familiar with them. From the programmer’s point of view, these constraints can be summarized
as follows: a pure subprogram shall not contain any operation that could conceivably result in an assignment
or pointer assignment to a common variable, a variable accessed by use or host association, or an INTENT
(IN) dummy argument; nor shall a pure subprogram contain any operation that could conceivably perform
any external file input/output or STOP operation. Note the use of the word conceivably; it is not sufficient
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NOTE 12.51 (cont.)

for a pure subprogram merely to be side-effect free in practice. For example, a function that contains an
assignment to a global variable but in a block that is not executed in any invocation of the function is
nevertheless not a pure function. The exclusion of functions of this nature is required if strict compile-time
checking is to be used.

It is expected that most library procedures will conform to the constraints required of pure procedures,
and so can be declared pure and referenced in FORALL statements and constructs, DO CONCURRENT
constructs, and within user-defined pure procedures.

NOTE 12.52
Pure subroutines are included to allow subroutine calls from pure procedures in a safe way, and to allow
forall-assignment-stmts to be defined assignments. The constraints for pure subroutines are based on the
same principles as for pure functions, except that side effects to INTENT (OUT), INTENT (INOUT), and
pointer dummy arguments are permitted.

12.8 Elemental procedures

12.8.1 Elemental procedure declaration and interface

1 An elemental procedure is an elemental intrinsic procedure or a procedure that is defined by an elemental sub-
program.

2 An elemental subprogram has the prefix-spec ELEMENTAL. An elemental subprogram is a pure subprogram
unless it has the prefix-spec IMPURE. The following additional constraints apply to elemental subprograms.

C1289 All dummy arguments of an elemental procedure shall be scalar noncoarray dummy data objects and
shall not have the POINTER or ALLOCATABLE attribute.

C1290 The result variable of an elemental function shall be scalar, shall not have the POINTER or ALLOCA-
TABLE attribute, and shall not have a type parameter that is defined by an expression that is not a
constant expression.

12.8.2 Elemental function actual arguments and results

1 If a generic name or a specific name is used to reference an elemental function, the shape of the result is the
same as the shape of the actual argument with the greatest rank. If there are no actual arguments or the actual
arguments are all scalar, the result is scalar. For those elemental functions that have more than one argument,
all actual arguments shall be conformable. In the array case, the values of the elements, if any, of the result are
the same as would have been obtained if the scalar function had been applied separately, in array element order,
to corresponding elements of each array actual argument.

NOTE 12.53
An example of an elemental reference to the intrinsic function MAX:

if X and Y are arrays of shape (M, N),

MAX (X, 0.0, Y)

is an array expression of shape (M, N) whose elements have values

MAX (X(I, J), 0.0, Y(I, J)), I = 1, 2, ..., M, J = 1,2, ..., N
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12.8.3 Elemental subroutine actual arguments

1 An elemental subroutine has only scalar dummy arguments, but may have array actual arguments. In a reference
to an elemental subroutine, either all actual arguments shall be scalar, or all actual arguments corresponding to
INTENT (OUT) and INTENT (INOUT) dummy arguments shall be arrays of the same shape and the remaining
actual arguments shall be conformable with them. In the case that the actual arguments corresponding to
INTENT (OUT) and INTENT (INOUT) dummy arguments are arrays, the values of the elements, if any, of the
results are the same as would be obtained if the subroutine had been applied separately, in array element order,
to corresponding elements of each array actual argument.
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13 Intrinsic procedures and modules

13.1 Classes of intrinsic procedures

1 Intrinsic procedures are divided into seven classes: inquiry functions, elemental functions, transformational func-
tions, elemental subroutines, pure subroutines, atomic subroutines, and (impure) subroutines.

2 An intrinsic inquiry function is one whose result depends on the properties of one or more of its arguments instead
of their values; in fact, these argument values may be undefined. Unless the description of an intrinsic inquiry
function states otherwise, these arguments are permitted to be unallocated allocatable variables or pointers that
are undefined or disassociated. An elemental intrinsic function is one that is specified for scalar arguments,
but may be applied to array arguments as described in 12.8. All other intrinsic functions are transformational
functions; they almost all have one or more array arguments or an array result. All standard intrinsic functions
are pure.

3 An atomic subroutine is an intrinsic subroutine that performs an action on its ATOM argument atomically. The
effect of executing an atomic subroutine is as if the subroutine were executed instantaneously, thus not overlapping
other atomic actions that might occur asynchronously. The sequence of atomic actions within ordered segments is
specified in 2.3.5. How sequences of atomic actions in unordered segments interleave with each other is processor
dependent.

NOTE 13.1
The order of accesses to atomic variables may appear to be inconsistent between different images or between
different variables. The most reliable way to use these is for a single image to define a particular variable,
repeatedly, and for another image to inspect its changes. However, even this use is processor dependent.

4 The subroutine MOVE ALLOC and the elemental subroutine MVBITS are pure. No other standard intrinsic
subroutine is pure.

5 Generic names of standard intrinsic procedures are listed in 13.5. In most cases, generic functions accept argu-
ments of more than one type and the type of the result is the same as the type of the arguments. Specific names
of standard intrinsic functions with corresponding generic names are listed in 13.6.

6 If an intrinsic procedure is used as an actual argument to a procedure, its specific name shall be used and it
may be referenced in the called procedure only with scalar arguments. If an intrinsic procedure does not have a
specific name, it shall not be used as an actual argument (12.5.2.9).

7 Elemental intrinsic procedures behave as described in 12.8.

13.2 Arguments to intrinsic procedures

13.2.1 General rules

1 All intrinsic procedures may be invoked with either positional arguments or argument keywords (12.5). The
descriptions in 13.5 through 13.7 give the argument keyword names and positional sequence for standard intrinsic
procedures.

2 Many of the intrinsic procedures have optional arguments. These arguments are identified by the notation
“optional” in the argument descriptions. In addition, the names of the optional arguments are enclosed in square
brackets in description headings and in lists of procedures. The valid forms of reference for procedures with
optional arguments are described in 12.5.2.
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NOTE 13.2
The text CMPLX (X [, Y, KIND]) indicates that Y and KIND are both optional arguments. Valid refe-
rence forms include CMPLX(x ), CMPLX(x, y), CMPLX(x, KIND=kind), CMPLX(x, y, kind), and CM-
PLX(KIND=kind, X=x, Y=y).

NOTE 13.3
Some intrinsic procedures impose additional requirements on their optional arguments. For example, SE-
LECTED REAL KIND requires that at least one of its optional arguments be present, and RANDOM -
SEED requires that at most one of its optional arguments be present.

3 The dummy arguments of the specific intrinsic procedures in 13.6 have INTENT (IN). The dummy arguments of
the intrinsic procedures in 13.7 have INTENT (IN) if the intent is not stated explicitly.

4 The actual argument corresponding to an intrinsic function dummy argument named KIND shall be a scalar
integer constant expression and its value shall specify a representation method for the function result that exists
on the processor.

5 Intrinsic subroutines that assign values to arguments of type character do so in accordance with the rules of
intrinsic assignment (7.2.1.3).

6 In a reference to the intrinsic subroutine MVBITS, the actual arguments corresponding to the TO and FROM
dummy arguments may be the same variable and may be associated scalar variables or associated array variables
all of whose corresponding elements are associated. Apart from this, the actual arguments in a reference to an
intrinsic subroutine shall be such that the execution of the intrinsic subroutine would satisfy the restrictions of
12.5.2.13.

13.2.2 The shape of array arguments

1 Unless otherwise specified, the intrinsic inquiry functions accept array arguments for which the shape need not
be defined. The shape of array arguments to transformational and elemental intrinsic functions shall be defined.

13.2.3 Mask arguments

1 Some array intrinsic functions have an optional MASK argument of type logical that is used by the function to
select the elements of one or more arguments to be operated on by the function. Any element not selected by the
mask need not be defined at the time the function is invoked.

2 The MASK affects only the value of the function, and does not affect the evaluation, prior to invoking the
function, of arguments that are array expressions.

13.2.4 Dim arguments and reduction functions

1 Some array intrinsic functions are “reduction” functions; that is, they reduce the rank of an array by collapsing
one dimension (or all dimensions, usually producing a scalar result). These functions have an optional DIM
argument that, if present, specifies the dimension to be reduced. The DIM argument of a reduction function is
not permitted to be an optional dummy argument.

2 The process of reducing a dimension usually combines the selected elements with a simple operation such as
addition or an intrinsic function such as MAX, but more sophisticated reductions are also provided, e.g. by
COUNT and MAXLOC.
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13.3 Bit model

13.3.1 General

1 The bit manipulation procedures are described in terms of a model for the representation and behavior of bits
on a processor.

2 For the purposes of these procedures, a bit is defined to be a binary digit w located at position k of a nonnegative
integer scalar object based on a model nonnegative integer defined by

j =
z−1∑
k=0

wk × 2k

and for which wk may have the value 0 or 1. This defines a sequence of bits wz−1 . . . w0, with wz−1 the leftmost
bit and w0 the rightmost bit. The positions of bits in the sequence are numbered from right to left, with the
position of the rightmost bit being zero. The length of a sequence of bits is z. An example of a model number
compatible with the examples used in 13.4 would have z = 32, thereby defining a 32-bit integer.

3 The interpretation of a negative integer as a sequence of bits is processor dependent.

4 The inquiry function BIT SIZE provides the value of the parameter z of the model.

5 Effectively, this model defines an integer object to consist of z bits in sequence numbered from right to left from
0 to z − 1. This model is valid only in the context of the use of such an object as the argument or result of an
intrinsic procedure that interprets that object as a sequence of bits. In all other contexts, the model defined for
an integer in 13.4 applies. In particular, whereas the models are identical for r = 2 and wz−1 = 0, they do not
correspond for r 6= 2 or wz−1 = 1 and the interpretation of bits in such objects is processor dependent.

13.3.2 Bit sequence comparisons

1 When bit sequences of unequal length are compared, the shorter sequence is considered to be extended to the
length of the longer sequence by padding with zero bits on the left.

2 Bit sequences are compared from left to right, one bit at a time, until unequal bits are found or all bits have been
compared and found to be equal. If unequal bits are found, the sequence with zero in the unequal position is
considered to be less than the sequence with one in the unequal position. Otherwise the sequences are considered
to be equal.

13.3.3 Bit sequences as arguments to INT and REAL

1 When a boz-literal-constant is the argument A of the intrinsic function INT or REAL,

• if the length of the sequence of bits specified by A is less than the size in bits of a scalar variable of the
same type and kind type parameter as the result, the boz-literal-constant is treated as if it were extended
to a length equal to the size in bits of the result by padding on the left with zero bits, and
• if the length of the sequence of bits specified by A is greater than the size in bits of a scalar variable of the

same type and kind type parameter as the result, the boz-literal-constant is treated as if it were truncated
from the left to a length equal to the size in bits of the result.

C1301 If a boz-literal-constant is truncated as an argument to the intrinsic function REAL, the discarded bits
shall all be zero.

NOTE 13.4
The result values of the intrinsic functions CMPLX and DBLE are defined by references to the intrinsic
function REAL with the same arguments. Therefore, the padding and truncation of boz-literal-constant
arguments to those intrinsic functions is the same as for the intrinsic function REAL.
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13.4 Numeric models

1 The numeric manipulation and inquiry functions are described in terms of a model for the representation and
behavior of numbers on a processor. The model has parameters that are determined so as to make the model
best fit the machine on which the program is executed.

2 The model set for integer i is defined by

i = s×
q−1∑
k=0

wk × rk

where r is an integer exceeding one, q is a positive integer, each wk is a nonnegative integer less than r, and s is
+1 or −1.

3 The model set for real x is defined by

x =

 0 or

s× be ×
p∑
k=1

fk × b−k ,

where b and p are integers exceeding one; each fk is a nonnegative integer less than b, with f1 nonzero; s is +1 or
−1; and e is an integer that lies between some integer maximum emax and some integer minimum emin inclusively.
For x = 0, its exponent e and digits fk are defined to be zero. The integer parameters r and q determine the
set of model integers and the integer parameters b, p, emin, and emax determine the set of model floating-point
numbers.

4 The parameters of the integer and real models are available for each representation method of the integer and
real types. The parameters characterize the set of available numbers in the definition of the model. Intrinsic
functions provide the values of some parameters and other values related to the models.

5 There is also an extended model set for each kind of real x; this extended model is the same as the ordinary
model except that there are no limits on the range of the exponent e.

NOTE 13.5
Examples of these functions in 13.7 use the models

i = s×
30∑
k=0

wk × 2k

and

x = 0 or s× 2e ×

(
1
2

+
24∑
k=2

fk × 2−k
)
, −126 ≤ e ≤ 127

13.5 Standard generic intrinsic procedures

1 For all of the standard intrinsic procedures, the arguments shown are the names that shall be used for argument
keywords if the keyword form is used for actual arguments.

NOTE 13.6
For example, a reference to CMPLX may be written in the form CMPLX (A, B, M) or in the form
CMPLX (Y = B, KIND = M, X = A).
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NOTE 13.7
Many of the argument keywords have names that are indicative of their usage. For example:

KIND Describes the kind type parameter of the result
STRING, STRING A An arbitrary character string
BACK Controls the direction of string scan

(forward or backward)
MASK A mask that may be applied to the arguments
DIM A selected dimension of an array argument

2 In the Class column of Table 13.1,
A indicates that the procedure is an atomic subroutine,
E indicates that the procedure is an elemental function,

ES indicates that the procedure is an elemental subroutine,
I indicates that the procedure is an inquiry function,

PS indicates that the procedure is a pure subroutine,
S indicates that the procedure is an impure subroutine, and
T indicates that the procedure in a transformational function.

Table 13.1: Standard generic intrinsic procedure summary
Procedure Arguments Class Description
ABS (A) E Absolute value.
ACHAR (I [, KIND]) E Convert ASCII code value to character.
ACOS (X) E Arccosine (inverse cosine) function.
ACOSH (X) E Inverse hyperbolic cosine function.
ADJUSTL (STRING) E Rotate string to remove leading blanks.
ADJUSTR (STRING) E Rotate string to remove trailing blanks.
AIMAG (Z) E Imaginary part of a complex number.
AINT (A [, KIND]) E Truncation toward 0 to a whole number.
ALL (MASK [, DIM]) T Reduce logical array by AND operation.
ALLOCATED (ARRAY) or (SCALAR) I Query allocation status.
ANINT (A [, KIND]) E Nearest whole number.
ANY (MASK [, DIM]) T Reduce logical array with OR operation.
ASIN (X) E Arcsine (inverse sine) function.
ASINH (X) E Inverse hyperbolic sine function.
ASSOCIATED (POINTER [, TARGET]) I Query pointer association status.
ATAN (X) or (Y, X) E Arctangent (inverse tangent) function.
ATAN2 (Y, X) E Arctangent (inverse tangent) function.
ATANH (X) E Inverse hyperbolic tangent function.
ATOMIC DEFINE (ATOM, VALUE) A Define a variable atomically.
ATOMIC REF (VALUE, ATOM) A Reference a variable atomically.
BESSEL J0 (X) E Bessel function of the 1st kind, order 0.
BESSEL J1 (X) E Bessel function of the 1st kind, order 1.
BESSEL JN (N, X) E Bessel function of the 1st kind, order N.
BESSEL JN (N1, N2, X) T Bessel functions of the 1st kind.
BESSEL Y0 (X) E Bessel function of the 2nd kind, order 0.
BESSEL Y1 (X) E Bessel function of the 2nd kind, order 1.
BESSEL YN (N, X) E Bessel function of the 2nd kind, order N.
BESSEL YN (N1, N2, X) T Bessel functions of the 2nd kind.
BGE (I, J) E Bitwise greater than or equal to.
BGT (I, J) E Bitwise greater than.
BLE (I, J) E Bitwise less than or equal to.
BLT (I, J) E Bitwise less than.
BIT SIZE (I) I Number of bits in integer model 13.3.
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Table 13.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
BTEST (I, POS) E Test single bit in an integer.
CEILING (A [, KIND]) E Least integer greater than or equal to A.
CHAR (I [, KIND]) E Convert code value to character.
CMPLX (X [, Y, KIND]) E Conversion to complex type.
COMMAND ARGU-
MENT COUNT

( ) T Number of command arguments.

CONJG (Z) E Conjugate of a complex number.
COS (X) E Cosine function.
COSH (X) E Hyperbolic cosine function.
COUNT (MASK [, DIM, KIND]) T Reduce logical array by counting true

values.
CPU TIME (TIME) S Return the processor time.
CSHIFT (ARRAY, SHIFT [, DIM]) T Circular shift of an array.
DATE AND TIME ([DATE, TIME, ZONE,

VALUES])
S Return date and time.

DBLE (A) E Conversion to double precision real.
DIGITS (X) I Significant digits in numeric model.
DIM (X, Y) E Maximum of X − Y and zero.
DOT PRODUCT (VECTOR A, VECTOR B) T Dot product of two vectors.
DPROD (X, Y) E Double precision real product.
DSHIFTL (I, J, SHIFT) E Combined left shift.
DSHIFTR (I, J, SHIFT) E Combined right shift.
EOSHIFT (ARRAY, SHIFT [,

BOUNDARY, DIM])
T End-off shift of the elements of an array.

EPSILON (X) I Model number that is small compared
to 1.

ERF (X) E Error function.
ERFC (X) E Complementary error function.
ERFC SCALED (X) E Scaled complementary error function.
EXECUTE COM-
MAND LINE

(COMMAND [, WAIT,
EXITSTAT, CMDSTAT,
CMDMSG])

S Execute a command line.

EXP (X) E Exponential function.
EXPONENT (X) E Exponent of floating-point number.
EXTENDS TYPE OF (A, MOLD) I Query dynamic type for extension.
FINDLOC (ARRAY, VALUE, DIM [,

MASK, KIND, BACK]) or
(ARRAY, VALUE [, MASK,
KIND, BACK])

T Location(s) of a specified value.

FLOOR (A [, KIND]) E Greatest integer less than or equal to A.
FRACTION (X) E Fractional part of number.
GAMMA (X) E Gamma function.
GET COMMAND ([COMMAND, LENGTH,

STATUS])
S Query program invocation command.

GET COMMAND -
ARGUMENT

(NUMBER [, VALUE,
LENGTH, STATUS])

S Query arguments from program invoca-
tion.

GET ENVIRON-
MENT VARIABLE

(NAME [, VALUE,
LENGTH, STATUS,
TRIM NAME])

S Query environment variable.

HUGE (X) I Largest model number.
HYPOT (X, Y) E Euclidean distance function.
IACHAR (C [, KIND]) E Return ASCII code value for character.
IALL (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Reduce array with bitwise AND opera-

tion.
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Table 13.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
IAND (I, J) E Bitwise AND.
IANY (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Reduce array with bitwise OR opera-

tion.
IBCLR (I, POS) E I with bit POS replaced by zero.
IBITS (I, POS, LEN) E Specified sequence of bits.
IBSET (I, POS) E I with bit POS replaced by one.
ICHAR (C [, KIND]) E Return code value for character.
IEOR (I, J) E Bitwise exclusive OR.
IMAGE INDEX (COARRAY, SUB) I Convert cosubscripts to image index.
INDEX (STRING, SUBSTRING [,

BACK, KIND])
E Search for a substring.

INT (A [, KIND]) E Conversion to integer type.
IOR (I, J) E Bitwise inclusive OR.
IPARITY (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Reduce array with bitwise exclusive OR

operation.
ISHFT (I, SHIFT) E Logical shift.
ISHFTC (I, SHIFT [, SIZE]) E Circular shift of the rightmost bits.
IS CONTIGUOUS (ARRAY) I Test contiguity of an array (5.3.7).
IS IOSTAT END (I) E Test IOSTAT value for end-of-file.
IS IOSTAT EOR (I) E Test IOSTAT value for end-of-record.
KIND (X) I Value of the kind type parameter of X.
LBOUND (ARRAY [, DIM, KIND]) I Lower bound(s) of an array.
LCOBOUND (COARRAY [, DIM, KIND]) I Lower cobound(s) of a coarray.
LEADZ (I) E Number of leading zero bits.
LEN (STRING [, KIND]) I Length of a character entity.
LEN TRIM (STRING [, KIND]) E Length without trailing blanks.
LGE (STRING A, STRING B) E ASCII greater than or equal.
LGT (STRING A, STRING B) E ASCII greater than.
LLE (STRING A, STRING B) E ASCII less than or equal.
LLT (STRING A, STRING B) E ASCII less than.
LOG (X) E Natural logarithm.
LOG GAMMA (X) E Logarithm of the absolute value of the

gamma function.
LOG10 (X) E Common logarithm.
LOGICAL (L [, KIND]) E Conversion between kinds of logical.
MASKL (I [, KIND]) E Left justified mask.
MASKR (I [, KIND]) E Right justified mask.
MATMUL (MATRIX A, MATRIX B) T Matrix multiplication.
MAX (A1, A2 [, A3, ...]) E Maximum value.
MAXEXPONENT (X) I Maximum exponent of a real model.
MAXLOC (ARRAY, DIM [, MASK,

KIND, BACK]) or (ARRAY
[, MASK, KIND, BACK])

T Location(s) of maximum value.

MAXVAL (ARRAY, DIM [, MASK]) or
(ARRAY [, MASK])

T Maximum value(s) of array.

MERGE (TSOURCE, FSOURCE,
MASK)

E Choose between two expression values.

MERGE BITS (I, J, MASK) E Merge of bits under mask.
MIN (A1, A2 [, A3, ...]) E Minimum value.
MINEXPONENT (X) I Minimum exponent of a real model.
MINLOC (ARRAY, DIM [, MASK,

KIND, BACK]) or (ARRAY
[, MASK, KIND, BACK])

T Location(s) of minimum value.
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Table 13.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
MINVAL (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Minimum value(s) of array.

MOD (A, P) E Remainder function.
MODULO (A, P) E Modulo function.
MOVE ALLOC (FROM, TO) PS Move an allocation.
MVBITS (FROM, FROMPOS, LEN,

TO, TOPOS)
ES Copy a sequence of bits.

NEAREST (X, S) E Adjacent machine number.
NEW LINE (A) I Newline character.
NINT (A [, KIND]) E Nearest integer.
NOT (I) E Bitwise complement.
NORM2 (X [, DIM]) T L2 norm of an array.
NULL ([MOLD]) T Disassociated pointer or unallocated al-

locatable entity.
NUM IMAGES ( ) T Number of images.
PACK (ARRAY, MASK [,

VECTOR])
T Pack an array into a vector.

PARITY (MASK [, DIM]) T Reduce array with .NEQV. operation.
POPCNT (I) E Number of one bits.
POPPAR (I) E Parity expressed as 0 or 1.
PRECISION (X) I Decimal precision of a real model.
PRESENT (A) I Query presence of optional argument.
PRODUCT (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Reduce array by multiplication.

RADIX (X) I Base of a numeric model.
RANDOM NUMBER (HARVEST) S Generate pseudorandom number(s).
RANDOM SEED ([SIZE, PUT, GET]) S Restart or query the pseudorandom

number generator.
RANGE (X) I Decimal exponent range of a numeric

model (13.4).
REAL (A [, KIND]) E Conversion to real type.
REPEAT (STRING, NCOPIES) T Repeatedly concatenate a string.
RESHAPE (SOURCE, SHAPE [, PAD,

ORDER])
T Construct an array of an arbitrary

shape.
RRSPACING (X) E Reciprocal of relative spacing of model

numbers.
SAME TYPE AS (A, B) I Query dynamic types for equality.
SCALE (X, I) E Scale real number by a power of the

base.
SCAN (STRING, SET [, BACK,

KIND])
E Search for any one of a set of characters.

SELECTED CHAR -
KIND

(NAME) T Select a character kind.

SELECTED INT -
KIND

(R) T Select an integer kind.

SELECTED REAL -
KIND

([P, R, RADIX]) T Select a real kind.

SET EXPONENT (X, I) E Set floating-point exponent.
SHAPE (SOURCE [, KIND]) I Shape of an array or a scalar.
SHIFTA (I, SHIFT) E Right shift with fill.
SHIFTL (I, SHIFT) E Left shift.
SHIFTR (I, SHIFT) E Right shift.
SIGN (A, B) E Magnitude of A with the sign of B.
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Table 13.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
SIN (X) E Sine function.
SINH (X) E Hyperbolic sine function.
SIZE (ARRAY [, DIM, KIND]) I Size of an array or one extent.
SPACING (X) E Spacing of model numbers (13.4).
SPREAD (SOURCE, DIM, NCOPIES) T Form higher-rank array by replication.
SQRT (X) E Square root.
STORAGE SIZE (A [, KIND]) I Storage size in bits.
SUM (ARRAY, DIM [, MASK]) or

(ARRAY [, MASK])
T Reduce array by addition.

SYSTEM CLOCK ([COUNT, COUNT RATE,
COUNT MAX])

S Query system clock.

TAN (X) E Tangent function.
TANH (X) E Hyperbolic tangent function.
THIS IMAGE ( ) T Index of the invoking image.
THIS IMAGE (COARRAY [, DIM]) T Cosubscript(s) for this image.
TINY (X) I Smallest positive model number.
TRAILZ (I) E Number of trailing zero bits.
TRANSFER (SOURCE, MOLD [, SIZE]) T Transfer physical representation.
TRANSPOSE (MATRIX) T Transpose of an array of rank two.
TRIM (STRING) T String without trailing blanks.
UBOUND (ARRAY [, DIM, KIND]) I Upper bound(s) of an array.
UCOBOUND (COARRAY [, DIM, KIND]) I Upper cobound(s) of a coarray.
UNPACK (VECTOR, MASK, FIELD) T Unpack a vector into an array.
VERIFY (STRING, SET [, BACK,

KIND])
E Search for a character not in a given set.

13.6 Specific names for standard intrinsic functions

1 Except for AMAX0, AMIN0, MAX1, and MIN1, the result type of the specific function is the same that the
result type of the corresponding generic function reference would be if it were invoked with the same arguments
as the specific function.

2 Note that a specific function that is marked with a bullet (•) is not permitted to be used as an actual argument
(12.5.1, C1219), as a target in a procedure pointer assignment statement (7.2.2.2, C730), or as the interface in a
procedure declaration statement (12.4.3.6, C1215).

Specific Name Generic Name Argument Type and Kind

ABS ABS default real
ACOS ACOS default real
AIMAG AIMAG default complex
AINT AINT default real
ALOG LOG default real
ALOG10 LOG10 default real

• AMAX0 (. . . ) REAL (MAX (. . . )) default integer
• AMAX1 MAX default real
• AMIN0 (. . . ) REAL (MIN (. . . )) default integer
• AMIN1 MIN default real

AMOD MOD default real
ANINT ANINT default real
ASIN ASIN default real
ATAN (X) ATAN default real
ATAN2 ATAN2 default real
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Specific Name Generic Name Argument Type and Kind

CABS ABS default complex
CCOS COS default complex
CEXP EXP default complex

• CHAR CHAR default integer
CLOG LOG default complex
CONJG CONJG default complex
COS COS default real
COSH COSH default real
CSIN SIN default complex
CSQRT SQRT default complex
DABS ABS double precision real
DACOS ACOS double precision real
DASIN ASIN double precision real
DATAN ATAN double precision real
DATAN2 ATAN2 double precision real
DCOS COS double precision real
DCOSH COSH double precision real
DDIM DIM double precision real
DEXP EXP double precision real
DIM DIM default real
DINT AINT double precision real
DLOG LOG double precision real
DLOG10 LOG10 double precision real

• DMAX1 MAX double precision real
• DMIN1 MIN double precision real

DMOD MOD double precision real
DNINT ANINT double precision real
DPROD DPROD default real
DSIGN SIGN double precision real
DSIN SIN double precision real
DSINH SINH double precision real
DSQRT SQRT double precision real
DTAN TAN double precision real
DTANH TANH double precision real
EXP EXP default real

• FLOAT REAL default integer
IABS ABS default integer

• ICHAR ICHAR default character
IDIM DIM default integer

• IDINT INT double precision real
IDNINT NINT double precision real

• IFIX INT default real
INDEX INDEX default character

• INT INT default real
ISIGN SIGN default integer
LEN LEN default character

• LGE LGE default character
• LGT LGT default character
• LLE LLE default character
• LLT LLT default character
• MAX0 MAX default integer
• MAX1 (. . . ) INT (MAX (. . . )) default real
• MIN0 MIN default integer
• MIN1 (. . . ) INT (MIN (. . . )) default real
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Specific Name Generic Name Argument Type and Kind

MOD MOD default integer
NINT NINT default real

• REAL REAL default integer
SIGN SIGN default real
SIN SIN default real
SINH SINH default real

• SNGL REAL double precision real
SQRT SQRT default real
TAN TAN default real
TANH TANH default real

13.7 Specifications of the standard intrinsic procedures

13.7.1 General

1 Detailed specifications of the standard generic intrinsic procedures are provided in 13.7 in alphabetical order.

2 The types and type parameters of standard intrinsic procedure arguments and function results are determined
by these specifications. The “Argument(s)” paragraphs specify requirements on the actual arguments of the
procedures. The result characteristics are sometimes specified in terms of the characteristics of dummy arguments.
A program is prohibited from invoking an intrinsic procedure under circumstances where a value to be returned
in a subroutine argument or function result is outside the range of values representable by objects of the specified
type and type parameters, unless the intrinsic module IEEE ARITHMETIC (clause 14) is accessible and there
is support for an infinite or a NaN result, as appropriate. If an infinite result is returned, the flag IEEE -
OVERFLOW or IEEE DIVIDE BY ZERO shall signal; if a NaN result is returned, the flag IEEE INVALID
shall signal. Otherwise, these flags shall have the same status as when the intrinsic procedure was invoked.

13.7.2 ABS (A)

1 Description. Absolute value.

2 Class. Elemental function.

3 Argument. A shall be of type integer, real, or complex.

4 Result Characteristics. The same as A except that if A is complex, the result is real.

5 Result Value. If A is of type integer or real, the value of the result is |A|; if A is complex with value (x, y),
the result is equal to a processor-dependent approximation to

√
x2 + y2 computed without undue overflow or

underflow.

6 Example. ABS ((3.0, 4.0)) has the value 5.0 (approximately).

13.7.3 ACHAR (I [, KIND])

1 Description. Convert ASCII code value to character.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Character of length one. If KIND is present, the kind type parameter is that specified
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by the value of KIND; otherwise, the kind type parameter is that of default character.

5 Result Value. If I has a value in the range 0 ≤ I ≤ 127, the result is the character in position I of the ASCII
collating sequence, provided the processor is capable of representing that character in the character kind of the
result; otherwise, the result is processor dependent. ACHAR (IACHAR (C)) shall have the value C for any
character C capable of representation as a default character.

6 Example. ACHAR (88) has the value ’X’.

13.7.4 ACOS (X)

1 Description. Arccosine (inverse cosine) function.

2 Class. Elemental function.

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1, or of type complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to arccos(X). If it is real
it is expressed in radians and lies in the range 0 ≤ ACOS (X) ≤ π. If it is complex the real part is expressed in
radians and lies in the range 0 ≤ REAL (ACOS (X)) ≤ π.

6 Example. ACOS (0.54030231) has the value 1.0 (approximately).

13.7.5 ACOSH (X)

1 Description. Inverse hyperbolic cosine function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic
cosine function of X. If the result is complex the imaginary part is expressed in radians and lies in the range
0 ≤ AIMAG (ACOSH (X)) ≤ π

6 Example. ACOSH (1.5430806) has the value 1.0 (approximately).

13.7.6 ADJUSTL (STRING)

1 Description. Rotate string to remove leading blanks.

2 Class. Elemental function.

3 Argument. STRING shall be of type character.

4 Result Characteristics. Character of the same length and kind type parameter as STRING.

5 Result Value. The value of the result is the same as STRING except that any leading blanks have been deleted
and the same number of trailing blanks have been inserted.

6 Example. ADJUSTL (’ WORD’) has the value ’WORD ’.

13.7.7 ADJUSTR (STRING)

1 Description. Rotate string to remove trailing blanks.

2 Class. Elemental function.
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3 Argument. STRING shall be of type character.

4 Result Characteristics. Character of the same length and kind type parameter as STRING.

5 Result Value. The value of the result is the same as STRING except that any trailing blanks have been deleted
and the same number of leading blanks have been inserted.

6 Example. ADJUSTR (’WORD ’) has the value ’ WORD’.

13.7.8 AIMAG (Z)

1 Description. Imaginary part of a complex number.

2 Class. Elemental function.

3 Argument. Z shall be of type complex.

4 Result Characteristics. Real with the same kind type parameter as Z.

5 Result Value. If Z has the value (x, y), the result has the value y.

6 Example. AIMAG ((2.0, 3.0)) has the value 3.0.

13.7.9 AINT (A [, KIND])

1 Description. Truncation toward 0 to a whole number.

2 Class. Elemental function.

3 Arguments.

A shall be of type real.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. The result is of type real. If KIND is present, the kind type parameter is that specified
by the value of KIND; otherwise, the kind type parameter is that of A.

5 Result Value. If |A| < 1, AINT (A) has the value 0; if |A| ≥ 1, AINT (A) has a value equal to the integer
whose magnitude is the largest integer that does not exceed the magnitude of A and whose sign is the same as
the sign of A.

6 Examples. AINT (2.783) has the value 2.0. AINT (−2.783) has the value −2.0.

13.7.10 ALL (MASK [, DIM])

1 Description. Reduce logical array by AND operation.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.
DIM (optional) shall be an integer scalar with value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.

The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM is absent or n = 1; otherwise, the result has rank n− 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn]
where [d1, d2, . . . , dn] is the shape of MASK.
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5 Result Value.

Case (i): The result of ALL (MASK) has the value true if all elements of MASK are true or if MASK has
size zero, and the result has value false if any element of MASK is false.

Case (ii): If MASK has rank one, ALL (MASK, DIM) is equal to ALL (MASK). Otherwise, the value of
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ALL (MASK, DIM) is equal to ALL (MASK (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of ALL ([.TRUE., .FALSE., .TRUE.]) is false.

Case (ii): If B is the array
[

1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ALL (B /= C, DIM = 1) is

[true, false, false] and ALL (B /= C, DIM = 2) is [false, false].

13.7.11 ALLOCATED (ARRAY) or ALLOCATED (SCALAR)

1 Description. Query allocation status.

2 Class. Inquiry function.

3 Arguments.

ARRAY shall be an allocatable array.
SCALAR shall be an allocatable scalar.

4 Result Characteristics. Default logical scalar.

5 Result Value. The result has the value true if the argument (ARRAY or SCALAR) is allocated and has the
value false if the argument is unallocated.

13.7.12 ANINT (A [, KIND])

1 Description. Nearest whole number.

2 Class. Elemental function.

3 Arguments.

A shall be of type real.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. The result is of type real. If KIND is present, the kind type parameter is that specified
by the value of KIND; otherwise, the kind type parameter is that of A.

5 Result Value. The result is the integer nearest A, or if there are two integers equally near A, the result is
whichever such integer has the greater magnitude.

6 Examples. ANINT (2.783) has the value 3.0. ANINT (−2.783) has the value −3.0.

13.7.13 ANY (MASK [, DIM])

1 Description. Reduce logical array with OR operation.

2 Class. Transformational function.

3 Arguments.

MASK shall a logical array.
DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.

The corresponding actual argument shall not be an optional dummy argument.
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4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM is absent or n = 1; otherwise, the result has rank n− 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn]
where [d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of ANY (MASK) has the value true if any element of MASK is true and has the value
false if no elements are true or if MASK has size zero.

Case (ii): If MASK has rank one, ANY (MASK, DIM) is equal to ANY (MASK). Otherwise, the value of
element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of ANY (MASK, DIM) is equal to ANY (MASK (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of ANY ([.TRUE., .FALSE., .TRUE.]) is true.

Case (ii): If B is the array
[

1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
then ANY (B /= C, DIM = 1) is

[true, false, true] and ANY (B /= C, DIM = 2) is [true, true].

13.7.14 ASIN (X)

1 Description. Arcsine (inverse sine) function.

2 Class. Elemental function.

3 Argument. X shall be of type real with a value that satisfies the inequality |X| ≤ 1, or of type complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to arcsin(X). If it is real
it is expressed in radians and and lies in the range −π/2 ≤ ASIN (X) ≤ π/2. If it is complex the real part is
expressed in radians and lies in the range −π/2 ≤ REAL (ASIN (X)) ≤ π/2.

6 Example. ASIN (0.84147098) has the value 1.0 (approximately).

13.7.15 ASINH (X)

1 Description. Inverse hyperbolic sine function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic
sine function of X. If the result is complex the imaginary part is expressed in radians and lies in the range
−π/2 ≤ AIMAG (ASINH (X)) ≤ π/2.

6 Example. ASINH (1.1752012) has the value 1.0 (approximately).

13.7.16 ASSOCIATED (POINTER [, TARGET])

1 Description. .

2 Class. Inquiry function.

3 Arguments.

POINTER shall be a pointer. It may be of any type or may be a procedure pointer. Its pointer association
status shall not be undefined.
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TARGET (optional) shall be allowable as the data-target or proc-target in a pointer assignment statement (7.2.2)
in which POINTER is data-pointer-object or proc-pointer-object . If TARGET is a pointer then its
pointer association status shall not be undefined.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): If TARGET is absent, the result is true if and only if POINTER is associated with a target.

Case (ii): If TARGET is present and is a procedure, the result is true if and only if POINTER is associated
with TARGET.

Case (iii): If TARGET is present and is a procedure pointer, the result is true if and only if POINTER and
TARGET are associated with the same procedure.

Case (iv): If TARGET is present and is a scalar target, the result is true if and only if TARGET is not a zero-
sized storage sequence and POINTER is associated with a target that occupies the same storage
units as TARGET.

Case (v): If TARGET is present and is an array target, the result is true if and only if POINTER is associated
with a target that has the same shape as TARGET, is neither of size zero nor an array whose elements
are zero-sized storage sequences, and occupies the same storage units as TARGET in array element
order.

Case (vi): If TARGET is present and is a scalar pointer, the result is true if and only if POINTER and
TARGET are associated, the targets are not zero-sized storage sequences, and they occupy the
same storage units.

Case (vii): If TARGET is present and is an array pointer, the result is true if and only if POINTER and
TARGET are both associated, have the same shape, are neither of size zero nor arrays whose
elements are zero-sized storage sequences, and occupy the same storage units in array element
order.

6 Examples. ASSOCIATED (CURRENT, HEAD) is true if CURRENT is associated with the target HEAD.
After the execution of

A_PART => A (:N)
ASSOCIATED (A PART, A) is true if N is equal to UBOUND (A, DIM = 1). After the execution of

NULLIFY (CUR); NULLIFY (TOP)
ASSOCIATED (CUR, TOP) is false.

13.7.17 ATAN (X) or ATAN (Y, X)

1 Description. Arctangent (inverse tangent) function.

2 Class. Elemental function.

3 Arguments.

Y shall be of type real.
X If Y appears, X shall be of type real with the same kind type parameter as Y. If Y has the value

zero, X shall not have the value zero. If Y does not appear, X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. If Y appears, the result is the same as the result of ATAN2 (Y,X). If Y does not appear, the
result has a value equal to a processor-dependent approximation to arctan(X) whose real part is expressed in
radians and lies in the range −π/2 ≤ ATAN (X) ≤ π/2.

6 Example. ATAN (1.5574077) has the value 1.0 (approximately).

332 Intrinsic procedures and modules 13.7.17



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

13.7.18 ATAN2 (Y, X)

1 Description. Arctangent (inverse tangent) function.

2 Class. Elemental function.

3 Arguments.

Y shall be of type real.
X shall be of the same type and kind type parameter as Y. If Y has the value zero, X shall not have

the value zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the principal value of
the argument of the complex number (X, Y), expressed in radians. It lies in the range −π ≤ ATAN2 (Y,X) ≤ π
and is equal to a processor-dependent approximation to a value of arctan(Y/X) if X 6= 0. If Y > 0, the result is
positive. If Y = 0 and X > 0, the result is Y. If Y = 0 and X < 0, then the result is approximately π if Y is
positive real zero or the processor cannot distinguish between positive and negative real zero, and approximately
−π if Y is negative real zero. If Y < 0, the result is negative. If X = 0, the absolute value of the result is
approximately π/2.

6 Examples. ATAN2 (1.5574077, 1.0) has the value 1.0 (approximately). If Y has the value
[

1 1
−1 −1

]
and X

has the value
[
−1 1
−1 1

]
, the value of ATAN2 (Y, X) is approximately

[
3π/4 π/4
−3π/4 −π/4

]
.

13.7.19 ATANH (X)

1 Description. Inverse hyperbolic tangent function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the inverse hyperbolic
tangent function of X. If the result is complex the imaginary part is expressed in radians and lies in the range
−π/2 ≤ AIMAG (ATANH (X)) ≤ π/2.

6 Example. ATANH (0.76159416) has the value 1.0 (approximately).

13.7.20 ATOMIC DEFINE (ATOM, VALUE)

1 Description. Define a variable atomically.

2 Class. Atomic subroutine.

3 Arguments.

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND
or of type logical with kind ATOMIC LOGICAL KIND, where ATOMIC INT KIND and ATO-
MIC LOGICAL KIND are the named constants in the intrinsic module ISO FORTRAN ENV. It
is an INTENT (OUT) argument. If its kind is the same as that of VALUE or its type is logi-
cal, it becomes defined with the value of VALUE. Otherwise, it becomes defined with the value of
INT (VALUE, ATOMIC INT KIND).

VALUE shall be scalar and of the same type as ATOM. It is an INTENT (IN) argument.
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4 Example. CALL ATOMIC DEFINE (I [3], 4) causes I on image 3 to become defined with the value 4.

13.7.21 ATOMIC REF (VALUE, ATOM)

1 Description. Reference a variable atomically.

2 Class. Atomic subroutine.

3 Arguments.

VALUE shall be scalar and of the same type as ATOM. It is an INTENT (OUT) argument. If its kind
is the same as that of ATOM or its type is logical, it becomes defined with the value of ATOM.
Otherwise, it is defined with the value of INT (ATOM, KIND (VALUE)).

ATOM shall be a scalar coarray or coindexed object and of type integer with kind ATOMIC INT KIND or
of type logical with kind ATOMIC LOGICAL KIND, where ATOMIC INT KIND and ATOMIC -
LOGICAL KIND are the named constants in the intrinsic module ISO FORTRAN ENV. It is an
INTENT (IN) argument.

4 Example. CALL ATOMIC REF (I [3], VAL) causes VAL to become defined with the value of I on image 3.

13.7.22 BESSEL J0 (X)

1 Description. Bessel function of the 1st kind, order 0.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of
the first kind and order zero of X.

6 Example. BESSEL J0 (1.0) has the value 0.765 (approximately).

13.7.23 BESSEL J1 (X)

1 Description. Bessel function of the 1st kind, order 1.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of
the first kind and order one of X.

6 Example. BESSEL J1 (1.0) has the value 0.440 (approximately).

13.7.24 BESSEL JN (N, X) or BESSEL JN (N1, N2, X)

1 Description. Bessel functions of the 1st kind.

2 Class.

Case (i): BESSEL JN (N,X) is an elemental function.

Case (ii): BESSEL JN (N1,N2,X) is a transformational function.
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3 Arguments.

N shall be of type integer and nonnegative.
N1 shall be of type integer and nonnegative.
N2 shall be of type integer and nonnegative.
X shall be of type real.

4 Result Characteristics. Same type and kind as X.
Case (i): The result of BESSEL JN (N, X) is scalar.

Case (ii): The result of BESSEL JN (N1, N2, X) is a rank-one array with extent MAX (N2−N1+1, 0).

5 Result Value.

Case (i): The result value of BESSEL JN (N, X) is a processor-dependent approximation to the Bessel func-
tion of the first kind and order N of X.

Case (ii): Element i of the result value of BESSEL JN (N1, N2, X) is a processor-dependent approximation
to the Bessel function of the first kind and order N1+i− 1 of X.

6 Example. BESSEL JN (2, 1.0) has the value 0.115 (approximately).

13.7.25 BESSEL Y0 (X)

1 Description. Bessel function of the 2nd kind, order 0.

2 Class. Elemental function.

3 Argument. X shall be of type real. Its value shall be greater than zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of
the second kind and order zero of X.

6 Example. BESSEL Y0 (1.0) has the value 0.088 (approximately).

13.7.26 BESSEL Y1 (X)

1 Description. Bessel function of the 2nd kind, order 1.

2 Class. Elemental function.

3 Argument. X shall be of type real. Its value shall be greater than zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the Bessel function of
the second kind and order one of X.

6 Example. BESSEL Y1 (1.0) has the value −0.781 (approximately).

13.7.27 BESSEL YN (N, X) or BESSEL YN (N1, N2, X)

1 Description. Bessel functions of the 2nd kind.

2 Class.

Case (i): BESSEL YN (N, X) is an elemental function.

Case (ii): BESSEL YN (N1, N2, X) is a transformational function.
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3 Arguments.

N shall be of type integer and nonnegative.
N1 shall be of type integer and nonnegative.
N2 shall be of type integer and nonnegative.
X shall be of type real. Its value shall be greater than zero.

4 Result Characteristics. Same type and kind as X.
Case (i): The result of BESSEL YN (N, X) is scalar.

Case (ii): The result of BESSEL YN (N1, N2, X) is a rank-one array with extent MAX (N2−N1+1, 0).

5 Result Value.

Case (i): The result value of BESSEL YN (N, X) is a processor-dependent approximation to the Bessel
function of the second kind and order N of X.

Case (ii): Element i of the result value of BESSEL YN (N1, N2, X) is a processor-dependent approximation
to the Bessel function of the second kind and order N1+i− 1 of X.

6 Example. BESSEL YN (2, 1.0) has the value −1.651 (approximately).

13.7.28 BGE (I, J)

1 Description. Bitwise greater than or equal to.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant .

4 Result Characteristics. Default logical.

5 Result Value. The result is true if the sequence of bits represented by I is greater than or equal to the sequence
of bits represented by J, according to the method of bit sequence comparison in 13.3.2; otherwise the result is
false.

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 4.7. The interpretation of an
integer value as a sequence of bits is described in 13.3.

7 Example. If BIT SIZE (J) has the value 8, BGE (Z’FF’, J) has the value true for any value of J. BGE (0, −1)
has the value false.

13.7.29 BGT (I, J)

1 Description. Bitwise greater than.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant .

4 Result Characteristics. Default logical.

5 Result Value. The result is true if the sequence of bits represented by I is greater than the sequence of bits
represented by J, according to the method of bit sequence comparison in 13.3.2; otherwise the result is false.
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6 The interpretation of a boz-literal-constant as a sequence of bits is described in 4.7. The interpretation of an
integer value as a sequence of bits is described in 13.3.

7 Example. BGT (Z’FF’, Z’FC’) has the value true. BGT (0, −1) has the value false.

13.7.30 BLE (I, J)

1 Description. Bitwise less than or equal to.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant .

4 Result Characteristics. Default logical.

5 Result Value. The result is true if the sequence of bits represented by I is less than or equal to the sequence of
bits represented by J, according to the method of bit sequence comparison in 13.3.2; otherwise the result is false.

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 4.7. The interpretation of an
integer value as a sequence of bits is described in 13.3.

7 Example. BLE (0, J) has the value true for any value of J. BLE (−1, 0) has the value false.

13.7.31 BLT (I, J)

1 Description. Bitwise less than.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant .

4 Result Characteristics. Default logical.

5 Result Value. The result is true if the sequence of bits represented by I is less than the sequence of bits
represented by J, according to the method of bit sequence comparison in 13.3.2; otherwise the result is false.

6 The interpretation of a boz-literal-constant as a sequence of bits is described in 4.7. The interpretation of an
integer value as a sequence of bits is described in 13.3.

7 Example. BLT (0, −1) has the value true. BLT (Z’FF’, Z’FC’) has the value false.

13.7.32 BIT SIZE (I)

1 Description. Number of bits in integer model 13.3.

2 Class. Inquiry function.

3 Argument. I shall be of type integer. It may be a scalar or an array.

4 Result Characteristics. Scalar integer with the same kind type parameter as I.

5 Result Value. The result has the value of the number of bits z of the model integer defined for bit manipulation
contexts in 13.3.

6 Example. BIT SIZE (1) has the value 32 if z of the model is 32.
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13.7.33 BTEST (I, POS)

1 Description. Test single bit in an integer.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
POS shall be of type integer. It shall be nonnegative and be less than BIT SIZE (I).

4 Result Characteristics. Default logical.

5 Result Value. The result has the value true if bit POS of I has the value 1 and has the value false if bit POS
of I has the value 0. The model for the interpretation of an integer value as a sequence of bits is in 13.3.

6 Examples. BTEST (8, 3) has the value true. If A has the value
[

1 2
3 4

]
, the value of BTEST (A, 2) is[

false false
false true

]
and the value of BTEST (2, A) is

[
true false
false false

]
.

13.7.34 CEILING (A [, KIND])

1 Description. Least integer greater than or equal to A.

2 Class. Elemental function.

3 Arguments.

A shall be of type real.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result has a value equal to the least integer greater than or equal to A.

6 Examples. CEILING (3.7) has the value 4. CEILING (−3.7) has the value −3.

13.7.35 CHAR (I [, KIND])

1 Description. Convert code value to character.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer with a value in the range 0 ≤ I ≤ n− 1, where n is the number of characters
in the collating sequence associated with the specified kind type parameter.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Character of length one. If KIND is present, the kind type parameter is that specified
by the value of KIND; otherwise, the kind type parameter is that of default character.

5 Result Value. The result is the character in position I of the collating sequence associated with the spe-
cified kind type parameter. ICHAR (CHAR (I, KIND (C))) shall have the value I for 0 ≤ I ≤ n − 1 and
CHAR (ICHAR (C), KIND (C)) shall have the value C for any character C capable of representation in the
processor.

6 Example. CHAR (88) has the value ’X’ on a processor using the ASCII collating sequence for default characters.
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13.7.36 CMPLX (X [, Y, KIND])

1 Description. Conversion to complex type.

2 Class. Elemental function.

3 Arguments.

X shall be of type integer, real, or complex, or a boz-literal-constant .
Y (optional) shall be of type integer or real, or a boz-literal-constant . If X is of type complex, no actual argument

shall correspond to Y.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. The result is of type complex. If KIND is present, the kind type parameter is that
specified by the value of KIND; otherwise, the kind type parameter is that of default real kind.

5 Result Value. If Y is absent and X is not complex, it is as if Y were present with the value zero. If X is
complex, it is as if X were real with the value REAL (X, KIND) and Y were present with the value AIMAG (X).
CMPLX (X, Y, KIND) has the complex value whose real part is REAL (X, KIND) and whose imaginary part is
REAL (Y, KIND).

6 Example. CMPLX (−3) has the value (−3.0, 0.0).

13.7.37 COMMAND ARGUMENT COUNT ( )

1 Description. Number of command arguments.

2 Class. Transformational function.

3 Argument. None.

4 Result Characteristics. Scalar default integer.

5 Result Value. The result value is equal to the number of command arguments available. If there are no
command arguments available or if the processor does not support command arguments, then the result has the
value zero. If the processor has a concept of a command name, the command name does not count as one of the
command arguments.

6 Example. See 13.7.66.

13.7.38 CONJG (Z)

1 Description. Conjugate of a complex number.

2 Class. Elemental function.

3 Argument. Z shall be of type complex.

4 Result Characteristics. Same as Z.

5 Result Value. If Z has the value (x, y), the result has the value (x,−y).

6 Example. CONJG ((2.0, 3.0)) has the value (2.0, −3.0).

13.7.39 COS (X)

1 Description. Cosine function.

2 Class. Elemental function.
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3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to cos(X). If X is of type
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.

6 Example. COS (1.0) has the value 0.54030231 (approximately).

13.7.40 COSH (X)

1 Description. Hyperbolic cosine function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to cosh(X). If X is of type
complex its imaginary part is regarded as a value in radians.

6 Example. COSH (1.0) has the value 1.5430806 (approximately).

13.7.41 COUNT (MASK [, DIM, KIND])

1 Description. Reduce logical array by counting true values.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.
DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.

The corresponding actual argument shall not be an optional dummy argument.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is absent or
n = 1; otherwise, the result has rank n−1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn]
is the shape of MASK.

5 Result Value.

Case (i): The result of COUNT (MASK) has a value equal to the number of true elements of MASK or has
the value zero if MASK has size zero.

Case (ii): If MASK has rank one, COUNT (MASK, DIM) has a value equal to that of COUNT (MASK).
Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of COUNT (MASK, DIM) is
equal to COUNT (MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of COUNT ([.TRUE., .FALSE., .TRUE.]) is 2.

Case (ii): If B is the array
[

1 3 5
2 4 6

]
and C is the array

[
0 3 5
7 4 8

]
, COUNT (B /= C, DIM = 1) is

[2, 0, 1] and COUNT (B /= C, DIM = 2) is [1, 2].
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13.7.42 CPU TIME (TIME)

1 Description. Return the processor time.

2 Class. Subroutine.

3 Argument. TIME shall be scalar and of type real. It is an INTENT (OUT) argument that is assigned a
processor-dependent approximation to the processor time in seconds. If the processor cannot return a meaningful
time, a processor-dependent negative value is returned.

4 Example.

REAL T1, T2

...

CALL CPU_TIME(T1)

... ! Code to be timed.

CALL CPU_TIME(T2)

WRITE (*,*) ’Time taken by code was ’, T2-T1, ’ seconds’

writes the processor time taken by a piece of code.

NOTE 13.8
A processor for which a single result is inadequate (for example, a parallel processor) might choose to
provide an additional version for which time is an array.

The exact definition of time is left imprecise because of the variability in what different processors are able
to provide. The primary purpose is to compare different algorithms on the same processor or discover which
parts of a calculation are the most expensive.

The start time is left imprecise because the purpose is to time sections of code, as in the example.

Most computer systems have multiple concepts of time. One common concept is that of time expended by
the processor for a given program. This might or might not include system overhead, and has no obvious
connection to elapsed “wall clock” time.

13.7.43 CSHIFT (ARRAY, SHIFT [, DIM])

1 Description. Circular shift of an array.

2 Class. Transformational function.

3 Arguments.

ARRAY may be of any type. It shall be an array.
SHIFT shall be of type integer and shall be scalar if ARRAY has rank one; otherwise, it shall be scalar or

of rank n− 1 and of shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape
of ARRAY.

DIM (optional) shall be scalar and of type integer with a value in the range 1 ≤ DIM ≤ n, where n is the rank
of ARRAY. If DIM is omitted, it is as if it were present with the value 1.

4 Result Characteristics. The result is of the type and type parameters of ARRAY, and has the shape of
ARRAY.

5 Result Value.

Case (i): If ARRAY has rank one, element i of the result is ARRAY (1 + MODULO (i + SHIFT – 1, SIZE
(ARRAY))).
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Case (ii): If ARRAY has rank greater than one, section (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . ., sn) of the result
has a value equal to CSHIFT (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . ., sn), sh, 1), where sh is
SHIFT or SHIFT (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn).

6 Examples.

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V circularly to the left by two positions is
achieved by CSHIFT (V, SHIFT = 2) which has the value [3, 4, 5, 6, 1, 2]; CSHIFT (V, SHIFT =
−2) achieves a circular shift to the right by two positions and has the value [5, 6, 1, 2, 3, 4].

Case (ii): The rows of an array of rank two may all be shifted by the same amount or by different amounts.

If M is the array

 1 2 3
4 5 6
7 8 9

, the value of

CSHIFT (M, SHIFT = −1, DIM = 2) is

 3 1 2
6 4 5
9 7 8

, and the value of

CSHIFT (M, SHIFT = [−1, 1, 0], DIM = 2) is

 3 1 2
5 6 4
7 8 9

.

13.7.44 DATE AND TIME ([DATE, TIME, ZONE, VALUES])

1 Description. Return date and time.

2 Class. Subroutine.

3 Arguments.

DATE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value
of the form CCYYMMDD, where CC is the century, YY is the year within the century, MM is the
month within the year, and DD is the day within the month. If there is no date available, DATE
is assigned all blanks.

TIME (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value
of the form hhmmss.sss, where hh is the hour of the day, mm is the minutes of the hour, and ss.sss
is the seconds and milliseconds of the minute. If there is no clock available, TIME is assigned all
blanks.

ZONE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned a value of
the form +hhmm or -hhmm, where hh and mm are the time difference with respect to Coordinated
Universal Time (UTC) in hours and minutes, respectively. If this information is not available,
ZONE is assigned all blanks.

VALUES (optional) shall be a rank-one default integer array. It is an INTENT (OUT) argument. Its size shall
be at least 8. The values returned in VALUES are as follows:

VALUES (1) the year, including the century (for example, 1990), or –HUGE (0) if there is no date available;
VALUES (2) the month of the year, or –HUGE (0) if there is no date available;
VALUES (3) the day of the month, or –HUGE (0) if there is no date available;
VALUES (4) the time difference with respect to Coordinated Universal Time (UTC) in minutes, or –HUGE (0)

if this information is not available;
VALUES (5) the hour of the day, in the range of 0 to 23, or –HUGE (0) if there is no clock;
VALUES (6) the minutes of the hour, in the range 0 to 59, or –HUGE (0) if there is no clock;
VALUES (7) the seconds of the minute, in the range 0 to 60, or –HUGE (0) if there is no clock;
VALUES (8) the milliseconds of the second, in the range 0 to 999, or –HUGE (0) if there is no clock.
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4 Example.

5 INTEGER DATE_TIME (8)

CHARACTER (LEN = 10) BIG_BEN (3)

CALL DATE_AND_TIME (BIG_BEN (1), BIG_BEN (2), BIG_BEN (3), DATE_TIME)

6 If run in Geneva, Switzerland on April 12, 1985 at 15:27:35.5 with a system configured for the local time zone,
this sample would have assigned the value 19850412 to BIG BEN (1), the value 152735.500 to BIG BEN (2), the
value +0100 to BIG BEN (3), and the value [1985, 4, 12, 60, 15, 27, 35, 500] to DATE TIME.

NOTE 13.9
These forms are compatible with the representations defined in ISO 8601:2004. UTC is established by the
International Bureau of Weights and Measures (BIPM, i.e. Bureau International des Poids et Mesures) and
the International Earth Rotation Service (IERS).

13.7.45 DBLE (A)

1 Description. Conversion to double precision real.

2 Class. Elemental function.

3 Argument. A shall be of type integer, real, complex, or a boz-literal-constant .

4 Result Characteristics. Double precision real.

5 Result Value. The result has the value REAL (A, KIND (0.0D0)).

6 Example. DBLE (−3) has the value −3.0D0.

13.7.46 DIGITS (X)

1 Description. Significant digits in numeric model.

2 Class. Inquiry function.

3 Argument. X shall be of type integer or real. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has the value q if X is of type integer and p if X is of type real, where q and p are as
defined in 13.4 for the model representing numbers of the same type and kind type parameter as X.

6 Example. DIGITS (X) has the value 24 for real X whose model is as in Note 13.5.

13.7.47 DIM (X, Y)

1 Description. Maximum of X − Y and zero.

2 Class. Elemental function.

3 Arguments.

X shall be of type integer or real.
Y shall be of the same type and kind type parameter as X.

4 Result Characteristics. Same as X.

5 Result Value. The value of the result is the maximum of X − Y and zero.

13.7.45 Intrinsic procedures and modules 343



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

6 Example. DIM (−3.0, 2.0) has the value 0.0.

13.7.48 DOT PRODUCT (VECTOR A, VECTOR B)

1 Description. Dot product of two vectors.

2 Class. Transformational function.

3 Arguments.

VECTOR A shall be of numeric type (integer, real, or complex) or of logical type. It shall be a rank-one array.
VECTOR B shall be of numeric type if VECTOR A is of numeric type or of type logical if VECTOR A is of

type logical. It shall be a rank-one array. It shall be of the same size as VECTOR A.

4 Result Characteristics. If the arguments are of numeric type, the type and kind type parameter of the result are
those of the expression VECTOR A * VECTOR B determined by the types and kinds of the arguments according
to 7.1.9.3. If the arguments are of type logical, the result is of type logical with the kind type parameter of the
expression VECTOR A .AND. VECTOR B according to 7.1.9.3. The result is scalar.

5 Result Value.

Case (i): If VECTOR A is of type integer or real, the result has the value SUM (VECTOR A*VECTOR B).
If the vectors have size zero, the result has the value zero.

Case (ii): If VECTOR A is of type complex, the result has the value SUM (CONJG (VECTOR A)*VECTOR -
B). If the vectors have size zero, the result has the value zero.

Case (iii): If VECTOR A is of type logical, the result has the value ANY (VECTOR A .AND. VECTOR B).
If the vectors have size zero, the result has the value false.

6 Example. DOT PRODUCT ([1, 2, 3], [2, 3, 4]) has the value 20.

13.7.49 DPROD (X, Y)

1 Description. Double precision real product.

2 Class. Elemental function.

3 Arguments.

X shall be default real.
Y shall be default real.

4 Result Characteristics. Double precision real.

5 Result Value. The result has a value equal to a processor-dependent approximation to the product of X and
Y. DPROD (X, Y) should have the same value as DBLE (X) * DBLE (Y).

6 Example. DPROD (−3.0, 2.0) has the value −6.0D0.

13.7.50 DSHIFTL (I, J, SHIFT)

1 Description. Combined left shift.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant . If both I and J are of type integer, they shall have

the same kind type parameter. I and J shall not both be boz-literal-constants.
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SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT SIZE (I) if I is of
type integer; otherwise, it shall be less than or equal to BIT SIZE (J).

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.

5 Result Value. If either I or J is a boz-literal-constant , it is first converted as if by the intrinsic function INT to
type integer with the kind type parameter of the other. The rightmost SHIFT bits of the result value are the same
as the leftmost bits of J, and the remaining bits of the result value are the same as the rightmost bits of I. This
is equal to IOR (SHIFTL (I, SHIFT), SHIFTR (J, BIT SIZE (J)−SHIFT)). The model for the interpretation of
an integer value as a sequence of bits is in 13.3.

6 Examples. DSHIFTL (1, 2**30, 2) has the value 5 if default integer has 32 bits. DSHIFTL (I, I, SHIFT) has
the same result value as ISHFTC (I, SHIFT).

13.7.51 DSHIFTR (I, J, SHIFT)

1 Description. Combined right shift.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant . If both I and J are of type integer, they shall have

the same kind type parameter. I and J shall not both be boz-literal-constants.
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT SIZE (I) if I is of

type integer; otherwise, it shall be less than or equal to BIT SIZE (J).

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.

5 Result Value. If either I or J is a boz-literal-constant , it is first converted as if by the intrinsic function INT to
type integer with the kind type parameter of the other. The leftmost SHIFT bits of the result value are the same
as the rightmost bits of I, and the remaining bits of the result value are the same as the leftmost bits of J. This
is equal to IOR (SHIFTL (I, BIT SIZE (I)−SHIFT), SHIFTR (J, SHIFT)). The model for the interpretation of
an integer value as a sequence of bits is in 13.3.

6 Examples. DSHIFTR (1, 16, 3) has the value 229 + 2 if default integer has 32 bits. DSHIFTR (I, I, SHIFT) has
the same result value as ISHFTC (I,−SHIFT).

13.7.52 EOSHIFT (ARRAY, SHIFT [, BOUNDARY, DIM])

1 Description. End-off shift of the elements of an array.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array be of any type.
SHIFT shall be of type integer and shall be scalar if ARRAY has rank one; otherwise, it shall be scalar or

of rank n− 1 and of shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape
of ARRAY.

BOUNDARY (optional) shall be of the same type and type parameters as ARRAY and shall be scalar if ARRAY
has rank one; otherwise, it shall be either scalar or of rank n− 1 and of shape [d1, d2, . . . , dDIM−1,
dDIM+1, . . . , dn]. BOUNDARY may be absent for the types in the following table and, in this
case, it is as if it were present with the scalar value shown converted, if necessary, to the kind type
parameter value of ARRAY.

Type of ARRAY Value of BOUNDARY
Integer 0
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Type of ARRAY Value of BOUNDARY
Real 0.0
Complex (0.0, 0.0)
Logical false
Character (len) len blanks
Bits B’0’

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
If DIM is omitted, it is as if it were present with the value 1.

4 Result Characteristics. The result has the type, type parameters, and shape of ARRAY.

5 Result Value. Element (s1, s2, . . . , sn) of the result has the value ARRAY (s1, s2, . . . , sDIM−1, sDIM + sh,
sDIM+1, . . . , sn) where sh is SHIFT or SHIFT (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) provided the inequality
LBOUND (ARRAY, DIM) ≤ sDIM + sh ≤ UBOUND (ARRAY, DIM) holds and is otherwise BOUNDARY or
BOUNDARY (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn).

6 Examples.

Case (i): If V is the array [1, 2, 3, 4, 5, 6], the effect of shifting V end-off to the left by 3 positions is achieved
by EOSHIFT (V, SHIFT = 3), which has the value [4, 5, 6, 0, 0, 0]; EOSHIFT (V, SHIFT = −2,
BOUNDARY = 99) achieves an end-off shift to the right by 2 positions with the boundary value of
99 and has the value [99, 99, 1, 2, 3, 4].

Case (ii): The rows of an array of rank two may all be shifted by the same amount or by different amounts

and the boundary elements can be the same or different. If M is the array

 A B C
D E F
G H I

, then the

value of EOSHIFT (M, SHIFT = −1, BOUNDARY = ’*’, DIM = 2) is

 * A B
* D E
∗ G H

, and the value

of EOSHIFT (M, SHIFT = [−1, 1, 0], BOUNDARY = [’*’, ’/’, ’?’], DIM = 2) is

 * A B
E F /
G H I

.

13.7.53 EPSILON (X)

1 Description. Model number that is small compared to 1.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Scalar of the same type and kind type parameter as X.

5 Result Value. The result has the value b1−p where b and p are as defined in 13.4 for the model representing
numbers of the same type and kind type parameter as X.

6 Example. EPSILON (X) has the value 2−23 for real X whose model is as in Note 13.5.

13.7.54 ERF (X)

1 Description. Error function.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.
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5 Result Value. The result has a value equal to a processor-dependent approximation to the error function of X,
2√
π

∫X
0

exp(−t2) dt.

6 Example. ERF (1.0) has the value 0.843 (approximately).

13.7.55 ERFC (X)

1 Description. Complementary error function.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the complementary error
function of X, 1− ERF (X); this is equivalent to 2√

π

∫∞
X

exp(−t2)dt.

6 Example. ERFC (1.0) has the value 0.157 (approximately).

13.7.56 ERFC SCALED (X)

1 Description. Scaled complementary error function.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the exponentially-scaled
complementary error function of X, exp(X2) 2√

π

∫∞
X

exp(−t2) dt.

6 Example. ERFC SCALED (20.0) has the value 0.02817434874 (approximately).

NOTE 13.10

The complementary error function is asymptotic to exp(−X2)/(X
√
π). As such it underflows for X >≈ 9

when using IEC 60559:1989 single precision arithmetic. The exponentially-scaled complementary error
function is asymptotic to 1/(X

√
π). As such it does not underflow until X > HUGE (X)/

√
π.

13.7.57 EXECUTE COMMAND LINE (COMMAND [, WAIT, EXITSTAT,

CMDSTAT, CMDMSG ])

1 Description. Execute a command line.

2 Class. Subroutine.

3 Arguments.

COMMAND shall be a default character scalar. It is an INTENT (IN) argument. Its value is the command line
to be executed. The interpretation is processor dependent.

WAIT (optional) shall be a default logical scalar. It is an INTENT (IN) argument. If WAIT is present with the
value false, and the processor supports asynchronous execution of the command, the command is
executed asynchronously; otherwise it is executed synchronously.

EXITSTAT (optional) shall be a default integer scalar. It is an INTENT (INOUT) argument. If the command is
executed synchronously, it is assigned the value of the processor-dependent exit status. Otherwise,
the value of EXITSTAT is unchanged.
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CMDSTAT (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the
value −1 if the processor does not support command line execution, a processor-dependent positive
value if an error condition occurs, or the value −2 if no error condition occurs but WAIT is present
with the value false and the processor does not support asynchronous execution. Otherwise it is
assigned the value 0.

CMDMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. If an error condi-
tion occurs, it is assigned a processor-dependent explanatory message. Otherwise, it is unchanged.

4 If the processor supports command line execution, it shall support synchronous and may support asynchronous
execution of the command line.

5 When the command is executed synchronously, EXECUTE COMMAND LINE returns after the command line
has completed execution. Otherwise, EXECUTE COMMAND LINE returns without waiting.

6 If a condition occurs that would assign a nonzero value to CMDSTAT but the CMDSTAT variable is not present,
error termination is initiated.

13.7.58 EXP (X)

1 Description. Exponential function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to eX. If X is of type
complex, its imaginary part is regarded as a value in radians.

6 Example. EXP (1.0) has the value 2.7182818 (approximately).

13.7.59 EXPONENT (X)

1 Description. Exponent of floating-point number.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Default integer.

5 Result Value. The result has a value equal to the exponent e of the representation for the value of X in the
extended real model for the kind of X (13.4), provided X is nonzero and e is within the range for default integers.
If X has the value zero, the result has the value zero. If X is an IEEE infinity or NaN, the result has the value
HUGE (0).

6 Examples. EXPONENT (1.0) has the value 1 and EXPONENT (4.1) has the value 3 for reals whose model is
as in Note 13.5.

13.7.60 EXTENDS TYPE OF (A, MOLD)

1 Description. Query dynamic type for extension.

2 Class. Inquiry function.

3 Arguments.

A shall be an object of extensible declared type or unlimited polymorphic. If it is a pointer, it shall
not have an undefined association status.
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MOLD shall be an object of extensible declared type or unlimited polymorphic. If it is a pointer, it shall
not have an undefined association status.

4 Result Characteristics. Default logical scalar.

5 Result Value. If MOLD is unlimited polymorphic and is either a disassociated pointer or unallocated allocatable
variable, the result is true; otherwise if A is unlimited polymorphic and is either a disassociated pointer or
unallocated allocatable variable, the result is false; otherwise if the dynamic type of A or MOLD is extensible, the
result is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD; otherwise
the result is processor dependent.

NOTE 13.11
The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type.

13.7.61 FINDLOC (ARRAY, VALUE, DIM [, MASK, KIND, BACK]) or

FINDLOC (ARRAY, VALUE [, MASK, KIND, BACK])

1 Description. Location(s) of a specified value.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of intrinsic type.
VALUE shall be scalar and in type conformance with ARRAY, as specified in Table 7.3 for relational intrinsic

operations 7.1.5.5.2).
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.
KIND (optional) shall be a scalar integer constant expression.
BACK (optional) shall be a logical scalar.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result is
an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and shape
[d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where [d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of FINDLOC (ARRAY, VALUE) is a rank-one array whose element values are the values
of the subscripts of an element of ARRAY whose value matches VALUE. If there is such a value,
the ith subscript returned lies in the range 1 to ei, where ei is the extent of the ith dimension of
ARRAY. If no elements match VALUE or ARRAY has size zero, all elements of the result are zero.

Case (ii): The result of FINDLOC (ARRAY, VALUE, MASK = MASK) is a rank-one array whose element
values are the values of the subscripts of an element of ARRAY, corresponding to a true element of
MASK, whose value matches VALUE. If there is such a value, the ith subscript returned lies in the
range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If no elements match VALUE,
ARRAY has size zero, or every element of MASK has the value false, all elements of the result are
zero.

Case (iii): If ARRAY has rank one, the result of
FINDLOC (ARRAY, VALUE, DIM=DIM [, MASK = MASK]) is a scalar whose value is equal to
that of the first element of FINDLOC (ARRAY, VALUE [, MASK = MASK]). Otherwise, the value
of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn ) of the result is equal to FINDLOC (ARRAY (s1,
s2, . . . , sDIM−1, :, sDIM+1, . . . , sn), VALUE, DIM=1 [, MASK = MASK (s1, s2, . . . , sDIM−1, :,
sDIM+1, . . . , sn)]).
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6 If both ARRAY and VALUE are of type logical, the comparison is performed with the .EQV. operator; otherwise,
the comparison is performed with the == operator. If the value of the comparison is true, that element of ARRAY
matches VALUE.

7 If only one element matches VALUE, that element’s subscripts are returned. Otherwise, if more than one element
matches VALUE and BACK is absent or present with the value false, the element whose subscripts are returned
is the first such element, taken in array element order. If BACK is present with the value true, the element whose
subscripts are returned is the last such element, taken in array element order.

8 Examples.

Case (i): The value of FINDLOC ([2, 6, 4, 6,], VALUE = 6) is [2], and the value of FINDLOC ([2, 6, 4, 6],
VALUE = 6, BACK = .TRUE.) is [4].

Case (ii): If A has the value

 0 −5 7 7
3 4 −1 2
1 5 6 7

, and M has the value

 T T F T
T T F T
T T F T

, FINDLOC (A, 7,

MASK = M) has the value [1, 4] and FINDLOC (A, 7, MASK = M, BACK = .TRUE.) has the
value [3, 4]. This is independent of the declared lower bounds for A.

Case (iii): The value of FINDLOC ([2, 6, 4], VALUE = 6, DIM = 1) is 2. If B has the value[
1 2 −9
2 2 6

]
, FINDLOC (B, VALUE = 2, DIM = 1) has the value [2, 1, 0] and FINDLOC (B,

VALUE = 2, DIM = 2) has the value [2, 1]. This is independent of the declared lower bounds for B.

13.7.62 FLOOR (A [, KIND])

1 Description. Greatest integer less than or equal to A.

2 Class. Elemental function.

3 Arguments.

A shall be of type real.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result has a value equal to the greatest integer less than or equal to A.

6 Examples. FLOOR (3.7) has the value 3. FLOOR (−3.7) has the value −4.

13.7.63 FRACTION (X)

1 Description. Fractional part of number.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. The result has the value X× b−e, where b and e are as defined in 13.4 for the representation of
X in the extended real model for the kind of X. If X has the value zero, the result is zero. If X is an IEEE NaN,
the result is that NaN. If X is an IEEE infinity, the result is an IEEE NaN.

6 Example. FRACTION (3.0) has the value 0.75 for reals whose model is as in Note 13.5.
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13.7.64 GAMMA (X)

1 Description. Gamma function.

2 Class. Elemental function.

3 Argument. X shall be of type real. Its value shall not be a negative integer or zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the gamma function of
X,

Γ(X) =


∫∞
0
tX−1 exp(−t) dt X > 0

∫∞
0
tX−1

(
exp(−t)−

∑n
k=0

(−t)k

k!

)
dt −n− 1 < X < −n, n an integer ≥ 0

6 Example. GAMMA (1.0) has the value 1.000 (approximately).

13.7.65 GET COMMAND ([COMMAND, LENGTH, STATUS])

1 Description. Query program invocation command.

2 Class. Subroutine.

3 Arguments.

COMMAND (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned
the entire command by which the program was invoked. If the command cannot be determined,
COMMAND is assigned all blanks.

LENGTH (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the
significant length of the command by which the program was invoked. The significant length may
include trailing blanks if the processor allows commands with significant trailing blanks. This length
does not consider any possible truncation or padding in assigning the command to the COMMAND
argument; in fact the COMMAND argument need not even be present. If the command length
cannot be determined, a length of 0 is assigned.

STATUS (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the
value −1 if the COMMAND argument is present and has a length less than the significant length
of the command. It is assigned a processor-dependent positive value if the command retrieval fails.
Otherwise it is assigned the value 0.

13.7.66 GET COMMAND ARGUMENT (NUMBER [, VALUE, LENGTH,

STATUS])

1 Description. Query arguments from program invocation.

2 Class. Subroutine.

3 Arguments.

NUMBER shall be a default integer scalar. It is an INTENT (IN) argument.
It specifies the number of the command argument that the other arguments give information about.
Useful values of NUMBER are those between 0 and the argument count returned by the intrinsic
function COMMAND ARGUMENT COUNT. Other values are allowed, but will result in error
status return (see below).
Command argument 0 is defined to be the command name by which the program was invoked if
the processor has such a concept. NUMBER is allowed to be zero even if the processor does not
define command names or other command arguments.
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The remaining command arguments are numbered consecutively from 1 to the argument count in
an order determined by the processor.

VALUE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned the
value of the command argument specified by NUMBER. If the command argument value cannot be
determined, VALUE is assigned all blanks.

LENGTH (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the
significant length of the command argument specified by NUMBER. The significant length may
include trailing blanks if the processor allows command arguments with significant trailing blanks.
This length does not consider any possible truncation or padding in assigning the command argu-
ment value to the VALUE argument; in fact the VALUE argument need not even be present. If the
command argument length cannot be determined, a length of 0 is assigned.

STATUS (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. It is assigned the
value −1 if the VALUE argument is present and has a length less than the significant length of the
command argument specified by NUMBER. It is assigned a processor-dependent positive value if
the argument retrieval fails. Otherwise it is assigned the value 0.

NOTE 13.12
One possible reason for failure is that NUMBER is negative or greater than COMMAND ARGUMENT -
COUNT ( ).

4 Example.

PROGRAM echo

INTEGER :: i

CHARACTER :: command*32, arg*128

CALL get_command_argument(0, command)

WRITE (*,*) "Command name is: ", command

DO i = 1, command_argument_count()

CALL get_command_argument(i, arg)

WRITE (*,*) "Argument ", i, " is ", arg

END DO

END PROGRAM echo

13.7.67 GET ENVIRONMENT VARIABLE (NAME [, VALUE, LENGTH,

STATUS, TRIM NAME])

1 Description. Query environment variable.

2 Class. Subroutine.

3 Arguments.

NAME shall be a default character scalar. It is an INTENT (IN) argument. The interpretation of case is
processor dependent

VALUE (optional) shall be a default character scalar. It is an INTENT (OUT) argument. It is assigned the value
of the environment variable specified by NAME. VALUE is assigned all blanks if the environment
variable does not exist or does not have a value or if the processor does not support environment
variables.

LENGTH (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. If the specified
environment variable exists and has a value, LENGTH is set to the length of that value. Otherwise
LENGTH is set to 0.

STATUS (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. If the environment
variable exists and either has no value or its value is successfully assigned to VALUE, STATUS
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is set to zero. STATUS is set to −1 if the VALUE argument is present and has a length less
than the significant length of the environment variable. It is assigned the value 1 if the specified
environment variable does not exist, or 2 if the processor does not support environment variables.
Processor-dependent values greater than 2 may be returned for other error conditions.

TRIM NAME (optional) shall be a logical scalar. It is an INTENT (IN) argument. If TRIM NAME is present
with the value false then trailing blanks in NAME are considered significant if the processor sup-
ports trailing blanks in environment variable names. Otherwise trailing blanks in NAME are not
considered part of the environment variable’s name.

13.7.68 HUGE (X)

1 Description. Largest model number.

2 Class. Inquiry function.

3 Argument. X shall be of type integer or real. It may be a scalar or an array.

4 Result Characteristics. Scalar of the same type and kind type parameter as X.

5 Result Value. The result has the value rq − 1 if X is of type integer and (1 − b−p)bemax if X is of type real,
where r, q, b, p, and emax are as defined in 13.4 for the model representing numbers of the same type and kind
type parameter as X.

6 Example. HUGE (X) has the value (1− 2−24)× 2127 for real X whose model is as in Note 13.5.

13.7.69 HYPOT (X, Y)

1 Description. Euclidean distance function.

2 Class. Elemental function.

3 Arguments.

X shall be of type real.
Y shall be of type real with the same kind type parameter as X.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the Euclidean distance,√
X2 + Y2, without undue overflow or underflow.

6 Example. HYPOT (3.0, 4.0) has the value 5.0 (approximately).

13.7.70 IACHAR (C [, KIND])

1 Description. Return ASCII code value for character.

2 Class. Elemental function.

3 Arguments.

C shall be of type character and of length one.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. If C is in the collating sequence defined by the codes specified in ISO/IEC 646:1991 (International
Reference Version), the result is the position of C in that sequence and satisfies the inequality (0 ≤ IACHAR(C) ≤
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127). A processor-dependent value is returned if C is not in the ASCII collating sequence. The results are
consistent with the LGE, LGT, LLE, and LLT comparison functions. For example, if LLE (C, D) is true,
IACHAR (C) <= IACHAR (D) is true where C and D are any two characters representable by the processor.

6 Example. IACHAR (’X’) has the value 88.

13.7.71 IALL (ARRAY, DIM [, MASK]) or IALL (ARRAY [, MASK])

1 Description. Reduce array with bitwise AND operation.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of type integer.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if
DIM does not appear or if ARRAY has rank one; otherwise, the result is an array of rank n − 1 and shape [d1,
d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): If ARRAY has size zero the result value is equal to NOT (INT (0, KIND (ARRAY))). Otherwise,
the result of IALL (ARRAY) has a value equal to the bitwise AND of all the elements of ARRAY.

Case (ii): The result of IALL (ARRAY, MASK=MASK) has a value equal to
IALL (PACK (ARRAY, MASK)).

Case (iii): The result of IALL (ARRAY, DIM=DIM [ , MASK=MASK]) has a value equal to that of IALL (AR-
RAY [ , MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2, . . . ,
sDIM−1, sDIM+1, . . . , sn) of the result is equal to IALL (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1,
. . . , sn) [, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).

6 Examples. IALL ([14, 13, 11]) has the value 8. IALL ([14, 13, 11], MASK=[.true., .false., .true]) has the value
10.

13.7.72 IAND (I, J)

1 Description. Bitwise AND.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant . If both I and J are of type integer, they shall have

the same kind type parameter. I and J shall not both be boz-literal-constants.

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.

5 Result Value. If either I or J is a boz-literal-constant , it is first converted as if by the intrinsic function INT to
type integer with the kind type parameter of the other. The result has the value obtained by combining I and J
bit-by-bit according to the following truth table:

I J IAND (I, J)
1 1 1
1 0 0
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I J IAND (I, J)
0 1 0
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 13.3.

7 Example. IAND (1, 3) has the value 1.

13.7.73 IANY (ARRAY, DIM [, MASK]) or IANY (ARRAY [, MASK])

1 Description. Reduce array with bitwise OR operation.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be of type integer. It shall be an array.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if
DIM does not appear or if ARRAY has rank one; otherwise, the result is an array of rank n − 1 and shape [d1,
d2, . . . , dDIM−1, dDIM+1, . . . , dn] where [d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of IANY (ARRAY) is the bitwise OR of all the elements of ARRAY. If ARRAY has size
zero the result value is equal to zero.

Case (ii): The result of IANY (ARRAY, MASK=MASK) has a value equal to
IANY (PACK (ARRAY, MASK)).

Case (iii): The result of IANY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of IANY (AR-
RAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element (s1, s2, . . . ,
sDIM−1, sDIM+1, . . . , sn) of the result is equal to IANY (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1,
. . . , sn) [, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).

6 Examples. IANY ([14, 13, 8]) has the value 15. IANY ([14, 13, 8], MASK=[.true., .false., .true]) has the value
14.

13.7.74 IBCLR (I, POS)

1 Description. I with bit POS replaced by zero.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
POS shall be of type integer. It shall be nonnegative and less than BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The result has the value of the sequence of bits of I, except that bit POS is zero. The model for
the interpretation of an integer value as a sequence of bits is in 13.3.

6 Examples. IBCLR (14, 1) has the value 12. If V has the value [1, 2, 3, 4], the value of IBCLR (POS = V, I = 31)
is [29, 27, 23, 15].
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13.7.75 IBITS (I, POS, LEN)

1 Description. Specified sequence of bits.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
POS shall be of type integer. It shall be nonnegative and POS + LEN shall be less than or equal to

BIT SIZE (I).
LEN shall be of type integer and nonnegative.

4 Result Characteristics. Same as I.

5 Result Value. The result has the value of the sequence of LEN bits in I beginning at bit POS, right-adjusted
and with all other bits zero. The model for the interpretation of an integer value as a sequence of bits is in 13.3.

6 Example. IBITS (14, 1, 3) has the value 7.

13.7.76 IBSET (I, POS)

1 Description. I with bit POS replaced by one.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
POS shall be of type integer. It shall be nonnegative and less than BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The result has the value of the sequence of bits of I, except that bit POS is one. The model for
the interpretation of an integer value as a sequence of bits is in 13.3.

6 Examples. IBSET (12, 1) has the value 14. If V has the value [1, 2, 3, 4], the value of IBSET (POS = V, I = 0)
is [2, 4, 8, 16]..

13.7.77 ICHAR (C [, KIND])

1 Description. Return code value for character.

2 Class. Elemental function.

3 Arguments.

C shall be of type character and of length one. Its value shall be that of a character capable of
representation in the processor.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result is the position of C in the processor collating sequence associated with the kind type
parameter of C and is in the range 0 ≤ ICHAR(C) ≤ n− 1, where n is the number of characters in the collating
sequence. For any characters C and D capable of representation in the processor, C <= D is true if and only if
ICHAR (C) <= ICHAR (D) is true and C == D is true if and only if ICHAR (C) == ICHAR (D) is true.

6 Example. ICHAR (’X’) has the value 88 on a processor using the ASCII collating sequence for default characters.
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13.7.78 IEOR (I, J)

1 Description. Bitwise exclusive OR.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant . If both I and J are of type integer, they shall have

the same kind type parameter. I and J shall not both be boz-literal-constants.

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.

5 Result Value. If either I or J is a boz-literal-constant , it is first converted as if by the intrinsic function INT to
type integer with the kind type parameter of the other. The result has the value obtained by combining I and J
bit-by-bit according to the following truth table:

I J IEOR (I, J)
1 1 0
1 0 1
0 1 1
0 0 0

6 The model for the interpretation of an integer value as a sequence of bits is in 13.3.

7 Example. IEOR (1, 3) has the value 2.

13.7.79 IMAGE INDEX (COARRAY, SUB)

1 Description. Convert cosubscripts to image index.

2 Class. Inquiry function.

3 Arguments.

COARRAY shall be a coarray of any type.
SUB shall be a rank-one integer array of size equal to the corank of COARRAY.

4 Result Characteristics. Default integer scalar.

5 Result Value. If the value of SUB is a valid sequence of cosubscripts for COARRAY, the result is the index of
the corresponding image. Otherwise, the result is zero.

6 Examples. If A and B are declared as A [0:*] and B (10, 20) [10, 0:9, 0:*] respectively, IMAGE INDEX (A, [0])
has the value 1 and IMAGE INDEX (B, [3, 1, 2]) has the value 213 (on any image).

NOTE 13.13
For an example of a module that implements a function similar to the intrinsic function IMAGE INDEX,
see subclause C.10.1.

13.7.80 INDEX (STRING, SUBSTRING [, BACK, KIND])

1 Description. Search for a substring.

2 Class. Elemental function.
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3 Arguments.

STRING shall be of type character.
SUBSTRING shall be of type character with the same kind type parameter as STRING.
BACK (optional) shall be of type logical.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type.

5 Result Value.

Case (i): If BACK is absent or has the value false, the result is the minimum positive value of I such that
STRING (I : I + LEN (SUBSTRING) – 1) = SUBSTRING or zero if there is no such value. Zero is
returned if LEN (STRING) < LEN (SUBSTRING) and one is returned if LEN (SUBSTRING) = 0.

Case (ii): If BACK is present with the value true, the result is the maximum value of I less than or equal
to LEN (STRING) – LEN (SUBSTRING) + 1 such that STRING (I : I + LEN (SUBSTRING) –
1) = SUBSTRING or zero if there is no such value. Zero is returned if LEN (STRING) < LEN (SUB-
STRING) and LEN (STRING) + 1 is returned if LEN (SUBSTRING) = 0.

6 Examples. INDEX (’FORTRAN’, ’R’) has the value 3.
INDEX (’FORTRAN’, ’R’, BACK = .TRUE.) has the value 5.

13.7.81 INT (A [, KIND])

1 Description. Conversion to integer type.

2 Class. Elemental function.

3 Arguments.

A shall be of type integer, real, or complex, or a boz-literal-constant .
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value.

Case (i): If A is of type integer, INT (A) = A.

Case (ii): If A is of type real, there are two cases: if |A| < 1, INT (A) has the value 0; if |A| ≥ 1, INT (A)
is the integer whose magnitude is the largest integer that does not exceed the magnitude of A and
whose sign is the same as the sign of A.

Case (iii): If A is of type complex, INT (A) = INT (REAL (A, KIND (A))).

Case (iv): If A is a boz-literal-constant , the value of the result is the value whose bit sequence according to the
model in 13.3 is the same as that of A as modified by padding or truncation according to 13.3.3.
The interpretation of a bit sequence whose most significant bit is 1 is processor dependent.

6 Example. INT (−3.7) has the value −3.

13.7.82 IOR (I, J)

1 Description. Bitwise inclusive OR.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
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J shall be of type integer or a boz-literal-constant . If both I and J are of type integer, they shall have
the same kind type parameter. I and J shall not both be boz-literal-constants.

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.

5 Result Characteristics. Same as I.

6 Result Value. If either I or J is a boz-literal-constant , it is first converted as if by the intrinsic function INT to
type integer with the kind type parameter of the other. The result has the value obtained by combining I and J
bit-by-bit according to the following truth table:

I J IOR (I, J)
1 1 1
1 0 1
0 1 1
0 0 0

7 The model for the interpretation of an integer value as a sequence of bits is in 13.3.

8 Example. IOR (5, 3) has the value 7.

13.7.83 IPARITY (ARRAY, DIM [, MASK]) or IPARITY (ARRAY [, MASK])

1 Description. Reduce array with bitwise exclusive OR operation.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be of type integer. It shall be an array.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if
DIM does not appear; otherwise, the result has rank n−1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where
[d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of IPARITY (ARRAY) has a value equal to the bitwise exclusive OR of all the elements
of ARRAY. If ARRAY has size zero the result has the value zero.

Case (ii): The result of IPARITY (ARRAY, MASK=MASK) has a value equal to that of IPARITY (PACK
(ARRAY, MASK)).

Case (iii): The result of IPARITY (ARRAY, DIM=DIM [, MASK=MASK]) has a value equal to that of
IPARITY (ARRAY [, MASK=MASK]) if ARRAY has rank one. Otherwise, the value of element
(s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to IPARITY (ARRAY (s1, s2, . . . ,
sDIM−1, :, sDIM+1, . . . , sn) [, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)]).

6 Examples. IPARITY ([14, 13, 8]) has the value 11. IPARITY ([14, 13, 8], MASK=[.true., .false., .true]) has
the value 6.

13.7.84 ISHFT (I, SHIFT)

1 Description. Logical shift.

2 Class. Elemental function.
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3 Arguments.

I shall be of type integer.
SHIFT shall be of type integer. The absolute value of SHIFT shall be less than or equal to BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The result has the value obtained by shifting the bits of I by SHIFT positions. If SHIFT is
positive, the shift is to the left; if SHIFT is negative, the shift is to the right; if SHIFT is zero, no shift is
performed. Bits shifted out from the left or from the right, as appropriate, are lost. Zeros are shifted in from the
opposite end. The model for the interpretation of an integer value as a sequence of bits is in 13.3.

6 Example. ISHFT (3, 1) has the value 6.

13.7.85 ISHFTC (I, SHIFT [, SIZE])

1 Description. Circular shift of the rightmost bits.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
SHIFT shall be of type integer. The absolute value of SHIFT shall be less than or equal to SIZE.
SIZE (optional) shall be of type integer. The value of SIZE shall be positive and shall not exceed BIT SIZE (I).

If SIZE is absent, it is as if it were present with the value of BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The result has the value obtained by shifting the SIZE rightmost bits of I circularly by SHIFT
positions. If SHIFT is positive, the shift is to the left; if SHIFT is negative, the shift is to the right; and if SHIFT
is zero, no shift is performed. No bits are lost. The unshifted bits are unaltered. The model for the interpretation
of an integer value as a sequence of bits is in 13.3.

6 Example. ISHFTC (3, 2, 3) has the value 5.

13.7.86 IS CONTIGUOUS (ARRAY)

1 Description. Test contiguity of an array (5.3.7).

2 Class. Inquiry function.

3 Argument. ARRAY may be of any type. It shall be an array. If it is a pointer it shall be associated.

4 Result Characteristics. Default logical scalar.

5 Result Value. The result has the value true if ARRAY is contiguous, and false otherwise.

6 Example. After the pointer assignment AP => TARGET (1:10:2), IS CONTIGUOUS (AP) has the value false.

13.7.87 IS IOSTAT END (I)

1 Description. Test IOSTAT value for end-of-file.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Default logical.
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5 Result Value. The result has the value true if and only if I is a value for the scalar-int-variable in an IOSTAT=
specifier (9.11.5) that would indicate an end-of-file condition.

13.7.88 IS IOSTAT EOR (I)

1 Description. Test IOSTAT value for end-of-record.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Default logical.

5 Result Value. The result has the value true if and only if I is a value for the scalar-int-variable in an IOSTAT=
specifier (9.11.5) that would indicate an end-of-record condition.

13.7.89 KIND (X)

1 Description. Value of the kind type parameter of X.

2 Class. Inquiry function.

3 Argument. X may be of any intrinsic type. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has a value equal to the kind type parameter value of X.

6 Example. KIND (0.0) has the kind type parameter value of default real.

13.7.90 LBOUND (ARRAY [, DIM, KIND])

1 Description. Lower bound(s) of an array.

2 Class. Inquiry function.

3 Arguments.

ARRAY shall be an array of any type. It shall not be an unallocated allocatable variable or a pointer that
is not associated.

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
The corresponding actual argument shall not be an optional dummy argument.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

5 Result Value.

Case (i): If ARRAY is a whole array and either ARRAY is an assumed-size array of rank DIM or dimension
DIM of ARRAY has nonzero extent, LBOUND (ARRAY, DIM) has a value equal to the lower
bound for subscript DIM of ARRAY. Otherwise the result value is 1.

Case (ii): LBOUND (ARRAY) has a value whose ith element is equal to LBOUND (ARRAY, i), for i = 1, 2,
. . . , n, where n is the rank of ARRAY.

6 Examples. If A is declared by the statement

7 REAL A (2:3, 7:10)
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8 then LBOUND (A) is [2, 7] and LBOUND (A, DIM=2) is 7.

13.7.91 LCOBOUND (COARRAY [, DIM, KIND])

1 Description. Lower cobound(s) of a coarray.

2 Class. Inquiry function.

3 Arguments.

COARRAY shall be a coarray and may be of any type. It may be a scalar or an array. If it is allocatable it
shall be allocated.

DIM (optional) shall be scalar and of type integer with a value in the range 1 ≤ DIM ≤ n, where n is the corank
of COARRAY. The corresponding actual argument shall not be an optional dummy argument.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type. The result is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the corank of COARRAY.

5 Result Value.

Case (i): LCOBOUND (COARRAY, DIM) has a value equal to the lower cobound for cosubscript DIM of
COARRAY.

Case (ii): LCOBOUND (COARRAY) has a value whose ith element is equal to
LCOBOUND (COARRAY, i), for i = 1, 2,. . . , n, where n is the corank of COARRAY.

6 Examples. If A is allocated by the statement ALLOCATE (A [2:3, 7:*]) then LCOBOUND (A) is [2, 7] and
LCOBOUND (A, DIM=2) is 7.

13.7.92 LEADZ (I)

1 Description. Number of leading zero bits.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Default integer.

5 Result Value. If all of the bits of I are zero, the result has the value BIT SIZE (I). Otherwise, the result has
the value BIT SIZE (I)−1−k, where k is the position of the leftmost 1 bit in I. The model for the interpretation
of an integer value as a sequence of bits is in 13.3.

6 Examples. LEADZ (1) has the value 31 if BIT SIZE (1) has the value 32.

13.7.93 LEN (STRING [, KIND])

1 Description. Length of a character entity.

2 Class. Inquiry function.

3 Arguments.

STRING shall be a type character scalar or array. If it is an unallocated allocatable variable or a pointer
that is not associated, its length type parameter shall not be deferred.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that specified by the
value of KIND; otherwise the kind type parameter is that of default integer type.
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5 Result Value. The result has a value equal to the number of characters in STRING if it is scalar or in an
element of STRING if it is an array.

6 Example. If C is declared by the statement

7 CHARACTER (11) C (100)

8 LEN (C) has the value 11.

13.7.94 LEN TRIM (STRING [, KIND])

1 Description. Length without trailing blanks.

2 Class. Elemental function.

3 Arguments.

STRING shall be of type character.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type.

5 Result Value. The result has a value equal to the number of characters remaining after any trailing blanks in
STRING are removed. If the argument contains no nonblank characters, the result is zero.

6 Examples. LEN TRIM (’ A B ’) has the value 4 and LEN TRIM (’ ’) has the value 0.

13.7.95 LGE (STRING A, STRING B)

1 Description. ASCII greater than or equal.

2 Class. Elemental function.

3 Arguments.

STRING A shall be default character or ASCII character.
STRING B shall be of type character with the same kind type parameter as STRING A.

4 Result Characteristics. Default logical.

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII
character set, the result is processor dependent. The result is true if the strings are equal or if STRING A follows
STRING B in the ASCII collating sequence; otherwise, the result is false.

NOTE 13.14
The result is true if both STRING A and STRING B are of zero length.

6 Example. LGE (’ONE’, ’TWO’) has the value false.

13.7.96 LGT (STRING A, STRING B)

1 Description. ASCII greater than.

2 Class. Elemental function.

3 Arguments.

STRING A shall be default character or ASCII character.
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STRING B shall be of type character with the same kind type parameter as STRING A.

4 Result Characteristics. Default logical.

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII
character set, the result is processor dependent. The result is true if STRING A follows STRING B in the ASCII
collating sequence; otherwise, the result is false.

NOTE 13.15
The result is false if both STRING A and STRING B are of zero length.

6 Example. LGT (’ONE’, ’TWO’) has the value false.

13.7.97 LLE (STRING A, STRING B)

1 Description. ASCII less than or equal.

2 Class. Elemental function.

3 Arguments.

STRING A shall be default character or ASCII character.
STRING B shall be of type character with the same kind type parameter as STRING A.

4 Result Characteristics. Default logical.

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII
character set, the result is processor dependent. The result is true if the strings are equal or if STRING A
precedes STRING B in the ASCII collating sequence; otherwise, the result is false.

NOTE 13.16
The result is true if both STRING A and STRING B are of zero length.

6 Example. LLE (’ONE’, ’TWO’) has the value true.

13.7.98 LLT (STRING A, STRING B)

1 Description. ASCII less than.

2 Class. Elemental function.

3 Arguments.

STRING A shall be default character or ASCII character.
STRING B shall be of type character with the same kind type parameter as STRING A.

4 Result Characteristics. Default logical.

5 Result Value. If the strings are of unequal length, the comparison is made as if the shorter string were extended
on the right with blanks to the length of the longer string. If either string contains a character not in the ASCII
character set, the result is processor dependent. The result is true if STRING A precedes STRING B in the
ASCII collating sequence; otherwise, the result is false.

NOTE 13.17
The result is false if both STRING A and STRING B are of zero length.
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6 Example. LLT (’ONE’, ’TWO’) has the value true.

13.7.99 LOG (X)

1 Description. Natural logarithm.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex. If X is real, its value shall be greater than zero. If X is complex,
its value shall not be zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to logeX. A result of type
complex is the principal value with imaginary part ω in the range −π ≤ ω ≤ π. If the real part of X is less
than zero and the imaginary part of X is zero, then the imaginary part of the result is approximately π if the
imaginary part of X is positive real zero or the processor cannot distinguish between positive and negative real
zero, and approximately −π if the imaginary part of X is negative real zero.

6 Example. LOG (10.0) has the value 2.3025851 (approximately).

13.7.100 LOG GAMMA (X)

1 Description. Logarithm of the absolute value of the gamma function.

2 Class. Elemental function.

3 Argument. X shall be of type real. Its value shall not be a negative integer or zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the natural logarithm
of the absolute value of the gamma function of X.

6 Example. LOG GAMMA (3.0) has the value 0.693 (approximately).

13.7.101 LOG10 (X)

1 Description. Common logarithm.

2 Class. Elemental function.

3 Argument. X shall be of type real. The value of X shall be greater than zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to log10X.

6 Example. LOG10 (10.0) has the value 1.0 (approximately).

13.7.102 LOGICAL (L [, KIND])

1 Description. Conversion between kinds of logical.

2 Class. Elemental function.

3 Arguments.

L shall be of type logical.
KIND (optional) shall be a scalar integer constant expression.
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4 Result Characteristics. Logical. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default logical.

5 Result Value. The value is that of L.

6 Example. LOGICAL (L .OR. .NOT. L) has the value true and is default logical, regardless of the kind type
parameter of the logical variable L.

13.7.103 MASKL (I [, KIND])

1 Description. Left justified mask.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer. It shall be nonnegative and less than or equal to the number of bits z of
the model integer defined for bit manipulation contexts in 13.3 for the kind of the result.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result value has its leftmost I bits set to 1 and the remaining bits set to 0. The model for
the interpretation of an integer value as a sequence of bits is in 13.3.

6 Example. MASKL (3) has the value SHIFTL (7, BIT SIZE (0) − 3).

13.7.104 MASKR (I [, KIND])

1 Description. Right justified mask.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer. It shall be nonnegative and less than or equal to the number of bits z of
the model integer defined for bit manipulation contexts in 13.3 for the kind of the result.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Bits. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result value has its rightmost I bits set to 1 and the remaining bits set to 0. The model for
the interpretation of an integer value as a sequence of bits is in 13.3.

6 Example. MASKR (3) has the value 7.

13.7.105 MATMUL (MATRIX A, MATRIX B)

1 Description. Matrix multiplication.

2 Class. Transformational function.

3 Arguments.

MATRIX A shall be a rank-one or rank-two array of numeric type or logical type.
MATRIX B shall be of numeric type if MATRIX A is of numeric type and of logical type if MATRIX A is of

logical type. It shall be an array of rank one or two. MATRIX A and MATRIX B shall not both
have rank one. The size of the first (or only) dimension of MATRIX B shall equal the size of the
last (or only) dimension of MATRIX A.
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4 Result Characteristics. If the arguments are of numeric type, the type and kind type parameter of the result
are determined by the types of the arguments as specified in 7.1.9.3 for the * operator. If the arguments are of
type logical, the result is of type logical with the kind type parameter of the arguments as specified in 7.1.9.3 for
the .AND. operator. The shape of the result depends on the shapes of the arguments as follows:
Case (i): If MATRIX A has shape [n,m] and MATRIX B has shape [m, k], the result has shape [n, k].

Case (ii): If MATRIX A has shape [m] and MATRIX B has shape [m, k], the result has shape [k].

Case (iii): If MATRIX A has shape [n,m] and MATRIX B has shape [m], the result has shape [n].

5 Result Value.

Case (i): Element (i, j) of the result has the value SUM (MATRIX A (i, :) * MATRIX B (:, j)) if the
arguments are of numeric type and has the value ANY (MATRIX A (i, :) .AND. MATRIX B (:,
j)) if the arguments are of logical type.

Case (ii): Element (j) of the result has the value SUM (MATRIX A (:) * MATRIX B (:, j)) if the arguments
are of numeric type and has the value ANY (MATRIX A (:) .AND. MATRIX B (:, j)) if the
arguments are of logical type.

Case (iii): Element (i) of the result has the value SUM (MATRIX A (i, :) * MATRIX B (:)) if the arguments
are of numeric type and has the value ANY (MATRIX A (i, :) .AND. MATRIX B (:)) if the
arguments are of logical type.

6 Examples. Let A and B be the matrices
[

1 2 3
2 3 4

]
and

 1 2
2 3
3 4

; let X and Y be the vectors [1, 2] and

[1, 2, 3].

Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB with the value
[

14 20
20 29

]
.

Case (ii): The result of MATMUL (X, A) is the vector-matrix product XA with the value [5, 8, 11].

Case (iii): The result of MATMUL (A, Y) is the matrix-vector product AY with the value [14, 20].

13.7.106 MAX (A1, A2 [, A3, ...])

1 Description. Maximum value.

2 Class. Elemental function.

3 Arguments. The arguments shall all have the same type which shall be integer, real, or character and they shall
all have the same kind type parameter.

4 Result Characteristics. The type and kind type parameter of the result are the same as those of the arguments.
For arguments of character type, the length of the result is the length of the longest argument.

5 Result Value. The value of the result is that of the largest argument. For arguments of character type, the
result is the value that would be selected by application of intrinsic relational operators; that is, the collating
sequence for characters with the kind type parameter of the arguments is applied. If the selected argument is
shorter than the longest argument, the result is extended with blanks on the right to the length of the longest
argument.

6 Examples. MAX (−9.0, 7.0, 2.0) has the value 7.0, MAX (’Z’, ’BB’) has the value ’Z ’, and MAX ([’A’, ’Z’],
[’BB’, ’Y ’]) has the value [’BB’, ’Z ’].

13.7.107 MAXEXPONENT (X)

1 Description. Maximum exponent of a real model.

2 Class. Inquiry function.
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3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has the value emax, as defined in 13.4 for the model representing numbers of the same
type and kind type parameter as X.

6 Example. MAXEXPONENT (X) has the value 127 for real X whose model is as in Note 13.5.

13.7.108 MAXLOC (ARRAY, DIM [, MASK, KIND, BACK]) or

MAXLOC (ARRAY [, MASK, KIND, BACK])

1 Description. Location(s) of maximum value.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of type integer, real, or character.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.
KIND (optional) shall be a scalar integer constant expression.
BACK (optional) shall be scalar and of type logical.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result is
an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and shape
[d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where [d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of MAXLOC (ARRAY) is a rank-one array whose element values are the values of the
subscripts of an element of ARRAY whose value equals the maximum value of all of the elements
of ARRAY. The ith subscript returned lies in the range 1 to ei, where ei is the extent of the ith

dimension of ARRAY. If ARRAY has size zero, all elements of the result are zero.

Case (ii): The result of MAXLOC (ARRAY, MASK = MASK) is a rank-one array whose element values are
the values of the subscripts of an element of ARRAY, corresponding to a true element of MASK,
whose value equals the maximum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If ARRAY has size
zero or every element of MASK has the value false, all elements of the result are zero.

Case (iii): If ARRAY has rank one, MAXLOC (ARRAY, DIM = DIM [, MASK = MASK]) is a scalar whose
value is equal to that of the first element of MAXLOC (ARRAY [, MASK = MASK]). Otherwise,
the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn ) of the result is equal to

MAXLOC (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn), DIM=1
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) ] ).

6 If only one element has the maximum value, that element’s subscripts are returned. Otherwise, if more than
one element has the maximum value and BACK is absent or present with the value false, the element whose
subscripts are returned is the first such element, taken in array element order. If BACK is present with the value
true, the element whose subscripts are returned is the last such element, taken in array element order.

7 If ARRAY has type character, the result is the value that would be selected by application of intrinsic relational
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.
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8 Examples.

Case (i): The value of MAXLOC ([2, 6, 4, 6]) is [2] and the value of MAXLOC ([2, 6, 4, 6], BACK=.TRUE.)
is [4].

Case (ii): If A has the value

 0 −5 8 −3
3 4 −1 2
1 5 6 −4

, MAXLOC (A, MASK = A < 6) has the value [3, 2]. This

is independent of the declared lower bounds for A.

Case (iii): The value of MAXLOC ([5, −9, 3], DIM = 1) is 1. If B has the value
[

1 3 −9
2 2 6

]
, MAXLOC

(B, DIM = 1) is [2, 1, 2] and MAXLOC (B, DIM = 2) is [2, 3]. This is independent of the declared
lower bounds for B.

13.7.109 MAXVAL (ARRAY, DIM [, MASK]) or MAXVAL (ARRAY [, MASK])

1 Description. Maximum value(s) of array.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of type integer, real, or character.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and type parameters as ARRAY. It is scalar if DIM
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where
[d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of MAXVAL (ARRAY) has a value equal to the maximum value of all the elements of
ARRAY if the size of ARRAY is not zero. If ARRAY has size zero and type integer or real, the
result has the value of the negative number of the largest magnitude supported by the processor
for numbers of the type and kind type parameter of ARRAY. If ARRAY has size zero and type
character, the result has the value of a string of characters of length LEN (ARRAY), with each
character equal to CHAR (0, KIND (ARRAY)).

Case (ii): The result of MAXVAL (ARRAY, MASK = MASK) has a value equal to that of MAXVAL (PACK
(ARRAY, MASK)).

Case (iii): The result of MAXVAL (ARRAY, DIM = DIM [,MASK = MASK]) has a value equal to that of
MAXVAL (ARRAY [,MASK = MASK]) if ARRAY has rank one. Otherwise, the value of element
(s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to

MAXVAL (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) ] ).

6 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic relational
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.

7 Examples.

Case (i): The value of MAXVAL ([1, 2, 3]) is 3.

Case (ii): MAXVAL (C, MASK = C < 0.0) is the maximum of the negative elements of C.

Case (iii): If B is the array
[

1 3 5
2 7 6

]
, MAXVAL (B, DIM = 1) is [2, 7, 6] and MAXVAL (B, DIM = 2) is

[5, 7].
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13.7.110 MERGE (TSOURCE, FSOURCE, MASK)

1 Description. Choose between two expression values.

2 Class. Elemental function.

3 Arguments.

TSOURCE may be of any type.
FSOURCE shall be of the same type and type parameters as TSOURCE.
MASK shall be of type logical.

4 Result Characteristics. Same as TSOURCE.

5 Result Value. The result is TSOURCE if MASK is true and FSOURCE otherwise.

6 Examples. If TSOURCE is the array
[

1 6 5
2 4 6

]
, FSOURCE is the array

[
0 3 2
7 4 8

]
and MASK is the

array
[

T . T
. . T

]
, where “T” represents true and “.” represents false, then MERGE (TSOURCE, FSOURCE,

MASK) is
[

1 3 5
7 4 6

]
. The value of MERGE (1.0, 0.0, K > 0) is 1.0 for K = 5 and 0.0 for K = −2.

13.7.111 MERGE BITS (I, J, MASK)

1 Description. Merge of bits under mask.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer or a boz-literal-constant .
J shall be of type integer or a boz-literal-constant . If both I and J are of type integer they shall have

the same kind type parameter. I and J shall not both be boz-literal-constants.
MASK shall be of type integer or a boz-literal-constant . If MASK is of type integer, it shall have the same

kind type parameter as each other argument of type integer.

4 Result Characteristics. Same as I if I is of type integer; otherwise, same as J.

5 Result Value. If any argument is a boz-literal-constant , it is first converted as if by the intrinsic function
INT to the type and kind type parameter of the result. The result has the value of IOR (IAND (I, MASK),
IAND (J, NOT (MASK))).

6 Example. MERGE BITS (13, 18, 22) has the value 20.

13.7.112 MIN (A1, A2 [, A3, ...])

1 Description. Minimum value.

2 Class. Elemental function.

3 Arguments. The arguments shall all be of the same type which shall be integer, real, or character and they
shall all have the same kind type parameter.

4 Result Characteristics. The type and kind type parameter of the result are the same as those of the arguments.
For arguments of character type, the length of the result is the length of the longest argument.

5 Result Value. The value of the result is that of the smallest argument. For arguments of character type, the
result is the value that would be selected by application of intrinsic relational operators; that is, the collating
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sequence for characters with the kind type parameter of the arguments is applied. If the selected argument is
shorter than the longest argument, the result is extended with blanks on the right to the length of the longest
argument.

6 Examples. MIN (−9.0, 7.0, 2.0) has the value −9.0, MIN (’A’, ’YY’) has the value ’A ’, and
MIN ([’Z’, ’A’], [’YY’, ’B ’]) has the value [’YY’, ’A ’].

13.7.113 MINEXPONENT (X)

1 Description. Minimum exponent of a real model.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has the value emin, as defined in 13.4 for the model representing numbers of the same
type and kind type parameter as X.

6 Example. MINEXPONENT (X) has the value −126 for real X whose model is as in Note 13.5.

13.7.114 MINLOC (ARRAY, DIM [, MASK, KIND, BACK]) or

MINLOC (ARRAY [, MASK, KIND, BACK])

1 Description. Location(s) of minimum value.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of type integer, real, or character.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.
KIND (optional) shall be a scalar integer constant expression.
BACK (optional) shall be scalar and of type logical.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type. If DIM does not appear, the result is
an array of rank one and of size equal to the rank of ARRAY; otherwise, the result is of rank n − 1 and shape
[d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn], where [d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of MINLOC (ARRAY) is a rank-one array whose element values are the values of the
subscripts of an element of ARRAY whose value equals the minimum value of all the elements
of ARRAY. The ith subscript returned lies in the range 1 to ei, where ei is the extent of the ith

dimension of ARRAY. If ARRAY has size zero, all elements of the result are zero.

Case (ii): The result of MINLOC (ARRAY, MASK = MASK) is a rank-one array whose element values are
the values of the subscripts of an element of ARRAY, corresponding to a true element of MASK,
whose value equals the minimum value of all such elements of ARRAY. The ith subscript returned
lies in the range 1 to ei, where ei is the extent of the ith dimension of ARRAY. If ARRAY has size
zero or every element of MASK has the value false, all elements of the result are zero.

Case (iii): If ARRAY has rank one, MINLOC (ARRAY, DIM = DIM [, MASK = MASK]) is a scalar whose
value is equal to that of the first element of MINLOC (ARRAY [, MASK = MASK]). Otherwise,
the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to
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MINLOC (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn), DIM=1
[, MASK = MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) ] ).

6 If only one element has the minimum value, that element’s subscripts are returned. Otherwise, if more than one
element has the minimum value and BACK is absent or present with the value false, the element whose subscripts
are returned is the first such element, taken in array element order. If BACK is present with the value true, the
element whose subscripts are returned is the last such element, taken in array element order.

7 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic relational
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.

8 Examples.

Case (i): The value of MINLOC ([4, 3, 6, 3]) is [2] and the value of MINLOC ([4, 3, 6, 3], BACK = .TRUE.)
is [4].

Case (ii): If A has the value

 0 −5 8 −3
3 4 −1 2
1 5 6 −4

, MINLOC (A, MASK = A > −4) has the value [1, 4].

This is independent of the declared lower bounds for A.

Case (iii): The value of MINLOC ([5, −9, 3], DIM = 1) is 2. If B has the value
[

1 3 −9
2 2 6

]
, MIN-

LOC (B, DIM = 1) is [1, 2, 1] and MINLOC (B, DIM = 2) is [3, 1]. This is independent of
the declared lower bounds for B.

13.7.115 MINVAL (ARRAY, DIM [, MASK]) or MINVAL (ARRAY [, MASK])

1 Description. Minimum value(s) of array.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of type integer, real, or character.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and type parameters as ARRAY. It is scalar if DIM
does not appear; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where
[d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of MINVAL (ARRAY) has a value equal to the minimum value of all the elements of
ARRAY if the size of ARRAY is not zero. If ARRAY has size zero and type integer or real, the
result has the value of the positive number of the largest magnitude supported by the processor
for numbers of the type and kind type parameter of ARRAY. If ARRAY has size zero and type
character, the result has the value of a string of characters of length LEN (ARRAY), with each
character equal to CHAR (n − 1, KIND (ARRAY)), where n is the number of characters in the
collating sequence for characters with the kind type parameter of ARRAY.

Case (ii): The result of MINVAL (ARRAY, MASK = MASK) has a value equal to that of MINVAL (PACK
(ARRAY, MASK)).

Case (iii): The result of MINVAL (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to that of
MINVAL (ARRAY [, MASK = MASK]) if ARRAY has rank one. Otherwise, the value of element
(s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of the result is equal to

MINVAL (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)
[, MASK= MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) ] ).
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6 If ARRAY is of type character, the result is the value that would be selected by application of intrinsic relational
operators; that is, the collating sequence for characters with the kind type parameter of the arguments is applied.

7 Examples.

Case (i): The value of MINVAL ([1, 2, 3]) is 1.

Case (ii): MINVAL (C, MASK = C > 0.0) is the minimum of the positive elements of C.

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, MINVAL (B, DIM = 1) is [1, 3, 5] and MINVAL (B, DIM = 2) is

[1, 2].

13.7.116 MOD (A, P)

1 Description. Remainder function.

2 Class. Elemental function.

3 Arguments.

A shall be of type integer or real.
P shall be of the same type and kind type parameter as A. P shall not be zero.

4 Result Characteristics. Same as A.

5 Result Value. The value of the result is A − INT (A/P) * P.

6 Examples. MOD (3.0, 2.0) has the value 1.0 (approximately). MOD (8, 5) has the value 3. MOD (−8, 5) has
the value −3. MOD (8, −5) has the value 3. MOD (−8, −5) has the value −3.

13.7.117 MODULO (A, P)

1 Description. Modulo function.

2 Class. Elemental function.

3 Arguments.

A shall be of type integer or real.
P shall be of the same type and kind type parameter as A. P shall not be zero.

4 Result Characteristics. Same as A.

5 Result Value.

Case (i): A is of type integer. MODULO (A, P) has the value R such that A = Q × P + R, where Q is an
integer, the inequalities 0 ≤ R < P hold if P > 0, and P < R ≤ 0 hold if P < 0.

Case (ii): A is of type real. The value of the result is A − FLOOR (A / P) * P.

6 Examples. MODULO (8, 5) has the value 3. MODULO (−8, 5) has the value 2. MODULO (8, −5) has the
value −2. MODULO (−8, −5) has the value −3.

13.7.118 MOVE ALLOC (FROM, TO)

1 Description. Move an allocation.

2 Class. Pure subroutine.
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3 Arguments.

FROM may be of any type and rank. It shall be allocatable. It is an INTENT (INOUT) argument.
TO shall be type compatible (4.3.1.3) with FROM and have the same rank. It shall be allocatable.

It shall be polymorphic if FROM is polymorphic. It is an INTENT (OUT) argument. Each
nondeferred parameter of the declared type of TO shall have the same value as the corresponding
parameter of the declared type of FROM.

4 The allocation status of TO becomes unallocated if FROM is unallocated on entry to MOVE ALLOC. Otherwise,
TO becomes allocated with dynamic type, type parameters, array bounds, and value identical to those that FROM
had on entry to MOVE ALLOC.

5 If TO has the TARGET attribute, any pointer associated with FROM on entry to MOVE ALLOC becomes
correspondingly associated with TO. If TO does not have the TARGET attribute, the pointer association status
of any pointer associated with FROM on entry becomes undefined.

6 The allocation status of FROM becomes unallocated.

7 Example.

8 REAL,ALLOCATABLE :: GRID(:),TEMPGRID(:)

...

ALLOCATE(GRID(-N:N)) ! initial allocation of GRID

...

! "reallocation" of GRID to allow intermediate points

ALLOCATE(TEMPGRID(-2*N:2*N)) ! allocate bigger grid

TEMPGRID(::2)=GRID ! distribute values to new locations

CALL MOVE_ALLOC(TO=GRID,FROM=TEMPGRID)

! old grid is deallocated because TO is

! INTENT (OUT), and GRID then "takes over"

! new grid allocation

NOTE 13.18
It is expected that the implementation of allocatable objects will typically involve descriptors to locate the
allocated storage; MOVE ALLOC could then be implemented by transferring the contents of the descriptor
for FROM to the descriptor for TO and clearing the descriptor for FROM.

13.7.119 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)

1 Description. Copy a sequence of bits.

2 Class. Elemental subroutine.

3 Arguments.

FROM shall be of type integer. It is an INTENT (IN) argument.
FROMPOS shall be of type integer and nonnegative. It is an INTENT (IN) argument. FROMPOS + LEN

shall be less than or equal to BIT SIZE (FROM). The model for the interpretation of an integer
value as a sequence of bits is in 13.3.

LEN shall be of type integer and nonnegative. It is an INTENT (IN) argument.
TO shall be a variable of the same type and kind type parameter value as FROM and may be associated

with FROM (12.8.3). It is an INTENT (INOUT) argument. TO is defined by copying the sequence
of bits of length LEN, starting at position FROMPOS of FROM to position TOPOS of TO. No
other bits of TO are altered. On return, the LEN bits of TO starting at TOPOS are equal to
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the value that the LEN bits of FROM starting at FROMPOS had on entry. The model for the
interpretation of an integer value as a sequence of bits is in 13.3.

TOPOS shall be of type integer and nonnegative. It is an INTENT (IN) argument. TOPOS + LEN shall
be less than or equal to BIT SIZE (TO).

4 Example. If TO has the initial value 6, the value of TO after the statement
CALL MVBITS (7, 2, 2, TO, 0) is 5.

13.7.120 NEAREST (X, S)

1 Description. Adjacent machine number.

2 Class. Elemental function.

3 Arguments.

X shall be of type real.
S shall be of type real and not equal to zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to the machine-representable number distinct from X and nearest
to it in the direction of the infinity with the same sign as S.

6 Example. NEAREST (3.0, 2.0) has the value 3 + 2−22 on a machine whose representation is that of the model
in Note 13.5.

NOTE 13.19
Unlike other floating-point manipulation functions, NEAREST operates on machine-representable numbers
rather than model numbers. On many systems there are machine-representable numbers that lie between
adjacent model numbers.

13.7.121 NEW LINE (A)

1 Description. Newline character.

2 Class. Inquiry function.

3 Argument. A shall be of type character. It may be a scalar or an array.

4 Result Characteristics. Character scalar of length one with the same kind type parameter as A.

5 Result Value.

Case (i): If A is default character and the character in position 10 of the ASCII collating sequence is repre-
sentable in the default character set, then the result is ACHAR (10).

Case (ii): If A is ASCII character or ISO 10646 character, then the result is CHAR (10, KIND (A)).

Case (iii): Otherwise, the result is a processor-dependent character that represents a newline in output to files
connected for formatted stream output if there is such a character.

Case (iv): Otherwise, the result is the blank character.

13.7.122 NINT (A [, KIND])

1 Description. Nearest integer.

2 Class. Elemental function.
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3 Arguments.

A shall be of type real.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result is the integer nearest A, or if there are two integers equally near A, the result is
whichever such integer has the greater magnitude.

6 Example. NINT (2.783) has the value 3.

13.7.123 NOT (I)

1 Description. Bitwise complement.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Same as I.

5 Result Value. The result has the value obtained by complementing I bit-by-bit according to the following truth
table:

I NOT (I)
1 0
0 1

6 The model for the interpretation of an integer value as a sequence of bits is in 13.3.

7 Example. If I is represented by the string of bits 01010101, NOT (I) has the binary value 10101010.

13.7.124 NORM2 (X [, DIM])

1 Description. L2 norm of an array.

2 Class. Transformational function.

3 Arguments.

X shall be a real array.
DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of X. The

corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of the same type and type parameters as X. It is scalar if DIM is absent;
otherwise the result has rank n− 1 and shape [d1, d2, . . . , dDIM-1, dDIM+1, . . . , dn], where n is the rank of X and
[d1, d2, . . . , dn] is the shape of X.

5 Result Value.

Case (i): The result of NORM2 (X) has a value equal to a processor-dependent approximation to the ge-
neralized L2 norm of X, which is the square root of the sum of the squares of the elements of
X.

Case (ii): The result of NORM2 (X, DIM=DIM) has a value equal to that of NORM2 (X) if X has rank
one. Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . sn) of the result is equal to
NORM2 (X(s1, s2, . . . , sDIM−1, :, sDIM+1, . . . sn)).
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6 It is recommended that the processor compute the result without undue overflow or underflow.

7 Example. The value of NORM2 ([3.0, 4.0]) is 5.0 (approximately). If X has the value
[

1.0 2.0
3.0 4.0

]
then the

value of NORM2 (X, DIM=1) is [3.162, 4.472] (approximately) and the value of NORM2 (X, DIM=2) is [2.236,
5.0] (approximately).

13.7.125 NULL ([MOLD])

1 Description. Disassociated pointer or unallocated allocatable entity.

2 Class. Transformational function.

3 Argument. MOLD shall be a pointer or allocatable. It may be of any type or may be a procedure pointer.
If MOLD is a pointer its pointer association status may be undefined, disassociated, or associated. If MOLD is
allocatable its allocation status may be allocated or unallocated. It need not be defined with a value.

4 Result Characteristics. If MOLD is present, the characteristics are the same as MOLD. If MOLD has deferred
type parameters, those type parameters of the result are deferred.

5 If MOLD is absent, the characteristics of the result are determined by the entity with which the reference is
associated. See Table 13.2. MOLD shall not be absent in any other context. If any type parameters of the
contextual entity are deferred, those type parameters of the result are deferred. If any type parameters of the
contextual entity are assumed, MOLD shall be present.

6 If the context of the reference to NULL is an actual argument in a generic procedure reference, MOLD shall be
present if the type, type parameters, or rank are required to resolve the generic reference.

Table 13.2: Characteristics of the result of NULL ( )

Appearance of NULL ( ) Type, type parameters, and rank of result:
right side of a pointer assignment pointer on the left side
initialization for an object in a declaration the object
default initialization for a component the component
in a structure constructor the corresponding component
as an actual argument the corresponding dummy argument
in a DATA statement the corresponding pointer object

7 Result. The result is a disassociated pointer or an unallocated allocatable entity.

8 Examples.

Case (i): REAL, POINTER, DIMENSION (:) :: VEC => NULL ( ) defines the initial association status of
VEC to be disassociated.

Case (ii): The MOLD argument is required in the following:

INTERFACE GEN

SUBROUTINE S1 (J, PI)

INTEGER J

INTEGER, POINTER :: PI

END SUBROUTINE S1

SUBROUTINE S2 (K, PR)

INTEGER K

REAL, POINTER :: PR

END SUBROUTINE S2
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END INTERFACE

REAL, POINTER :: REAL_PTR

CALL GEN (7, NULL (REAL_PTR) ) ! Invokes S2

13.7.126 NUM IMAGES ( )

1 Description. Number of images.

2 Class. Transformational function.

3 Argument. None.

4 Result Characteristics. Default integer scalar.

5 Result Value. The number of images.

6 Example. The following code uses image 1 to read data and broadcast it to other images.

7 REAL :: P[*]

IF (THIS_IMAGE()==1) THEN

READ (6,*) P

DO I = 2, NUM_IMAGES()

P[I] = P

END DO

END IF

SYNC ALL

13.7.127 PACK (ARRAY, MASK [, VECTOR])

1 Description. Pack an array into a vector.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of any type.
MASK shall be of type logical and shall be conformable with ARRAY.
VECTOR (optional) shall be of the same type and type parameters as ARRAY and shall have rank one. VEC-

TOR shall have at least as many elements as there are true elements in MASK. If MASK is scalar
with the value true, VECTOR shall have at least as many elements as there are in ARRAY.

4 Result Characteristics. The result is an array of rank one with the same type and type parameters as
ARRAY. If VECTOR is present, the result size is that of VECTOR; otherwise, the result size is the number t
of true elements in MASK unless MASK is scalar with the value true, in which case the result size is the size of
ARRAY.

5 Result Value. Element i of the result is the element of ARRAY that corresponds to the ith true element of
MASK, taking elements in array element order, for i = 1, 2, . . . , t. If VECTOR is present and has size n > t,
element i of the result has the value VECTOR (i), for i = t + 1, . . . , n.

6 Examples. The nonzero elements of an array M with the value

 0 0 0
9 0 0
0 0 7

 may be “gathered” by the func-

tion PACK. The result of PACK (M, MASK = M /= 0) is [9, 7] and the result of PACK (M, M /= 0, VEC-
TOR = [2, 4, 6, 8, 10, 12]) is [9, 7, 6, 8, 10, 12].
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13.7.128 PARITY (MASK [, DIM])

1 Description. Reduce array with .NEQV. operation.

2 Class. Transformational function.

3 Arguments.

MASK shall be a logical array.
DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of MASK.

The corresponding actual argument shall not be an optional dummy argument.

4 Result Characteristics. The result is of type logical with the same kind type parameter as MASK. It is scalar
if DIM is absent; otherwise, the result has rank n − 1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where
[d1, d2, . . . , dn] is the shape of MASK.

5 Result Value.

Case (i): The result of PARITY (MASK) has the value true if an odd number of the elements of MASK are
true, and false otherwise.

Case (ii): If MASK has rank one, PARITY (MASK, DIM) is equal to PARITY (MASK). Otherwise, the
value of element (s1, s2, . . . , sDIM−1, sDIM+1, . . . , sn) of PARITY (MASK, DIM) is equal to
PARITY (MASK (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn)).

6 Examples.

Case (i): The value of PARITY ([T, T, T, F]) is true if T has the value true and F has the value false.

Case (ii): If B is the array
[
T T F
T T T

]
, where T has the value true and F has the value false, then

PARITY (B, DIM=1) has the value [F, F, T] and PARITY (B, DIM=2) has the value [F, T].

13.7.129 POPCNT (I)

1 Description. Number of one bits.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Default integer.

5 Result Value. The result value is equal to the number of one bits in the sequence of bits of I. The model for
the interpretation of an integer value as a sequence of bits is in 13.3.

6 Examples. POPCNT ([1, 2, 3, 4, 5, 6]) has the value [1, 1, 2, 1, 2, 2].

13.7.130 POPPAR (I)

1 Description. Parity expressed as 0 or 1.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Default integer.

5 Result Value. POPPAR (I) has the value 1 if POPCNT (I) is odd, and 0 if POPCNT (I) is even.

6 Examples. POPPAR ([1, 2, 3, 4, 5, 6]) has the value [1, 1, 0, 1, 0, 0].
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13.7.131 PRECISION (X)

1 Description. Decimal precision of a real model.

2 Class. Inquiry function.

3 Argument. X shall be of type real or complex. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has the value INT ((p − 1) * LOG10 (b)) + k, where b and p are as defined in 13.4
for the model representing real numbers with the same value for the kind type parameter as X, and where k is 1
if b is an integral power of 10 and 0 otherwise.

6 Example. PRECISION (X) has the value INT (23 * LOG10 (2.)) = INT (6.92. . . ) = 6 for real X whose model
is as in Note 13.5.

13.7.132 PRESENT (A)

1 Description. Query presence of optional argument.

2 Class. Inquiry function.

3 Argument. A shall be the name of an optional dummy argument that is accessible in the subprogram in which
the PRESENT function reference appears. It may be of any type and it may be a pointer. It may be a scalar or
an array. It may be a dummy procedure. The dummy argument A has no INTENT attribute.

4 Result Characteristics. Default logical scalar.

5 Result Value. The result has the value true if A is present (12.5.2.12) and otherwise has the value false.

13.7.133 PRODUCT (ARRAY, DIM [, MASK]) or

PRODUCT (ARRAY [, MASK])

1 Description. Reduce array by multiplication.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of numeric type.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if
DIM does not appear; otherwise, the result has rank n−1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where
[d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of PRODUCT (ARRAY) has a value equal to a processor-dependent approximation to
the product of all the elements of ARRAY or has the value one if ARRAY has size zero.

Case (ii): The result of PRODUCT (ARRAY, MASK = MASK) has a value equal to a processor-dependent
approximation to the product of the elements of ARRAY corresponding to the true elements of
MASK or has the value one if there are no true elements.

Case (iii): If ARRAY has rank one, PRODUCT (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal
to that of PRODUCT (ARRAY [, MASK = MASK ]). Otherwise, the value of element (s1, s2, . . . ,
sDIM−1, sDIM+1, . . . , sn) of PRODUCT (ARRAY, DIM = DIM [, MASK = MASK]) is equal to
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PRODUCT (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) [, MASK = MASK (s1, s2, . . . ,
sDIM−1, :, sDIM+1, . . . , sn) ] ).

6 Examples.

Case (i): The value of PRODUCT ([1, 2, 3]) is 6.

Case (ii): PRODUCT (C, MASK = C > 0.0) forms the product of the positive elements of C.

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, PRODUCT (B, DIM = 1) is [2, 12, 30] and PRODUCT (B, DIM = 2)

is [15, 48].

13.7.134 RADIX (X)

1 Description. Base of a numeric model.

2 Class. Inquiry function.

3 Argument. X shall be of type integer or real. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has the value r if X is of type integer and the value b if X is of type real, where r and
b are as defined in 13.4 for the model representing numbers of the same type and kind type parameter as X.

6 Example. RADIX (X) has the value 2 for real X whose model is as in Note 13.5.

13.7.135 RANDOM NUMBER (HARVEST)

1 Description. Generate pseudorandom number(s).

2 Class. Subroutine.

3 Argument. HARVEST shall be of type real. It is an INTENT (OUT) argument. It may be a scalar or an array.
It is assigned pseudorandom numbers from the uniform distribution in the interval 0 ≤ x < 1.

4 Example.

REAL X, Y (10, 10)

! Initialize X with a pseudorandom number

CALL RANDOM_NUMBER (HARVEST = X)

CALL RANDOM_NUMBER (Y)

! X and Y contain uniformly distributed random numbers

13.7.136 RANDOM SEED ([SIZE, PUT, GET])

1 Description. Restart or query the pseudorandom number generator.

2 Class. Subroutine.

3 Arguments. There shall either be exactly one or no arguments present.
SIZE (optional) shall be default integer scalar. It is an INTENT (OUT) argument. It is assigned the number N

of integers that the processor uses to hold the value of the seed.
PUT (optional) shall be a default integer array of rank one and size ≥ N . It is an INTENT (IN) argument. It

is used in a processor-dependent manner to compute the seed value accessed by the pseudorandom
number generator.
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GET (optional) shall be a default integer array of rank one and size ≥ N It is an INTENT (OUT) argument. It
is assigned the value of the seed.

4 If no argument is present, the processor assigns a processor-dependent value to the seed.

5 The pseudorandom number generator used by RANDOM NUMBER maintains a seed that is updated during the
execution of RANDOM NUMBER and that may be specified or returned by RANDOM SEED. Computation of
the seed from the argument PUT is performed in a processor-dependent manner. The value returned by GET
need not be the same as the value specified by PUT in an immediately preceding reference to RANDOM SEED.
For example, following execution of the statements

CALL RANDOM_SEED (PUT=SEED1)

CALL RANDOM_SEED (GET=SEED2)

SEED2 need not equal SEED1. When the values differ, the use of either value as the PUT argument in a
subsequent call to RANDOM SEED shall result in the same sequence of pseudorandom numbers being generated.
For example, after execution of the statements

CALL RANDOM_SEED (PUT=SEED1)

CALL RANDOM_SEED (GET=SEED2)

CALL RANDOM_NUMBER (X1)

CALL RANDOM_SEED (PUT=SEED2)

CALL RANDOM_NUMBER (X2)

X2 equals X1.

6 Examples.

CALL RANDOM_SEED ! Processor initialization

CALL RANDOM_SEED (SIZE = K) ! Puts size of seed in K

CALL RANDOM_SEED (PUT = SEED (1 : K)) ! Define seed

CALL RANDOM_SEED (GET = OLD (1 : K)) ! Read current seed

13.7.137 RANGE (X)

1 Description. Decimal exponent range of a numeric model (13.4).

2 Class. Inquiry function.

3 Argument. X shall be of type integer, real, or complex. It may be a scalar or an array.

4 Result Characteristics. Default integer scalar.

5 Result Value.

Case (i): If X is of type integer, the result has the value INT (LOG10 (HUGE (X))).

Case (ii): If X is of type real, the result has the value INT (MIN (LOG10 (HUGE (X)), −LOG10 (TINY (X)))).

Case (iii): If X is of type complex, the result has the value RANGE (REAL (X)).

6 Examples. RANGE (X) has the value 38 for real X whose model is as in Note 13.5, because in this case
HUGE (X) = (1− 2−24)× 2127 and TINY (X) = 2−127.
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13.7.138 REAL (A [, KIND])

1 Description. Conversion to real type.

2 Class. Elemental function.

3 Arguments.

A shall be of type integer, real, or complex, or a boz-literal-constant .
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Real.
Case (i): If A is of type integer or real and KIND is present, the kind type parameter is that specified by the

value of KIND. If A is of type integer or real and KIND is not present, the kind type parameter is
that of default real kind.

Case (ii): If A is of type complex and KIND is present, the kind type parameter is that specified by the value
of KIND. If A is of type complex and KIND is not present, the kind type parameter is the kind
type parameter of A.

Case (iii): If A is a boz-literal-constant and KIND is present, the kind type parameter is that specified by the
value of KIND. If A is a boz-literal-constant and KIND is not present, the kind type parameter is
that of default real kind.

5 Result Value.

Case (i): If A is of type integer or real, the result is equal to a processor-dependent approximation to A.

Case (ii): If A is of type complex, the result is equal to a processor-dependent approximation to the real part
of A.

Case (iii): If A is a boz-literal-constant , the value of the result is the value whose internal representation as
a bit sequence is the same as that of A as modified by padding or truncation according to 13.3.3.
The interpretation of the bit sequence is processor dependent.

6 Examples. REAL (−3) has the value −3.0. REAL (Z) has the same kind type parameter and the same value
as the real part of the complex variable Z.

13.7.139 REPEAT (STRING, NCOPIES)

1 Description. Repeatedly concatenate a string.

2 Class. Transformational function.

3 Arguments.

STRING shall be a character scalar.
NCOPIES shall be an integer scalar. Its value shall not be negative.

4 Result Characteristics. Character scalar of length NCOPIES times that of STRING, with the same kind type
parameter as STRING.

5 Result Value. The value of the result is the concatenation of NCOPIES copies of STRING.

6 Examples. REPEAT (’H’, 2) has the value HH. REPEAT (’XYZ’, 0) has the value of a zero-length string.

13.7.140 RESHAPE (SOURCE, SHAPE [, PAD, ORDER])

1 Description. Construct an array of an arbitrary shape.

2 Class. Transformational function.
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3 Arguments.

SOURCE shall be an array of any type. If PAD is absent or of size zero, the size of SOURCE shall be greater
than or equal to PRODUCT (SHAPE). The size of the result is the product of the values of the
elements of SHAPE.

SHAPE shall be a rank-one integer array. SIZE (x), where x is the actual argument corresponding to
SHAPE, shall be a constant expression whose value is positive and less than 16. It shall not have
an element whose value is negative.

PAD (optional) shall be an array of the same type and type parameters as SOURCE.
ORDER (optional) shall be of type integer, shall have the same shape as SHAPE, and its value shall be a

permutation of (1, 2, . . . , n), where n is the size of SHAPE. If absent, it is as if it were present with
value (1, 2, . . . , n).

4 Result Characteristics. The result is an array of shape SHAPE (that is, SHAPE (RESHAPE (SOURCE,
SHAPE, PAD, ORDER)) is equal to SHAPE) with the same type and type parameters as SOURCE.

5 Result Value. The elements of the result, taken in permuted subscript order ORDER (1), . . . , ORDER (n), are
those of SOURCE in normal array element order followed if necessary by those of PAD in array element order,
followed if necessary by additional copies of PAD in array element order.

6 Examples. RESHAPE ([1, 2, 3, 4, 5, 6], [2, 3]) has the value
[

1 3 5
2 4 6

]
.

RESHAPE ([1, 2, 3, 4, 5, 6], [2, 4], [0, 0], [2, 1]) has the value
[

1 2 3 4
5 6 0 0

]
.

13.7.141 RRSPACING (X)

1 Description. Reciprocal of relative spacing of model numbers.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. The result has the value |Y×b−e|×bp = ABS (FRACTION (Y)) * RADIX (X) / EPSILON (X),
where b, e, and p are as defined in 13.4 for Y, the value nearest to X in the model for real values whose kind type
parameter is that of X; if there are two such values, the value of greater absolute value is taken. If X is an IEEE
infinity, the result is an IEEE NaN. If X is an IEEE NaN, the result is that NaN.

6 Example. RRSPACING (−3.0) has the value 0.75× 224 for reals whose model is as in Note 13.5.

13.7.142 SAME TYPE AS (A, B)

1 Description. Query dynamic types for equality.

2 Class. Inquiry function.

3 Arguments.

A shall be an object of extensible declared type or unlimited polymorphic. If it is a pointer, it shall
not have an undefined association status.

B shall be an object of extensible declared type or unlimited polymorphic. If it is a pointer, it shall
not have an undefined association status.

4 Result Characteristics. Default logical scalar.

5 Result Value. If the dynamic type of A or B is extensible, the result is true if and only if the dynamic type of
A is the same as the dynamic type of B. If neither A nor B have extensible dynamic type, the result is processor
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dependent.

NOTE 13.20
The dynamic type of a disassociated pointer or unallocated allocatable variable is its declared type. An
unlimited polymorphic entity has no declared type.

13.7.143 SCALE (X, I)

1 Description. Scale real number by a power of the base.

2 Class. Elemental function.

3 Arguments.

X shall be of type real.
I shall be of type integer.

4 Result Characteristics. Same as X.

5 Result Value. The result has the value X× bI, where b is defined in 13.4 for model numbers representing values
of X, provided this result is within range; if not, the result is processor dependent.

6 Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is as in Note 13.5.

13.7.144 SCAN (STRING, SET [, BACK, KIND])

1 Description. Search for any one of a set of characters.

2 Class. Elemental function.

3 Arguments.

STRING shall be of type character.
SET shall be of type character with the same kind type parameter as STRING.
BACK (optional) shall be of type logical.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type.

5 Result Value.

Case (i): If BACK is absent or is present with the value false and if STRING contains at least one character
that is in SET, the value of the result is the position of the leftmost character of STRING that is
in SET.

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is in
SET, the value of the result is the position of the rightmost character of STRING that is in SET.

Case (iii): The value of the result is zero if no character of STRING is in SET or if the length of STRING or
SET is zero.

6 Examples.

Case (i): SCAN (’FORTRAN’, ’TR’) has the value 3.

Case (ii): SCAN (’FORTRAN’, ’TR’, BACK = .TRUE.) has the value 5.

Case (iii): SCAN (’FORTRAN’, ’BCD’) has the value 0.
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13.7.145 SELECTED CHAR KIND (NAME)

1 Description. Select a character kind.

2 Class. Transformational function.

3 Argument. NAME shall be default character scalar.

4 Result Characteristics. Default integer scalar.

5 Result Value. If NAME has the value DEFAULT, then the result has a value equal to that of the kind type
parameter of default character. If NAME has the value ASCII, then the result has a value equal to that of the
kind type parameter of ASCII character if the processor supports such a kind; otherwise the result has the value
−1. If NAME has the value ISO 10646, then the result has a value equal to that of the kind type parameter of
the ISO 10646 character kind (corresponding to UCS-4 as specified in ISO/IEC 10646) if the processor supports
such a kind; otherwise the result has the value −1. If NAME is a processor-defined name of some other character
kind supported by the processor, then the result has a value equal to that kind type parameter value. If NAME is
not the name of a supported character type, then the result has the value −1. The NAME is interpreted without
respect to case or trailing blanks.

6 Examples. SELECTED CHAR KIND (’ASCII’) has the value 1 on a processor that uses 1 as the kind type
parameter for the ASCII character set. The following subroutine produces a Japanese date stamp.

7 SUBROUTINE create_date_string(string)

INTRINSIC date_and_time,selected_char_kind

INTEGER,PARAMETER :: ucs4 = selected_char_kind("ISO_10646")

CHARACTER(1,UCS4),PARAMETER :: nen=CHAR(INT(Z’5e74’),UCS4), & !year

gatsu=CHAR(INT(Z’6708’),UCS4), & !month

nichi=CHAR(INT(Z’65e5’),UCS4) !day

CHARACTER(len= *, kind= ucs4) string

INTEGER values(8)

CALL date_and_time(values=values)

WRITE(string,1) values(1),nen,values(2),gatsu,values(3),nichi

1 FORMAT(I0,A,I0,A,I0,A)

END SUBROUTINE

13.7.146 SELECTED INT KIND (R)

1 Description. Select an integer kind.

2 Class. Transformational function.

3 Argument. R shall be an integer scalar.

4 Result Characteristics. Default integer scalar.

5 Result Value. The result has a value equal to the value of the kind type parameter of an integer type that
represents all values n in the range −10R < n < 10R, or if no such kind type parameter is available on the
processor, the result is −1. If more than one kind type parameter meets the criterion, the value returned is the
one with the smallest decimal exponent range, unless there are several such values, in which case the smallest of
these kind values is returned.

6 Example. Assume a processor supports two integer kinds, 32 with representation method r = 2 and q = 31, and
64 with representation method r = 2 and q = 63. On this processor SELECTED INT KIND (9) has the value
32 and SELECTED INT KIND (10) has the value 64.
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13.7.147 SELECTED REAL KIND ([P, R, RADIX])

1 Description. Select a real kind.

2 Class. Transformational function.

3 Arguments. At least one argument shall be present.
P (optional) shall be an integer scalar.
R (optional) shall be an integer scalar.
RADIX (optional) shall be an integer scalar.

4 Result Characteristics. Default integer scalar.

5 Result Value. If P or R is absent, the result value is the same as if it were present with the value zero. If
RADIX is absent, there is no requirement on the radix of the selected kind.

6 The result has a value equal to a value of the kind type parameter of a real type with decimal precision, as
returned by the function PRECISION, of at least P digits, a decimal exponent range, as returned by the function
RANGE, of at least R, and a radix, as returned by the function RADIX, of RADIX, if such a kind type parameter
is available on the processor.

7 Otherwise, the result is −1 if the processor supports a real type with radix RADIX and exponent range of at least
R but not with precision of at least P, −2 if the processor supports a real type with radix RADIX and precision of
at least P but not with exponent range of at least R, −3 if the processor supports a real type with radix RADIX
but with neither precision of at least P nor exponent range of at least R, −4 if the processor supports a real type
with radix RADIX and either precision of at least P or exponent range of at least R but not both together, and
−5 if the processor supports no real type with radix RADIX.

8 If more than one kind type parameter value meets the criteria, the value returned is the one with the smallest
decimal precision, unless there are several such values, in which case the smallest of these kind values is returned.

9 Example. SELECTED REAL KIND (6, 70) has the value KIND (0.0) on a machine that supports a default
real approximation method with b = 16, p = 6, emin = −64, and emax = 63 and does not have a less precise
approximation method.

13.7.148 SET EXPONENT (X, I)

1 Description. Set floating-point exponent.

2 Class. Elemental function.

3 Arguments.

X shall be of type real.
I shall be of type integer.

4 Result Characteristics. Same as X.

5 Result Value. If X has the value zero, the result has the same value as X. If X is an IEEE infinity, the result is
an IEEE NaN. If X is an IEEE NaN, the result is the same NaN. Otherwise, the result has the value X × bI−e,
where b and e are as defined in 13.4 for the representation for the value of X in the extended real model for the
kind of X.

6 Example. SET EXPONENT (3.0, 1) has the value 1.5 for reals whose model is as in Note 13.5.
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13.7.149 SHAPE (SOURCE [, KIND])

1 Description. Shape of an array or a scalar.

2 Class. Inquiry function.

3 Arguments.

SOURCE shall be a scalar or array of any type. It shall not be an unallocated allocatable variable or a pointer
that is not associated. It shall not be an assumed-size array.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value
of KIND; otherwise the kind type parameter is that of default integer type. The result is an array of rank one
whose size is equal to the rank of SOURCE.

5 Result Value. The value of the result is the shape of SOURCE.

6 Examples. The value of SHAPE (A (2:5, −1:1) ) is [4, 3]. The value of SHAPE (3) is the rank-one array of size
zero.

13.7.150 SHIFTA (I, SHIFT)

1 Description. Right shift with fill.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The result has the value obtained by shifting the bits of I to the right SHIFT bits and replicating
the leftmost bit of I in the left SHIFT bits.

6 If SHIFT is zero the result is I. Bits shifted out from the right are lost. The model for the interpretation of an
integer value as a sequence of bits is in 13.3.

7 Example. SHIFTA (IBSET (0, BIT SIZE (0)), 2) is equal to SHIFTL (7, BIT SIZE (0) − 3).

13.7.151 SHIFTL (I, SHIFT)

1 Description. Left shift.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The value of the result is ISHFT (I, SHIFT).

6 Examples. SHIFTL (3, 1) has the value 6.
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13.7.152 SHIFTR (I, SHIFT)

1 Description. Right shift.

2 Class. Elemental function.

3 Arguments.

I shall be of type integer.
SHIFT shall be of type integer. It shall be nonnegative and less than or equal to BIT SIZE (I).

4 Result Characteristics. Same as I.

5 Result Value. The value of the result is ISHFT (I, −SHIFT).

6 Examples. SHIFTR (3, 1) has the value 1.

13.7.153 SIGN (A, B)

1 Description. Magnitude of A with the sign of B.

2 Class. Elemental function.

3 Arguments.

A shall be of type integer or real.
B shall be of the same type and kind type parameter as A.

4 Result Characteristics. Same as A.

5 Result Value.

Case (i): If B > 0, the value of the result is |A|.
Case (ii): If B < 0, the value of the result is -|A|.
Case (iii): If B is of type integer and B=0, the value of the result is |A|.
Case (iv): If B is of type real and is zero, then:

• if the processor cannot distinguish between positive and negative real zero, or if B is positive
real zero, the value of the result is |A|;

• if B is negative real zero, the value of the result is -|A|.

6 Example. SIGN (−3.0, 2.0) has the value 3.0.

13.7.154 SIN (X)

1 Description. Sine function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to sin(X). If X is of type
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.

6 Example. SIN (1.0) has the value 0.84147098 (approximately).
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13.7.155 SINH (X)

1 Description. Hyperbolic sine function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to sinh(X). If X is of type
complex its imaginary part is regarded as a value in radians.

6 Example. SINH (1.0) has the value 1.1752012 (approximately).

13.7.156 SIZE (ARRAY [, DIM, KIND])

1 Description. Size of an array or one extent.

2 Class. Inquiry function.

3 Arguments.

ARRAY shall be an array of any type. It shall not be an unallocated allocatable variable or a pointer that
is not associated. If ARRAY is an assumed-size array, DIM shall be present with a value less than
the rank of ARRAY.

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that specified by the
value of KIND; otherwise the kind type parameter is that of default integer type.

5 Result Value. The result has a value equal to the extent of dimension DIM of ARRAY or, if DIM is absent,
the total number of elements of ARRAY.

6 Examples. The value of SIZE (A (2:5, −1:1), DIM=2) is 3. The value of SIZE (A (2:5, −1:1)) is 12.

13.7.157 SPACING (X)

1 Description. Spacing of model numbers (13.4).

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Result Characteristics. Same as X.

5 Result Value. If X does not have the value zero and is not an IEEE infinity or NaN, the result has the value
bmax(e−p,eMIN−1), where b, e, and p are as defined in 13.4 for the value nearest to X in the model for real values
whose kind type parameter is that of X; if there are two such values the value of greater absolute value is taken.
If X has the value zero, the result is the same as that of TINY (X). If X is an IEEE infinity, the result is an IEEE
NaN. If X is an IEEE NaN, the result is that NaN.

6 Example. SPACING (3.0) has the value 2−22 for reals whose model is as in Note 13.5.

13.7.158 SPREAD (SOURCE, DIM, NCOPIES)

1 Description. Form higher-rank array by replication.

2 Class. Transformational function.
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3 Arguments.

SOURCE shall be a scalar or array of any type. The rank of SOURCE shall be less than 15.
DIM shall be an integer scalar with value in the range 1 ≤ DIM ≤ n+1, where n is the rank of SOURCE.
NCOPIES shall be scalar and of type integer.

4 Result Characteristics. The result is an array of the same type and type parameters as SOURCE and of rank
n+ 1, where n is the rank of SOURCE.
Case (i): If SOURCE is scalar, the shape of the result is (MAX (NCOPIES, 0)).

Case (ii): If SOURCE is an array with shape [d1, d2, . . . , dn], the shape of the result is [d1, d2, . . . , dDIM−1,
MAX (NCOPIES, 0), dDIM, . . . , dn].

5 Result Value.

Case (i): If SOURCE is scalar, each element of the result has a value equal to SOURCE.

Case (ii): If SOURCE is an array, the element of the result with subscripts (r1, r2, . . . , rn+1) has the value
SOURCE (r1, r2, . . . , rDIM−1, rDIM+1, . . . , rn+1).

6 Examples. If A is the array [2, 3, 4], SPREAD (A, DIM=1, NCOPIES=NC) is the array

 2 3 4
2 3 4
2 3 4

 if NC

has the value 3 and is a zero-sized array if NC has the value 0.

13.7.159 SQRT (X)

1 Description. Square root.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex. Unless X is complex, its value shall be greater than or equal to
zero.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to the square root of X. A
result of type complex is the principal value with the real part greater than or equal to zero. When the real part
of the result is zero, the imaginary part has the same sign as the imaginary part of X.

6 Example. SQRT (4.0) has the value 2.0 (approximately).

13.7.160 STORAGE SIZE (A [, KIND])

1 Description. Storage size in bits.

2 Class. Inquiry function.

3 Arguments.

A shall be a scalar or array of any type. If it is polymorphic it shall not be an undefined pointer. If it
has any deferred type parameters it shall not be an unallocated allocatable variable or a disassociated
or undefined pointer.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer scalar. If KIND is present, the kind type parameter is that specified by the
value of KIND; otherwise, the kind type parameter is that of default integer type.

5 Result Value. The result value is the size expressed in bits for an element of an array that has the dynamic
type and type parameters of A. If the type and type parameters are such that storage association (16.5.3) applies,
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the result is consistent with the named constants defined in the intrinsic module ISO FORTRAN ENV.

NOTE 13.21
An array element might take more bits to store than an isolated scalar, since any hardware-imposed align-
ment requirements for array elements might not apply to a simple scalar variable.

NOTE 13.22
This is intended to be the size in memory that an object takes when it is stored; this might differ from the
size it takes during expression handling (which might be the native register size) or when stored in a file.
If an object is never stored in memory but only in a register, this function nonetheless returns the size it
would take if it were stored in memory.

6 Example. STORAGE SIZE (1.0) has the same value as the named constant NUMERIC STORAGE SIZE in
the intrinsic module ISO FORTRAN ENV.

13.7.161 SUM (ARRAY, DIM [, MASK]) or SUM (ARRAY [, MASK])

1 Description. Reduce array by addition.

2 Class. Transformational function.

3 Arguments.

ARRAY shall be an array of numeric type.
DIM shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.

The corresponding actual argument shall not be an optional dummy argument.
MASK (optional) shall be of type logical and shall be conformable with ARRAY.

4 Result Characteristics. The result is of the same type and kind type parameter as ARRAY. It is scalar if
DIM does not appear; otherwise, the result has rank n−1 and shape [d1, d2, . . . , dDIM−1, dDIM+1, . . . , dn] where
[d1, d2, . . . , dn] is the shape of ARRAY.

5 Result Value.

Case (i): The result of SUM (ARRAY) has a value equal to a processor-dependent approximation to the sum
of all the elements of ARRAY or has the value zero if ARRAY has size zero.

Case (ii): The result of SUM (ARRAY, MASK = MASK) has a value equal to a processor-dependent ap-
proximation to the sum of the elements of ARRAY corresponding to the true elements of MASK or
has the value zero if there are no true elements.

Case (iii): If ARRAY has rank one, SUM (ARRAY, DIM = DIM [, MASK = MASK]) has a value equal to that
of SUM (ARRAY [,MASK = MASK ]). Otherwise, the value of element (s1, s2, . . . , sDIM−1, sDIM+1,
. . . , sn) of SUM (ARRAY, DIM = DIM [ , MASK = MASK]) is equal to

SUM (ARRAY (s1, s2, . . . , sDIM−1, :, sDIM+1, . . . , sn) [, MASK= MASK (s1, s2, . . . , sDIM−1,
:, sDIM+1, . . . , sn) ] ).

6 Examples.

Case (i): The value of SUM ([1, 2, 3]) is 6.

Case (ii): SUM (C, MASK= C > 0.0) forms the sum of the positive elements of C.

Case (iii): If B is the array
[

1 3 5
2 4 6

]
, SUM (B, DIM = 1) is [3, 7, 11] and SUM (B, DIM = 2) is [9, 12].
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13.7.162 SYSTEM CLOCK ([COUNT, COUNT RATE, COUNT MAX])

1 Description. Query system clock.

2 Class. Subroutine.

3 Arguments.

COUNT (optional) shall be an integer scalar. It is an INTENT (OUT) argument. It is assigned a processor-
dependent value based on the value of the processor clock, or −HUGE (COUNT) if there is no clock.
The processor-dependent value is incremented by one for each clock count until the value COUNT -
MAX is reached and is reset to zero at the next count. It lies in the range 0 to COUNT MAX if
there is a clock.

COUNT RATE (optional) shall be an integer or real scalar. It is an INTENT (OUT) argument. It is assigned a
processor-dependent approximation to the number of processor clock counts per second, or zero if
there is no clock.

COUNT MAX (optional) shall be an integer scalar. It is an INTENT (OUT) argument. It is assigned the
maximum value that COUNT can have, or zero if there is no clock.

4 Example. If the processor clock is a 24-hour clock that registers time at approximately 18.20648193 ticks per
second, at 11:30 A.M. the reference

CALL SYSTEM_CLOCK (COUNT = C, COUNT_RATE = R, COUNT_MAX = M)
defines C = (11×3600+30×60)×18.20648193 = 753748, R = 18.20648193, and M = 24×3600×18.20648193−1 =
1573039.

13.7.163 TAN (X)

1 Description. Tangent function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to tan(X). If X is of type
real, it is regarded as a value in radians. If X is of type complex, its real part is regarded as a value in radians.

6 Example. TAN (1.0) has the value 1.5574077 (approximately).

13.7.164 TANH (X)

1 Description. Hyperbolic tangent function.

2 Class. Elemental function.

3 Argument. X shall be of type real or complex.

4 Result Characteristics. Same as X.

5 Result Value. The result has a value equal to a processor-dependent approximation to tanh(X). If X is of type
complex its imaginary part is regarded as a value in radians.

6 Example. TANH (1.0) has the value 0.76159416 (approximately).

13.7.165 THIS IMAGE ( ) or THIS IMAGE (COARRAY [, DIM])

1 Description. Cosubscript(s) for this image.

2 Class. Transformational function.
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3 Arguments.

COARRAY shall be a coarray of any type. If it is allocatable it shall be allocated.
DIM (optional) shall be a default integer scalar. Its value shall be in the range 1 ≤ DIM ≤ n, where n is

the corank of COARRAY. The corresponding actual argument shall not be an optional dummy
argument.

4 Result Characteristics. Default integer. It is scalar if COARRAY does not appear or DIM is present; otherwise,
the result has rank one and its size is equal to the corank of COARRAY.

5 Result Value.

Case (i): The result of THIS IMAGE ( ) is a scalar with a value equal to the index of the invoking image.

Case (ii): The result of THIS IMAGE (COARRAY) is the sequence of cosubscript values for COARRAY that
would specify the invoking image.

Case (iii): The result of THIS IMAGE (COARRAY, DIM) is the value of cosubscript DIM in the sequence of
cosubscript values for COARRAY that would specify the invoking image.

6 Examples. If A is declared by the statement
REAL A (10, 20) [10, 0:9, 0:*]

then on image 5, THIS IMAGE ( ) has the value 5 and THIS IMAGE (A) has the value [5, 0, 0]. For the same
coarray on image 213, THIS IMAGE (A) has the value [3, 1, 2].

7 The following code uses image 1 to read data. The other images then copy the data.

IF (THIS_IMAGE()==1) READ (*,*) P

SYNC ALL

P = P[1]

NOTE 13.23
For an example of a module that implements a function similar to the intrinsic function THIS IMAGE, see
subclause C.10.1.

13.7.166 TINY (X)

1 Description. Smallest positive model number.

2 Class. Inquiry function.

3 Argument. X shall be a real scalar or array.

4 Result Characteristics. Scalar with the same type and kind type parameter as X.

5 Result Value. The result has the value bemin−1 where b and emin are as defined in 13.4 for the model representing
numbers of the same type and kind type parameter as X.

6 Example. TINY (X) has the value 2−127 for real X whose model is as in Note 13.5.

13.7.167 TRAILZ (I)

1 Description. Number of trailing zero bits.

2 Class. Elemental function.

3 Argument. I shall be of type integer.

4 Result Characteristics. Default integer.
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5 Result Value. If all of the bits of I are zero, the result value is BIT SIZE (I). Otherwise, the result value is the
position of the rightmost 1 bit in I. The model for the interpretation of an integer value as a sequence of bits is
in 13.3.

6 Examples. TRAILZ (8) has the value 3.

13.7.168 TRANSFER (SOURCE, MOLD [, SIZE])

1 Description. Transfer physical representation.

2 Class. Transformational function.

3 Arguments.

SOURCE shall be a scalar or array of any type.
MOLD shall be a scalar or array of any type. If it is a variable, it need not be defined.
SIZE (optional) shall be an integer scalar. The corresponding actual argument shall not be an optional dummy

argument.

4 Result Characteristics. The result is of the same type and type parameters as MOLD.
Case (i): If MOLD is a scalar and SIZE is absent, the result is a scalar.

Case (ii): If MOLD is an array and SIZE is absent, the result is an array and of rank one. Its size is as small
as possible such that its physical representation is not shorter than that of SOURCE.

Case (iii): If SIZE is present, the result is an array of rank one and size SIZE.

5 Result Value. If the physical representation of the result has the same length as that of SOURCE, the physical
representation of the result is that of SOURCE. If the physical representation of the result is longer than that
of SOURCE, the physical representation of the leading part is that of SOURCE and the remainder is processor
dependent. If the physical representation of the result is shorter than that of SOURCE, the physical representation
of the result is the leading part of SOURCE. If D and E are scalar variables such that the physical representation
of D is as long as or longer than that of E, the value of TRANSFER (TRANSFER (E, D), E) shall be the value
of E. IF D is an array and E is an array of rank one, the value of TRANSFER (TRANSFER (E, D), E, SIZE (E))
shall be the value of E.

6 Examples.

Case (i): TRANSFER (1082130432, 0.0) has the value 4.0 on a processor that represents the values 4.0 and
1082130432 as the string of binary digits 0100 0000 1000 0000 0000 0000 0000 0000.

Case (ii): TRANSFER ([1.1, 2.2, 3.3], [(0.0, 0.0)])) is a complex rank-one array of length two whose first
element has the value (1.1, 2.2) and whose second element has a real part with the value 3.3. The
imaginary part of the second element is processor dependent.

Case (iii): TRANSFER ([1.1, 2.2, 3.3], [(0.0, 0.0)], 1) is a complex rank-one array of length one whose only
element has the value (1.1, 2.2).

13.7.169 TRANSPOSE (MATRIX)

1 Description. Transpose of an array of rank two.

2 Class. Transformational function.

3 Argument. MATRIX shall be a rank-two array of any type.

4 Result Characteristics. The result is an array of the same type and type parameters as MATRIX and with
rank two and shape [n,m] where [m,n] is the shape of MATRIX.

5 Result Value. Element (i, j) of the result has the value MATRIX (j + LBOUND (MATRIX, 1) − 1, i +
LBOUND (MATRIX, 2) − 1).
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6 Example. If A is the array

 1 2 3
4 5 6
7 8 9

, then TRANSPOSE (A) has the value

 1 4 7
2 5 8
3 6 9

.

13.7.170 TRIM (STRING)

1 Description. String without trailing blanks.

2 Class. Transformational function.

3 Argument. STRING shall be a character scalar.

4 Result Characteristics. Character with the same kind type parameter value as STRING and with a length
that is the length of STRING less the number of trailing blanks in STRING. If STRING contains no nonblank
characters, the result has zero length.

5 Result Value. The value of the result is the same as STRING except any trailing blanks are removed.

6 Example. TRIM (’ A B ’) has the value ’ A B’.

13.7.171 UBOUND (ARRAY [, DIM, KIND])

1 Description. Upper bound(s) of an array.

2 Class. Inquiry function.

3 Arguments.

ARRAY shall be an array of any type. It shall not be an unallocated allocatable array or a pointer that is
not associated. If ARRAY is an assumed-size array, DIM shall be present with a value less than
the rank of ARRAY.

DIM (optional) shall be an integer scalar with a value in the range 1 ≤ DIM ≤ n, where n is the rank of ARRAY.
The corresponding actual argument shall not be an optional dummy argument.

KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type. The result is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the rank of ARRAY.

5 Result Value.

Case (i): For an array section or for an array expression, other than a whole array, UBOUND (ARRAY, DIM)
has a value equal to the number of elements in the given dimension; otherwise, it has a value equal
to the upper bound for subscript DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero.

Case (ii): UBOUND (ARRAY) has a value whose ith element is equal to UBOUND (ARRAY, i), for i = 1, 2,
. . . , n, where n is the rank of ARRAY.

6 Examples. If A is declared by the statement
REAL A (2:3, 7:10)

then UBOUND (A) is [3, 10] and UBOUND (A, DIM = 2) is 10.

13.7.172 UCOBOUND (COARRAY [, DIM, KIND])

1 Description. Upper cobound(s) of a coarray.

2 Class. Inquiry function.
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3 Arguments.

COARRAY shall be a coarray of any type. It may be a scalar or an array. If it is allocatable it shall be allocated.
DIM (optional) shall be scalar and of type integer with a value in the range 1 ≤ DIM ≤ n, where n is the corank

of COARRAY. The corresponding actual argument shall not be an optional dummy argument.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise, the kind type parameter is that of default integer type. The result is scalar if DIM is present;
otherwise, the result is an array of rank one and size n, where n is the corank of COARRAY.

5 Result Value. The final upper cobound is the final cosubscript in the cosubscript list for the coarray that selects
the image with index NUM IMAGES( ).
Case (i): UCOBOUND (COARRAY, DIM) has a value equal to the upper cobound for cosubscript DIM of

COARRAY.

Case (ii): UCOBOUND (COARRAY) has a value whose ith element is equal to
UCOBOUND (COARRAY, i), for i = 1, 2,. . . , n, where n is the corank of COARRAY.

6 Examples. If NUM IMAGES( ) has the value 30 and A is allocated by the statement

ALLOCATE (A [2:3, 0:7, *])

then UCOBOUND (A) is [3, 7, 2] and UCOBOUND (A, DIM=2) is 7. Note that the cosubscripts [3, 7, 2] do
not correspond to an actual image.

13.7.173 UNPACK (VECTOR, MASK, FIELD)

1 Description. Unpack a vector into an array.

2 Class. Transformational function.

3 Arguments.

VECTOR shall be a rank-one array of any type. Its size shall be at least t where t is the number of true
elements in MASK.

MASK shall be a logical array.
FIELD shall be of the same type and type parameters as VECTOR and shall be conformable with MASK.

4 Result Characteristics. The result is an array of the same type and type parameters as VECTOR and the
same shape as MASK.

5 Result Value. The element of the result that corresponds to the ith true element of MASK, in array element
order, has the value VECTOR (i) for i = 1, 2, . . . , t, where t is the number of true values in MASK. Each other
element has a value equal to FIELD if FIELD is scalar or to the corresponding element of FIELD if it is an array.

6 Examples. Particular values may be “scattered” to particular positions in an array by using UNPACK. If

M is the array

 1 0 0
0 1 0
0 0 1

, V is the array [1, 2, 3], and Q is the logical mask

 . T .
T . .
. . T

, where “T”

represents true and “.” represents false, then the result of UNPACK (V, MASK = Q, FIELD = M) has the value 1 2 0
1 1 0
0 0 3

 and the result of UNPACK (V, MASK = Q, FIELD = 0) has the value

 0 2 0
1 0 0
0 0 3

.
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13.7.174 VERIFY (STRING, SET [, BACK, KIND])

1 Description. Search for a character not in a given set.

2 Class. Elemental function.

3 Arguments.

STRING shall be of type character.
SET shall be of type character with the same kind type parameter as STRING.
BACK (optional) shall be of type logical.
KIND (optional) shall be a scalar integer constant expression.

4 Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value of
KIND; otherwise the kind type parameter is that of default integer type.

5 Result Value.

Case (i): If BACK is absent or has the value false and if STRING contains at least one character that is not
in SET, the value of the result is the position of the leftmost character of STRING that is not in
SET.

Case (ii): If BACK is present with the value true and if STRING contains at least one character that is not
in SET, the value of the result is the position of the rightmost character of STRING that is not in
SET.

Case (iii): The value of the result is zero if each character in STRING is in SET or if STRING has zero length.

6 Examples.

Case (i): VERIFY (’ABBA’, ’A’) has the value 2.

Case (ii): VERIFY (’ABBA’, ’A’, BACK = .TRUE.) has the value 3.

Case (iii): VERIFY (’ABBA’, ’AB’) has the value 0.

13.8 Standard modules

13.8.1 General

1 This part of ISO/IEC 1539 defines five standard intrinsic modules: a Fortran environment module, a set of three
modules to support floating-point exceptions and IEEE arithmetic, and a module to support interoperability with
the C programming language.

2 The intrinsic modules IEEE EXCEPTIONS, IEEE ARITHMETIC, and IEEE FEATURES are described in
Clause 14. The intrinsic module ISO C BINDING is described in Clause 15.

NOTE 13.24
The types and procedures defined in standard intrinsic modules are not themselves intrinsic.

3 A processor may extend the standard intrinsic modules to provide public entities in them in addition to those
specified in this part of ISO/IEC 1539.

NOTE 13.25
To avoid potential name conflicts with program entities, it is recommended that a program use the ONLY
option in any USE statement that references a standard intrinsic module.
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13.8.2 The ISO FORTRAN ENV intrinsic module

13.8.2.1 General

1 The intrinsic module ISO FORTRAN ENV provides public entities relating to the Fortran environment.

2 The processor shall provide the named constants, derived type, and procedures described in subclause 13.8.2. In
the detailed descriptions below, procedure names are generic and not specific.

13.8.2.2 ATOMIC INT KIND

1 The value of the default integer scalar constant ATOMIC INT KIND is the kind type parameter value of type
integer variables for which the processor supports atomic operations specified by atomic subroutines.

13.8.2.3 ATOMIC LOGICAL KIND

1 The value of the default integer scalar constant ATOMIC LOGICAL KIND is the kind type parameter value of
type logical variables for which the processor supports atomic operations specified by atomic subroutines.

13.8.2.4 CHARACTER KINDS

1 The values of the elements of the default integer array constant CHARACTER KINDS are the kind values
supported by the processor for variables of type character. The order of the values is processor dependent. The
rank of the array is one, its lower bound is one, and its size is the number of character kinds supported.

13.8.2.5 CHARACTER STORAGE SIZE

1 The value of the default integer scalar constant CHARACTER STORAGE SIZE is the size expressed in bits of
the character storage unit (16.5.3.2).

13.8.2.6 COMPILER OPTIONS ( )

1 Description. Processor-dependent string describing the options that controlled the program translation phase.

2 Class. Inquiry function.

3 Argument. None.

4 Result Characteristics. Default character scalar with processor-dependent length.

5 Result Value. A processor-dependent value which describes the options that controlled the translation phase
of program execution.

6 Example. COMPILER OPTIONS ( ) might have the value ’/OPTIMIZE /FLOAT=IEEE’.

13.8.2.7 COMPILER VERSION ( )

1 Description. Processor-dependent string identifying the program translation phase.

2 Class. Inquiry function.

3 Argument. None.

4 Result Characteristics. Default character scalar with processor-dependent length.

5 Result Value. A processor-dependent value that identifies the name and version of the program translation
phase of the processor.
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6 Example. COMPILER VERSION ( ) might have the value ’Fast KL-10 Compiler Version 7’.

NOTE 13.26
For both COMPILER OPTIONS and COMPILER VERSION the processor should include relevant in-
formation that could be useful in solving problems found long after the translation phase. For example,
compiler release and patch level, default compiler arguments, environment variable values, and run time
library requirements might be included. A processor might include this information in an object file auto-
matically, without the user needing to save the result of this function in a variable.

13.8.2.8 ERROR UNIT

1 The value of the default integer scalar constant ERROR UNIT identifies the processor-dependent preconnected
external unit used for the purpose of error reporting (9.5). This unit may be the same as OUTPUT UNIT. The
value shall not be −1.

13.8.2.9 FILE STORAGE SIZE

1 The value of the default integer scalar constant FILE STORAGE SIZE is the size expressed in bits of the file
storage unit (9.3.5).

13.8.2.10 INPUT UNIT

1 The value of the default integer scalar constant INPUT UNIT identifies the same processor-dependent external
unit preconnected for sequential formatted input as the one identified by an asterisk in a READ statement; this
unit is the one used for a READ statement that does not contain an input/output control list (9.6.4.3). The
value shall not be −1.

13.8.2.11 INT8, INT16, INT32, and INT64

1 The values of these default integer scalar constants shall be those of the kind type parameters that specify an
INTEGER type whose storage size expressed in bits is 8, 16, 32, and 64 respectively. If, for any of these constants,
the processor supports more than one kind of that size, it is processor dependent which kind value is provided. If
the processor supports no kind of a particular size, that constant shall be equal to −2 if the processor supports
a kind with larger size and −1 otherwise.

13.8.2.12 INTEGER KINDS

1 The values of the elements of the default integer array constant INTEGER KINDS are the kind values supported
by the processor for variables of type integer. The order of the values is processor dependent. The rank of the
array is one, its lower bound is one, and its size is the number of integer kinds supported.

13.8.2.13 IOSTAT END

1 The value of the default integer scalar constant IOSTAT END is assigned to the variable specified in an IOSTAT=
specifier (9.11.5) if an end-of-file condition occurs during execution of an input/output statement and no error
condition occurs. This value shall be negative.

13.8.2.14 IOSTAT EOR

1 The value of the default integer scalar constant IOSTAT EOR is assigned to the variable specified in an IOSTAT=
specifier (9.11.5) if an end-of-record condition occurs during execution of an input/output statement and no end-
of-file or error condition occurs. This value shall be negative and different from the value of IOSTAT END.
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13.8.2.15 IOSTAT INQUIRE INTERNAL UNIT

1 The value of the default integer scalar constant IOSTAT INQUIRE INTERNAL UNIT is assigned to the variable
specified in an IOSTAT= specifier in an INQUIRE statement (9.10) if a file-unit-number identifies an internal
unit in that statement.

NOTE 13.27
This can only occur when a defined input/output procedure is called by the processor as the result of
executing a parent data transfer statement (9.6.4.8.2) for an internal unit.

13.8.2.16 LOCK TYPE

1 LOCK TYPE is a derived type with private components; no component is allocatable or a pointer. It is an
extensible type with no type parameters. It does not have the BIND (C) attribute or type parameters, and is
not a sequence type. All components have default initialization.

2 A scalar variable of type LOCK TYPE is a lock variable. A lock variable can have one of two states: locked and
unlocked. The unlocked state is represented by the one value that is the initial value of a LOCK TYPE variable;
this is the value specified by the structure constructor LOCK TYPE ( ). The locked state is represented by all
other values. The value of a lock variable can be changed with the LOCK and UNLOCK statements (8.5.6).

C1302 A named variable of type LOCK TYPE shall be a coarray. A named variable with a noncoarray sub-
component of type LOCK TYPE shall be a coarray.

C1303 A lock variable shall not appear in a variable definition context except as the lock-variable in a LOCK or
UNLOCK statement, as an allocate-object , or as an actual argument in a reference to a procedure with
an explicit interface where the corresponding dummy argument has INTENT (INOUT).

C1304 A variable with a subobject of type LOCK TYPE shall not appear in a variable definition context except
as an allocate-object or as an actual argument in a reference to a procedure with an explicit interface
where the corresponding dummy argument has INTENT (INOUT).

NOTE 13.28
The restrictions against changing a lock variable except via the LOCK and UNLOCK statements ensure
the integrity of its value and facilitate efficient implementation, particularly when special synchronization
is needed for correct lock operation.

13.8.2.17 LOGICAL KINDS

1 The values of the elements of the default integer array constant LOGICAL KINDS are the kind values supported
by the processor for variables of type logical. The order of the values is processor dependent. The rank of the
array is one, its lower bound is one, and its size is the number of logical kinds supported.

13.8.2.18 NUMERIC STORAGE SIZE

1 The value of the default integer scalar constant NUMERIC STORAGE SIZE is the size expressed in bits of the
numeric storage unit (16.5.3.2).

13.8.2.19 OUTPUT UNIT

1 The value of the default integer scalar constant OUTPUT UNIT identifies the same processor-dependent external
unit preconnected for sequential formatted output as the one identified by an asterisk in a WRITE statement
(9.6.4.3). The value shall not be −1.
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13.8.2.20 REAL KINDS

1 The values of the elements of the default integer array constant REAL KINDS are the kind values supported by
the processor for variables of type real. The order of the values is processor dependent. The rank of the array is
one, its lower bound is one, and its size is the number of real kinds supported.

13.8.2.21 REAL32, REAL64, and REAL128

1 The values of these default integer scalar named constants shall be those of the kind type parameters that specify
a REAL type whose storage size expressed in bits is 32, 64, and 128 respectively. If, for any of these constants,
the processor supports more than one kind of that size, it is processor dependent which kind value is provided. If
the processor supports no kind of a particular size, that constant shall be equal to −2 if the processor supports
kinds of a larger size and −1 otherwise.

13.8.2.22 STAT LOCKED

1 The value of the default integer scalar constant STAT LOCKED is assigned to the variable specified in a STAT=
specifier (8.5.7) of a LOCK statement if the lock variable is locked by the executing image.

13.8.2.23 STAT LOCKED OTHER IMAGE

1 The value of the default integer scalar constant STAT LOCKED OTHER IMAGE is assigned to the variable
specified in a STAT= specifier (8.5.7) of an UNLOCK statement if the lock variable is locked by another image.

13.8.2.24 STAT STOPPED IMAGE

1 The value of the default integer scalar constant STAT STOPPED IMAGE is assigned to the variable specified in
a STAT= specifier (6.7.4, 8.5.7) if execution of the statement with that specifier or argument requires synchroni-
zation with an image that has initiated termination of execution. This value shall be positive and different from
the value of IOSTAT INQUIRE INTERNAL UNIT.

13.8.2.25 STAT UNLOCKED

1 The value of the default integer scalar constant STAT UNLOCKED is assigned to the variable specified in a
STAT= specifier (8.5.7) of an UNLOCK statement if the lock variable is unlocked.
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14 Exceptions and IEEE arithmetic

14.1 General

1 The intrinsic modules IEEE EXCEPTIONS, IEEE ARITHMETIC, and IEEE FEATURES provide support for
the facilities defined by IEC 60559:1989∗. Whether the modules are provided is processor dependent. If the
module IEEE FEATURES is provided, which of the named constants defined in this part of ISO/IEC 1539 are
included is processor dependent. The module IEEE ARITHMETIC behaves as if it contained a USE statement
for IEEE EXCEPTIONS; everything that is public in IEEE EXCEPTIONS is public in IEEE ARITHMETIC.

NOTE 14.1
The types and procedures defined in these modules are not themselves intrinsic.

2 If IEEE EXCEPTIONS or IEEE ARITHMETIC is accessible in a scoping unit, the exceptions IEEE OVER-
FLOW and IEEE DIVIDE BY ZERO are supported in the scoping unit for all kinds of real and complex IEEE
floating-point data. Which other exceptions are supported can be determined by the inquiry function IEEE -
SUPPORT FLAG (14.11.27); whether control of halting is supported can be determined by the inquiry function
IEEE SUPPORT HALTING. The extent of support of the other exceptions may be influenced by the accessibility
of the named constants IEEE INEXACT FLAG, IEEE INVALID FLAG, and IEEE UNDERFLOW FLAG of the
module IEEE FEATURES. If a scoping unit has access to IEEE UNDERFLOW FLAG of IEEE FEATURES, wi-
thin the scoping unit the processor shall support underflow and return true from IEEE SUPPORT FLAG (IEEE -
UNDERFLOW, X) for at least one kind of real. Similarly, if IEEE INEXACT FLAG or IEEE INVALID FLAG
is accessible, within the scoping unit the processor shall support the exception and return true from the corres-
ponding inquiry function for at least one kind of real. If IEEE HALTING is accessible, within the scoping unit
the processor shall support control of halting and return true from IEEE SUPPORT HALTING (FLAG) for the
flag.

NOTE 14.2
IEEE INVALID is not required to be supported whenever IEEE EXCEPTIONS is accessed. This is to
allow a processor whose arithmetic does not conform to IEC 60559:1989 to provide support for overflow and
divide by zero. On a processor which does support IEC 60559:1989, invalid is an equally serious condition.

NOTE 14.3
The IEEE FEATURES module is provided to allow a reasonable amount of cooperation between the pro-
gram and the processor in controlling the extent of IEEE arithmetic support. On some processors some
IEEE features are natural for the processor to support, others may be inefficient at run time, and others
are essentially impossible to support. If IEEE FEATURES is not used, the processor will support only the
natural operations. Within IEEE FEATURES the processor will define the named constants (14.2) corres-
ponding to the time-consuming features (as well as the natural ones for completeness) but will not define
named constants corresponding to the impossible features. If the program accesses IEEE FEATURES,
the processor shall provide support for all of the IEEE FEATURES that are reasonably possible. If the
program uses an ONLY option on a USE statement to access a particular feature name, the processor shall
provide support for the corresponding feature, or issue an error message saying the name is not defined in
the module.

When used this way, the named constants in the IEEE FEATURES are similar to what are frequently called
command line switches for the compiler. They can specify compilation options in a reasonably portable

∗ Because IEC 60559:1989 was originally IEEE 754-1985, Standard for Binary floating-point arithmetic, and is widely known by

this name, we refer to the arithmetic, exceptions, and other facilities defined by IEC 60559:1989 as IEEE arithmetic, et cetera.
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NOTE 14.3 (cont.)

manner.

3 If a scoping unit does not access IEEE FEATURES, IEEE EXCEPTIONS, or IEEE ARITHMETIC, the level of
support is processor dependent, and need not include support for any exceptions. If a flag is signaling on entry to
such a scoping unit, the processor ensures that it is signaling on exit. If a flag is quiet on entry to such a scoping
unit, whether it is signaling on exit is processor dependent.

4 Additional IEC 60559:1989 facilities are available from the module IEEE ARITHMETIC. The extent of support
may be influenced by the accessibility of the named constants of the module IEEE FEATURES. If a scoping
unit has access to IEEE DATATYPE of IEEE FEATURES, within the scoping unit the processor shall support
IEEE arithmetic and return true from IEEE SUPPORT DATATYPE (X) (14.11.24) for at least one kind of real.
Similarly, if IEEE DENORMAL, IEEE DIVIDE, IEEE INF, IEEE NAN, IEEE ROUNDING, or IEEE SQRT is
accessible, within the scoping unit the processor shall support the feature and return true from the corresponding
inquiry function for at least one kind of real. In the case of IEEE ROUNDING, it shall return true for all the
rounding modes IEEE NEAREST, IEEE TO ZERO, IEEE UP, and IEEE DOWN.

5 Execution might be slowed on some processors by the support of some features. If IEEE EXCEPTIONS or IEEE -
ARITHMETIC is accessed but IEEE FEATURES is not accessed, the supported subset of features is processor
dependent. The processor’s fullest support is provided when all of IEEE FEATURES is accessed as in

USE, INTRINSIC :: IEEE_ARITHMETIC; USE, INTRINSIC :: IEEE_FEATURES

but execution might then be slowed by the presence of a feature that is not needed. In all cases, the extent of
support can be determined by the inquiry functions.

14.2 Derived types and constants defined in the modules

1 The modules IEEE EXCEPTIONS, IEEE ARITHMETIC, and IEEE FEATURES define five derived types,
whose components are all private. No direct component of any of these types is allocatable or a pointer.

2 The module IEEE EXCEPTIONS defines the following types.

• IEEE FLAG TYPE is for identifying a particular exception flag. Its only possible values are those of
named constants defined in the module: IEEE INVALID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO,
IEEE UNDERFLOW, and IEEE INEXACT. The module also defines the array named constants IEEE -
USUAL = [ IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE INVALID ] and IEEE ALL = [ IEEE -
USUAL, IEEE UNDERFLOW, IEEE INEXACT ].
• IEEE STATUS TYPE is for representing the floating-point status.

3 The module IEEE ARITHMETIC defines the following.

• The type IEEE CLASS TYPE, for identifying a class of floating-point values. Its only possible values are
those of named constants defined in the module: IEEE SIGNALING NAN, IEEE QUIET NAN, IEEE -
NEGATIVE INF, IEEE NEGATIVE NORMAL, IEEE NEGATIVE DENORMAL, IEEE NEGATIVE -
ZERO, IEEE POSITIVE ZERO, IEEE POSITIVE DENORMAL, IEEE POSITIVE NORMAL, IEEE -
POSITIVE INF, and IEEE OTHER VALUE.
• The type IEEE ROUND TYPE, for identifying a particular rounding mode. Its only possible values are

those of named constants defined in the module: IEEE NEAREST, IEEE TO ZERO, IEEE UP, and IEEE -
DOWN for the IEEE modes, and IEEE OTHER for any other mode.
• The elemental operator == for two values of one of these types to return true if the values are the same

and false otherwise.
• The elemental operator /= for two values of one of these types to return true if the values differ and false

otherwise.
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4 The module IEEE FEATURES defines the type IEEE FEATURES TYPE, for expressing the need for par-
ticular IEC 60559:1989 features. Its only possible values are those of named constants defined in the module:
IEEE DATATYPE, IEEE DENORMAL, IEEE DIVIDE, IEEE HALTING, IEEE INEXACT FLAG, IEEE INF,
IEEE INVALID FLAG, IEEE NAN, IEEE ROUNDING, IEEE SQRT, and IEEE UNDERFLOW FLAG.

14.3 The exceptions

1 The exceptions are the following.

• IEEE OVERFLOW occurs when the result for an intrinsic real operation or assignment has an absolute
value greater than a processor-dependent limit, or the real or imaginary part of the result for an intrinsic
complex operation or assignment has an absolute value greater than a processor-dependent limit.
• IEEE DIVIDE BY ZERO occurs when a real or complex division has a nonzero numerator and a zero

denominator.
• IEEE INVALID occurs when a real or complex operation or assignment is invalid; possible examples are

SQRT (X) when X is real and has a nonzero negative value, and conversion to an integer (by assignment,
an intrinsic procedure, or a procedure defined in an intrinsic module) when the result is too large to be
representable.
• IEEE UNDERFLOW occurs when the result for an intrinsic real operation or assignment has an absolute

value less than a processor-dependent limit and loss of accuracy is detected, or the real or imaginary part
of the result for an intrinsic complex operation or assignment has an absolute value less than a processor-
dependent limit and loss of accuracy is detected.
• IEEE INEXACT occurs when the result of a real or complex operation or assignment is not exact.

2 Each exception has a flag whose value is either quiet or signaling. The value can be determined by the subroutine
IEEE GET FLAG. Its initial value is quiet and it signals when the associated exception occurs. Its status can also
be changed by the subroutine IEEE SET FLAG or the subroutine IEEE SET STATUS. Once signaling within
a procedure, it remains signaling unless set quiet by an invocation of the subroutine IEEE SET FLAG or the
subroutine IEEE SET STATUS.

3 If a flag is signaling on entry to a procedure other than IEEE GET FLAG or IEEE GET STATUS, the processor
will set it to quiet on entry and restore it to signaling on return.

NOTE 14.4
If a flag signals during execution of a procedure, the processor shall not set it to quiet on return.

4 Evaluation of a specification expression might cause an exception to signal.

5 In a scoping unit that has access to IEEE EXCEPTIONS or IEEE ARITHMETIC, if an intrinsic procedure or a
procedure defined in an intrinsic module executes normally, the values of the flags IEEE OVERFLOW, IEEE -
DIVIDE BY ZERO, and IEEE INVALID shall be as on entry to the procedure, even if one or more of them signals
during the calculation. If a real or complex result is too large for the procedure to handle, IEEE OVERFLOW
may signal. If a real or complex result is a NaN because of an invalid operation (for example, LOG (−1.0)),
IEEE INVALID may signal. Similar rules apply to format processing and to intrinsic operations: no signaling
flag shall be set quiet and no quiet flag shall be set signaling because of an intermediate calculation that does
not affect the result.

6 In a sequence of statements that has no invocations of IEEE GET FLAG, IEEE SET FLAG, IEEE GET -
STATUS, IEEE SET HALTING MODE, or IEEE SET STATUS, if the execution of an operation would cause an
exception to signal but after execution of the sequence no value of a variable depends on the operation, whether
the exception is signaling is processor dependent. For example, when Y has the value zero, whether the code

X = 1.0/Y

X = 3.0

14.3 Exceptions and IEEE arithmetic 405



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

signals IEEE DIVIDE BY ZERO is processor dependent. Another example is the following:

REAL, PARAMETER :: X=0.0, Y=6.0

IF (1.0/X == Y) PRINT *,’Hello world’

where the processor is permitted to discard the IF statement because the logical expression can never be true
and no value of a variable depends on it.

7 An exception shall not signal if this could arise only during execution of an operation beyond those required or
permitted by the standard. For example, the statement

IF (F(X)>0.0) Y = 1.0/Z

shall not signal IEEE DIVIDE BY ZERO when both F (X) and Z are zero and the statement

WHERE (A>0.0) A = 1.0/A

shall not signal IEEE DIVIDE BY ZERO. On the other hand, when X has the value 1.0 and Y has the value 0.0,
the expression

X>0.00001 .OR. X/Y>0.00001

is permitted to cause the signaling of IEEE DIVIDE BY ZERO.

8 The processor need not support IEEE INVALID, IEEE UNDERFLOW, and IEEE INEXACT. If an exception
is not supported, its flag is always quiet. The inquiry function IEEE SUPPORT FLAG can be used to inquire
whether a particular flag is supported.

14.4 The rounding modes

1 IEC 60559:1989 specifies four rounding modes.

• IEEE NEAREST rounds the exact result to the nearest representable value.
• IEEE TO ZERO rounds the exact result towards zero to the next representable value.
• IEEE UP rounds the exact result towards +infinity to the next representable value.
• IEEE DOWN rounds the exact result towards −infinity to the next representable value.

2 The subroutine IEEE GET ROUNDING MODE can be used to get the rounding mode. The initial rounding
mode is processor dependent.

3 If the processor supports the alteration of the rounding mode during execution, the subroutine IEEE SET -
ROUNDING MODE can be used to alter it. The inquiry function IEEE SUPPORT ROUNDING can be used to
inquire whether this facility is available for a particular mode. The inquiry function IEEE SUPPORT IO can be
used to inquire whether rounding for base conversion in formatted input/output (9.5.6.16, 9.6.2.13, 10.7.2.3.7) is
as specified in IEC 60559:1989.

4 In a procedure other than IEEE SET ROUNDING MODE or IEEE SET STATUS, the processor shall not change
the rounding mode on entry, and on return shall ensure that the rounding mode is the same as it was on entry.

NOTE 14.5
Within a program, all literal constants that have the same form have the same value (4.1.3). Therefore, the
value of a literal constant is not affected by the rounding mode.
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14.5 Underflow mode

1 Some processors allow control during program execution of whether underflow produces a denormalized number
in conformance with IEC 60559:1989 (gradual underflow) or produces zero instead (abrupt underflow). On some
processors, floating-point performance is typically better in abrupt underflow mode than in gradual underflow
mode.

2 Control over the underflow mode is exercised by invocation of IEEE SET UNDERFLOW MODE. The subroutine
IEEE GET UNDERFLOW MODE can be used to get the underflow mode. The inquiry function IEEE SUP-
PORT UNDERFLOW CONTROL can be used to inquire whether this facility is available. The initial underflow
mode is processor dependent. In a procedure other than IEEE SET UNDERFLOW MODE or IEEE SET STA-
TUS, the processor shall not change the underflow mode on entry, and on return shall ensure that the underflow
mode is the same as it was on entry.

3 The underflow mode affects only floating-point calculations whose type is that of an X for which IEEE SUP-
PORT UNDERFLOW CONTROL returns true.

14.6 Halting

1 Some processors allow control during program execution of whether to abort or continue execution after an
exception. Such control is exercised by invocation of the subroutine IEEE SET HALTING MODE. Halting is
not precise and may occur any time after the exception has occurred. The inquiry function IEEE SUPPORT -
HALTING can be used to inquire whether this facility is available. The initial halting mode is processor dependent.
In a procedure other than IEEE SET HALTING MODE or IEEE SET STATUS, the processor shall not change
the halting mode on entry, and on return shall ensure that the halting mode is the same as it was on entry.

14.7 The floating-point status

1 The values of all the supported flags for exceptions, rounding mode, underflow mode, and halting are called the
floating-point status. The floating-point status can be stored in a scalar variable of type TYPE(IEEE STATUS -
TYPE) with the subroutine IEEE GET STATUS and restored with the subroutine IEEE SET STATUS. There
are no facilities for finding the values of particular flags represented by such a variable. Portions of the floating-
point status can be obtained with the subroutines IEEE GET FLAG, IEEE GET HALTING MODE, and IEEE -
GET ROUNDING MODE, and set with the subroutines IEEE SET FLAG, IEEE SET HALTING MODE, and
IEEE SET ROUNDING MODE.

NOTE 14.6
Some processors hold all these flags in a floating-point status register that can be obtained and set as a
whole much faster than all individual flags can be obtained and set. These procedures are provided to
exploit this feature.

NOTE 14.7
The processor is required to ensure that a call to a Fortran procedure does not change the floating-point
status other than by setting exception flags to signaling.

14.8 Exceptional values

1 IEC 60559:1989 specifies the following exceptional floating-point values.

• Denormalized values have very small absolute values and reduced precision.
• Infinite values (+infinity and −infinity) are created by overflow or division by zero.
• Not-a-Number ( NaN) values are undefined values or values created by an invalid operation.
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2 A value that does not fall into the above classes is called a normal number.

3 The functions IEEE IS FINITE, IEEE IS NAN, IEEE IS NEGATIVE, and IEEE IS NORMAL are provided to
test whether a value is finite, NaN, negative, or normal. The function IEEE VALUE is provided to generate an
IEEE number of any class, including an infinity or a NaN. The inquiry functions IEEE SUPPORT DENORMAL,
IEEE SUPPORT INF, and IEEE SUPPORT NAN are provided to determine whether these facilities are available
for a particular kind of real.

14.9 IEEE arithmetic

1 The inquiry function IEEE SUPPORT DATATYPE can be used to inquire whether IEEE arithmetic is supported
for a particular kind of real. Complete conformance with IEC 60559:1989 is not required, but

• the normal numbers shall be exactly those of an IEC 60559:1989 floating-point format,
• for at least one rounding mode, the intrinsic operations of addition, subtraction and multiplication shall

conform whenever the operands and result specified by IEC 60559:1989 are normal numbers,
• the IEEE operation rem shall be provided by the function IEEE REM, and
• the IEEE functions copysign, scalb, logb, nextafter, and unordered shall be provided by the functions IEEE -

COPY SIGN, IEEE SCALB, IEEE LOGB, IEEE NEXT AFTER, and IEEE UNORDERED, respectively,

for that kind of real.

2 The inquiry function IEEE SUPPORT NAN is provided to inquire whether the processor supports IEEE NaNs.
Where these are supported, the result of the intrinsic operations +, −, and *, and the functions IEEE REM and
IEEE RINT from the intrinsic module IEEE ARITHMETIC, shall conform to IEC 60559:1989 when the result
is an IEEE NaN.

3 The inquiry function IEEE SUPPORT INF is provided to inquire whether the processor supports IEEE infinities.
Where these are supported, the result of the intrinsic operations +, −, and *, and the functions IEEE REM and
IEEE RINT from the intrinsic module IEEE ARITHMETIC, shall conform to IEC 60559:1989 when exactly one
operand or the result specified by IEC 60559:1989 is an IEEE infinity.

4 The inquiry function IEEE SUPPORT DENORMAL is provided to inquire whether the processor supports IEEE
denormalized numbers. Where these are supported, the result of the intrinsic operations +, −, and *, and the
functions IEEE REM and IEEE RINT from the intrinsic module IEEE ARITHMETIC, shall conform to IEC
60559:1989 when the result specified by IEC 60559:1989 is denormalized, or any operand is denormalized and
either the result is not an IEEE infinity or IEEE SUPPORT INF is true.

5 The inquiry function IEEE SUPPORT DIVIDE is provided to inquire whether, on kinds of real for which IEEE -
SUPPORT DATATYPE returns true, the intrinsic division operation conforms to IEC 60559:1989 when both
operands and the result specified by IEC 60559:1989 are normal numbers. If IEEE SUPPORT NAN is also true
for a particular kind of real, the intrinsic division operation on that kind conforms to IEC 60559:1989 when
the result specified by IEC 60559:1989 is a NaN. If IEEE SUPPORT INF is also true for a particular kind of
real, the intrinsic division operation on that kind conforms to IEC 60559:1989 when one operand or the result
specified by IEC 60559:1989 is an IEEE infinity. If IEEE SUPPORT DENORMAL is also true for a particular
kind of real, the intrinsic division operation on that kind conforms to IEC 60559:1989 when the result specified
by IEC 60559:1989 is denormalized, or when any operand is denormalized and either the result specified by IEC
60559:1989 is not an infinity or IEEE SUPPORT INF is true.

6 IEC 60559:1989 specifies a square root function that returns negative real zero for the square root of negative
real zero and has certain accuracy requirements. The inquiry function IEEE SUPPORT SQRT can be used to
inquire whether the intrinsic function SQRT conforms to IEC 60559:1989 for a particular kind of real. If IEEE -
SUPPORT NAN is also true for a particular kind of real, the intrinsic function SQRT on that kind conforms
to IEC 60559:1989 when the result specified by IEC 60559:1989 is a NaN. If IEEE SUPPORT INF is also true
for a particular kind of real, the intrinsic function SQRT on that kind conforms to IEC 60559:1989 when the
result specified by IEC 60559:1989 is an IEEE infinity. If IEEE SUPPORT DENORMAL is also true for a
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particular kind of real, the intrinsic function SQRT on that kind conforms to IEC 60559:1989 when the argument
is denormalized.

7 The inquiry function IEEE SUPPORT STANDARD is provided to inquire whether the processor supports all
the IEC 60559:1989 facilities defined in this part of ISO/IEC 1539 for a particular kind of real.

14.10 Summary of the procedures

1 For all of the procedures defined in the modules, the arguments shown are the names that shall be used for
argument keywords if the keyword form is used for the actual arguments.

2 A procedure classified in 14.10 as an inquiry function depends on the properties of one or more of its arguments
instead of their values; in fact, these argument values may be undefined. Unless the description of one of these
inquiry functions states otherwise, these arguments are permitted to be unallocated allocatable variables or
pointers that are undefined or disassociated. A procedure that is classified as a transformational function is
neither an inquiry function nor elemental.

3 In the Class column of Tables 14.1 and 14.2,
E indicates that the procedure is an elemental function,

ES indicates that the procedure is an elemental subroutine,
I indicates that the procedure is an inquiry function,

PS indicates that the procedure is a pure subroutine,
S indicates that the procedure is an impure subroutine, and
T indicates that the procedure in a transformational function.

Table 14.1: IEEE ARITHMETIC module procedure summary
Procedure Arguments Class Description
IEEE CLASS (X) E Classify number.
IEEE COPY SIGN (X, Y) E Copy sign.
IEEE GET ROUNDING MODE (ROUND VALUE) S Get rounding mode.
IEEE GET UNDERFLOW MODE (GRADUAL) S Get underflow mode.
IEEE IS FINITE (X) E Whether a value is finite.
IEEE IS FINITE (X) E Test value for being finite.
IEEE IS NAN (X) E Whether a value is an IEEE NaN.
IEEE IS NEGATIVE (X) E Whether a value is negative.
IEEE IS NORMAL (X) E Whether a value is a normal number.
IEEE LOGB (X) E Exponent.
IEEE NEXT AFTER (X, Y) E Adjacent machine number.
IEEE REM (X, Y) E Exact remainder.
IEEE RINT (X) E Round to integer.
IEEE SCALB (X, I) E X × 2I .
IEEE SELECTED REAL KIND ([P, R, RADIX]) T IEEE kind type parameter value.
IEEE SET ROUNDING MODE (ROUND VALUE) S Set rounding mode.
IEEE SET UNDERFLOW MODE (GRADUAL) S Set underflow mode.
IEEE SUPPORT DATATYPE ([X]) I Query IEEE arithmetic support.
IEEE SUPPORT DENORMAL ([X]) I Query denormalized number support.
IEEE SUPPORT DIVIDE ([X]) I Query IEEE division support.
IEEE SUPPORT INF ([X]) I Query IEEE infinity support.
IEEE SUPPORT IO ([X]) I Query IEEE formatting support.
IEEE SUPPORT NAN ([X]) I Query IEEE NaN support.
IEEE SUPPORT ROUNDING (ROUND VALUE

[, X])
I Query IEEE rounding support.

IEEE SUPPORT SQRT ([X]) I Query IEEE square root support.
IEEE SUPPORT STANDARD ([X]) I Query IEEE standard support.
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Table 14.1: IEEE ARITHMETIC module procedure summary (cont.)
Procedure Arguments Class Description
IEEE SUPPORT UNDERFLOW -
CONTROL

([X]) I Query underflow control support.

IEEE UNORDERED (X, Y) E Whether two values are unordered.
IEEE VALUE (X, CLASS) E Return number in a class.

Table 14.2: IEEE EXCEPTIONS module procedure summary
Procedure Arguments Class Description
IEEE GET FLAG (FLAG, FLAG VALUE) ES Get an exception flag.
IEEE GET HALTING MODE (FLAG, HALTING) ES Get a halting mode.
IEEE GET STATUS (STATUS VALUE) S Get floating-point state.
IEEE SET FLAG (FLAG, FLAG VALUE) PS Set an exception flag.
IEEE SET HALTING MODE (FLAG, HALTING) PS Set a halting mode.
IEEE SET STATUS (STATUS VALUE) S Restore floating-point state.
IEEE SUPPORT FLAG (FLAG [, X]) I Query exception support.
IEEE SUPPORT HALTING (FLAG) I Query halting mode support.

4 In the intrinsic module IEEE ARITHMETIC, the elemental functions listed are provided for all reals X and Y.

14.11 Specifications of the procedures

14.11.1 General

1 In the detailed descriptions in 14.11, procedure names are generic and are not specific. All the functions are pure.
All dummy arguments have INTENT (IN) if the intent is not stated explicitly. In the examples, it is assumed
that the processor supports IEEE arithmetic for default real.

2 For the elemental functions of IEEE ARITHMETIC that return a floating-point result, if X or Y has a value that
is an infinity or a NaN, the result shall be consistent with the general rules in 6.1 and 6.2 of IEC 60559:1989. For
example, the result for an infinity shall be constructed as the limiting case of the result with a value of arbitrarily
large magnitude, if such a limit exists.

NOTE 14.8
It is intended that a processor should not check a condition given in a paragraph labeled “Restriction”
at compile time, but rather should rely on the program containing code such as

IF (IEEE_SUPPORT_DATATYPE(X)) THEN

C = IEEE_CLASS(X)

ELSE

.

.

ENDIF

to avoid an invocation being made on a processor for which the condition is violated.

14.11.2 IEEE CLASS (X)

1 Description. Classify number.

2 Class. Elemental function.
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3 Argument. X shall be of type real.

4 Restriction. IEEE CLASS (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value false.

5 Result Characteristics. TYPE(IEEE CLASS TYPE).

6 Result Value. The result value shall be IEEE SIGNALING NAN or IEEE QUIET NAN if IEEE SUPPORT -
NAN (X) has the value true and the value of X is a signaling or quiet NaN, respectively. The result value shall be
IEEE NEGATIVE INF or IEEE POSITIVE INF if IEEE SUPPORT INF (X) has the value true and the value
of X is negative or positive infinity, respectively. The result value shall be IEEE NEGATIVE DENORMAL or
IEEE POSITIVE DENORMAL if IEEE SUPPORT DENORMAL (X) has the value true and the value of X is
a negative or positive denormalized value, respectively. The result value shall be IEEE NEGATIVE NORMAL,
IEEE NEGATIVE ZERO, IEEE POSITIVE ZERO, or IEEE POSITIVE NORMAL if the value of X is negative
normal, negative zero, positive zero, or positive normal, respectively. Otherwise, the result value shall be IEEE -
OTHER VALUE.

7 Example. IEEE CLASS (−1.0) has the value IEEE NEGATIVE NORMAL.

NOTE 14.9
The result value IEEE OTHER VALUE is useful on systems that are almost IEEE-compatible, but do not
implement all of it. For example, if a denormalized value is encountered on a system that does not support
them.

14.11.3 IEEE COPY SIGN (X, Y)

1 Description. Copy sign.

2 Class. Elemental function.

3 Arguments. The arguments shall be of type real.

4 Restriction. IEEE COPY SIGN (X, Y) shall not be invoked if IEEE SUPPORT DATATYPE (X) or IEEE -
SUPPORT DATATYPE (Y) has the value false.

5 Result Characteristics. Same as X.

6 Result Value. The result has the value of X with the sign of Y. This is true even for IEEE special values, such
as a NaN or an infinity (on processors supporting such values).

7 Example. The value of IEEE COPY SIGN (X, 1.0) is ABS (X) even when X is a NaN.

14.11.4 IEEE GET FLAG (FLAG, FLAG VALUE)

1 Description. Get an exception flag.

2 Class. Elemental subroutine.

3 Arguments.

FLAG shall be of type TYPE(IEEE FLAG TYPE). It specifies the exception flag to be obtained.
FLAG VALUE shall be default logical. It is an INTENT (OUT) argument. If the value of FLAG is IEEE -

INVALID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or IEEE INEX-
ACT, FLAG VALUE is assigned the value true if the corresponding exception flag is signaling and
is assigned the value false otherwise.

4 Example. Following CALL IEEE GET FLAG (IEEE OVERFLOW, FLAG VALUE), FLAG VALUE is true if
the IEEE OVERFLOW flag is signaling and is false if it is quiet.
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14.11.5 IEEE GET HALTING MODE (FLAG, HALTING)

1 Description. Get a halting mode.

2 Class. Elemental subroutine.

3 Arguments.

FLAG shall be of type TYPE(IEEE FLAG TYPE). It specifies the exception flag. It shall have one of the
values IEEE INVALID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or
IEEE INEXACT.

HALTING shall be default logical. It is an INTENT (OUT) argument. It is assigned the value true if the
exception specified by FLAG will cause halting. Otherwise, it is assigned the value false.

4 Example. To store the halting mode for IEEE OVERFLOW, do a calculation without halting, and restore the
halting mode later:

USE, INTRINSIC :: IEEE_ARITHMETIC

LOGICAL HALTING

...

CALL IEEE_GET_HALTING_MODE(IEEE_OVERFLOW,HALTING) ! Store halting mode

CALL IEEE_SET_HALTING_MODE(IEEE_OVERFLOW,.FALSE.) ! No halting

...! calculation without halting

CALL IEEE_SET_HALTING_MODE(IEEE_OVERFLOW,HALTING) ! Restore halting mode

14.11.6 IEEE GET ROUNDING MODE (ROUND VALUE)

1 Description. Get rounding mode.

2 Class. Subroutine.

3 Argument. ROUND VALUE shall be scalar of type TYPE(IEEE ROUND TYPE). It is an INTENT (OUT)
argument. It is assigned the value IEEE NEAREST, IEEE TO ZERO, IEEE UP, or IEEE DOWN if the corres-
ponding rounding mode is in operation and IEEE OTHER otherwise.

4 Example. To store the rounding mode, do a calculation with round to nearest, and restore the rounding mode
later:

USE, INTRINSIC :: IEEE_ARITHMETIC

TYPE(IEEE_ROUND_TYPE) ROUND_VALUE

...

CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE) ! Store the rounding mode

CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)

... ! calculation with round to nearest

CALL IEEE_SET_ROUNDING_MODE(ROUND_VALUE) ! Restore the rounding mode

14.11.7 IEEE GET STATUS (STATUS VALUE)

1 Description. Get floating-point state.

2 Class. Subroutine.

3 Argument. STATUS VALUE shall be scalar of type TYPE(IEEE STATUS TYPE). It is an INTENT (OUT)
argument. It is assigned the value of the floating-point status.

4 Example. To store all the exception flags, do a calculation involving exception handling, and restore them later:
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USE, INTRINSIC :: IEEE_ARITHMETIC

TYPE(IEEE_STATUS_TYPE) STATUS_VALUE

...

CALL IEEE_GET_STATUS(STATUS_VALUE) ! Get the flags

CALL IEEE_SET_FLAG(IEEE_ALL,.FALSE.) ! Set the flags quiet.

... ! calculation involving exception handling

CALL IEEE_SET_STATUS(STATUS_VALUE) ! Restore the flags

14.11.8 IEEE GET UNDERFLOW MODE (GRADUAL)

1 Description. Get underflow mode.

2 Class. Subroutine.

3 Argument. GRADUAL shall be default logical scalar. It is an INTENT (OUT) argument. It is assigned the
value true if the underflow mode is gradual underflow, and false if the underflow mode is abrupt underflow.

4 Restriction. IEEE GET UNDERFLOW MODE shall not be invoked unless IEEE SUPPORT UNDERFLOW -
CONTROL (X) is true for some X.

5 Example. After CALL IEEE SET UNDERFLOW MODE (.FALSE.), a subsequent CALL IEEE GET UN-
DERFLOW MODE (GRADUAL) will set GRADUAL to false.

14.11.9 IEEE IS FINITE (X)

1 Description. Whether a value is finite.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Restriction. IEEE IS FINITE (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value
false.

5 Result Characteristics. Default logical.

6 Result Value. The result has the value true if the value of X is finite, that is, IEEE CLASS (X) has one of
the values IEEE NEGATIVE NORMAL, IEEE NEGATIVE DENORMAL, IEEE NEGATIVE ZERO, IEEE -
POSITIVE ZERO, IEEE POSITIVE DENORMAL, or IEEE POSITIVE NORMAL; otherwise, the result has
the value false.

7 Example. IEEE IS FINITE (1.0) has the value true.

14.11.10 IEEE IS NAN (X)

1 Description. Whether a value is an IEEE NaN.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Restriction. IEEE IS NAN (X) shall not be invoked if IEEE SUPPORT NAN (X) has the value false.

5 Result Characteristics. Default logical.

6 Result Value. The result has the value true if the value of X is an IEEE NaN; otherwise, it has the value false.

7 Example. IEEE IS NAN (SQRT (−1.0)) has the value true if IEEE SUPPORT SQRT (1.0) has the value true.
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14.11.11 IEEE IS NEGATIVE (X)

1 Description. Whether a value is negative.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Restriction. IEEE IS NEGATIVE (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value
false.

5 Result Characteristics. Default logical.

6 Result Value. The result has the value true if IEEE CLASS (X) has one of the values IEEE NEGATIVE -
NORMAL, IEEE NEGATIVE DENORMAL, IEEE NEGATIVE ZERO or IEEE NEGATIVE INF; otherwise,
the result has the value false.

7 Example. IEEE IS NEGATIVE (0.0) has the value false.

14.11.12 IEEE IS NORMAL (X)

1 Description. Whether a value is a normal number.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Restriction. IEEE IS NORMAL (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value
false.

5 Result Characteristics. Default logical.

6 Result Value. The result has the value true if IEEE CLASS (X) has one of the values IEEE NEGATIVE -
NORMAL, IEEE NEGATIVE ZERO, IEEE POSITIVE ZERO or IEEE POSITIVE NORMAL; otherwise, the
result has the value false.

7 Example. IEEE IS NORMAL (SQRT (−1.0) has the value false if IEEE SUPPORT SQRT (1.0) has the value
true.

14.11.13 IEEE LOGB (X)

1 Description. Exponent.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Restriction. IEEE LOGB (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value false.

5 Result Characteristics. Same as X.

6 Result Value.

Case (i): If the value of X is neither zero, infinity, nor NaN, the result has the value of the unbiased exponent
of X. Note: this value is equal to EXPONENT (X)− 1.

Case (ii): If X==0, the result is −infinity if IEEE SUPPORT INF (X) is true and −HUGE (X) otherwise;
IEEE DIVIDE BY ZERO signals.

Case (iii): If IEEE SUPPORT INF (X) is true and X is infinite, the result is +infinity.

Case (iv): If IEEE SUPPORT NAN (X) is true and X is a NaN, the result is a NaN.
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7 Example. IEEE LOGB (−1.1) has the value 0.0.

14.11.14 IEEE NEXT AFTER (X, Y)

1 Description. Adjacent machine number.

2 Class. Elemental function.

3 Arguments. The arguments shall be of type real.

4 Restriction. IEEE NEXT AFTER (X, Y) shall not be invoked if IEEE SUPPORT DATATYPE (X) or IEEE -
SUPPORT DATATYPE (Y) has the value false.

5 Result Characteristics. Same as X.

6 Result Value.

Case (i): If X == Y, the result is X and no exception is signaled.

Case (ii): If X /= Y, the result has the value of the next representable neighbor of X in the direction of Y.
The neighbors of zero (of either sign) are both nonzero. IEEE OVERFLOW is signaled when X is
finite but IEEE NEXT AFTER (X, Y) is infinite; IEEE UNDERFLOW is signaled when IEEE -
NEXT AFTER (X, Y) is denormalized; in both cases, IEEE INEXACT signals.

7 Example. The value of IEEE NEXT AFTER (1.0, 2.0) is 1.0 + EPSILON (X).

14.11.15 IEEE REM (X, Y)

1 Description. Exact remainder.

2 Class. Elemental function.

3 Arguments. The arguments shall be of type real.

4 Restriction. IEEE REM (X, Y) shall not be invoked if IEEE SUPPORT DATATYPE (X) or IEEE SUP-
PORT DATATYPE (Y) has the value false.

5 Result Characteristics. Real with the kind type parameter of whichever argument has the greater precision.

6 Result Value. The result value, regardless of the rounding mode, shall be exactly X − Y*N, where N is the
integer nearest to the exact value X/Y; whenever |N−X/Y| = 1

2 , N shall be even. If the result value is zero, the
sign shall be that of X.

7 Examples. The value of IEEE REM (4.0, 3.0) is 1.0, the value of IEEE REM (3.0, 2.0) is −1.0, and the value
of IEEE REM (5.0, 2.0) is 1.0.

14.11.16 IEEE RINT (X)

1 Description. Round to integer.

2 Class. Elemental function.

3 Argument. X shall be of type real.

4 Restriction. IEEE RINT (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value false.

5 Result Characteristics. Same as X.

6 Result Value. The value of the result is the value of X rounded to an integer according to the rounding mode.
If the result has the value zero, the sign is that of X.
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7 Examples. If the rounding mode is round to nearest, the value of IEEE RINT (1.1) is 1.0. If the rounding mode
is round up, the value of IEEE RINT (1.1) is 2.0.

14.11.17 IEEE SCALB (X, I)

1 Description. X × 2I .

2 Class. Elemental function.

3 Arguments.

X shall be of type real.
I shall be of type integer.

4 Restriction. IEEE SCALB (X) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the value false.

5 Result Characteristics. Same as X.

6 Result Value.

Case (i): If X × 2I is representable as a normal number, the result has this value.

Case (ii): If X is finite and X × 2I is too large, the IEEE OVERFLOW exception shall occur. If IEEE -
SUPPORT INF (X) is true, the result value is infinity with the sign of X; otherwise, the result
value is SIGN (HUGE (X), X).

Case (iii): If X × 2I is too small and there is loss of accuracy, the IEEE UNDERFLOW exception shall occur.
The result is the representable number having a magnitude nearest to |2I | and the same sign as X.

Case (iv): If X is infinite, the result is the same as X; no exception signals.

7 Example. The value of IEEE SCALB (1.0, 2) is 4.0.

14.11.18 IEEE SELECTED REAL KIND ([P, R, RADIX])

1 Description. IEEE kind type parameter value.

2 Class. Transformational function.

3 Arguments. At least one argument shall be present.
P (optional) shall be an integer scalar.
R (optional) shall be an integer scalar.
RADIX (optional) shall be an integer scalar.

4 Result Characteristics. Default integer scalar.

5 Result Value. If P or R is absent, the result value is the same as if it were present with the value zero. If
RADIX is absent, there is no requirement on the radix of the selected kind. The result has a value equal to a
value of the kind type parameter of an IEC 60559:1989 floating-point format with decimal precision, as returned
by the intrinsic function PRECISION, of at least P digits, a decimal exponent range, as returned by the intrinsic
function RANGE, of at least R, and a radix, as returned by the intrinsic function RADIX, of RADIX, if such a
kind type parameter is available on the processor.

6 Otherwise, the result is −1 if the processor supports an IEEE real type with radix RADIX and exponent range
of at least R but not with precision of at least P, −2 if the processor supports an IEEE real type with radix
RADIX and precision of at least P but not with exponent range of at least R, −3 if the processor supports an
IEEE real type with radix RADIX but with neither precision of at least P nor exponent range of at least R, −4 if
the processor supports an IEEE real type with radix RADIX and either precision of at least P or exponent range
of at least R but not both together, and −5 if the processor supports no IEEE real type with radix RADIX.
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7 If more than one kind type parameter value meets the criteria, the value returned is the one with the smallest
decimal precision, unless there are several such values, in which case the smallest of these kind values is returned.

8 Example. IEEE SELECTED REAL KIND (6, 30) has the value KIND (0.0) on a machine that supports IEC
60559:1989 single precision arithmetic for its default real approximation method.

14.11.19 IEEE SET FLAG (FLAG, FLAG VALUE)

1 Description. Set an exception flag.

2 Class. Pure subroutine.

3 Arguments.

FLAG shall be a scalar or array of type TYPE(IEEE FLAG TYPE). If a value of FLAG is IEEE INVA-
LID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or IEEE INEXACT,
the corresponding exception flag is assigned a value. No two elements of FLAG shall have the same
value.

FLAG VALUE shall be a default logical scalar or array. It shall be conformable with FLAG. If an element has
the value true, the corresponding flag is set to be signaling; otherwise, the flag is set to be quiet.

4 Example. CALL IEEE SET FLAG (IEEE OVERFLOW, .TRUE.) sets the IEEE OVERFLOW flag to be
signaling.

14.11.20 IEEE SET HALTING MODE (FLAG, HALTING)

1 Description. Set a halting mode.

2 Class. Pure subroutine.

3 Arguments.

FLAG shall be a scalar or array of type TYPE(IEEE FLAG TYPE). It shall have only the values
IEEE INVALID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or IEEE -
INEXACT. No two elements of FLAG shall have the same value.

HALTING shall be a default logical scalar or array. It shall be conformable with FLAG. If an element has the
value true, the corresponding exception specified by FLAG will cause halting. Otherwise, execution
will continue after this exception.

4 Restriction. IEEE SET HALTING MODE (FLAG, HALTING) shall not be invoked if IEEE SUPPORT -
HALTING (FLAG) has the value false.

5 Example. CALL IEEE SET HALTING MODE (IEEE DIVIDE BY ZERO, .TRUE.) causes halting after a
divide by zero exception.

NOTE 14.10
The initial halting mode is processor dependent. Halting is not precise and may occur some time after the
exception has occurred.

14.11.21 IEEE SET ROUNDING MODE (ROUND VALUE)

1 Description. Set IEEE rounding mode.

2 Class. Subroutine.

3 Argument. ROUND VALUE shall be scalar and of type TYPE(IEEE ROUND TYPE). It specifies the mode
to be set.
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4 Restriction. IEEE SET ROUNDING MODE (ROUND VALUE) shall not be invoked unless IEEE SUP-
PORT ROUNDING (ROUND VALUE, X) is true for some X such that IEEE SUPPORT DATATYPE (X) is
true.

5 Example. To store the rounding mode, do a calculation with round to nearest, and restore the rounding mode
later:

USE, INTRINSIC :: IEEE_ARITHMETIC

TYPE(IEEE_ROUND_TYPE) ROUND_VALUE

...

CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE) ! Store the rounding mode

CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)

: ! calculation with round to nearest

CALL IEEE_SET_ROUNDING_MODE(ROUND_VALUE) ! Restore the rounding mode

14.11.22 IEEE SET STATUS (STATUS VALUE)

1 Description. Restore floating-point state.

2 Class. Subroutine.

3 Argument. STATUS VALUE shall be scalar and of type TYPE(IEEE STATUS TYPE). Its value shall be
one that was assigned by a previous invocation of IEEE GET STATUS to its STATUS VALUE argument. The
floating-point status (14.7 is restored to the state at that invocation).

4 Example. To store all the exceptions flags, do a calculation involving exception handling, and restore them
later:

USE, INTRINSIC :: IEEE_EXCEPTIONS

TYPE(IEEE_STATUS_TYPE) STATUS_VALUE

...

CALL IEEE_GET_STATUS(STATUS_VALUE) ! Store the flags

CALL IEEE_SET_FLAGS(IEEE_ALL,.FALSE.) ! Set them quiet

... ! calculation involving exception handling

CALL IEEE_SET_STATUS(STATUS_VALUE) ! Restore the flags

NOTE 14.11
On some processors this may be a very time consuming process.

14.11.23 IEEE SET UNDERFLOW MODE (GRADUAL)

1 Description. Set underflow mode.

2 Class. Subroutine.

3 Argument. GRADUAL shall be default logical scalar. If it is true, the underflow mode is set to gradual
underflow. If it is false, the underflow mode is set to abrupt underflow.

4 Restriction. IEEE SET UNDERFLOW MODE shall not be invoked unless IEEE SUPPORT UNDERFLOW -
CONTROL (X) is true for some X.

5 Example. To perform some calculations with abrupt underflow and then restore the previous mode:
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USE,INTRINSIC :: IEEE_ARITHMETIC

LOGICAL SAVE_UNDERFLOW_MODE

...

CALL IEEE_GET_UNDERFLOW_MODE(SAVE_UNDERFLOW_MODE)

CALL IEEE_SET_UNDERFLOW_MODE(GRADUAL=.FALSE.)

... ! Perform some calculations with abrupt underflow

CALL IEEE_SET_UNDERFLOW_MODE(SAVE_UNDERFLOW_MODE)

14.11.24 IEEE SUPPORT DATATYPE () or IEEE SUPPORT DATATYPE (X)

1 Description. Query IEEE arithmetic support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value. The result has the value true if the processor supports IEEE arithmetic for all reals (X does
not appear) or for real variables of the same kind type parameter as X; otherwise, it has the value false. Here,
support is as defined in the first paragraph of 14.9.

6 Example. If default real kind conforms to IEC 60559:1989except that underflow values flush to zero instead of
being denormalized, IEEE SUPPORT DATATYPE (1.0) has the value true.

14.11.25 IEEE SUPPORT DENORMAL () or

IEEE SUPPORT DENORMAL (X)

1 Description. Query denormalized number support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT DENORMAL (X) has the value true if IEEE SUPPORT DATATYPE (X) has
the value true and the processor supports arithmetic operations and assignments with denormalized
numbers (biased exponent e = 0 and fraction f 6= 0, see subclause 3.2 of IEC 60559:1989) for real
variables of the same kind type parameter as X; otherwise, it has the value false.

Case (ii): IEEE SUPPORT DENORMAL () has the value true if IEEE SUPPORT DENORMAL (X) has the
value true for all real X; otherwise, it has the value false.

6 Example. IEEE SUPPORT DENORMAL (X) has the value true if the processor supports denormalized num-
bers for X.

NOTE 14.12
The denormalized numbers are not included in the 13.4 model for real numbers; they satisfy the inequality
ABS (X) < TINY (X). They usually occur as a result of an arithmetic operation whose exact result is
less than TINY (X). Such an operation causes IEEE UNDERFLOW to signal unless the result is exact.
IEEE SUPPORT DENORMAL (X) is false if the processor never returns a denormalized number as the
result of an arithmetic operation.
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14.11.26 IEEE SUPPORT DIVIDE () or IEEE SUPPORT DIVIDE (X)

1 Description. Query IEEE division support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT DIVIDE (X) has the value true if the processor supports division with the accu-
racy specified by IEC 60559:1989for real variables of the same kind type parameter as X; otherwise,
it has the value false.

Case (ii): IEEE SUPPORT DIVIDE () has the value true if IEEE SUPPORT DIVIDE (X) has the value true
for all real X; otherwise, it has the value false.

6 Example. IEEE SUPPORT DIVIDE (X) has the value true if division of operands with the same kind as X
conforms to IEC 60559:1989.

14.11.27 IEEE SUPPORT FLAG (FLAG) or IEEE SUPPORT FLAG (FLAG, X)

1 Description. Query exception support.

2 Class. Inquiry function.

3 Arguments.

FLAG shall be a scalar of type TYPE(IEEE FLAG TYPE). Its value shall be one of IEEE INVALID,
IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or IEEE INEXACT.

X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT FLAG (FLAG, X) has the value true if the processor supports detection of the
specified exception for real variables of the same kind type parameter as X; otherwise, it has the
value false.

Case (ii): IEEE SUPPORT FLAG (FLAG) has the value true if IEEE SUPPORT FLAG (FLAG, X) has the
value true for all real X; otherwise, it has the value false.

6 Example. IEEE SUPPORT FLAG (IEEE INEXACT) has the value true if the processor supports the inexact
exception.

14.11.28 IEEE SUPPORT HALTING (FLAG)

1 Description. Query halting mode support.

2 Class. Inquiry function.

3 Argument. FLAG shall be a scalar of type TYPE(IEEE FLAG TYPE). Its value shall be one of IEEE -
INVALID, IEEE OVERFLOW, IEEE DIVIDE BY ZERO, IEEE UNDERFLOW, or IEEE INEXACT.

4 Result Characteristics. Default logical scalar.

5 Result Value. The result has the value true if the processor supports the ability to control during program
execution whether to abort or continue execution after the exception specified by FLAG; otherwise, it has the
value false. Support includes the ability to change the mode by CALL IEEE SET HALTING (FLAG).
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6 Example. IEEE SUPPORT HALTING (IEEE OVERFLOW) has the value true if the processor supports
control of halting after an overflow.

14.11.29 IEEE SUPPORT INF () or IEEE SUPPORT INF (X)

1 Description. Query IEEE infinity support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT INF (X) has the value true if the processor supports IEEE infinities (positive and
negative) for real variables of the same kind type parameter as X; otherwise, it has the value false.

Case (ii): IEEE SUPPORT INF () has the value true if IEEE SUPPORT INF (X) has the value true for all
real X; otherwise, it has the value false.

6 Example. IEEE SUPPORT INF (X) has the value true if the processor supports IEEE infinities for X.

14.11.30 IEEE SUPPORT IO () or IEEE SUPPORT IO (X)

1 Description. Query IEEE formatting support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT IO (X) has the value true if base conversion during formatted input/output
(9.5.6.16, 9.6.2.13, 10.7.2.3.7) conforms to IEC 60559:1989 for the modes UP, DOWN, ZERO, and
NEAREST for real variables of the same kind type parameter as X; otherwise, it has the value false.

Case (ii): IEEE SUPPORT IO () has the value true if IEEE SUPPORT IO (X) has the value true for all real
X; otherwise, it has the value false.

6 Example. IEEE SUPPORT IO (X) has the value true if formatted input/output base conversions conform to
IEC 60559:1989.

14.11.31 IEEE SUPPORT NAN () or IEEE SUPPORT NAN (X)

1 Description. Query IEEE NaN support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT NAN (X) has the value true if the processor supports IEEE NaNs for real variables
of the same kind type parameter as X; otherwise, it has the value false.

Case (ii): IEEE SUPPORT NAN () has the value true if IEEE SUPPORT NAN (X) has the value true for
all real X; otherwise, it has the value false.
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6 Example. IEEE SUPPORT NAN (X) has the value true if the processor supports IEEE NaNs for X.

14.11.32 IEEE SUPPORT ROUNDING (ROUND VALUE) or

IEEE SUPPORT ROUNDING (ROUND VALUE, X)

1 Description. Query IEEE rounding support.

2 Class. Inquiry function.

3 Arguments.

ROUND VALUE shall be of type TYPE(IEEE ROUND TYPE).
X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT ROUNDING (ROUND VALUE, X) has the value true if the processor supports
the rounding mode defined by ROUND VALUE for real variables of the same kind type parameter
as X; otherwise, it has the value false. Support includes the ability to change the mode by CALL
IEEE SET ROUNDING MODE (ROUND VALUE).

Case (ii): IEEE SUPPORT ROUNDING (ROUND VALUE) has the value true if IEEE SUPPORT -
ROUNDING (ROUND VALUE, X) has the value true for all real X; otherwise, it has the value
false.

6 Example. IEEE SUPPORT ROUNDING (IEEE TO ZERO) has the value true if the processor supports roun-
ding to zero for all reals.

14.11.33 IEEE SUPPORT SQRT () or IEEE SUPPORT SQRT (X)

1 Description. Query IEEE square root support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT SQRT (X) has the value true if the intrinsic function SQRT conforms to IEC
60559:1989 for real variables of the same kind type parameter as X; otherwise, it has the value false.

Case (ii): IEEE SUPPORT SQRT () has the value true if IEEE SUPPORT SQRT (X) has the value true for
all real X; otherwise, it has the value false.

6 Example. If IEEE SUPPORT SQRT (1.0) has the value true, SQRT (−0.0) will have the value −0.0.

14.11.34 IEEE SUPPORT STANDARD () or IEEE SUPPORT STANDARD (X)

1 Description. Query IEEE standard support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.
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5 Result Value.

Case (i): IEEE SUPPORT STANDARD (X) has the value true if the results of all the functions IEEE SUP-
PORT DATATYPE (X), IEEE SUPPORT DENORMAL (X), IEEE SUPPORT DIVIDE (X),
IEEE SUPPORT FLAG (FLAG, X) for valid FLAG, IEEE SUPPORT HALTING (FLAG)
for valid FLAG, IEEE SUPPORT INF (X), IEEE SUPPORT NAN (X), IEEE SUPPORT -
ROUNDING (ROUND VALUE, X) for valid ROUND VALUE, and IEEE SUPPORT SQRT (X)

are all true; otherwise, it has the value false.

Case (ii): IEEE SUPPORT STANDARD () has the value true if IEEE SUPPORT STANDARD (X) has the
value true for all real X; otherwise, it has the value false.

6 Example. IEEE SUPPORT STANDARD () has the value false if some but not all kinds of reals conform to
IEC 60559:1989.

14.11.35 IEEE SUPPORT UNDERFLOW CONTROL () or

IEEE SUPPORT UNDERFLOW CONTROL (X)

1 Description. Query underflow control support.

2 Class. Inquiry function.

3 Argument. X shall be of type real. It may be a scalar or an array.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): IEEE SUPPORT UNDERFLOW CONTROL (X) has the value true if the processor supports
control of the underflow mode for floating-point calculations with the same type as X, and false
otherwise.

Case (ii): IEEE SUPPORT UNDERFLOW CONTROL () has the value true if the processor supports control
of the underflow mode for all floating-point calculations, and false otherwise.

6 Example. IEEE SUPPORT UNDERFLOW CONTROL (2.5) has the value true if the processor supports un-
derflow mode control for default real calculations.

14.11.36 IEEE UNORDERED (X, Y)

1 Description. Whether two values are unordered.

2 Class. Elemental function.

3 Arguments. The arguments shall be of type real.

4 Restriction. IEEE UNORDERED (X, Y) shall not be invoked if IEEE SUPPORT DATATYPE (X) or IEEE -
SUPPORT DATATYPE (Y) has the value false.

5 Result Characteristics. Default logical.

6 Result Value. The result has the value true if X or Y is a NaN or both are NaNs; otherwise, it has the value
false.

7 Example. IEEE UNORDERED (0.0, SQRT (−1.0)) has the value true if IEEE SUPPORT SQRT (1.0) has the
value true.
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14.11.37 IEEE VALUE (X, CLASS)

1 Description. Return number in a class.

2 Class. Elemental function.

3 Arguments.

X shall be of type real.
CLASS shall be of type TYPE(IEEE CLASS TYPE). The value is permitted to be: IEEE SIGNALING -

NAN or IEEE QUIET NAN if IEEE SUPPORT NAN (X) has the value true, IEEE NEGATIVE -
INF or IEEE POSITIVE INF if IEEE SUPPORT INF (X) has the value true, IEEE NEGATIVE -
DENORMAL or IEEE POSITIVE DENORMAL if IEEE SUPPORT DENORMAL (X) has the
value true, IEEE NEGATIVE NORMAL, IEEE NEGATIVE ZERO, IEEE POSITIVE ZERO or
IEEE POSITIVE NORMAL.

4 Restriction. IEEE VALUE (X, CLASS) shall not be invoked if IEEE SUPPORT DATATYPE (X) has the
value false.

5 Result Characteristics. Same as X.

6 Result Value. The result value is an IEEE value as specified by CLASS. Although in most cases the value is
processor dependent, the value shall not vary between invocations for any particular X kind type parameter and
CLASS value.

7 Example. IEEE VALUE (1.0, IEEE NEGATIVE INF) has the value −infinity.

8 Whenever IEEE VALUE returns a signaling NaN, it is processor dependent whether or not invalid is raised and
processor dependent whether or not the signaling NaN is converted into a quiet NaN.

NOTE 14.13
If the expr in an assignment statement is a reference to the IEEE VALUE function that returns a signaling
NaN and the variable is of the same type and kind as the function result, it is recommended that the
signaling NaN be preserved.

14.12 Examples

NOTE 14.14

MODULE DOT

! Module for dot product of two real arrays of rank 1.

! The caller needs to ensure that exceptions do not cause halting.

USE, INTRINSIC :: IEEE_EXCEPTIONS

LOGICAL :: MATRIX_ERROR = .FALSE.

INTERFACE OPERATOR(.dot.)

MODULE PROCEDURE MULT

END INTERFACE

CONTAINS

REAL FUNCTION MULT(A,B)

REAL, INTENT(IN) :: A(:),B(:)

INTEGER I

LOGICAL OVERFLOW

IF (SIZE(A)/=SIZE(B)) THEN
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NOTE 14.14 (cont.)

MATRIX_ERROR = .TRUE.

RETURN

END IF

! The processor ensures that IEEE_OVERFLOW is quiet

MULT = 0.0

DO I = 1, SIZE(A)

MULT = MULT + A(I)*B(I)

END DO

CALL IEEE_GET_FLAG(IEEE_OVERFLOW,OVERFLOW)

IF (OVERFLOW) MATRIX_ERROR = .TRUE.

END FUNCTION MULT

END MODULE DOT

This module provides a function that computes the dot product of two real arrays of rank 1. If the sizes of
the arrays are different, an immediate return occurs with MATRIX ERROR true. If overflow occurs during
the actual calculation, the IEEE OVERFLOW flag will signal and MATRIX ERROR will be true.

NOTE 14.15

USE, INTRINSIC :: IEEE_EXCEPTIONS

USE, INTRINSIC :: IEEE_FEATURES, ONLY: IEEE_INVALID_FLAG

! The other exceptions of IEEE_USUAL (IEEE_OVERFLOW and

! IEEE_DIVIDE_BY_ZERO) are always available with IEEE_EXCEPTIONS

TYPE(IEEE_STATUS_TYPE) STATUS_VALUE

LOGICAL, DIMENSION(3) :: FLAG_VALUE

...

CALL IEEE_GET_STATUS(STATUS_VALUE)

CALL IEEE_SET_HALTING_MODE(IEEE_USUAL,.FALSE.) ! Needed in case the

! default on the processor is to halt on exceptions

CALL IEEE_SET_FLAG(IEEE_USUAL,.FALSE.)

! First try the "fast" algorithm for inverting a matrix:

MATRIX1 = FAST_INV(MATRIX) ! This shall not alter MATRIX.

CALL IEEE_GET_FLAG(IEEE_USUAL,FLAG_VALUE)

IF (ANY(FLAG_VALUE)) THEN

! "Fast" algorithm failed; try "slow" one:

CALL IEEE_SET_FLAG(IEEE_USUAL,.FALSE.)

MATRIX1 = SLOW_INV(MATRIX)

CALL IEEE_GET_FLAG(IEEE_USUAL,FLAG_VALUE)

IF (ANY(FLAG_VALUE)) THEN

WRITE (*, *) ’Cannot invert matrix’

STOP

END IF

END IF

CALL IEEE_SET_STATUS(STATUS_VALUE)

In this example, the function FAST INV might cause a condition to signal. If it does, another try is made
with SLOW INV. If this still fails, a message is printed and the program stops. Note, also, that it is
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NOTE 14.15 (cont.)

important to set the flags quiet before the second try. The state of all the flags is stored and restored.

NOTE 14.16

USE, INTRINSIC :: IEEE_EXCEPTIONS

LOGICAL FLAG_VALUE

...

CALL IEEE_SET_HALTING_MODE(IEEE_OVERFLOW,.FALSE.)

! First try a fast algorithm for inverting a matrix.

CALL IEEE_SET_FLAG(IEEE_OVERFLOW,.FALSE.)

DO K = 1, N

...

CALL IEEE_GET_FLAG(IEEE_OVERFLOW,FLAG_VALUE)

IF (FLAG_VALUE) EXIT

END DO

IF (FLAG_VALUE) THEN

! Alternative code which knows that K-1 steps have executed normally.

...

END IF

Here the code for matrix inversion is in line and the transfer is made more precise by adding extra tests of
the flag.
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15 Interoperability with C

15.1 General

1 Fortran provides a means of referencing procedures that are defined by means of the C programming language
or procedures that can be described by C prototypes as defined in 6.7.5.3 of ISO/IEC 9899:1999, even if they
are not actually defined by means of C. Conversely, there is a means of specifying that a procedure defined by a
Fortran subprogram can be referenced from a function defined by means of C. In addition, there is a means of
declaring global variables that are associated with C variables whose names have external linkage as defined in
6.2.2 of ISO/IEC 9899:1999.

2 The ISO C BINDING module provides access to named constants that represent kind type parameters of data
representations compatible with C types. Fortran also provides facilities for defining derived types (4.5) and
enumerations (4.6) that correspond to C types.

15.2 The ISO C BINDING intrinsic module

15.2.1 Summary of contents

1 The processor shall provide the intrinsic module ISO C BINDING. This module shall make accessible the following
entities: the named constants C NULL PTR and C NULL FUNPTR and those with names listed in the first
column of Table 15.1 and the second column of Table 15.2, and the types C PTR and C FUNPTR. A processor
may provide other public entities in the ISO C BINDING intrinsic module in addition to those listed here.

NOTE 15.1
To avoid potential name conflicts with program entities, it is recommended that a program use the ONLY
option in any USE statement that references the ISO C BINDING intrinsic module.

15.2.2 Named constants and derived types in the module

1 The entities listed in the second column of Table 15.2, shall be default integer named constants.

2 The value of C INT shall be a valid value for an integer kind parameter on the processor. The values of C -
SHORT, C LONG, C LONG LONG, C SIGNED CHAR, C SIZE T, C INT8 T, C INT16 T, C INT32 T, C -
INT64 T, C INT LEAST8 T, C INT LEAST16 T, C INT LEAST32 T, C INT LEAST64 T, C INT FAST8 T,
C INT FAST16 T, C INT FAST32 T, C INT FAST64 T, C INTMAX T, and C INTPTR T shall each be a valid
value for an integer kind type parameter on the processor or shall be −1 if the companion processor defines the
corresponding C type and there is no interoperating Fortran processor kind or −2 if the C processor does not
define the corresponding C type.

3 The values of C FLOAT, C DOUBLE, and C LONG DOUBLE shall each be a valid value for a real kind type
parameter on the processor or shall be −1 if the companion processor’s type does not have a precision equal to the
precision of any of the Fortran processor’s real kinds, −2 if the companion processor’s type does not have a range
equal to the range of any of the Fortran processor’s real kinds, −3 if the companion processor’s type has neither
the precision nor range of any of the Fortran processor’s real kinds, and equal to −4 if there is no interoperating
Fortran processor kind for other reasons. The values of C FLOAT COMPLEX, C DOUBLE COMPLEX, and
C LONG DOUBLE COMPLEX shall be the same as those of C FLOAT, C DOUBLE, and C LONG DOUBLE,
respectively.

4 The value of C BOOL shall be a valid value for a logical kind parameter on the processor or shall be −1.
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5 The value of C CHAR shall be a valid value for a character kind type parameter on the processor or shall be −1.
If the value of C CHAR is non-negative, the character kind specified is the C character kind; otherwise, there is
no C character kind.

6 The following entities shall be named constants of type character with a length parameter of one. The kind
parameter value shall be equal to the value of C CHAR unless C CHAR = −1, in which case the kind parameter
value shall be the same as for default kind. The values of these constants are specified in Table 15.1. In the case
that C CHAR 6= −1 the value is specified using C syntax. The semantics of these values are explained in 5.2.1
and 5.2.2 of ISO/IEC 9899:1999.

Table 15.1: Names of C characters with special semantics
Value

Name C definition C CHAR = −1 C CHAR 6= −1
C NULL CHAR null character CHAR(0) ’\0’
C ALERT alert ACHAR(7) ’\a’
C BACKSPACE backspace ACHAR(8) ’\b’
C FORM FEED form feed ACHAR(12) ’\f’
C NEW LINE new line ACHAR(10) ’\n’
C CARRIAGE RETURN carriage return ACHAR(13) ’\r’
C HORIZONTAL TAB horizontal tab ACHAR(9) ’\t’
C VERTICAL TAB vertical tab ACHAR(11) ’\v’

7 The entities C PTR and C FUNPTR are described in 15.3.3.

8 The entity C NULL PTR shall be a named constant of type C PTR. The value of C NULL PTR shall be the
same as the value NULL in C. The entity C NULL FUNPTR shall be a named constant of type C FUNPTR.
The value of C NULL FUNPTR shall be that of a null pointer to a function in C.

NOTE 15.2
The value of NEW LINE(C NEW LINE) is C NEW LINE (13.7.121).

15.2.3 Procedures in the module

15.2.3.1 General

1 In the detailed descriptions below, procedure names are generic and not specific.

15.2.3.2 C ASSOCIATED (C PTR 1 [, C PTR 2])

1 Description. True if and only if C PTR 1 is associated with an entity and C PTR 2 is absent, or if C PTR 1
and C PTR 2 are associated with the same entity.

2 Class. Inquiry function.

3 Arguments.

C PTR 1 shall be a scalar of type C PTR or C FUNPTR.
C PTR 2 (optional) shall be a scalar of the same type as C PTR 1.

4 Result Characteristics. Default logical scalar.

5 Result Value.

Case (i): If C PTR 2 is absent, the result is false if C PTR 1 is a C null pointer and true otherwise.

Case (ii): If C PTR 2 is present, the result is false if C PTR 1 is a C null pointer. If C PTR 1 is not a C null
pointer, the result is true if C PTR 1 compares equal to C PTR 2 in the sense of 6.3.2.3 and 6.5.9
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of ISO/IEC 9899:1999, and false otherwise.

NOTE 15.3
The following example illustrates the use of C LOC and C ASSOCIATED.

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_PTR, C_FLOAT, C_ASSOCIATED, C_LOC

INTERFACE

SUBROUTINE FOO(GAMMA) BIND(C)

IMPORT C_PTR

TYPE(C_PTR), VALUE :: GAMMA

END SUBROUTINE FOO

END INTERFACE

REAL(C_FLOAT), TARGET, DIMENSION(100) :: ALPHA

TYPE(C_PTR) :: BETA

...

IF (.NOT. C_ASSOCIATED(BETA)) THEN

BETA = C_LOC(ALPHA)

ENDIF

CALL FOO(BETA)

15.2.3.3 C F POINTER (CPTR, FPTR [, SHAPE])

1 Description. Associate a data pointer with the target of a C pointer and specify its shape.

2 Class. Subroutine.

3 Arguments.

CPTR shall be a scalar of type C PTR. It is an INTENT (IN) argument. Its value shall be

• the C address of an interoperable data entity, or
• the result of a reference to C LOC with a noninteroperable argument.

The value of CPTR shall not be the C address of a Fortran variable that does not have the TARGET
attribute.

FPTR shall be a pointer, and shall not be a coindexed object. It is an INTENT (OUT) argument.

If the value of CPTR is the C address of an interoperable data entity, FPTR shall be a data pointer
with type and type parameters interoperable with the type of the entity. In this case, FPTR becomes
pointer associated with the target of CPTR. If FPTR is an array, its shape is specified by SHAPE
and each lower bound is 1.

If the value of CPTR is the result of a reference to C LOC with a noninteroperable argument X,
FPTR shall be a nonpolymorphic scalar pointer with the same type and type parameters as X. In
this case, X or its target if it is a pointer shall not have been deallocated or have become undefined
due to execution of a RETURN or END statement since the reference. FPTR becomes pointer
associated with X or its target.

SHAPE (optional) shall be of type integer and rank one. It is an INTENT (IN) argument. SHAPE shall be
present if and only if FPTR is an array; its size shall be equal to the rank of FPTR.

15.2.3.4 C F PROCPOINTER (CPTR, FPTR)

1 Description. Associate a procedure pointer with the target of a C function pointer.

2 Class. Subroutine.
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3 Arguments.

CPTR shall be a scalar of type C FUNPTR. It is an INTENT (IN) argument. Its value shall be the C
address of a procedure that is interoperable.

FPTR shall be a procedure pointer, and shall not be a component of a coindexed object. It is an INTENT
(OUT) argument. The interface for FPTR shall be interoperable with the prototype that describes
the target of CPTR. FPTR becomes pointer associated with the target of CPTR.

NOTE 15.4
The term “target” in the descriptions of C F POINTER and C F PROCPOINTER denotes the entity
referenced by a C pointer, as described in 6.2.5 of ISO/IEC 9899:1999.

15.2.3.5 C FUNLOC (X)

1 Description. C address of the argument.

2 Class. Inquiry function.

3 Argument. X shall either be a procedure that is interoperable, or a procedure pointer associated with an
interoperable procedure. It shall not be a coindexed object.

4 Result Characteristics. Scalar of type C FUNPTR.

5 Result Value. The result value is described using the result name FPTR. The result is determined as if C -
FUNPTR were a derived type containing an procedure pointer component PX with an implicit interface and the
pointer assignment FPTR%PX => X were executed.

6 The result is a value that can be used as an actual FPTR argument in a call to C F PROCPOINTER where
FPTR has attributes that would allow the pointer assignment FPTR => X. Such a call to C F PROCPOINTER
shall have the effect of the pointer assignment FPTR => X.

15.2.3.6 C LOC (X)

1 Description. C address of the argument.

2 Class. Inquiry function.

3 Argument. X shall have either the POINTER or TARGET attribute. It shall not be a coindexed object. It shall
either be a variable with interoperable type and kind type parameters, or be a scalar, nonpolymorphic variable
with no length type parameters. If it is allocatable, it shall be allocated. If it is a pointer, it shall be associated.
If it is an array, it shall be contiguous and have nonzero size. It shall not be a zero-length string.

4 Result Characteristics. Scalar of type C PTR.

5 Result Value. The result value is described using the result name CPTR.

6 If X is a scalar data entity, the result is determined as if C PTR were a derived type containing a scalar pointer
component PX of the type and type parameters of X and the pointer assignment CPTR%PX => X were executed.

7 If X is an array data entity, the result is determined as if C PTR were a derived type containing a scalar pointer
component PX of the type and type parameters of X and the pointer assignment of CPTR%PX to the first
element of X were executed.

8 If X is a data entity that is interoperable or has interoperable type and type parameters, the result is the value
that the C processor returns as the result of applying the unary “&” operator (as defined in ISO/IEC 9899:1999,
6.5.3.2) to the target of CPTR%PX.

9 The result is a value that can be used as an actual CPTR argument in a call to C F POINTER where FPTR
has attributes that would allow the pointer assignment FPTR => X. Such a call to C F POINTER shall have
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the effect of the pointer assignment FPTR => X.

NOTE 15.5
Where the actual argument is of noninteroperable type or type parameters, the result of C LOC provides an
opaque “handle” for it. In an actual implementation, this handle might be the C address of the argument;
however, portable C functions should treat it as a void (generic) C pointer that cannot be dereferenced
(6.5.3.2 in ISO/IEC 9899:1999).

15.2.3.7 C SIZEOF (X)

1 Description. Size of X in bytes.

2 Class. Inquiry function.

3 Argument. X shall be an interoperable data entity that is not an assumed-size array.

4 Result Characteristics. Scalar integer of kind C SIZE T (15.3.2).

5 Result Value. If X is scalar, the result value is the value that the companion processor returns as the result
of applying the sizeof operator (ISO/IEC 9899:1999, subclause 6.5.3.4) to an object of a type that interoperates
with the type and type parameters of X.

6 If X is an array, the result value is the value that the companion processor returns as the result of applying the
sizeof operator to an object of a type that interoperates with the type and type parameters of X, multiplied by
the number of elements in X.

15.3 Interoperability between Fortran and C entities

15.3.1 General

1 Subclause 15.3 defines the conditions under which a Fortran entity is interoperable. If a Fortran entity is inter-
operable, an equivalent entity could be defined by means of C and the Fortran entity would interoperate with the
C entity. There does not have to be such an interoperating C entity.

NOTE 15.6
A Fortran entity can be interoperable with more than one C entity.

15.3.2 Interoperability of intrinsic types

1 Table 15.2 shows the interoperability between Fortran intrinsic types and C types. A Fortran intrinsic type with
particular type parameter values is interoperable with a C type if the type and kind type parameter value are listed
in the table on the same row as that C type. If the type is character, the length type parameter is interoperable
if and only if its value is one. A combination of Fortran type and type parameters that is interoperable with a
C type listed in the table is also interoperable with any unqualified C type that is compatible with the listed C
type.

2 The second column of the table refers to the named constants made accessible by the ISO C BINDING intrinsic
module. If the value of any of these named constants is negative, there is no combination of Fortran type and
type parameters interoperable with the C type shown in that row.

3 A combination of intrinsic type and type parameters is interoperable if it is interoperable with a C type. The C
types mentioned in table 15.2 are defined in subclauses 6.2.5, 7.17, and 7.18.1 of ISO/IEC 9899:1999.
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Table 15.2: Interoperability between Fortran and C types

Fortran type
Named constant from the ISO C BINDING module
(kind type parameter if value is positive) C type

C INT int

C SHORT short int

C LONG long int

C LONG LONG long long int

C SIGNED CHAR signed char
unsigned char

C SIZE T size t

C INT8 T int8 t

C INT16 T int16 t

C INT32 T int32 t

C INT64 T int64 t

C INT LEAST8 T int least8 t

C INT LEAST16 T int least16 t

C INT LEAST32 T int least32 t

INTEGER C INT LEAST64 T int least64 t

C INT FAST8 T int fast8 t

C INT FAST16 T int fast16 t

C INT FAST32 T int fast32 t

C INT FAST64 T int fast64 t

C INTMAX T intmax t

C INTPTR T intptr t

C FLOAT float

REAL C DOUBLE double

C LONG DOUBLE long double

C FLOAT COMPLEX float Complex

COMPLEX C DOUBLE COMPLEX double Complex

C LONG DOUBLE COMPLEX long double Complex

LOGICAL C BOOL Bool

CHARACTER C CHAR char

NOTE 15.7
For example, the type integer with a kind type parameter of C SHORT is interoperable with the C type
short or any C type derived (via typedef) from short.

NOTE 15.8
ISO/IEC 9899:1999 specifies that the representations for nonnegative signed integers are the same as the
corresponding values of unsigned integers. Because Fortran does not provide direct support for unsigned
kinds of integers, the ISO C BINDING module does not make accessible named constants for their kind
type parameter values. A user can use the signed kinds of integers to interoperate with the unsigned types
and all their qualified versions as well. This has the potentially surprising side effect that the C type
unsigned char is interoperable with the type integer with a kind type parameter of C SIGNED CHAR.
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15.3.3 Interoperability with C pointer types

1 C PTR and C FUNPTR shall be derived types with only private components. No direct component of either of
these types is allocatable or a pointer. C PTR is interoperable with any C object pointer type. C FUNPTR is
interoperable with any C function pointer type.

NOTE 15.9
This implies that a C processor is required to have the same representation method for all C object pointer
types and the same representation method for all C function pointer types if the C processor is to be the
target of interoperability of a Fortran processor. ISO/IEC 9899:1999 does not impose this requirement.

NOTE 15.10
The function C LOC can be used to return a value of type C PTR that is the C address of an allocated
allocatable variable. The function C FUNLOC can be used to return a value of type C FUNPTR that is
the C address of a procedure. For C LOC and C FUNLOC the returned value is of an interoperable type
and thus may be used in contexts where the procedure or allocatable variable is not directly allowed. For
example, it could be passed as an actual argument to a C function.

Similarly, type C FUNPTR or C PTR can be used in a dummy argument or structure component and can
have a value that is the C address of a procedure or allocatable variable, even in contexts where a procedure
or allocatable variable is not directly allowed.

15.3.4 Interoperability of derived types and C struct types

1 A Fortran derived type is interoperable if it has the BIND attribute.

C1501 (R425) A derived type with the BIND attribute shall not have the SEQUENCE attribute.

C1502 (R425) A derived type with the BIND attribute shall not have type parameters.

C1503 (R425) A derived type with the BIND attribute shall not have the EXTENDS attribute.

C1504 (R425) A derived type with the BIND attribute shall not have a type-bound-procedure-part .

C1505 (R425) Each component of a derived type with the BIND attribute shall be a nonpointer, nonallocatable
data component with interoperable type and type parameters.

NOTE 15.11
The syntax rules and their constraints require that a derived type that is interoperable have components
that are all data entities that are interoperable. No component is permitted to be allocatable or a pointer,
but the value of a component of type C FUNPTR or C PTR may be the C address of such an entity.

2 A Fortran derived type is interoperable with a C struct type if and only if the Fortran type has the BIND
attribute (4.5.2), the Fortran derived type and the C struct type have the same number of components, and the
components of the Fortran derived type would interoperate with corresponding components of the C struct type
as described in 15.3.5 and 15.3.6 if the components were variables. A component of a Fortran derived type and
a component of a C struct type correspond if they are declared in the same relative position in their respective
type definitions.

NOTE 15.12
The names of the corresponding components of the derived type and the C struct type need not be the
same.

3 There is no Fortran type that is interoperable with a C struct type that contains a bit field or that contains a
flexible array member. There is no Fortran type that is interoperable with a C union type.
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NOTE 15.13
For example, the C type myctype, declared below, is interoperable with the Fortran type myftype, declared
below.

typedef struct {
int m, n;

float r;

} myctype;

USE, INTRINSIC :: ISO_C_BINDING

TYPE, BIND(C) :: MYFTYPE

INTEGER(C_INT) :: I, J

REAL(C_FLOAT) :: S

END TYPE MYFTYPE

The names of the types and the names of the components are not significant for the purposes of determining
whether a Fortran derived type is interoperable with a C struct type.

NOTE 15.14
ISO/IEC 9899:1999 requires the names and component names to be the same in order for the types to be
compatible (ISO/IEC 9899:1999, subclause 6.2.7). This is similar to Fortran’s rule describing when different
derived type definitions describe the same sequence type. This rule was not extended to determine whether
a Fortran derived type is interoperable with a C struct type because the case of identifiers is significant in
C but not in Fortran.

15.3.5 Interoperability of scalar variables

1 A named scalar Fortran variable is interoperable if and only if its type and type parameters are interoperable, it
is not a coarray, it has neither the ALLOCATABLE nor the POINTER attribute, and if it is of type character
its length is not assumed or declared by an expression that is not a constant expression.

2 An interoperable scalar Fortran variable is interoperable with a scalar C entity if their types and type parameters
are interoperable.

15.3.6 Interoperability of array variables

1 A Fortran variable that is a named array is interoperable if and only if its type and type parameters are inter-
operable, it is not a coarray, it is of explicit shape or assumed size, and if it is of type character its length is not
assumed or declared by an expression that is not a constant expression.

2 An explicit-shape or assumed-size array of rank r, with a shape of
[
e1 . . . er

]
is interoperable with a C array

if its size is nonzero and

(1) either

(a) the array is assumed-size, and the C array does not specify a size, or
(b) the array is an explicit-shape array, and the extent of the last dimension (er) is the same as

the size of the C array, and

(2) either

(a) r is equal to one, and an element of the array is interoperable with an element of the C array,
or

(b) r is greater than one, and an explicit-shape array with shape of
[
e1 . . . er−1

]
, with the

same type and type parameters as the original array, is interoperable with a C array of a type
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equal to the element type of the original C array.

NOTE 15.15
An element of a multi-dimensional C array is an array type, so a Fortran array of rank one is not interope-
rable with a multidimensional C array.

NOTE 15.16
An allocatable array or array pointer is never interoperable. Such an array does not meet the requirement
of being an explicit-shape or assumed-size array.

NOTE 15.17
For example, a Fortran array declared as

INTEGER(C_INT) :: A(18, 3:7, *)

is interoperable with a C array declared as

int b[][5][18];

NOTE 15.18
The C programming language defines null-terminated strings, which are actually arrays of the C type char
that have a C null character in them to indicate the last valid element. A Fortran array of type character
with a kind type parameter equal to C CHAR is interoperable with a C string.

Fortran’s rules of sequence association (12.5.2.11) permit a character scalar actual argument to correspond
to a dummy argument array. This makes it possible to argument associate a Fortran character string with
a C string.

Note 15.22 has an example of interoperation between Fortran and C strings.

15.3.7 Interoperability of procedures and procedure interfaces

1 A Fortran procedure is interoperable if it has the BIND attribute, that is, if its interface is specified with a
proc-language-binding-spec.

2 A Fortran procedure interface is interoperable with a C function prototype if

(1) the interface has the BIND attribute,
(2) either

(a) the interface describes a function whose result variable is a scalar that is interoperable with
the result of the prototype or

(b) the interface describes a subroutine and the prototype has a result type of void,

(3) the number of dummy arguments of the interface is equal to the number of formal parameters of the
prototype,

(4) any dummy argument with the VALUE attribute is interoperable with the corresponding formal
parameter of the prototype,

(5) any dummy argument without the VALUE attribute corresponds to a formal parameter of the pro-
totype that is of a pointer type, and the dummy argument is interoperable with an entity of the
referenced type (ISO/IEC 9899:1999, 6.2.5, 7.17, and 7.18.1) of the formal parameter, and

(6) the prototype does not have variable arguments as denoted by the ellipsis (...).
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NOTE 15.19
The referenced type of a C pointer type is the C type of the object that the C pointer type points to.
For example, the referenced type of the pointer type int * is int.

NOTE 15.20
The C language allows specification of a C function that can take a variable number of arguments (ISO/IEC
9899:1999, 7.15). This part of ISO/IEC 1539 does not provide a mechanism for Fortran procedures to
interoperate with such C functions.

3 A formal parameter of a C function prototype corresponds to a dummy argument of a Fortran interface if they
are in the same relative positions in the C parameter list and the dummy argument list, respectively.

NOTE 15.21
For example, a Fortran procedure interface described by

INTERFACE

FUNCTION FUNC(I, J, K, L, M) BIND(C)

USE, INTRINSIC :: ISO_C_BINDING

INTEGER(C_SHORT) :: FUNC

INTEGER(C_INT), VALUE :: I

REAL(C_DOUBLE) :: J

INTEGER(C_INT) :: K, L(10)

TYPE(C_PTR), VALUE :: M

END FUNCTION FUNC

END INTERFACE

is interoperable with the C function prototype

short func(int i, double *j, int *k, int l[10], void *m);

A C pointer may correspond to a Fortran dummy argument of type C PTR with the VALUE attribute or
to a Fortran scalar that does not have the VALUE attribute. In the above example, the C pointers j and
k correspond to the Fortran scalars J and K, respectively, and the C pointer m corresponds to the Fortran
dummy argument M of type C PTR.

NOTE 15.22
The interoperability of Fortran procedure interfaces with C function prototypes is only one part of invocation
of a C function from Fortran. There are four pieces to consider in such an invocation: the procedure
reference, the Fortran procedure interface, the C function prototype, and the C function. Conversely,
the invocation of a Fortran procedure from C involves the function reference, the C function prototype,
the Fortran procedure interface, and the Fortran procedure. In order to determine whether a reference is
allowed, it is necessary to consider all four pieces.

For example, consider a C function that can be described by the C function prototype

void copy(char in[], char out[]);

Such a function may be invoked from Fortran as follows:

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_CHAR, C_NULL_CHAR

INTERFACE
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NOTE 15.22 (cont.)

SUBROUTINE COPY(IN, OUT) BIND(C)

IMPORT C_CHAR

CHARACTER(KIND=C_CHAR), DIMENSION(*) :: IN, OUT

END SUBROUTINE COPY

END INTERFACE

CHARACTER(LEN=10, KIND=C_CHAR) :: &

& DIGIT_STRING = C_CHAR_’123456789’ // C_NULL_CHAR

CHARACTER(KIND=C_CHAR) :: DIGIT_ARR(10)

CALL COPY(DIGIT_STRING, DIGIT_ARR)

PRINT ’(1X, A1)’, DIGIT_ARR(1:9)

END

The procedure reference has character string actual arguments. These correspond to character array dummy
arguments in the procedure interface body as allowed by Fortran’s rules of sequence association (12.5.2.11).
Those array dummy arguments in the procedure interface are interoperable with the formal parameters of
the C function prototype. The C function is not shown here, but is assumed to be compatible with the C
function prototype.

15.4 Interoperation with C global variables

15.4.1 General

1 A C variable whose name has external linkage may interoperate with a common block or with a variable declared
in the scope of a module. The common block or variable shall be specified to have the BIND attribute.

2 At most one variable that is associated with a particular C variable whose name has external linkage is permitted
to be declared within all the Fortran program units of a program. A variable shall not be initially defined by
more than one processor.

3 If a common block is specified in a BIND statement, it shall be specified in a BIND statement with the same bin-
ding label in each scoping unit in which it is declared. A C variable whose name has external linkage interoperates
with a common block that has been specified in a BIND statement if

• the C variable is of a struct type and the variables that are members of the common block are interoperable
with corresponding components of the struct type, or
• the common block contains a single variable, and the variable is interoperable with the C variable.

4 There does not have to be an associated C entity for a Fortran entity with the BIND attribute.

NOTE 15.23
The following are examples of the usage of the BIND attribute for variables and for a common block.
The Fortran variables, C EXTERN and C2, interoperate with the C variables, c extern and myVariable,
respectively. The Fortran common blocks, COM and SINGLE, interoperate with the C variables, com and
single, respectively.

MODULE LINK_TO_C_VARS

USE, INTRINSIC :: ISO_C_BINDING

INTEGER(C_INT), BIND(C) :: C_EXTERN
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NOTE 15.23 (cont.)

INTEGER(C_LONG) :: C2

BIND(C, NAME=’myVariable’) :: C2

COMMON /COM/ R, S

REAL(C_FLOAT) :: R, S, T

BIND(C) :: /COM/, /SINGLE/

COMMON /SINGLE/ T

END MODULE LINK_TO_C_VARS

/* Global variables. */

int c_extern;

long myVariable;

struct { float r, s; } com;

float single;

15.4.2 Binding labels for common blocks and variables

1 The binding label of a variable or common block is a default character value that specifies the name by which
the variable or common block is known to the companion processor.

2 If a variable or common block has the BIND attribute with the NAME= specifier and the value of its expression,
after discarding leading and trailing blanks, has nonzero length, the variable or common block has this as its
binding label. The case of letters in the binding label is significant. If a variable or common block has the BIND
attribute specified without a NAME= specifier, the binding label is the same as the name of the entity using
lower case letters. Otherwise, the variable or common block has no binding label.

3 The binding label of a C variable whose name has external linkage is the same as the name of the C variable.
A Fortran variable or common block with the BIND attribute that has the same binding label as a C variable
whose name has external linkage is linkage associated (16.5.1.5) with that variable.

15.5 Interoperation with C functions

15.5.1 Definition and reference of interoperable procedures

1 A procedure that is interoperable may be defined either by means other than Fortran or by means of a Fortran
subprogram, but not both.

2 If the procedure is defined by means other than Fortran, it shall

• be describable by a C prototype that is interoperable with the interface,
• have a name that has external linkage as defined by 6.2.2 of ISO/IEC 9899:1999, and
• have the same binding label as the interface.

3 A reference to such a procedure causes the function described by the C prototype to be called as specified in
ISO/IEC 9899:1999.

4 A reference in C to a procedure that has the BIND attribute, has the same binding label, and is defined by means
of Fortran, causes the Fortran procedure to be invoked.

5 A procedure defined by means of Fortran shall not invoke setjmp or longjmp (ISO/IEC 9899:1999, 7.13). If a
procedure defined by means other than Fortran invokes setjmp or longjmp, that procedure shall not cause any
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procedure defined by means of Fortran to be invoked. A procedure defined by means of Fortran shall not be
invoked as a signal handler (ISO/IEC 9899:1999, 7.14.1).

6 If a procedure defined by means of Fortran and a procedure defined by means other than Fortran perform
input/output operations on the same external file, the results are processor dependent (9.5.4).

15.5.2 Binding labels for procedures

1 The binding label of a procedure is a default character value that specifies the name by which a procedure with
the BIND attribute is known to the companion processor.

2 If a procedure has the BIND attribute with the NAME= specifier and the value of its expression, after discarding
leading and trailing blanks, has nonzero length, the procedure has this as its binding label. The case of letters
in the binding label is significant. If a procedure has the BIND attribute with no NAME= specifier, and the
procedure is not a dummy procedure, internal procedure, or procedure pointer, then the binding label of the
procedure is the same as the name of the procedure using lower case letters. Otherwise, the procedure has no
binding label.

C1506 A procedure defined in a submodule shall not have a binding label unless its interface is declared in the
ancestor module.

3 The binding label for a C function whose name has external linkage is the same as the C function name.

NOTE 15.24
In the following sample, the binding label of C SUB is "c_sub", and the binding label of C FUNC is
"C_funC".

SUBROUTINE C_SUB() BIND(C)

...

END SUBROUTINE C_SUB

INTEGER(C_INT) FUNCTION C_FUNC() BIND(C, NAME="C_funC")

USE, INTRINSIC :: ISO_C_BINDING

...

END FUNCTION C_FUNC

ISO/IEC 9899:1999 permits functions to have names that are not permitted as Fortran names; it also
distinguishes between names that would be considered as the same name in Fortran. For example, a C
name may begin with an underscore, and C names that differ in case are distinct names.

The specification of a binding label allows a program to use a Fortran name to refer to a procedure defined
by a companion processor.

15.5.3 Exceptions and IEEE arithmetic procedures

1 A procedure defined by means other than Fortran shall not use signal (ISO/IEC 9899:1999, 7.14.1) to change the
handling of any exception that is being handled by the Fortran processor.

2 A procedure defined by means other than Fortran shall not alter the floating-point status (14.7) other than by
setting an exception flag to signaling.

3 The values of the floating-point exception flags on entry to a procedure defined by means other than Fortran are
processor dependent.
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16 Scope, association, and definition

16.1 Identifiers and entities

1 Entities are identified by identifiers within a scope that is a program, a scoping unit, a construct, a single
statement, or part of a statement.

• A global identifier has a scope of a program (2.2.2);
• A local identifier has a scope of a scoping unit (2.2);
• An identifier of a construct entity has a scope of a construct (7.2.4, 8.1);
• An identifier of a statement entity has a scope of a statement or part of a statement (3.3).

2 An entity may be identified by

• an image index (1.3),
• a name (1.3),
• a statement label (1.3),
• an external input/output unit number (9.5),
• an identifier of a pending data transfer operation (9.6.2.9, 9.7),
• a submodule identifier (11.2.3),
• a generic identifier (1.3), or
• a binding label (1.3).

3 By means of association, an entity may be referred to by the same identifier or a different identifier in a different
scope, or by a different identifier in the same scope.

16.2 Scope of global identifiers

1 Program units, common blocks, external procedures, entities with binding labels, external input/output units,
pending data transfer operations, and images are global entities of a program. The name of a common block with
no binding label, external procedure with no binding label, or program unit that is not a submodule is a global
identifier. The submodule identifier of a submodule is a global identifier. A binding label of an entity of the
program is a global identifier. An entity of the program shall not be identified by more than one binding label.

2 The global identifier of an entity shall not be the same as the global identifier of any other entity. Furthermore, a
binding label shall not be the same as the global identifier of any other global entity, ignoring differences in case.

NOTE 16.1
An intrinsic module is not a program unit, so a global identifier can be the same as the name of an intrinsic
module.

NOTE 16.2
Of the various types of procedures, only external procedures have global names. An implementation may
wish to assign global names to other entities in the Fortran program such as internal procedures, intrinsic
procedures, procedures implementing intrinsic operators, procedures implementing input/output operations,
etc. If this is done, it is the responsibility of the processor to ensure that none of these names conflicts with
any of the names of the external procedures, with other globally named entities in a standard-conforming
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NOTE 16.2 (cont.)

program, or with each other. For example, this might be done by including in each such added name a
character that is not allowed in a standard-conforming name or by using such a character to combine a
local designation with the global name of the program unit in which it appears.

NOTE 16.3
Submodule identifiers are global identifiers, but because they consist of a module name and a descendant
submodule name, the name of a submodule can be the same as the name of another submodule so long as
they do not have the same ancestor module.

16.3 Scope of local identifiers

16.3.1 Classes of local identifiers

1 Within a scoping unit, identifiers of entities in the classes

(1) except for statement or construct entities (16.4), named variables, named constants, named constructs,
statement functions, internal procedures, module procedures, dummy procedures, intrinsic procedures,
external procedures that have binding labels, intrinsic modules, abstract interfaces, generic interfaces,
derived types, namelist groups, external procedures accessed via USE, and statement labels,

(2) type parameters, components, and type-bound procedure bindings, in a separate class for each type,
(3) argument keywords, in a separate class for each procedure with an explicit interface, and
(4) common blocks that have binding labels

are local identifiers in that scoping unit.

2 Within a scoping unit, a local identifier of an entity of class (1) or class (4) shall not be the same as a global
identifier used in that scoping unit unless the global identifier

• is used only as the use-name of a rename in a USE statement,
• is a common block name (16.3.2),
• is an external procedure name that is also a generic name, or
• is an external function name and the scoping unit is its defining subprogram (16.3.3).

3 Within a scoping unit, a local identifier of one class shall not be the same as another local identifier of the same
class, except that a generic name may be the same as the name of a procedure as explained in 12.4.3.2 or the
same as the name of a derived type (4.5.10). A local identifier of one class may be the same as a local identifier
of another class.

NOTE 16.4
An intrinsic procedure is inaccessible by its own name in a scoping unit that uses the same name as a local
identifier of class (1) for a different entity. For example, in the program fragment

SUBROUTINE SUB

...

A = SIN (K)

...

CONTAINS

FUNCTION SIN (X)

...

END FUNCTION SIN
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NOTE 16.4 (cont.)

END SUBROUTINE SUB

any reference to function SIN in subroutine SUB refers to the internal function SIN, not to the intrinsic
function of the same name.

4 A local identifier identifies an entity in a scoping unit and may be used to identify an entity in another scoping
unit except in the following cases.

• The name that appears as a subroutine-name in a subroutine-stmt has limited use within the scope establi-
shed by the subroutine-stmt . It can be used to identify recursive references of the subroutine or to identify
a common block (the latter is possible only for internal and module subroutines).
• The name that appears as a function-name in a function-stmt has limited use within the scope established

by that function-stmt . It can be used to identify the result variable, to identify recursive references of the
function, or to identify a common block (the latter is possible only for internal and module functions).
• The name that appears as an entry-name in an entry-stmt has limited use within the scope of the subprogram in which

the entry-stmt appears. It can be used to identify the result variable if the subprogram is a function, to identify recursive

references, or to identify a common block (the latter is possible only if the entry-stmt is in a module subprogram).

16.3.2 Local identifiers that are the same as common block names

1 A name that identifies a common block in a scoping unit shall not be used to identify a constant or an intrinsic
procedure in that scoping unit. If a local identifier of class (1) is also the name of a common block, the appearance
of that name in any context other than as a common block name in a BIND, COMMON, or SAVE statement is
an appearance of the local identifier.

NOTE 16.5
An intrinsic procedure name may be a common block name in a scoping unit that does not reference the
intrinsic procedure.

16.3.3 Function results

1 For each FUNCTION statement or ENTRY statement in a function subprogram, there is a result variable. If there is
no RESULT clause, the result variable has the same name as the function being defined; otherwise, the result
variable has the name specified in the RESULT clause.

16.3.4 Components, type parameters, and bindings

1 A component name has the scope of its derived-type definition. Outside the type definition, it may also appear
within a designator of a component of a structure of that type or as a component keyword in a structure
constructor for that type.

2 A type parameter name has the scope of its derived-type definition. Outside the derived-type definition, it may
also appear as a type parameter keyword in a derived-type-spec for the type or as the type-param-name of a
type-param-inquiry .

3 The binding name (4.5.5) of a type-bound procedure has the scope of its derived-type definition. Outside of the
derived-type definition, it may also appear as the binding-name in a procedure reference.

4 A generic binding for which the generic-spec is not a generic-name has a scope that consists of all scoping units
in which an entity of the type is accessible.

5 A component name or binding name may appear only in scoping units in which it is accessible.

6 The accessibility of components and bindings is specified in 4.5.4.8 and 4.5.5.
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16.3.5 Argument keywords

1 As an argument keyword, a dummy argument name in an internal procedure, module procedure, or an interface
body has a scope of the scoping unit of the host of the procedure or interface body. It may appear only in
a procedure reference for the procedure of which it is a dummy argument. If the procedure or interface body
is accessible in another scoping unit by use or host association (16.5.1.3, 16.5.1.4), the argument keyword is
accessible for procedure references for that procedure in that scoping unit.

2 A dummy argument name in an intrinsic procedure has a scope as an argument keyword of the scoping unit
in which the reference to the procedure occurs. As an argument keyword, it may appear only in a procedure
reference for the procedure of which it is a dummy argument.

16.4 Statement and construct entities

1 A variable that appears as a data-i-do-variable in a DATA statement or an ac-do-variable in an array constructor,
as a dummy argument in a statement function statement, or as an index-name in a FORALL statement is a statement
entity. A variable that appears as an index-name in a FORALL or DO CONCURRENT or as an associate-name
in a SELECT TYPE or ASSOCIATE construct is a construct entity. An entity that is explicitly declared in the
specification part of a BLOCK construct, other than only in ASYNCHRONOUS and VOLATILE statements, is
a construct entity. Two construct entities of the same construct shall not have the same identifier.

2 If a global or local identifier is the same as that of a construct entity, the identifier is interpreted within the
construct as that of the construct entity. Elsewhere in the scoping unit, the identifier is interpreted as the global
or local identifier.

3 If a global or local identifier accessible in the scoping unit containing a statement is the same as the name of a
statement entity in that statement, the name is interpreted within the scope of the statement entity as that of
the statement entity. Elsewhere in the scoping unit, including parts of the statement outside the scope of the
statement entity, the name is interpreted as the global or local identifier.

4 If the name of a statement entity is the same as the name of a construct entity and the statement is within the
scope of the construct entity, the name is interpreted within the scope of the statement entity as that of the
statement entity. Elsewhere in the construct, including parts of the statement outside the scope of the statement
entity, the name is interpreted as that of the construct entity.

5 Except for a common block name or a scalar variable name, a global identifier or a local identifier of class (1)
(16.3) in the scoping unit that contains a statement shall not be the name of a statement entity of that statement.
Within the scope of a statement entity, another statement entity shall not have the same name.

6 The name of a data-i-do-variable in a DATA statement statement or an ac-do-variable in an array constructor
has a scope of its data-implied-do or ac-implied-do. It is a scalar variable that has the type and type parameters
that it would have if it were the name of a variable in the scoping unit that includes the DATA statement or
array constructor, and this type shall be integer type; it has no other attributes. The appearance of a name as a
data-i-do-variable of an implied DO in a DATA statement or an ac-do-variable in an array constructor is not an
implicit declaration of a variable whose scope is the scoping unit that contains the statement.

7 The name of a variable that appears as an index-name in a FORALL statement or FORALL or DO CONCUR-
RENT construct has a scope of the statement or construct. It is a scalar variable. If type-spec appears in
forall-header it has the specified type and type parameters; otherwise it has the type and type parameters that it
would have if it were the name of a variable in the scoping unit that includes the FORALL or DO CONCURRENT,
and this type shall be integer type. It has no other attributes. The appearance of a name as an index-name in
a FORALL statement or FORALL or DO CONCURRENT construct is not an implicit declaration of a variable
whose scope is the scoping unit that contains the statement or construct.

8 The name of a variable that appears as a dummy argument in a statement function statement has a scope of the statement in which

it appears. It is a scalar that has the type and type parameters that it would have if it were the name of a variable in the scoping

unit that includes the statement function; it has no other attributes.
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9 Except for a common block name or a scalar variable name, a global identifier or a local identifier of class
(1) (16.3) in the scoping unit containing a FORALL statement, FORALL construct, or DO CONCURRENT
construct in which type-spec does not appear shall not be the same as any of its index-names. An index-name of
a contained FORALL statement, FORALL construct, or DO CONCURRENT construct shall not be the same
as an index-name of any of its containing FORALL or DO CONCURRENT constructs.

10 The associate name of a SELECT TYPE construct has a separate scope for each block of the construct. Within
each block, it has the declared type, dynamic type, type parameters, rank, and bounds specified in 8.1.9.2.

11 The associate names of an ASSOCIATE construct have the scope of the block. They have the declared type,
dynamic type, type parameters, rank, and bounds specified in 8.1.3.2.

16.5 Association

16.5.1 Name association

16.5.1.1 Forms of name association

1 There are five forms of name association: argument association, use association, host association, linkage asso-
ciation, and construct association. Argument, use, and host association provide mechanisms by which entities
known in one scoping unit may be accessed in another scoping unit.

16.5.1.2 Argument association

1 The rules governing argument association are given in Clause 12. As explained in 12.5, execution of a procedure
reference establishes a correspondance between each dummy argument and an actual argument and thus an
association between each dummy argument and its effective argument. Argument association may be sequence
association (12.5.2.11).

2 The name of the dummy argument may be different from the name, if any, of its effective argument. The dummy
argument name is the name by which the effective argument is known, and by which it may be accessed, in the
referenced procedure.

NOTE 16.6
An effective argument may be a nameless data entity, such as the result of evaluating an expression that is
not simply a variable or constant.

3 Upon termination of execution of a procedure reference, all argument associations established by that reference
are terminated. A dummy argument of that procedure may be associated with an entirely different effective
argument in a subsequent invocation of the procedure.

16.5.1.3 Use association

1 Use is the association of names in different scoping units specified by a USE statement. The rules governing use
association are given in 11.2.2. They allow for renaming of entities being accessed. Use association allows access
in one scoping unit to entities defined in another scoping unit; it remains in effect throughout the execution of
the program.

16.5.1.4 Host association

1 An instance of an internal subprogram, module subprogram, or submodule subprogram has access to its host
instance by host association. A module procedure interface body or derived-type definition has access to entities
from its host by host association. An interface body that is not a separate interface body has access via host
association to the named entities from its host that are made accessible by IMPORT statements in the interface
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body. The accessed entities are identified by the same identifier and have the same attributes as in the host,
except that a local entity may have the ASYNCHRONOUS attribute even if the host entity does not, and a
noncoarray local entity may have the VOLATILE attribute even if the host entity does not. The accessed entities
are named data objects, derived types, abstract interfaces, procedures, generic identifiers, and namelist groups.

2 If an entity that is accessed by use association has the same nongeneric name as a host entity, the host entity is
inaccessible by that name. The name of an external procedure that is given the EXTERNAL attribute (5.3.9)
within the scoping unit, or a name that appears within the scoping unit as a module-name in a use-stmt is a
global identifier; any entity of the host that has this as its nongeneric name is inaccessible by that name. A name
that appears in the scoping unit as

(1) a function-name in a stmt-function-stmt or in an entity-decl in a type-declaration-stmt , unless it is a
global identifier,

(2) an object-name in an entity-decl in a type-declaration-stmt , in a pointer-stmt , in a save-stmt , in an
allocatable-stmt , or in a target-stmt ,

(3) a type-param-name in a derived-type-stmt ,
(4) a named-constant in a named-constant-def in a parameter-stmt ,
(5) an array-name in a dimension-stmt ,
(6) a variable-name in a common-block-object in a common-stmt ,
(7) a procedure pointer given the EXTERNAL attribute in the scoping unit,
(8) a proc-pointer-name in a common-block-object in a common-stmt ,
(9) the name of a variable that is wholly or partially initialized in a data-stmt ,
(10) the name of an object that is wholly or partially equivalenced in an equivalence-stmt ,
(11) a dummy-arg-name in a function-stmt , in a subroutine-stmt , in an entry-stmt , or in a stmt-function-stmt,
(12) a result-name in a function-stmt or in an entry-stmt,
(13) the name of an entity declared by an interface body, unless it is a global identifier,
(14) an intrinsic-procedure-name in an intrinsic-stmt ,
(15) a namelist-group-name in a namelist-stmt ,
(16) a generic-name in a generic-spec in an interface-stmt , or
(17) the name of a named construct

is a local identifier in the scoping unit and any entity of the host that has this as its nongeneric name is inaccessible
by that name by host association. If a scoping unit is the host of a derived-type definition or a subprogram that
does not define a separate module procedure, the name of the derived type or of any procedure defined by the
subprogram is a local identifier in the scoping unit; any entity of the host that has this as its nongeneric name is
inaccessible by that name. Local identifiers of a subprogram are not accessible to its host.

NOTE 16.7
A name that appears in an ASYNCHRONOUS or VOLATILE statement is not necessarily the name of a
local variable. In an internal or module procedure, if a variable that is accessible via host association is speci-
fied in an ASYNCHRONOUS or VOLATILE statement, that host variable is given the ASYNCHRONOUS
or VOLATILE attribute in the local scope.

3 If a host entity is inaccessible only because a local variable with the same name is wholly or partially initialized
in a DATA statement, the local variable shall not be referenced or defined prior to the DATA statement.

4 If a derived-type name of a host is inaccessible, data entities of that type or subobjects of such data entities still
can be accessible.

NOTE 16.8
An interface body that is not a separate interface body accesses by host association only those entities made
accessible by IMPORT statements.

5 If an external or dummy procedure with an implicit interface is accessed via host association, then it shall have
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the EXTERNAL attribute in the host scoping unit; if it is invoked as a function in the inner scoping unit, its type
and type parameters shall be established in the host scoping unit. The type and type parameters of a function
with the EXTERNAL attribute are established in a scoping unit if that scoping unit explicitly declares them,
invokes the function, accesses the function from a module, or accesses the function from its host where its type
and type parameters are established.

6 If an intrinsic procedure is accessed via host association, then it shall be established to be intrinsic in the host
scoping unit. An intrinsic procedure is established to be intrinsic in a scoping unit if that scoping unit explicitly
gives it the INTRINSIC attribute, invokes it as an intrinsic procedure, accesses it from a module, or accesses it
from its host where it is established to be intrinsic.

NOTE 16.9
A host subprogram and an internal subprogram may contain the same and differing use-associated entities,
as illustrated in the following example.

MODULE B; REAL BX, Q; INTEGER IX, JX; END MODULE B

MODULE C; REAL CX; END MODULE C

MODULE D; REAL DX, DY, DZ; END MODULE D

MODULE E; REAL EX, EY, EZ; END MODULE E

MODULE F; REAL FX; END MODULE F

MODULE G; USE F; REAL GX; END MODULE G

PROGRAM A

USE B; USE C; USE D

...

CONTAINS

SUBROUTINE INNER_PROC (Q)

USE C ! Not needed

USE B, ONLY: BX ! Entities accessible are BX, IX, and JX

! if no other IX or JX

! is accessible to INNER_PROC

! Q is local to INNER_PROC,

! because Q is a dummy argument

USE D, X => DX ! Entities accessible are DX, DY, and DZ

! X is local name for DX in INNER_PROC

! X and DX denote same entity if no other

! entity DX is local to INNER_PROC

USE E, ONLY: EX ! EX is accessible in INNER_PROC, not in program A

! EY and EZ are not accessible in INNER_PROC

! or in program A

USE G ! FX and GX are accessible in INNER_PROC

...

END SUBROUTINE INNER_PROC

END PROGRAM A

Because program A contains the statement

USE B

all of the entities in module B, except for Q, are accessible in INNER PROC, even though INNER PROC
contains the statement
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NOTE 16.9 (cont.)

USE B, ONLY: BX

The USE statement with the ONLY option means that this particular statement brings in only the entity
named, not that this is the only variable from the module accessible in this scoping unit.

NOTE 16.10
For more examples of host association, see subclause C.12.1.

16.5.1.5 Linkage association

1 Linkage association occurs between a module variable that has the BIND attribute and the C variable with which
it interoperates, or between a Fortran common block and the C variable with which it interoperates (15.4). Such
association remains in effect throughout the execution of the program.

16.5.1.6 Construct association

1 Execution of a SELECT TYPE statement establishes an association between the selector and the associate name
of the construct. Execution of an ASSOCIATE statement establishes an association between each selector and
the corresponding associate name of the construct.

2 If the selector is allocatable, it shall be allocated; the associate name is associated with the data object and does
not have the ALLOCATABLE attribute.

3 If the selector has the POINTER attribute, it shall be associated; the associate name is associated with the target
of the pointer and does not have the POINTER attribute.

4 If the selector is a variable other than an array section having a vector subscript, the association is with the data
object specified by the selector; otherwise, the association is with the value of the selector expression, which is
evaluated prior to execution of the block.

5 Each associate name remains associated with the corresponding selector throughout the execution of the executed
block. Within the block, each selector is known by and may be accessed by the corresponding associate name.
On completion of execution of the construct, the association is terminated.

NOTE 16.11
The association between the associate name and a data object is established prior to execution of the block
and is not affected by subsequent changes to variables that were used in subscripts or substring ranges in
the selector .

16.5.2 Pointer association

16.5.2.1 General

1 Pointer association between a pointer and a target allows the target to be referenced by a reference to the pointer.
At different times during the execution of a program, a pointer may be undefined, associated with different targets
on its own image, or be disassociated. If a pointer is associated with a target, the definition status of the pointer
is either defined or undefined, depending on the definition status of the target. If the pointer has deferred type
parameters or shape, their values are assumed from the target. If the pointer is polymorphic, its dynamic type
is assumed from the dynamic type of the target.

16.5.2.2 Pointer association status

1 A pointer may have a pointer association status of associated, disassociated, or undefined. Its association status
may change during execution of a program. Unless a pointer is initialized (explicitly or by default), it has an
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initial association status of undefined. A pointer may be initialized to have an association status of disassociated
or associated.

NOTE 16.12
A pointer from a module program unit may be accessible in a subprogram via use association. Such pointers
have a lifetime that is greater than targets that are declared in the subprogram, unless such targets are
saved. Therefore, if such a pointer is associated with a local target, there is the possibility that when a
procedure defined by the subprogram completes execution, the target will cease to exist, leaving the pointer
“dangling”. This part of ISO/IEC 1539 considers such pointers to have an undefined association status.
They are neither associated nor disassociated. They shall not be used again in the program until their
status has been reestablished. A processor is not required to detect when a pointer target ceases to exist.

16.5.2.3 Events that cause pointers to become associated

1 A pointer becomes associated when any of the following events occur.

(1) The pointer is allocated (6.7.1) as the result of the successful execution of an ALLOCATE statement
referencing the pointer.

(2) The pointer is pointer-assigned to a target (7.2.2) that is associated or is specified with the TARGET
attribute and, if allocatable, is allocated.

(3) The pointer is a subcomponent of an object that is allocated by an ALLOCATE statement in which
SOURCE= appears and the corresponding subcomponent of source-expr is associated.

(4) The pointer is a dummy argument and its corresponding actual argument is not a pointer.
(5) The pointer is a default-initialized subcomponent of an object, the corresponding initializer is not a

reference to the intrinsic function NULL, and

(a) a procedure is invoked with this object as an actual argument corresponding to a nonpointer
nonallocatable dummy argument with INTENT (OUT),

(b) a procedure with this object as an unsaved nonpointer nonallocatable local variable is invoked,
(c) a BLOCK construct is entered and this object is an unsaved local nonpointer nonallocatable

local variable of the BLOCK construct,
or

(d) this object is allocated other than by an ALLOCATE statement in which SOURCE= appears.

16.5.2.4 Events that cause pointers to become disassociated

1 A pointer becomes disassociated when

(1) the pointer is nullified (6.7.2),
(2) the pointer is deallocated (6.7.3),
(3) the pointer is pointer-assigned (7.2.2) to a disassociated pointer,
(4) the pointer is a subcomponent of an object that is allocated by an ALLOCATE statement in which

SOURCE= appears and the corresponding subcomponent of source-expr is disassociated,
or

(5) the pointer is a default-initialized subcomponent of an object, the corresponding initializer is a
reference to the intrinsic function NULL, and

(a) a procedure is invoked with this object as an actual argument corresponding to a nonpointer
nonallocatable dummy argument with INTENT (OUT),

(b) a procedure with this object as an unsaved nonpointer nonallocatable local variable is invoked,
(c) a BLOCK construct is entered and this object is an unsaved local nonpointer nonallocatable

local variable of the BLOCK construct,
or

(d) this object is allocated other than by an ALLOCATE statement in which SOURCE= appears.
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16.5.2.5 Events that cause the association status of pointers to become undefined

1 The association status of a pointer becomes undefined when

(1) the pointer is pointer-assigned to a target that has an undefined association status,
(2) the pointer is pointer-assigned to a target on a different image,
(3) the target of the pointer is deallocated other than through the pointer,
(4) the allocation transfer procedure (13.7.118) is executed, the pointer is associated with the argument

FROM, and an object without the TARGET attribute is pointer associated with the argument TO,
(5) completion of execution of an instance of a subprogram causes the pointer’s target to become unde-

fined (item (3) of 16.6.6),
(6) completion of execution of a BLOCK construct causes the pointer’s target to become undefined (item

(22) of 16.6.6),
(7) execution of the host instance of a procedure pointer is completed,
(8) execution of an instance of a subprogram completes and the pointer is declared or accessed in the

subprogram that defines the procedure unless the pointer

(a) has the SAVE attribute,
(b) is in blank common,
(c) is in a named common block that is declared in at least one other scoping unit that is in

execution,
(d) is accessed by host association, or
(e) is the return value of a function declared to have the POINTER attribute,

(9) a BLOCK construct completes execution and the pointer is an unsaved construct entity of that
BLOCK construct,

(10) a DO CONCURRENT construct is terminated and the pointer’s association status was changed in
more than one iteration of the construct,

(11) the pointer is a subcomponent of an object that is allocated and either

(a) the pointer is not default-initialized and SOURCE= does not appear, or
(b) SOURCE= appears and the association status of the corresponding subcomponent of source-

expr is undefined,

(12) the pointer is a subcomponent of an object, the pointer is not default-initialized, and a procedure is
invoked with this object as an actual argument corresponding to a dummy argument with INTENT
(OUT), or

(13) a procedure is invoked with the pointer as an actual argument corresponding to a pointer dummy
argument with INTENT (OUT).

16.5.2.6 Other events that change the association status of pointers

1 When a pointer becomes associated with another pointer by argument association, construct association, or host
association, the effects on its association status are specified in 16.5.5.

2 While two pointers are name associated, storage associated, or inheritance associated, if the association status of
one pointer changes, the association status of the other changes accordingly.

3 The association status of a pointer object with the VOLATILE attribute might change by means not specified
by the program.

16.5.2.7 Pointer definition status

1 The definition status of an associated pointer is that of its target. If a pointer is associated with a definable target,
the definition status of the pointer may be defined or undefined according to the rules for a variable (16.6). The
definition status of a pointer that is not associated is undefined.
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16.5.2.8 Relationship between association status and definition status

1 If the association status of a pointer is disassociated or undefined, the pointer shall not be referenced or dealloca-
ted. Whatever its association status, a pointer always may be nullified, allocated, or pointer assigned. A nullified
pointer is disassociated. When a pointer is allocated, it becomes associated but undefined. When a pointer is
pointer assigned, its association and definition status become those of the specified data-target or proc-target .

16.5.3 Storage association

16.5.3.1 General

1 Storage sequences are used to describe relationships that exist among variables, common blocks, and result
variables. Storage association is the association of two or more data objects that occurs when two or more
storage sequences share or are aligned with one or more storage units.

16.5.3.2 Storage sequence

1 A storage sequence is a sequence of storage units. The size of a storage sequence is the number of storage units
in the storage sequence. A storage unit is a character storage unit, a numeric storage unit, a file storage unit
(9.3.5), or an unspecified storage unit. The sizes of the numeric storage unit, the character storage unit and the
file storage unit are the values of constants in the ISO FORTRAN ENV intrinsic module (13.8.2).

2 In a storage association context

(1) a nonpointer scalar object that is default integer, default real, or default logical occupies a single
numeric storage unit,

(2) a nonpointer scalar object that is double precision real or default complex occupies two contiguous
numeric storage units,

(3) a default character nonpointer scalar object of character length len occupies len contiguous character
storage units,

(4) if C character kind is not the same as default character kind a nonpointer scalar object of type cha-
racter with the C character kind (15.2.2) and character length len occupies len contiguous unspecified
storage units,

(5) a nonpointer scalar object of sequence type with no type parameters occupies a sequence of storage
sequences corresponding to the sequence of its ultimate components,

(6) a nonpointer scalar object of any type not specified in items (1)-(5) occupies a single unspecified
storage unit that is different for each case and each set of type parameter values, and that is different
from the unspecified storage units of item (4),

(7) a nonpointer array occupies a sequence of contiguous storage sequences, one for each array element,
in array element order (6.5.3.2), and

(8) a pointer occupies a single unspecified storage unit that is different from that of any nonpointer
object and is different for each combination of type, type parameters, and rank. A pointer that has
the CONTIGUOUS attribute occupies a storage unit that is different from that of a pointer that
does not have the CONTIGUOUS attribute.

3 A sequence of storage sequences forms a storage sequence. The order of the storage units in such a composite
storage sequence is that of the individual storage units in each of the constituent storage sequences taken in
succession, ignoring any zero-sized constituent sequences.

4 Each common block has a storage sequence (5.7.2.2).

16.5.3.3 Association of storage sequences

1 Two nonzero-sized storage sequences s1 and s2 are storage associated if the ith storage unit of s1 is the same as
the jth storage unit of s2. This causes the (i + k)th storage unit of s1 to be the same as the (j + k)th storage
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unit of s2, for each integer k such that 1 ≤ i+ k ≤ size of s1 and 1 ≤ j + k ≤ size of s2 where size of measures
the number of storage units.

2 Storage association also is defined between two zero-sized storage sequences, and between a zero-sized storage
sequence and a storage unit. A zero-sized storage sequence in a sequence of storage sequences is storage associated
with its successor, if any. If the successor is another zero-sized storage sequence, the two sequences are storage
associated. If the successor is a nonzero-sized storage sequence, the zero-sized sequence is storage associated with
the first storage unit of the successor. Two storage units that are each storage associated with the same zero-sized
storage sequence are the same storage unit.

NOTE 16.13
Zero-sized objects may occur in a storage association context as the result of changing a parameter. For
example, a program might contain the following declarations:

INTEGER, PARAMETER :: PROBSIZE = 10

INTEGER, PARAMETER :: ARRAYSIZE = PROBSIZE * 100

REAL, DIMENSION (ARRAYSIZE) :: X

INTEGER, DIMENSION (ARRAYSIZE) :: IX

...

COMMON / EXAMPLE / A, B, C, X, Y, Z

EQUIVALENCE (X, IX)

...

If the first statement is subsequently changed to assign zero to PROBSIZE, the program still will conform
to the standard.

16.5.3.4 Association of scalar data objects

1 Two scalar data objects are storage associated if their storage sequences are storage associated. Two scalar
entities are totally associated if they have the same storage sequence. Two scalar entities are partially associated
if they are associated without being totally associated.

2 The definition status and value of a data object affects the definition status and value of any storage associa-
ted entity. An EQUIVALENCE statement, a COMMON statement, or an ENTRY statement can cause storage
association of storage sequences.

3 An EQUIVALENCE statement causes storage association of data objects only within one scoping unit, unless
one of the equivalenced entities is also in a common block (5.7.1.2, 5.7.2.2).

4 COMMON statements cause data objects in one scoping unit to become storage associated with data objects in
another scoping unit.

5 A common block is permitted to contain a sequence of differing storage units. All scoping units that access named
common blocks with the same name shall specify an identical sequence of storage units. Blank common blocks
may be declared with differing sizes in different scoping units. For any two blank common blocks, the initial
sequence of storage units of the longer blank common block shall be identical to the sequence of storage units of
the shorter common block. If two blank common blocks are the same length, they shall have the same sequence
of storage units.

6 An ENTRY statement in a function subprogram causes storage association of the result variables.

7 Partial association shall exist only between

• an object that is default character or of character sequence type and an object that is default character or
of character sequence type, or
• an object that is default complex, double precision real, or of numeric sequence type and an object that is
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default integer, default real, default logical, double precision real, default complex, or of numeric sequence
type.

8 For noncharacter entities, partial association may occur only through the use of COMMON, EQUIVALENCE,
or ENTRY statements. For character entities, partial association may occur only through argument association or
the use of COMMON or EQUIVALENCE statements.

NOTE 16.14
In the example:

REAL A (4), B

COMPLEX C (2)

DOUBLE PRECISION D

EQUIVALENCE (C (2), A (2), B), (A, D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and the second storage unit
of D are specified as the same. The storage sequences may be illustrated as:

Storage unit 1 2 3 4 5

----C(1)----|---C(2)----

A(1) A(2) A(3) A(4)

--B--

------D------

A (2) and B are totally associated. The following are partially associated: A (1) and C (1), A (2) and
C (2), A (3) and C (2), B and C (2), A (1) and D, A (2) and D, B and D, C (1) and D, and C (2) and D.
Although C (1) and C (2) are each storage associated with D, C (1) and C (2) are not storage associated
with each other.

9 Partial association of character entities occurs when some, but not all, of the storage units of the entities are the
same.

NOTE 16.15
In the example:

CHARACTER A*4, B*4, C*3

EQUIVALENCE (A (2:3), B, C)

A, B, and C are partially associated.

10 A storage unit shall not be explicitly initialized more than once in a program. Explicit initialization overrides
default initialization, and default initialization for an object of derived type overrides default initialization for a
component of the object (4.5.2). Default initialization may be specified for a storage unit that is storage associated
provided the objects supplying the default initialization are of the same type and type parameters, and supply
the same value for the storage unit.

16.5.4 Inheritance association

1 Inheritance association occurs between components of the parent component and components inherited by type
extension into an extended type (4.5.7.2). This association is persistent; it is not affected by the accessibility of
the inherited components.
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16.5.5 Establishing associations

1 When an association is established between two entities by argument association, host association, or construct
association, certain properties of the associating entity become those of the pre-existing entity.

2 For argument association, the pre-existing entity is the effective argument and the associating entity is the dummy
argument.

3 For host association, the associating entity is the entity in the contained scoping unit. When a procedure is
invoked, the pre-existing entity that participates in the association is the one from its host instance (12.6.2.4).
Otherwise the pre-existing entity that participates in the association is the entity in the host scoping unit.

4 For construct association, the associating entity is identified by the associate name and the pre-existing entity is
the selector.

5 When an association is established by argument association, host association, or construct association, the follo-
wing applies.

• If the entities have the POINTER attribute, the pointer association status of the associating entity becomes
the same as that of the pre-existing entity. If the pre-existing entity has a pointer association status of
associated, the associating entity becomes pointer associated with the same target and, if they are arrays,
the bounds of the associating entity become the same as those of the pre-existing entity.
• If the associating entity has the ALLOCATABLE attribute, its allocation status becomes the same as that

of the pre-existing entity. If the pre-existing entity is allocated, the bounds (if it is an array), values of
deferred type parameters, definition status, and value (if it is defined) become the same as those of the
pre-existing entity. If the associating entity is polymorphic and the pre-existing entity is allocated, the
dynamic type of the associating entity becomes the same as that of the pre-existing entity.
• If the associating entity is neither a pointer nor allocatable, its definition status, value (if it is defined), and

dynamic type (if it is polymorphic) become the same as those of the pre-existing entity. If the entities are
arrays and the association is not argument association, the bounds of the associating entity become the
same as those of the pre-existing entity.
• If the associating entity is a pointer dummy argument and the pre-existing entity is a nonpointer actual

argument the associating entity becomes pointer associated with the pre-existing entity and, if the entities
are arrays, the bounds of the associating entity become the same as those of the pre-existing entity.

16.6 Definition and undefinition of variables

16.6.1 Definition of objects and subobjects

1 A variable may be defined or may be undefined and its definition status may change during execution of a
program. An action that causes a variable to become undefined does not imply that the variable was previously
defined. An action that causes a variable to become defined does not imply that the variable was previously
undefined.

2 Arrays, including sections, and variables of derived, character, or complex type are objects that consist of zero
or more subobjects. Associations may be established between variables and subobjects and between subobjects
of different variables. These subobjects may become defined or undefined.

3 An array is defined if and only if all of its elements are defined.

4 A derived-type scalar object is defined if and only if all of its nonpointer components are defined.

5 A complex or character scalar object is defined if and only if all of its subobjects are defined.

6 If an object is undefined, at least one (but not necessarily all) of its subobjects are undefined.
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16.6.2 Variables that are always defined

1 Zero-sized arrays and zero-length strings are always defined.

16.6.3 Variables that are initially defined

1 The following variables are initially defined:

(1) variables specified to have initial values by DATA statements;
(2) variables specified to have initial values by type declaration statements;
(3) nonpointer default-initialized subcomponents of saved variables that do not have the ALLOCA-

TABLE or POINTER attribute;
(4) pointers specified to be initially associated with a variable that is initially defined;
(5) variables that are always defined;
(6) variables with the BIND attribute that are initialized by means other than Fortran.

NOTE 16.16
Fortran code:

module mod

integer, bind(c,name="blivet") :: foo

end module mod

C code:

int blivet = 123;

In the above example, the Fortran variable foo is initially defined to have the value 123 by means other
than Fortran.

16.6.4 Variables that are initially undefined

1 All other variables are initially undefined.

16.6.5 Events that cause variables to become defined

1 Variables become defined by the following events.

(1) Execution of an intrinsic assignment statement other than a masked array assignment or FORALL
assignment statement causes the variable that precedes the equals to become defined.

(2) Execution of a masked array assignment or FORALL assignment statement might cause some or all
of the array elements in the assignment statement to become defined (7.2.3).

(3) As execution of an input statement proceeds, each variable that is assigned a value from the input
file becomes defined at the time that data is transferred to it. (See (4) in 16.6.6.) Execution of a
WRITE statement whose unit specifier identifies an internal file causes each record that is written
to become defined.

(4) Execution of a DO statement causes the DO variable, if any, to become defined.
(5) Beginning of execution of the action specified by an io-implied-do in a synchronous input/output

statement causes the do-variable to become defined.
(6) A reference to a procedure causes the entire dummy argument data object to become defined if the

dummy argument does not have INTENT (OUT) and the entire effective argument is defined.
A reference to a procedure causes a subobject of a dummy argument to become defined if the dummy
argument does not have INTENT (OUT) and the corresponding subobject of the effective argument
is defined.

16.6.3 Scope, association, and definition 455



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

(7) Execution of an input/output statement containing an IOSTAT= specifier causes the specified integer
variable to become defined.

(8) Execution of a synchronous READ statement containing a SIZE= specifier causes the specified integer
variable to become defined.

(9) Execution of a wait operation (9.7.1) corresponding to an asynchronous input statement containing
a SIZE= specifier causes the specified integer variable to become defined.

(10) Execution of an INQUIRE statement causes any variable that is assigned a value during the execution
of the statement to become defined if no error condition exists.

(11) If an error, end-of-file, or end-of-record condition occurs during execution of an input/output state-
ment that has an IOMSG= specifier, the iomsg-variable becomes defined.

(12) When a character storage unit becomes defined, all associated character storage units become defined.
When a numeric storage unit becomes defined, all associated numeric storage units of the same type
become defined. When an entity of double precision real type becomes defined, all totally associated
entities of double precision real type become defined.
When an unspecified storage unit becomes defined, all associated unspecified storage units become
defined.

(13) When a default complex entity becomes defined, all partially associated default real entities become
defined.

(14) When both parts of a default complex entity become defined as a result of partially associated default
real or default complex entities becoming defined, the default complex entity becomes defined.

(15) When all components of a structure of a numeric sequence type or character sequence type become
defined as a result of partially associated objects becoming defined, the structure becomes defined.

(16) Execution of a statement with a STAT= specifier causes the variable specified by the STAT= specifier
to become defined.

(17) If an error condition occurs during execution of a statement that has an ERRMSG= specifier, the
variable specified by the ERRMSG= specifier becomes defined.

(18) Allocation of a zero-sized array causes the array to become defined.
(19) Allocation of an object that has a nonpointer default-initialized subcomponent, except by an ALLO-

CATE statement with a SOURCE= specifier, causes that subcomponent to become defined.
(20) Successful execution of an ALLOCATE statement with a SOURCE= specifier causes a subobject of

the allocated object to become defined if the corresponding subobject of the SOURCE= expression
is defined.

(21) Invocation of a procedure causes any automatic object of zero size in that procedure to become
defined.

(22) When a pointer becomes associated with a target that is defined, the pointer becomes defined.
(23) Invocation of a procedure that contains an unsaved nonpointer nonallocatable local variable causes

all nonpointer default-initialized subcomponents of the object to become defined.
(24) Invocation of a procedure that has a nonpointer nonallocatable INTENT (OUT) dummy argument

causes all nonpointer default-initialized subcomponents of the dummy argument to become defined.
(25) Invocation of a nonpointer function of a derived type causes all nonpointer default-initialized sub-

components of the function result to become defined.
(26) In a FORALL or DO CONCURRENT construct, the index-name becomes defined when the index-

name value set is evaluated.
(27) An object with the VOLATILE attribute that is changed by a means not specified by the program

might become defined (see 5.3.19).
(28) Execution of the BLOCK statement of a BLOCK construct that has an unsaved nonpointer no-

nallocatable local variable causes all nonpointer default-initialized subcomponents of the variable to
become defined.

(29) Execution of an OPEN statement containing a NEWUNIT= specifier causes the specified integer
variable to become defined.

(30) Execution of a LOCK statement containing an ACQUIRED LOCK= specifier causes the specified
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logical variable to become defined. If the logical variable becomes defined with the value true, the
lock variable in the LOCK statement also becomes defined.

(31) Successful execution of a LOCK statement that does not contain an ACQUIRED LOCK= specifier
causes the lock variable to become defined.

(32) Successful execution of an UNLOCK statement causes the lock variable to become defined.

16.6.6 Events that cause variables to become undefined

1 Variables become undefined by the following events.

(1) With the exceptions noted immediately below, when a variable of a given type becomes defined, all
associated variables of different type become undefined.

(a) When a default real variable is partially associated with a default complex variable, the complex
variable does not become undefined when the real variable becomes defined and the real variable
does not become undefined when the complex variable becomes defined.

(b) When a default complex variable is partially associated with another default complex variable,
definition of one does not cause the other to become undefined.

(2) If the evaluation of a function would cause a variable to become defined and if a reference to the
function appears in an expression in which the value of the function is not needed to determine the
value of the expression, the variable becomes undefined when the expression is evaluated.

(3) When execution of an instance of a subprogram completes,

(a) its unsaved local variables become undefined,
(b) unsaved variables in a named common block that appears in the subprogram become undefined

if they have been defined or redefined, unless another active scoping unit is referencing the
common block, and

(c) a variable of type C PTR whose value is the C address of an unsaved local variable of the
subprogram becomes undefined.

(4) When an error condition or end-of-file condition occurs during execution of an input statement, all
of the variables specified by the input list or namelist group of the statement become undefined.

(5) When an error condition occurs during execution of an output statement in which the unit is an
internal file, the internal file becomes undefined.

(6) When an error condition, end-of-file condition, or end-of-record condition occurs during execution of
an input/output statement and the statement contains any io-implied-dos, all of the do-variables in
the statement become undefined (9.11).

(7) Execution of a direct access input statement that specifies a record that has not been written pre-
viously causes all of the variables specified by the input list of the statement to become undefined.

(8) Execution of an INQUIRE statement might cause the NAME=, RECL=, and NEXTREC= variables
to become undefined (9.10).

(9) When a character storage unit becomes undefined, all associated character storage units become
undefined.
When a numeric storage unit becomes undefined, all associated numeric storage units become un-
defined unless the undefinition is a result of defining an associated numeric storage unit of different
type (see (1) above).
When an entity of double precision real type becomes undefined, all totally associated entities of
double precision real type become undefined.
When an unspecified storage unit becomes undefined, all associated unspecified storage units become
undefined.

(10) When an allocatable entity is deallocated, it becomes undefined.
(11) When the allocation transfer procedure (13.7.118) causes the allocation status of an allocatable entity

to become unallocated, the entity becomes undefined.
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(12) Successful execution of an ALLOCATE statement with no SOURCE= specifier causes a subcom-
ponent of an allocated object to become undefined if default initialization has not been specified for
that subcomponent.

(13) Successful execution of an ALLOCATE statement with a SOURCE= specifier causes a subobject of
the allocated object to become undefined if the corresponding subobject of the SOURCE= expression
is undefined.

(14) Execution of an INQUIRE statement causes all inquiry specifier variables to become undefined if an
error condition exists, except for any variable in an IOSTAT= or IOMSG= specifier.

(15) When a procedure is invoked

(a) an optional dummy argument that has no corresponding actual argument becomes undefined,
(b) a dummy argument with INTENT (OUT) becomes undefined except for any nonpointer

default-initialized subcomponents of the argument,
(c) an actual argument corresponding to a dummy argument with INTENT (OUT) becomes un-

defined except for any nonpointer default-initialized subcomponents of the argument,
(d) a subobject of a dummy argument that does not have INTENT (OUT) becomes undefined if

the corresponding subobject of the effective argument is undefined, and
(e) the result variable of a function becomes undefined except for any of its nonpointer default-

initialized subcomponents.

(16) When the association status of a pointer becomes undefined or disassociated (16.5.2.4-16.5.2.5), the
pointer becomes undefined.

(17) When a DO CONCURRENT construct terminates, a variable that is defined or becomes undefined
during more than one iteration of the construct becomes undefined.

(18) Execution of an asynchronous READ statement causes all of the variables specified by the input list
or SIZE= specifier to become undefined. Execution of an asynchronous namelist READ statement
causes any variable in the namelist group to become undefined if that variable will subsequently be
defined during the execution of the READ statement or the corresponding wait operation (9.7.1).

(19) When a variable with the TARGET attribute is deallocated, a variable of type C PTR becomes
undefined if its value is the C address of any part of the variable that is deallocated.

(20) When a pointer is deallocated, a variable of type C PTR becomes undefined if its value is the C
address of any part of the target that is deallocated.

(21) Execution of the allocation transfer procedure (13.7.125) where an object without the TARGET
attribute is pointer associated with the argument TO causes a variable of type C PTR to become
undefined if its value is the C address of any part of the argument FROM.

(22) When a BLOCK construct completes execution,

•its unsaved local variables become undefined, and
•a variable of type C PTR whose value is the C address of an unsaved local variable of the
BLOCK construct becomes undefined.

(23) When execution of the host instance of the target of a variable of type C FUNPTR is completed by
execution of a RETURN or END statement, the variable becomes undefined.

(24) Execution of an intrinsic assignment of the type C PTR or C FUNPTR in which the variable and
expr are not on the same image causes the variable to become undefined.

(25) An object with the VOLATILE attribute (5.3.19) might become undefined by means not specified
by the program.

(26) When a pointer becomes associated with a target that is undefined, the pointer becomes undefined.

NOTE 16.17
Execution of a defined assignment statement may leave all or part of the variable undefined.
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16.6.7 Variable definition context

1 Some variables are prohibited from appearing in a syntactic context that would imply definition or undefinition
of the variable (5.3.10, 5.3.15, 12.7). The following are the contexts in which the appearance of a variable implies
such definition or undefinition of the variable:

(1) the variable of an assignment-stmt ;
(2) a pointer-object in a nullify-stmt ;
(3) a data-pointer-object or proc-pointer-object in a pointer-assignment-stmt ;
(4) a do-variable in a do-stmt or io-implied-do;
(5) an input-item in a read-stmt ;
(6) a variable-name in a namelist-stmt if the namelist-group-name appears in a NML= specifier in a

read-stmt ;
(7) an internal-file-variable in a write-stmt ;
(8) an IOSTAT=, SIZE=, or IOMSG= specifier in an input/output statement;
(9) a specifier in an INQUIRE statement other than FILE=, ID=, and UNIT=;
(10) a NEWUNIT= specifier in an OPEN statement;
(11) a stat-variable, allocate-object , or errmsg-variable;
(12) an actual argument in a reference to a procedure with an explicit interface if the corresponding

dummy argument has INTENT (OUT) or INTENT (INOUT);
(13) a variable that is the selector in a SELECT TYPE or ASSOCIATE construct if the associate name

of that construct appears in a variable definition context;
(14) a lock-variable in a LOCK or UNLOCK statement;
(15) a scalar-logical-variable in an ACQUIRED LOCK= specifier.

2 If a reference to a function appears in a variable definition context the result of the function reference shall be a
pointer that is associated with a definable target. That target is the variable that becomes defined or undefined.

16.6.8 Pointer association context

1 Some pointers are prohibited from appearing in a syntactic context that would imply alteration of the pointer
association status (16.5.2.2,5.3.10, 5.3.15). The following are the contexts in which the appearance of a pointer
implies such alteration of its pointer association status:

• a pointer-object in a nullify-stmt ;
• a data-pointer-object or proc-pointer-object in a pointer-assignment-stmt ;
• an allocate-object in an allocate-stmt or deallocate-stmt ;
• an actual argument in a reference to a procedure if the associated dummy argument is a pointer with the

INTENT (OUT) or INTENT (INOUT) attribute.
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Annex A
(Informative)

Processor Dependencies

A.1 Unspecified Items

1 This part of ISO/IEC 1539 does not specify the following:

• the properties excluded in 1.1;
• a processor’s error detection capabilities beyond those listed in 1.5;
• which additional intrinsic procedures or modules a processor provides (1.5);
• the number and kind of companion processors (2.5.7);
• the number of representation methods and associated kind type parameter values of the intrinsic types

(4.4), except that there shall be at least two representation methods for type real, and a representation
method of type complex that corresponds to each representation method for type real.

A.2 Processor Dependencies

1 According to this part of ISO/IEC 1539, the following are processor dependent:

• the order of evaluation of the specification expressions within the specification part of an invoked Fortran
procedure (2.3.5);
• how soon an image terminates if another image initiates error termination (2.3.5);
• the mechanism of a companion processor, and the means of selecting between multiple companion processors

(2.5.7);
• the processor character set (3.1);
• the means for specifying the source form of a program unit (3.3);
• the maximum number of characters allowed on a source line containing characters not of default kind (3.3.2,

3.3.3);
• the maximum depth of nesting of include lines (3.4);
• the interpretation of the char-literal-constant in the include line (3.4);
• the set of values supported by an intrinsic type, other than logical (4.1.2);
• the kind of a character length type parameter (4.4.3.1);
• the blank padding character for nondefault character kind (4.4.3.2)
• whether particular control characters may appear within a character literal constant in fixed source form

(4.4.3.3);
• the collating sequence for each character set (4.4.3.4);
• the order of finalization of components of objects of derived type (4.5.6.2);
• the order of finalization when several objects are finalized as the consequence of a single event (4.5.6.2);
• whether and when an object is finalized if it is allocated by pointer allocation and it later becomes un-

reachable due to all pointers associated with the object having their pointer association status changed
(4.5.6.3);
• the kind type parameter of each enumeration and its enumerators (4.6);
• whether an array is contiguous, except as specified in 5.3.7;
• the set of error conditions that can occur in ALLOCATE and DEALLOCATE statements (6.7.1, 6.7.3);
• the allocation status of a variable after evaluation of an expression if the evaluation of a function would
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change the allocation status of the variable and if a reference to the function appears in the expression in
which the value of the function is not needed to determine the value of the expression (6.7.1.3);
• the order of deallocation when several objects are deallocated by a DEALLOCATE statement (6.7.3);
• the order of deallocation when several objects are deallocated due to the occurence of an event described

in 6.7.3.2;
• the positive integer values assigned to the stat-variable in a STAT= specifier as the result of an error

condition (6.7.4, 8.5.7);
• the allocation status or pointer association status of an allocate-object if an error occurs during execution

of an ALLOCATE or DEALLOCATE statement (6.7.4);
• the value assigned to the errmsg-variable in an ERRMSG= specifier as the result of an error condition

(6.7.5, 8.5.7);
• the kind type parameter value of the result of a numeric intrinsic binary operation where

– both operands are of type integer but with different kind type parameters, and the decimal exponent
ranges are the same,

– one operand is of type real or complex and the other is of type real or complex with a different kind
type parameter, and the decimal precisions are the same,

and for a logical intrinsic binary operation where the operands have different kind type parameters (7.1.9.3);
• the character assigned to the variable in an intrinsic assignment statement if the kind of the expression is

different and the character is not representable in the kind of the variable (7.2.1.3);
• the order of evaluation of the specification expressions within the specification part of a BLOCK construct

when the construct is executed (8.1.4);
• the pointer association status of a pointer that has its pointer association changed in more than one iteration

of a DO CONCURRENT construct, on termination of the construct (8.1.6);
• the manner in which the stop code of a STOP or ALL STOP statement is made available (8.4);
• the mechanisms available for creating dependencies for cooperative synchronization (8.5.5);
• the set of error conditions that can occur in image control statements (8.5.7);
• the relationship between the file storage units when viewing a file as a stream file, and the records when

viewing that file as a record file (9);
• whether particular control characters may appear in a formatted record or a formatted stream file (9.2.2);
• the form of values in an unformatted record (9.2.3);
• at any time, the set of allowed access methods, set of allowed forms, set of allowed actions, and set of

allowed record lengths for a file (9.3);
• the set of allowable names for a file (9.3);
• whether a named file on one image is the same as a file with the same name on another image (9.3.1);
• the set of external files that exist for a program (9.3.2);
• the relationship between positions of successive file storage units in an external file that is connected for

formatted stream access (9.3.3.4);
• the external unit preconnected for sequential formatted input and identified by an asterisk or the named

constant INPUT UNIT of the ISO FORTRAN ENV intrinsic module (9.5);
• the external unit preconnected for sequential formatted output and identified by an asterisk or the named

constant OUTPUT UNIT of the ISO FORTRAN ENV intrinsic module (9.5);
• the external unit preconnected for sequential formatted output and identified by the named constant ER-

ROR UNIT of the ISO FORTRAN ENV intrinsic module, and whether this unit is the same as OUTPUT -
UNIT (9.5);
• at any time, the set of external units that exist for a program (9.5.3);
• whether a unit can be connected to a file that is also connected to a C stream (9.5.4);
• the result of performing input/output operations on a unit connected to a file that is also connected to a C

stream (9.5.4);
• whether the files connected to the units INPUT UNIT, OUTPUT UNIT, and ERROR UNIT correspond

to the predefined C text streams standard input, standard output, and standard error, respectively (9.5.4);
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• the results of performing input/output operations on an external file both from Fortran and from a procedure
defined by means other than Fortran (9.5.4);
• the default value for the ACTION= specifier on the OPEN statement (9.5.6.4);
• the encoding of a file opened with ENCODING=’DEFAULT’ (9.5.6.9);
• the file connected by an OPEN statement with STATUS=’SCRATCH’ (9.5.6.10);
• the interpretation of case in a file name (9.5.6.10, 9.10.2.2);
• the default value for the RECL= specifier in an OPEN statement (9.5.6.15);
• the effect of RECL= on a record containing any nondefault characters (9.5.6.15);
• the default I/O rounding mode (9.5.6.16);
• the default sign mode (9.5.6.17);
• the file status when STATUS=’UNKNOWN’ is specified in an OPEN statement (9.5.6.18);
• whether POS= is permitted with particular files, and whether POS= can position a particular file to a

position prior to its current position (9.6.2.11);
• the form in which a single value of derived type is treated in an unformatted input/output statement if the

effective item is not processed by a defined input/output procedure (9.6.3);
• the result of unformatted input when the value stored in the file has a different type or type parameters

from the input list item, as described in 9.6.4.5.2;
• the negative value of the unit argument to a defined input/output procedure if the parent data transfer

statement accesses an internal file (9.6.4.8.3);
• the manner in which the processor makes the value of the iomsg argument of a defined input/output

procedure available if the procedure assigns a nonzero value to the iostat argument and the processor
therefore terminates execution of the program (9.6.4.8.3);
• the action caused by the flush operation, whether the processor supports the flush operation for the specified

unit, and the negative value assigned to the IOSTAT= variable if the processor does not support the flush
operation for the specified unit (9.9);
• the case of characters assigned to the variable in a NAME= specifier in an INQUIRE statement (9.10.2.15);
• the value of the variable in a POSITION= specifier in an INQUIRE statement if the file has been repositioned

since connection (9.10.2.23);
• the relationship between file size and the data stored in records in a sequential or direct access file (9.10.2.30);
• the number of file storage units needed to store data in an unformatted file (9.10.3);
• the set of error conditions that can occur in input/output statements (9.11);
• the positive integer value assigned to the variable in an IOSTAT= specifier as the result of an error condition

(9.11.5);
• the value assigned to the variable in an IOMSG= specifier as the result of an error condition (9.11.6);
• the result of output of non-representable characters to a Unicode file (10.7.1);
• the interpretation of the optional non-blank characters within the parentheses of a real NaN input field

(10.7.2.3.2);
• the interpretation of a sign in a NaN input field (10.7.2.3.2);
• for output of an IEEE NaN, whether after the letters ’NaN’, the processor produces additional alphanumeric

characters enclosed in parentheses (10.7.2.3.2);
• the effect of the I/O rounding mode PROCESSOR DEFINED (10.7.2.3.7);
• which value is chosen if the I/O rounding mode is NEAREST and the value to be converted is exactly

halfway between the two nearest representable values in the result format (10.7.2.3.7);
• the field width, decimal part width, and exponent width used for the G0 edit descriptor (10.7.5);
• the file position when position editing skips a character of nondefault kind in an internal file of default

character kind or an external unit that is not connected to a Unicode file (10.8.1);
• when the sign mode is PROCESSOR DEFINED, whether a plus sign appears in a numeric output field for

a nonnegative value (10.8.4);
• the results of list-directed output (10.10.4);
• the results of namelist output (10.11.4);
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• the interaction between argument association and pointer association, (12.5.2.4);
• the values returned by some intrinsic functions (13);
• how the sequences of atomic actions in unordered segments interleave (13.1);
• the set of error conditions that can occur in some intrinsic subroutines (13.7);
• the value assigned to a CMDSTAT or STATUS argument to indicate a processor-dependent error condition

(13.7);
• the value assigned to the TIME argument by the intrinsic subroutine CPU TIME (13.7.42);
• the computation of the seed value used by the pseudorandom number generator (13.7.136);
• the value assigned to the seed by the intrinsic subroutine RANDOM SEED when no argument is present

(13.7.136);
• the values assigned to its arguments by the intrinsic subroutine SYSTEM CLOCK (13.7.162);
• the values of the named constants in the intrinsic module ISO FORTRAN ENV(13.8.2);
• the values returned by the functions COMPILER OPTIONS and COMPILER VERSION in the intrinsic

module ISO FORTRAN ENV(13.8.2);
• the extent to which a processor supports IEEE arithmetic (14);
• the initial rounding mode (14.4);
• the initial underflow mode (14.5);
• the initial halting mode (14.6);
• the values of the floating-point exception flags on entry to a procedure defined by means other than Fortran

(15.5.3).
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Annex B
(Informative)

Deleted and obsolescent features

B.1 Deleted features

1 The deleted features are those features of Fortran 90 that were redundant and considered largely unused.

2 The following Fortran 90 features are not required.

(1) Real and double precision DO variables.
In Fortran 77 and Fortran 90, a DO variable was allowed to be of type real or double precision
in addition to type integer; this has been deleted. A similar result can be achieved by using a DO
construct with no loop control and the appropriate exit test.

(2) Branching to an END IF statement from outside its block.
In Fortran 77 and Fortran 90, it was possible to branch to an END IF statement from outside the
IF construct; this has been deleted. A similar result can be achieved by branching to a CONTINUE
statement that is immediately after the END IF statement.

(3) PAUSE statement.
The PAUSE statement, provided in Fortran 66, Fortran 77, and Fortran 90, has been deleted.
A similar result can be achieved by writing a message to the appropriate unit, followed by reading
from the appropriate unit.

(4) ASSIGN and assigned GO TO statements and assigned format specifiers.
The ASSIGN statement and the related assigned GO TO statement, provided in Fortran 66,
Fortran 77, and Fortran 90, have been deleted. Further, the ability to use an assigned integer as a
format, provided in Fortran 77 and Fortran 90, has been deleted. A similar result can be achieved
by using other control constructs instead of the assigned GO TO statement and by using a default
character variable to hold a format specification instead of using an assigned integer.

(5) H edit descriptor.
In Fortran 77 and Fortran 90, there was an alternative form of character string edit descriptor,
which had been the only such form in Fortran 66; this has been deleted. A similar result can be
achieved by using a character string edit descriptor.

(6) Vertical format control.
In Fortran 66, Fortran 77, Fortran 90, and Fortran 95 formatted output to certain units resulted
in the first character of each record being interpreted as controlling vertical spacing. There was no
standard way to detect whether output to a unit resulted in this vertical format control, and no
way to specify that it should be applied; this has been deleted. The effect can be achieved by
post-processing a formatted file.

3 The following is a list of the relevant previous editions of the Fortran International Standard, along with their
informal names.

• ISO R 1539-1972, Fortran 66;
• ISO 1539-1980, Fortran 77;
• ISO/IEC 1539:1991, Fortran 90;
• ISO/IEC 1539-1:1997, Fortran 95.

4 See ISO/IEC 1539:1991 for detailed rules of how these deleted features worked.
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B.2 Obsolescent features

B.2.1 General

1 The obsolescent features are those features of Fortran 90 that were redundant and for which better methods were
available in Fortran 90. Subclause 1.7.3 describes the nature of the obsolescent features. The obsolescent features
in this part of ISO/IEC 1539 are the following.

(1) Arithmetic IF — use the IF statement or IF construct (8.1.7).
(2) Shared DO termination and termination on a statement other than END DO or CONTINUE — use

an END DO or a CONTINUE statement for each DO statement.
(3) Alternate return — see B.2.2.
(4) Computed GO TO — see B.2.3.
(5) Statement functions — see B.2.4.
(6) DATA statements amongst executable statements — see B.2.5.
(7) Assumed length character functions — see B.2.6.
(8) Fixed form source — see B.2.7.
(9) CHARACTER* form of CHARACTER declaration — see B.2.8.
(10) ENTRY statements — see B.2.9.

B.2.2 Alternate return

1 An alternate return introduces labels into an argument list to allow the called procedure to direct the execution
of the caller upon return. The same effect can be achieved with a return code that is used in a SELECT CASE
construct on return. This avoids an irregularity in the syntax and semantics of argument association. For example,

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)

may be replaced by

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)

SELECT CASE (RETURN_CODE)

CASE (1)

...

CASE (2)

...

CASE (3)

...

CASE DEFAULT

...

END SELECT

B.2.3 Computed GO TO statement

1 The computed GO TO has been superseded by the SELECT CASE construct, which is a generalized, easier to
use, and clearer means of expressing the same computation.

B.2.4 Statement functions

1 Statement functions are subject to a number of nonintuitive restrictions and are a potential source of error because
their syntax is easily confused with that of an assignment statement.

2 The internal function is a more generalized form of the statement function and completely supersedes it.
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B.2.5 DATA statements among executables

1 The statement ordering rules allow DATA statements to appear anywhere in a program unit after the specifica-
tion statements. The ability to position DATA statements amongst executable statements is very rarely used,
unnecessary, and a potential source of error.

B.2.6 Assumed character length functions

1 Assumed character length for functions is an irregularity in the language in that elsewhere in Fortran the philo-
sophy is that the attributes of a function result depend only on the actual arguments of the invocation and on
any data accessible by the function through host or use association. Some uses of this facility can be replaced
with an automatic character length function, where the length of the function result is declared in a specification
expression. Other uses can be replaced by the use of a subroutine whose arguments correspond to the function
result and the function arguments.

2 Note that dummy arguments of a function may be assumed character length.

B.2.7 Fixed form source

1 Fixed form source was designed when the principal machine-readable input medium for new programs was punched
cards. Now that new and amended programs are generally entered via keyboards with screen displays, it is an
unnecessary overhead, and is potentially error-prone, to have to locate positions 6, 7, or 72 on a line. Free form
source was designed expressly for this more modern technology.

2 It is a simple matter for a software tool to convert from fixed to free form source.

B.2.8 CHARACTER* form of CHARACTER declaration

1 In addition to the CHARACTER*char-length form introduced in Fortran 77, Fortran 90 provided the CHA-
RACTER([ LEN = ] type-param-value) form. The older form (CHARACTER*char-length) is redundant.

B.2.9 ENTRY statements

1 ENTRY statements allow more than one entry point to a subprogram, facilitating sharing of data items and
executable statements local to that subprogram.

2 This can be replaced by a module containing the (private) data items, with a module procedure for each entry
point and the shared code in a private module procedure.
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Annex C
(Informative)

Extended notes

C.1 Clause 4 notes

C.1.1 Selection of the approximation methods (4.4.2.3)

1 One can select the real approximation method for an entire program through the use of a module and the
parameterized real type. This is accomplished by defining a named integer constant to have a particular kind
type parameter value and using that named constant in all real, complex, and derived-type declarations. For
example, the specification statements

INTEGER, PARAMETER :: LONG_FLOAT = 8

REAL (LONG_FLOAT) X, Y

COMPLEX (LONG_FLOAT) Z

specify that the approximation method corresponding to a kind type parameter value of 8 is supplied for the data
objects X, Y, and Z in the program unit. The kind type parameter value LONG FLOAT can be made available
to an entire program by placing the INTEGER specification statement in a module and accessing the named
constant LONG FLOAT with a USE statement. Note that by changing 8 to 4 once in the module, a different
approximation method is selected.

2 To avoid the use of the processor-dependent values 4 or 8, replace 8 by KIND (0.0) or KIND (0.0D0). Another
way to avoid these processor-dependent values is to select the kind value using the intrinsic function SELEC-
TED REAL KIND (13.7.147). In the above specification statement, the 8 might be replaced by, for instance,
SELECTED REAL KIND (10, 50), which requires an approximation method to be selected with at least 10 de-
cimal digits of precision and a range from 10−50 to 1050. There are no magnitude or ordering constraints placed
on kind values, in order that implementers may have flexibility in assigning such values and may add new kinds
without changing previously assigned kind values.

3 As kind values have no portable meaning, a good practice is to use them in programs only through named
constants as described above (for example, SINGLE, IEEE SINGLE, DOUBLE, and QUAD), rather than using
the kind values directly.

C.1.2 Type extension and component accessibility (4.5.2.2, 4.5.4)

1 The default accessibility of an extended type may be specified in the type definition. The accessibility of its
components may be specified individually.

module types

type base_type

private !-- Sets default accessibility

integer :: i !-- a private component

integer, private :: j !-- another private component

integer, public :: k !-- a public component

end type base_type
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type, extends(base_type) :: my_type

private !-- Sets default for components declared in my_type

integer :: l !-- A private component.

integer, public :: m !-- A public component.

end type my_type

end module types

subroutine sub

use types

type (my_type) :: x

....

call another_sub( &

x%base_type, & !-- ok because base_type is a public subobject of x

x%base_type%k, & !-- ok because x%base_type is ok and has k as a

!-- public component.

x%k, & !-- ok because it is shorthand for x%base_type%k

x%base_type%i, & !-- Invalid because i is private.

x%i) !-- Invalid because it is shorthand for x%base_type%i

end subroutine sub

C.1.3 Generic type-bound procedures (4.5.5)

Example of a derived type with generic type-bound procedures:

1 The only difference between this example and the same thing rewritten to use generic interface blocks is that
with type-bound procedures,

USE(rational_numbers),ONLY :: rational

2 does not block the type-bound procedures; the user still gets access to the defined assignment and extended
operations.

MODULE rational_numbers

IMPLICIT NONE

PRIVATE

TYPE,PUBLIC :: rational

PRIVATE

INTEGER n,d

CONTAINS

! ordinary type-bound procedure

PROCEDURE :: real => rat_to_real

! specific type-bound procedures for generic support

PROCEDURE,PRIVATE :: rat_asgn_i, rat_plus_i, rat_plus_rat => rat_plus

PROCEDURE,PRIVATE,PASS(b) :: i_plus_rat

! generic type-bound procedures

GENERIC :: ASSIGNMENT(=) => rat_asgn_i
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GENERIC :: OPERATOR(+) => rat_plus_rat, rat_plus_i, i_plus_rat

END TYPE

CONTAINS

ELEMENTAL REAL FUNCTION rat_to_real(this) RESULT(r)

CLASS(rational),INTENT(IN) :: this

r = REAL(this%n)/this%d

END FUNCTION

ELEMENTAL SUBROUTINE rat_asgn_i(a,b)

CLASS(rational),INTENT(OUT) :: a

INTEGER,INTENT(IN) :: b

a%n = b

a%d = 1

END SUBROUTINE

ELEMENTAL TYPE(rational) FUNCTION rat_plus_i(a,b) RESULT(r)

CLASS(rational),INTENT(IN) :: a

INTEGER,INTENT(IN) :: b

r%n = a%n + b*a%d

r%d = a%d

END FUNCTION

ELEMENTAL TYPE(rational) FUNCTION i_plus_rat(a,b) RESULT(r)

INTEGER,INTENT(IN) :: a

CLASS(rational),INTENT(IN) :: b

r%n = b%n + a*b%d

r%d = b%d

END FUNCTION

ELEMENTAL TYPE(rational) FUNCTION rat_plus(a,b) RESULT(r)

CLASS(rational),INTENT(IN) :: a,b

r%n = a%n*b%d + b%n*a%d

r%d = a%d*b%d

END FUNCTION

END

C.1.4 Abstract types (4.5.7.1)

1 The following illustrates how an abstract type can be used as the basis for a collection of related types, and how
a non-abstract member of that collection can be created by type extension.

TYPE, ABSTRACT :: DRAWABLE_OBJECT

REAL, DIMENSION(3) :: RGB_COLOR = (/1.0,1.0,1.0/) ! White

REAL, DIMENSION(2) :: POSITION = (/0.0,0.0/) ! Centroid

CONTAINS

PROCEDURE(RENDER_X), PASS(OBJECT), DEFERRED :: RENDER

END TYPE DRAWABLE_OBJECT

ABSTRACT INTERFACE

SUBROUTINE RENDER_X(OBJECT, WINDOW)

IMPORT DRAWABLE_OBJECT, X_WINDOW

C.1.4 Extended notes 471



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

CLASS(DRAWABLE_OBJECT), INTENT(IN) :: OBJECT

CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW

END SUBROUTINE RENDER_X

END INTERFACE

TYPE, EXTENDS(DRAWABLE_OBJECT) :: DRAWABLE_TRIANGLE ! Not ABSTRACT

REAL, DIMENSION(2,3) :: VERTICES ! In relation to centroid

CONTAINS

PROCEDURE, PASS(OBJECT) :: RENDER=>RENDER_TRIANGLE_X

END TYPE DRAWABLE_TRIANGLE

2 The actual drawing procedure draws a triangle in WINDOW with vertices
at x coordinates OBJECT%POSITION(1)+OBJECT%VERTICES(1,:)
and y coordinates OBJECT%POSITION(2)+OBJECT%VERTICES(2,:):

SUBROUTINE RENDER_TRIANGLE_X(OBJECT, WINDOW)

CLASS(DRAWABLE_TRIANGLE), INTENT(IN) :: OBJECT

CLASS(X_WINDOW), INTENT(INOUT) :: WINDOW

...

END SUBROUTINE RENDER_TRIANGLE_X

C.1.5 Pointers (4.5.2)

1 Pointers are names that can change dynamically their association with a target object. In a sense, a normal
variable is a name with a fixed association with a particular object. A normal variable name refers to the same
storage space throughout the lifetime of the variable. A pointer name may refer to different storage space, or even
no storage space, at different times. A variable may be considered to be a descriptor for space to hold values of
the appropriate type, type parameters, and rank such that the values stored in the descriptor are fixed when the
variable is created. A pointer also may be considered to be a descriptor, but one whose values may be changed
dynamically so as to describe different pieces of storage. When a pointer is declared, space to hold the descriptor
is created, but the space for the target object is not created.

2 A derived type may have one or more components that are defined to be pointers. It may have a component
that is a pointer to an object of the same derived type. This “recursive” data definition allows dynamic data
structures such as linked lists, trees, and graphs to be constructed. For example:

TYPE NODE ! Define a ’’recursive’’ type

INTEGER :: VALUE = 0

TYPE (NODE), POINTER :: NEXT_NODE => NULL ( )

END TYPE NODE

TYPE (NODE), TARGET :: HEAD ! Automatically initialized

TYPE (NODE), POINTER :: CURRENT ! Declare pointer

INTEGER :: IOEM, K

CURRENT => HEAD ! CURRENT points to head of list

DO

READ (*, *, IOSTAT = IOEM) K ! Read next value, if any
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IF (IOEM /= 0) EXIT

ALLOCATE ( CURRENT % NEXT_NODE ) ! Create new cell

CURRENT % NEXT_NODE % VALUE = K ! Assign value to new cell

CURRENT => CURRENT % NEXT_NODE ! CURRENT points to new end of list

END DO

3 A list is now constructed and the last linked cell contains a disassociated pointer. A loop can be used to “walk
through” the list.

CURRENT => HEAD

DO

IF (.NOT. ASSOCIATED (CURRENT % NEXT_NODE)) EXIT

CURRENT => CURRENT % NEXT_NODE

WRITE (*, *) CURRENT % VALUE

END DO

C.1.6 Structure constructors and generic names (4.5.10)

1 A generic name may be the same as a type name. This can be used to emulate user-defined structure constructors
for that type, even if the type has private components. For example:

MODULE mytype_module

TYPE mytype

PRIVATE

COMPLEX value

LOGICAL exact

END TYPE

INTERFACE mytype

MODULE PROCEDURE int_to_mytype

END INTERFACE

! Operator definitions etc.

...

CONTAINS

TYPE(mytype) FUNCTION int_to_mytype(i)

INTEGER,INTENT(IN) :: i

int_to_mytype%value = i

int_to_mytype%exact = .TRUE.

END FUNCTION

! Procedures to support operators etc.

...

END

PROGRAM example

USE mytype_module

TYPE(mytype) x

x = mytype(17)

END
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2 The type name may still be used as a generic name if the type has type parameters. For example:

MODULE m

TYPE t(kind)

INTEGER, KIND :: kind

COMPLEX(kind) value

END TYPE

INTEGER,PARAMETER :: single = KIND(0.0), double = KIND(0d0)

INTERFACE t

MODULE PROCEDURE real_to_t1, dble_to_t2, int_to_t1, int_to_t2

END INTERFACE

...

CONTAINS

TYPE(t(single)) FUNCTION real_to_t1(x)

REAL(single) x

real_to_t1%value = x

END FUNCTION

TYPE(t(double)) FUNCTION dble_to_t2(x)

REAL(double) x

dble_to_t2%value = x

END FUNCTION

TYPE(t(single)) FUNCTION int_to_t1(x,mold)

INTEGER x

TYPE(t(single)) mold

int_to_t1%value = x

END FUNCTION

TYPE(t(double)) FUNCTION int_to_t2(x,mold)

INTEGER x

TYPE(t(double)) mold

int_to_t2%value = x

END FUNCTION

...

END

PROGRAM example

USE m

TYPE(t(single)) x

TYPE(t(double)) y

x = t(1.5) ! References real_to_t1

x = t(17,mold=x) ! References int_to_t1

y = t(1.5d0) ! References dble_to_t2

y = t(42,mold=y) ! References int_to_t2

y = t(kind(0d0)) ((0,1)) ! Uses the structure constructor for type t

END
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C.1.7 Final subroutines (4.5.6, 4.5.6.2, 4.5.6.3, 4.5.6.4)

1 Example of a parameterized derived type with final subroutines:

MODULE m

TYPE t(k)

INTEGER, KIND :: k

REAL(k),POINTER :: vector(:) => NULL()

CONTAINS

FINAL :: finalize_t1s, finalize_t1v, finalize_t2e

END TYPE

CONTAINS

SUBROUTINE finalize_t1s(x)

TYPE(t(KIND(0.0))) x

IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)

END SUBROUTINE

SUBROUTINE finalize_t1v(x)

TYPE(t(KIND(0.0))) x(:)

DO i=LBOUND(x,1),UBOUND(x,1)

IF (ASSOCIATED(x(i)%vector)) DEALLOCATE(x(i)%vector)

END DO

END SUBROUTINE

ELEMENTAL SUBROUTINE finalize_t2e(x)

TYPE(t(KIND(0.0d0))),INTENT(INOUT) :: x

IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)

END SUBROUTINE

END MODULE

SUBROUTINE example(n)

USE m

TYPE(t(KIND(0.0))) a,b(10),c(n,2)

TYPE(t(KIND(0.0d0))) d(n,n)

...

! Returning from this subroutine will effectively do

! CALL finalize_t1s(a)

! CALL finalize_t1v(b)

! CALL finalize_t2e(d)

! No final subroutine will be called for variable C because the user

! omitted to define a suitable specific procedure for it.

END SUBROUTINE

2 Example of extended types with final subroutines:

MODULE m

TYPE t1

REAL a,b

END TYPE
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TYPE,EXTENDS(t1) :: t2

REAL,POINTER :: c(:),d(:)

CONTAINS

FINAL :: t2f

END TYPE

TYPE,EXTENDS(t2) :: t3

REAL,POINTER :: e

CONTAINS

FINAL :: t3f

END TYPE

...

CONTAINS

SUBROUTINE t2f(x) ! Finalizer for TYPE(t2)’s extra components

TYPE(t2) :: x

IF (ASSOCIATED(x%c)) DEALLOCATE(x%c)

IF (ASSOCIATED(x%d)) DEALLOCATE(x%d)

END SUBROUTINE

SUBROUTINE t3f(y) ! Finalizer for TYPE(t3)’s extra components

TYPE(t3) :: y

IF (ASSOCIATED(y%e)) DEALLOCATE(y%e)

END SUBROUTINE

END MODULE

SUBROUTINE example

USE m

TYPE(t1) x1

TYPE(t2) x2

TYPE(t3) x3

...

! Returning from this subroutine will effectively do

! ! Nothing to x1; it is not finalizable

! CALL t2f(x2)

! CALL t3f(x3)

! CALL t2f(x3%t2)

END SUBROUTINE

C.2 Clause 5 notes

C.2.1 The POINTER attribute (5.3.14)

1 The POINTER attribute shall be specified to declare a pointer. The type, type parameters, and rank, which
may be specified in the same statement or with one or more attribute specification statements, determine the
characteristics of the target objects that may be associated with the pointers declared in the statement. An obvious
model for interpreting declarations of pointers is that such declarations create for each name a descriptor. Such
a descriptor includes all the data necessary to describe fully and locate in memory an object and all subobjects
of the type, type parameters, and rank specified. The descriptor is created empty; it does not contain values
describing how to access an actual memory space. These descriptor values will be filled in when the pointer is
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associated with actual target space.

2 The following example illustrates the use of pointers in an iterative algorithm:

PROGRAM DYNAM_ITER

REAL, DIMENSION (:, :), POINTER :: A, B, SWAP ! Declare pointers

...

READ (*, *) N, M

ALLOCATE (A (N, M), B (N, M)) ! Allocate target arrays

! Read values into A

...

ITER: DO

...

! Apply transformation of values in A to produce values in B

...

IF (CONVERGED) EXIT ITER

! Swap A and B

SWAP => A; A => B; B => SWAP

END DO ITER

...

END PROGRAM DYNAM_ITER

C.2.2 The TARGET attribute (5.3.17)

1 The TARGET attribute shall be specified for any nonpointer object that might, during the execution of the
program, become associated with a pointer. This attribute is defined primarily for optimization purposes. It
allows the processor to assume that any nonpointer object not explicitly declared as a target cannot be referenced
by way of a pointer. It also means that implicitly-declared objects shall not be used as pointer targets. This
will allow a processor to perform optimizations that otherwise would not be possible in the presence of certain
pointers.

2 The following example illustrates the use of the TARGET attribute in an iterative algorithm:

PROGRAM ITER

REAL, DIMENSION (1000, 1000), TARGET :: A, B

REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

...

! Read values into A

...

IN => A ! Associate IN with target A

OUT => B ! Associate OUT with target B

...

ITER:DO

...

! Apply transformation of IN values to produce OUT

...

IF (CONVERGED) EXIT ITER

! Swap IN and OUT
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SWAP => IN; IN => OUT; OUT => SWAP

END DO ITER

...

END PROGRAM ITER

C.2.3 The VOLATILE attribute (5.3.19)

1 The following example shows the use of a variable with the VOLATILE attribute to communicate with an
asynchronous process, in this case the operating system. The program detects a user keystroke on the terminal
and reacts at a convenient point in its processing.

2 The VOLATILE attribute is necessary to prevent an optimizing compiler from storing the communication variable
in a register or from doing flow analysis and deciding that the EXIT statement can never be executed.

SUBROUTINE TERMINATE_ITERATIONS

LOGICAL, VOLATILE :: USER_HIT_ANY_KEY

! Have the OS start to look for a user keystroke and set the variable

! "USER_HIT_ANY_KEY" to TRUE as soon as it detects a keystroke.

! This call is operating system dependent.

CALL OS_BEGIN_DETECT_USER_KEYSTROKE( USER_HIT_ANY_KEY )

USER_HIT_ANY_KEY = .FALSE. ! This will ignore any recent keystrokes

PRINT *, " Hit any key to terminate iterations!"

DO I = 1,100

... ! Compute a value for R

PRINT *, I, R

IF (USER_HIT_ANY_KEY) EXIT

ENDDO

! Have the OS stop looking for user keystrokes

CALL OS_STOP_DETECT_USER_KEYSTROKE

END SUBROUTINE TERMINATE_ITERATIONS

C.3 Clause 6 notes

C.3.1 Structure components (6.4.2)

1 Components of a structure are referenced by writing the components of successive levels of the structure hierarchy
until the desired component is described. For example,

TYPE ID_NUMBERS

INTEGER SSN
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INTEGER EMPLOYEE_NUMBER

END TYPE ID_NUMBERS

TYPE PERSON_ID

CHARACTER (LEN=30) LAST_NAME

CHARACTER (LEN=1) MIDDLE_INITIAL

CHARACTER (LEN=30) FIRST_NAME

TYPE (ID_NUMBERS) NUMBER

END TYPE PERSON_ID

TYPE PERSON

INTEGER AGE

TYPE (PERSON_ID) ID

END TYPE PERSON

TYPE (PERSON) GEORGE, MARY

PRINT *, GEORGE % AGE ! Print the AGE component

PRINT *, MARY % ID % LAST_NAME ! Print LAST_NAME of MARY

PRINT *, MARY % ID % NUMBER % SSN ! Print SSN of MARY

PRINT *, GEORGE % ID % NUMBER ! Print SSN and EMPLOYEE_NUMBER of GEORGE

2 A structure component may be a data object of intrinsic type as in the case of GEORGE % AGE or it may be
of derived type as in the case of GEORGE % ID % NUMBER. The resultant component may be a scalar or an
array of intrinsic or derived type.

TYPE LARGE

INTEGER ELT (10)

INTEGER VAL

END TYPE LARGE

TYPE (LARGE) A (5) ! 5 element array, each of whose elements

! includes a 10 element array ELT and

! a scalar VAL.

PRINT *, A (1) ! Prints 10 element array ELT and scalar VAL.

PRINT *, A (1) % ELT (3) ! Prints scalar element 3

! of array element 1 of A.

PRINT *, A (2:4) % VAL ! Prints scalar VAL for array elements

! 2 to 4 of A.

3 Components of an object of extensible type that are inherited from the parent type may be accessed as a whole
by using the parent component name, or individually, either with or without qualifying them by the parent
component name.

4 For example:

TYPE POINT ! A base type

REAL :: X, Y

END TYPE POINT
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TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)

! Components X and Y, and component name POINT, inherited from parent

INTEGER :: COLOR

END TYPE COLOR_POINT

TYPE(POINT) :: PV = POINT(1.0, 2.0)

TYPE(COLOR_POINT) :: CPV = COLOR_POINT(POINT=PV, COLOR=3)

PRINT *, CPV%POINT ! Prints 1.0 and 2.0

PRINT *, CPV%POINT%X, CPV%POINT%Y ! And this does, too

PRINT *, CPV%X, CPV%Y ! And this does, too

C.3.2 Allocation with dynamic type (6.7.1)

1 The following example illustrates the use of allocation with the value and dynamic type of the allocated object
given by another object. The example copies a list of objects of any type. It copies the list starting at IN LIST.
After copying, each element of the list starting at LIST COPY has a polymorphic component, ITEM, for which
both the value and type are taken from the ITEM component of the corresponding element of the list starting at
IN LIST.

TYPE :: LIST ! A list of anything

TYPE(LIST), POINTER :: NEXT => NULL()

CLASS(*), ALLOCATABLE :: ITEM

END TYPE LIST

...

TYPE(LIST), POINTER :: IN_LIST, LIST_COPY => NULL()

TYPE(LIST), POINTER :: IN_WALK, NEW_TAIL

! Copy IN_LIST to LIST_COPY

IF (ASSOCIATED(IN_LIST)) THEN

IN_WALK => IN_LIST

ALLOCATE(LIST_COPY)

NEW_TAIL => LIST_COPY

DO

ALLOCATE(NEW_TAIL%ITEM, SOURCE=IN_WALK%ITEM)

IN_WALK => IN_WALK%NEXT

IF (.NOT. ASSOCIATED(IN_WALK)) EXIT

ALLOCATE(NEW_TAIL%NEXT)

NEW_TAIL => NEW_TAIL%NEXT

END DO

END IF

C.3.3 Pointer allocation and association (6.7.1, 16.5.2)

1 The effect of ALLOCATE, DEALLOCATE, NULLIFY, and pointer assignment is that they are interpreted as
changing the values in the descriptor that is the pointer. An ALLOCATE is assumed to create space for a
suitable object and to “assign” to the pointer the values necessary to describe that space. A NULLIFY breaks
the association of the pointer with the space. A DEALLOCATE breaks the association and releases the space.
Depending on the implementation, it could be seen as setting a flag in the pointer that indicates whether the
values in the descriptor are valid, or it could clear the descriptor values to some (say zero) value indicative of
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the pointer not being associated with anything. A pointer assignment copies the values necessary to describe the
space occupied by the target into the descriptor that is the pointer. Descriptors are copied; values of objects are
not.

2 If PA and PB are both pointers and PB is associated with a target, then

PA => PB

results in PA being associated with the same target as PB. If PB was disassociated, then PA becomes disasso-
ciated.

3 This part of ISO/IEC 1539 is specified so that such associations are direct and independent. A subsequent
statement

PB => D

or

ALLOCATE (PB)

has no effect on the association of PA with its target. A statement

DEALLOCATE (PB)

deallocates the space that is associated with both PA and PB. PB becomes disassociated, but there is no re-
quirement that the processor make it explicitly recognizable that PA no longer has a target. This leaves PA
as a “dangling pointer” to space that has been released. The program shall not use PA again until it becomes
associated via pointer assignment or an ALLOCATE statement.

4 DEALLOCATE may only be used to release space that was created by a previous ALLOCATE. Thus the following
is invalid:

REAL, TARGET :: T

REAL, POINTER :: P

...

P = > T

DEALLOCATE (P) ! Not allowed: P’s target was not allocated

5 The basic principle is that ALLOCATE, NULLIFY, and pointer assignment primarily affect the pointer rather
than the target. ALLOCATE creates a new target but, other than breaking its connection with the specified
pointer, it has no effect on the old target. Neither NULLIFY nor pointer assignment has any effect on targets.
A piece of memory that was allocated and associated with a pointer will become inaccessible to a program if
the pointer is nullified or associated with a different target and no other pointer was associated with this piece
of memory. Such pieces of memory may be reused by the processor if this is expedient. However, whether such
inaccessible memory is in fact reused is entirely processor dependent.

C.4 Clause 7 notes

C.4.1 Character assignment (7.2.1.3)

1 The Fortran 77 restriction that none of the character positions defined in the character assignment statement
may be referenced in the expression was removed in Fortran 90.

C.4.2 Evaluation of function references (7.1.7)

1 If more than one function reference appears in a statement, they may be executed in any order (subject to a
function result being evaluated after the evaluation of its arguments) and their values shall not depend on the
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order of execution. This lack of dependence on order of evaluation permits parallel execution of the function
references.

C.4.3 Pointers in expressions (7.1.9.2)

1 A pointer is considered to be like any other variable when it is used as a primary in an expression. If a pointer
is used as an operand to an operator that expects a value, the pointer will automatically deliver the value stored
in the space described by the pointer, that is, the value of the target object associated with the pointer.

C.4.4 Pointers in variable-definition contexts (7.2.1.3, 16.6.7)

1 The appearance of a pointer in a context that requires its value is a reference to its target. Similarly, where a
pointer appears in a variable-definition context the variable that is defined is the target of the pointer.

2 Executing the program fragment

REAL, POINTER :: A

REAL, TARGET :: B = 10.0

A => B

A = 42.0

PRINT ’(F4.1)’, B

produces “42.0” as output.

C.4.5 Examples of FORALL constructs (7.2.4)

Example 1:

1 An assignment statement that is a FORALL body construct may be a scalar or array assignment statement, or a
defined assignment statement. The variable being defined will normally use each index name in the forall-triplet-
spec-list. For example,

FORALL (I = 1:N, J = 1:N)

A(:, I, :, J) = 1.0 / REAL(I + J - 1)

END FORALL

broadcasts scalar values to rank-two subarrays of A.

Example 2:

2 An example of a FORALL construct containing a pointer assignment statement is:

TYPE ELEMENT

REAL ELEMENT_WT

CHARACTER (32), POINTER :: NAME

END TYPE ELEMENT

TYPE(ELEMENT) CHART(200)

REAL WEIGHTS (1000)

CHARACTER (32), TARGET :: NAMES (1000)

...

FORALL (I = 1:200, WEIGHTS (I + N - 1) > .5)

CHART(I) % ELEMENT_WT = WEIGHTS (I + N - 1)

CHART(I) % NAME => NAMES (I + N - 1)
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END FORALL

3 The results of this FORALL construct cannot be achieved with a WHERE construct because a pointer assignment
statement is not permitted in a WHERE construct.

Example 3:

4 The use of index-name variables in a FORALL construct does not affect variables of the same name, for example:

INTEGER :: X = -1

REAL A(5, 4)

J = 100

...

FORALL (X = 1:5, J = 1:4) ! Note that X and J are local to the FORALL.

A (X, J) = J

END FORALL

5 After execution of the FORALL, the variables X and J have the values -1 and 100 and A has the value

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Example 4:

6 The type and kind of the index-name variables may be declared independently of the type of any normal variable
in the scoping unit. For example, in

SUBROUTINE s(a)

IMPLICIT NONE

INTEGER, PARAMETER :: big = SELECTED_INT_KIND(18)

REAL a(:,:), x, theta

...

FORALL ( INTEGER(big) :: x=1:SIZE(a,1,big), y=1:SIZE(a,2,big), a(x,y)/=0 )

a(x,y) = 1 / a(x,y)**2

END FORALL

...

the kind of the index-names X and Y is selected to be big enough for subscript values even if the array A has
more than 231 elements. Since the type of the index-names X and Y in the FORALL construct are declared
explicitly in the FORALL header, it is not necessary for integer variables of the same names to be declared in
the containing scoping unit. In this example, there is a variable X of type real declared in the containing scoping
unit, and no variable Y declared in the containing scoping unit.

Example 5:

7 This is an example of a FORALL construct containing a WHERE construct.

INTEGER :: A(5,5)

...

FORALL (I = 1:5)
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WHERE (A(I,:) == 0)

A(:,I) = I

ELSEWHERE (A(I,:) > 2)

A(I,:) = 6

END WHERE

END FORALL

8 If prior to execution of the FORALL, A has the value

A = 1 0 0 0 0

2 1 1 1 0

1 2 2 0 2

2 1 0 2 3

1 0 0 0 0

then after execution of the assignment statements following the WHERE statement A has the value A’ (shown
below). The mask created from row one is used to mask the assignments to column one; the mask from row two
is used to mask assignments to column two; etc.

A’ = 1 0 0 0 0

1 1 1 1 5

1 2 2 4 5

1 1 3 2 5

1 2 0 0 5

9 The masks created for assignments following the ELSEWHERE statement are

.NOT. (A(I,:) == 0) .AND. (A’(I,:) > 2)

10 Thus the only elements affected by the assignments following the ELSEWHERE statement are A(3, 5) and
A(4, 5). After execution of the FORALL construct, A has the value

A = 1 0 0 0 0

1 1 1 1 5

1 2 2 4 6

1 1 3 2 6

1 2 0 0 5

C.4.6 Examples of FORALL statements (7.2.4.3)

Example 1:

1 FORALL (J=1:M, K=1:N) X(K, J) = Y(J, K)

FORALL (K=1:N) X(K, 1:M) = Y(1:M, K)

2 These statements both copy columns 1 through N of array Y into rows 1 through N of array X. They are equivalent
to

X(1:N, 1:M) = TRANSPOSE (Y(1:M, 1:N) )

Example 2:

3 The FORALL statement in the following code fragment computes five partial sums of subarrays of J.
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J = (/ 1, 2, 3, 4, 5 /)

FORALL (K = 1:5) J(K) = SUM (J(1:K) )

4 SUM is allowed in a FORALL because all standard intrinsic functions are pure (13.1). After execution of the
FORALL statement, J is equal to [1, 3, 6, 10, 15].

Example 3:

5 The FORALL statement

FORALL (I = 2:N-1) X(I) = (X(I-1) + 2*X(I) + X(I+1) ) / 4

has the same effect as

X(2:N-1) = (X(1:N-2) + 2*X(2:N-1) + X(3:N) ) / 4

Example 4:

6 The following FORALL statement illustrates declaring the index variable within the statement, which would
otherwise require an integer variable of the same name to be accessible in the scope containing the statement.

FORALL ( INTEGER :: COL = 1, SIZE(A,2) ) B(COL) = NORM2(A(:,COL))

C.5 Clause 8 notes

C.5.1 The SELECT CASE construct (8.1.8)

1 At most one case block is selected for execution within a SELECT CASE construct, and there is no fall-through
from one block into another block within a SELECT CASE construct. Thus there is no requirement for the user
to exit explicitly from a block.

C.5.2 Loop control (8.1.6)

1 Fortran provides several forms of loop control:

(1) With an iteration count and a DO variable. This is the classic Fortran DO loop.
(2) Test a logical condition before each execution of the loop (DO WHILE).
(3) DO “forever”.

C.5.3 Examples of DO constructs (8.1.6)

1 The following are all valid examples of block DO constructs.

Example 1:

SUM = 0.0

READ (IUN) N

OUTER: DO L = 1, N ! A DO with a construct name

READ (IUN) IQUAL, M, ARRAY (1:M)

IF (IQUAL < IQUAL_MIN) CYCLE OUTER ! Skip inner loop

INNER: DO 40 I = 1, M ! A DO with a label and a name

CALL CALCULATE (ARRAY (I), RESULT)

IF (RESULT < 0.0) CYCLE
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SUM = SUM + RESULT

IF (SUM > SUM_MAX) EXIT OUTER

40 END DO INNER

END DO OUTER

2 The outer loop has an iteration count of MAX (N, 0), and will execute that number of times or until SUM exceeds
SUM MAX, in which case the EXIT OUTER statement terminates both loops. The inner loop is skipped by the
first CYCLE statement if the quality flag, IQUAL, is too low. If CALCULATE returns a negative RESULT, the
second CYCLE statement prevents it from being summed. Both loops have construct names and the inner loop
also has a label. A construct name is required in the EXIT statement in order to terminate both loops, but is
optional in the CYCLE statements because each belongs to its innermost loop.

Example 2:

N = 0

DO 50, I = 1, 10

J = I

DO K = 1, 5

L = K

N = N + 1 ! This statement executes 50 times

END DO ! Nonlabeled DO inside a labeled DO

50 CONTINUE

3 After execution of the above program fragment, I = 11, J = 10, K = 6, L = 5, and N = 50.

Example 3:

N = 0

DO I = 1, 10

J = I

DO 60, K = 5, 1 ! This inner loop is never executed

L = K

N = N + 1

60 CONTINUE ! Labeled DO inside a nonlabeled DO

END DO

4 After execution of the above program fragment, I = 11, J = 10, K = 5, N = 0, and L is not defined by these
statements.

5 The following are all valid examples of nonblock DO constructs:

Example 4:

DO 70

READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X

IF (IOS /= 0) EXIT

IF (X < 0.) GOTO 70

CALL SUBA (X)

CALL SUBB (X)

...

CALL SUBY (X)

CYCLE

70 CALL SUBNEG (X) ! SUBNEG called only when X < 0.
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6 This is not a block DO construct because it ends with a statement other than END DO or CONTINUE. The loop will continue to

execute until an end-of-file condition or input/output error occurs.

Example 5:

SUM = 0.0

READ (IUN) N

DO 80, L = 1, N

READ (IUN) IQUAL, M, ARRAY (1:M)

IF (IQUAL < IQUAL_MIN) M = 0 ! Skip inner loop

DO 80 I = 1, M

CALL CALCULATE (ARRAY (I), RESULT)

IF (RESULT < 0.) CYCLE

SUM = SUM + RESULT

IF (SUM > SUM_MAX) GOTO 81

80 CONTINUE ! This CONTINUE is shared by both loops

81 CONTINUE

7 This example is similar to Example 1 above, except that the two loops are not block DO constructs because they share the CONTINUE

statement with the label 80. The terminal construct of the outer DO is the entire inner DO construct. The inner loop is skipped by

forcing M to zero. If SUM grows too large, both loops are terminated by branching to the CONTINUE statement labeled 81. The

CYCLE statement in the inner loop is used to skip negative values of RESULT.

Example 6:

N = 0

DO 100 I = 1, 10

J = I

DO 100 K = 1, 5

L = K

100 N = N + 1 ! This statement executes 50 times

8 In this example, the two loops share an assignment statement. After execution of this program fragment, I = 11, J = 10, K = 6,

L = 5, and N = 50.

Example 7:

N = 0

DO 200 I = 1, 10

J = I

DO 200 K = 5, 1 ! This inner loop is never executed

L = K

200 N = N + 1

9 This example is very similar to the previous one, except that the inner loop is never executed. After execution of this program

fragment, I = 11, J = 10, K = 5, N = 0, and L is not defined by these statements.

C.5.4 Examples of invalid DO constructs (8.1.6)

1 The following are all examples of invalid skeleton DO constructs:

Example 1:

2 DO I = 1, 10

...

END DO LOOP ! No matching construct name
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Example 2:

3 LOOP: DO 1000 I = 1, 10 ! No matching construct name

...

1000 CONTINUE

Example 3:

4 LOOP1: DO

...

END DO LOOP2 ! Construct names don’t match

Example 4:

5 DO I = 1, 10 ! Label required or ...

...

1010 CONTINUE ! ... END DO required

Example 5:

6 DO 1020 I = 1, 10

...

1021 END DO ! Labels don’t match

Example 6:

7 FIRST: DO I = 1, 10

SECOND: DO J = 1, 5

...

END DO FIRST ! Improperly nested DOs

END DO SECOND

C.6 Clause 9 notes

C.6.1 External files (9.3)

1 This part of ISO/IEC 1539 accommodates, but does not require, file cataloging. To do this, several concepts are
introduced.

C.6.1.1 File existence (9.3.2)

1 Totally independent of the connection state is the property of existence, this being a file property. The processor
“knows” of a set of files that exist at a given time for a given program. This set would include tapes ready to
read, files in a catalog, a keyboard, a printer, etc. The set may exclude files inaccessible to the program because
of security, because they are already in use by another program, etc. This part of ISO/IEC 1539 does not specify
which files exist, hence wide latitude is available to a processor to implement security, locks, privilege techniques,
etc. Existence is a convenient concept to designate all of the files that a program can potentially process.

2 All four combinations of connection and existence may occur:
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Connect Exist Examples
Yes Yes A card reader loaded and ready to be read
Yes No A printer before the first line is written
No Yes A file named ’JOAN’ in the catalog
No No A file on a reel of tape, not known to the processor

3 Means are provided to create, delete, connect, and disconnect files.

C.6.1.2 File access (9.3.3)

1 This part of ISO/IEC 1539 does not address problems of security, protection, locking, and many other concepts
that may be part of the concept of “right of access”. Such concepts are considered to be in the province of an
operating system.

2 The OPEN and INQUIRE statements can be extended naturally to consider these things.

3 Possible access methods for a file are: sequential, stream and direct. The processor may implement three different
types of files, each with its own access method. It might also implement one type of file with three different access
methods.

4 Direct access to files is of a simple and commonly available type, that is, fixed-length records. The key is a
positive integer.

C.6.1.3 File connection (9.5)

1 Before any input/output may be performed on a file, it shall be connected to a unit. The unit then serves as a
designator for that file as long as it is connected. To be connected does not imply that “buffers” have or have not
been allocated, that “file-control tables” have or have not been filled, or that any other method of implementation
has been used. Connection means that (barring some other fault) a READ or WRITE statement may be executed
on the unit, hence on the file. Without a connection, a READ or WRITE statement shall not be executed.

C.6.1.4 File names (9.5.6.10)

1 A file may have a name. The form of a file name is not specified. If a system does not have some form of
cataloging or tape labeling for at least some of its files, all file names disappear at the termination of execution.
This is a valid implementation. Nowhere does this part of ISO/IEC 1539 require names to survive for any period
of time longer than the execution time span of a program. Therefore, this part of ISO/IEC 1539 does not impose
cataloging as a prerequisite. The naming feature is intended to allow use of a cataloging system where one exists.

C.6.2 Nonadvancing input/output (9.3.4.2)

1 Data transfer statements affect the positioning of an external file. In Fortran 77, if no error or end-of-file
condition exists, the file is positioned after the record just read or written and that record becomes the preceding
record. This part of ISO/IEC 1539 contains the record positioning ADVANCE= specifier in a data transfer
statement that provides the capability of maintaining a position within the current record from one formatted
data transfer statement to the next data transfer statement. The value NO provides this capability. The value
YES positions the file after the record just read or written. The default is YES.

2 The tab edit descriptor and the slash are still appropriate for use with this type of record access but the tab
cannot reposition before the left tab limit.

3 A BACKSPACE of a file that is positioned within a record causes the specified unit to be positioned before the
current record.

4 If the next I/O operation on a file after a nonadvancing write is a rewind, backspace, end file or close operation,
the file is positioned implicitly after the current record before an ENDFILE record is written to the file, that is,
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a REWIND, BACKSPACE, or ENDFILE statement following a nonadvancing WRITE statement causes the file
to be positioned at the end of the current output record before the endfile record is written to the file.

5 This part of ISO/IEC 1539 provides a SIZE= specifier to be used with nonadvancing data transfer statements.
The variable in the SIZE= specifier is assigned the count of the number of characters that make up the sequence
of values read by the data edit descriptors in the input statement.

6 The count is especially helpful if there is only one list item in the input list because it is the number of characters
that appeared for the item.

7 The EOR= specifier is provided to indicate when an EOR condition is encountered during a nonadvancing data
transfer statement. The EOR condition is not an error condition. If this specifier appears, an input list item that
requires more characters than the record contained is padded with blanks if PAD= ’YES’ is in effect. This means
that the input list item completed successfully. The file is positioned after the current record. If the IOSTAT=
specifier appears, the specified variable is defined with the value of the named constant IOSTAT EOR from the
ISO FORTRAN ENV module and the data transfer statement is terminated. Program execution continues with
the statement specified in the EOR= specifier. The EOR= specifier gives the capability of taking control of
execution when the EOR condition is encountered. The do-variables in io-implied-dos retain their last defined
value and any remaining items in the input-item-list retain their definition status when an EOR condition occurs.
If the SIZE= specifier appears, the specified variable is assigned the number of characters read with the data edit
descriptors during the READ statement.

8 For nonadvancing input, the processor is not required to read partial records. The processor may read the entire
record into an internal buffer and make successive portions of the record available to successive input statements.

9 In an implementation of nonadvancing input/output in which a nonadvancing write to a terminal device causes
immediate display of the output, such a write can be used as a mechanism to output a prompt. In this case, the
statement

10 WRITE (*, FMT=’(A)’, ADVANCE=’NO’) ’CONTINUE?(Y/N): ’

11 would result in the prompt

12 CONTINUE?(Y/N):

13 being displayed with no subsequent line feed.

14 The response, which might be read by a statement of the form

15 READ (*, FMT=’(A)’) ANSWER

16 can then be entered on the same line as the prompt as in

17 CONTINUE?(Y/N): Y

18 This part of ISO/IEC 1539 does not require that an implementation of nonadvancing input/output operate in this
manner. For example, an implementation of nonadvancing output in which the display of the output is deferred
until the current record is complete is also standard-conforming. Such an implementation will not, however, allow
a prompting mechanism of this kind to operate.

C.6.3 OPEN statement (9.5.6)

1 A file may become connected to a unit either by preconnection or by execution of an OPEN statement. Precon-
nection is performed prior to the beginning of execution of a program by means external to Fortran. For example,
it may be done by job control action or by processor-established defaults. Execution of an OPEN statement is
not required in order to access preconnected files (9.5.5).

2 The OPEN statement provides a means to access existing files that are not preconnected. An OPEN statement
may be used in either of two ways: with a file name (open-by-name) and without a file name (open-by-unit). A
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unit is given in either case. Open-by-name connects the specified file to the specified unit. Open-by-unit connects
a processor-dependent default file to the specified unit. (The default file might or might not have a name.)

3 Therefore, there are three ways a file may become connected and hence processed: preconnection, open-by-name,
and open-by-unit. Once a file is connected, there is no means in standard Fortran to determine how it became
connected.

4 An OPEN statement may also be used to create a new file. In fact, any of the foregoing three connection methods
may be performed on a file that does not exist. When a unit is preconnected, writing the first record creates the
file. With the other two methods, execution of the OPEN statement creates the file.

5 When an OPEN statement is executed, the unit specified in the OPEN might or might not already be connected
to a file. If it is already connected to a file (either through preconnection or by a prior OPEN), then omitting
the FILE= specifier in the OPEN statement implies that the file is to remain connected to the unit. Such an
OPEN statement may be used to change the values of the blank interpretation mode, decimal edit mode, pad
mode, input/output rounding mode, delimiter mode, and sign mode.

6 If the value of the ACTION= specifier is WRITE, then READ statements shall not refer to the connection.
ACTION = ’WRITE’ does not restrict positioning by a BACKSPACE statement or positioning specified by
the POSITION= specifier with the value APPEND. However, a BACKSPACE statement or an OPEN statement
containing POSITION = ’APPEND’ may fail if the processor requires reading of the file to achieve the positioning.

7 The following examples illustrate these rules. In the first example, unit 10 is preconnected to a SCRATCH file;
the OPEN statement changes the value of PAD= to YES.

8 CHARACTER (LEN = 20) CH1

WRITE (10, ’(A)’) ’THIS IS RECORD 1’

OPEN (UNIT = 10, STATUS = ’OLD’, PAD = ’YES’)

REWIND 10

READ (10, ’(A20)’) CH1 ! CH1 now has the value

! ’THIS IS RECORD 1 ’

9 In the next example, unit 12 is first connected to a file named FRED, with a status of OLD. The second OPEN
statement then opens unit 12 again, retaining the connection to the file FRED, but changing the value of the
DELIM= specifier to QUOTE.

10 CHARACTER (LEN = 25) CH2, CH3

OPEN (12, FILE = ’FRED’, STATUS = ’OLD’, DELIM = ’NONE’)

CH2 = ’’’THIS STRING HAS QUOTES.’’’

! Quotes in string CH2

WRITE (12, *) CH2 ! Written with no delimiters

OPEN (12, DELIM = ’QUOTE’) ! Now quote is the delimiter

REWIND 12

READ (12, *) CH3 ! CH3 now has the value

! ’THIS STRING HAS QUOTES. ’

11 The next example is invalid because it attempts to change the value of the STATUS= specifier.

12 OPEN (10, FILE = ’FRED’, STATUS = ’OLD’)

WRITE (10, *) A, B, C

OPEN (10, STATUS = ’SCRATCH’) ! Attempts to make FRED

! a SCRATCH file
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13 The previous example could be made valid by closing the unit first, as in the next example.

14 OPEN (10, FILE = ’FRED’, STATUS = ’OLD’)

WRITE (10, *) A, B, C

CLOSE (10)

OPEN (10, STATUS = ’SCRATCH’) ! Opens a different SCRATCH file

C.6.4 Connection properties (9.5.4)

1 When a unit becomes connected to a file, either by execution of an OPEN statement or by preconnection, the
following connection properties, among others, may be established.

(1) An access method, which is sequential, direct, or stream, is established for the connection (9.5.6.3).
(2) A form, which is formatted or unformatted, is established for a connection to a file that exists or

is created by the connection. For a connection that results from execution of an OPEN statement,
a default form (which depends on the access method, as described in 9.3.3) is established if no
form is specified. For a preconnected file that exists, a form is established by preconnection. For a
preconnected file that does not exist, a form may be established, or the establishment of a form may
be delayed until the file is created (for example, by execution of a formatted or unformatted WRITE
statement) (9.5.6.11).

(3) A record length may be established. If the access method is direct, the connection establishes a
record length that specifies the length of each record of the file. An existing file with records that
are not all of equal length shall not be connected for direct access.
If the access method is sequential, records of varying lengths are permitted. In this case, the record
length established specifies the maximum length of a record in the file (9.5.6.15).

2 A processor has wide latitude in adapting these concepts and actions to its own cataloging and job control
conventions. Some processors may require job control action to specify the set of files that exist or that will
be created by a program. Some processors may require no job control action prior to execution. This part of
ISO/IEC 1539 enables processors to perform dynamic open, close, or file creation operations, but it does not
require such capabilities of the processor.

3 The meaning of “open” in contexts other than Fortran may include such things as mounting a tape, console
messages, spooling, label checking, security checking, etc. These actions may occur upon job control action
external to Fortran, upon execution of an OPEN statement, or upon execution of the first read or write of the
file. The OPEN statement describes properties of the connection to the file and might or might not cause physical
activities to take place. It is a place for an implementation to define properties of a file beyond those required in
standard Fortran.

C.6.5 CLOSE statement (9.5.7)

1 Similarly, the actions of dismounting a tape, protection, etc. of a “close” may be implicit at the end of a run. The
CLOSE statement might or might not cause such actions to occur. This is another place to extend file properties
beyond those of standard Fortran. Note, however, that the execution of a CLOSE statement on a unit followed
by an OPEN statement on the same unit to the same file or to a different file is a permissible sequence of events.
The processor shall not deny this sequence solely because the implementation chooses to do the physical act of
closing the file at the termination of execution of the program.

C.6.6 Asynchronous input/output (9.6.2.5)

1 Rather than limit support for asynchronous input/output to what has been traditionally provided by facilities
such as BUFFERIN/BUFFEROUT, this part of ISO/IEC 1539 builds upon existing Fortran syntax. This permits
alternative approaches for implementing asynchronous input/output, and simplifies the task of adapting existing
standard-conforming programs to use asynchronous input/output.
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2 Not all processors actually perform input/output asynchronously, nor will every processor that does be able
to handle data transfer statements with complicated input/output item lists in an asynchronous manner. Such
processors can still be standard-conforming. The documentation for each Fortran processor should describe when,
if ever, input/output is performed asynchronously.

3 This part of ISO/IEC 1539 allows for at least two different conceptual models for asynchronous input/output.

4 Model 1: the processor performs asynchronous input/output when the item list is simple (perhaps one contiguous
named array) and the input/output is unformatted. The implementation cost is reduced, and this is the scenario
most likely to be beneficial on traditional “big-iron” machines.

5 Model 2: The processor is free to do any of the following:

(1) on output, create a buffer inside the input/output library, completely formatted, and then start an
asynchronous write of the buffer, and immediately return to the next statement in the program. The
processor is free to wait for previously issued WRITEs, or not, or

(2) pass the input/output list addresses to another processor/process, which processes the list items
independently of the processor that executes the user’s code. The addresses of the list items must be
computed before the asynchronous READ/WRITE statement completes. There is still an ordering
requirement on list item processing to handle things like READ (...) N,(a(i),i=1,N).

6 This part of ISO/IEC 1539 allows a program to issue a large number of asynchronous input/output requests,
without waiting for any of them to complete, and then wait for any or all of them. It may be impossible, and
undesirable to keep track of each of these input/output requests individually.

7 It is not necessary for all requests to be tracked by the runtime library. If an ID= specifier does not appear in on
a READ or WRITE statement, the runtime is free to forget about this particular request once it has successfully
completed. If it gets an ERR or END condition, the processor is free to report this during any input/output
operation to that unit. If an ID= specifier appears, the processor’s runtime input/output library is required to
keep track of any END or ERR conditions for that particular input/output request. However, if the input/output
request succeeds without any exceptional conditions occurring, then the runtime can forget that ID= value if it
wishes. Typically, a runtime might only keep track of the last request made, or perhaps a very few. Then, when
a user WAITs for a particular request, either the library knows about it (and does the right thing with respect to
error handling, etc.), or will assume it is one of those requests that successfully completed and was forgotten about
(and will just return without signaling any end or error conditions). It is incumbent on the user to pass valid ID=
values. There is no requirement on the processor to detect invalid ID= values. There is of course, a processor
dependent limit on how many outstanding input/output requests that generate an end or error condition can be
handled before the processor runs out of memory to keep track of such conditions. The restrictions on the SIZE=
variables are designed to allow the processor to update such variables at any time (after the request has been
processed, but before the WAIT operation), and then forget about them. That’s why there is no SIZE= specifier
allowed in the various WAIT operations. Only exceptional conditions (errors or ends of files) are expected to be
tracked by individual request by the runtime, and then only if an ID= specifier appears. The END= and EOR=
specifiers have not been added to all statements that can be WAIT operations. Instead, the IOSTAT variable
can be queried after a WAIT operation to handle this situation. This choice was made because we expect the
WAIT statement to be the usual method of waiting for input/output to complete (and WAIT does support the
END= and EOR= specifiers). This particular choice is philosophical, and was not based on significant technical
difficulties.

8 Note that the requirement to set the IOSTAT variable correctly requires an implementation to remember which
input/output requests encountered an EOR condition, so that a subsequent wait operation can return the correct
IOSTAT value. This means there is a processor defined limit on the number of outstanding nonadvancing
input/output requests that encountered an EOR condition (constrained by available memory to keep track of
this information, similar to END/ERR conditions).
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C.7 Clause 10 notes

C.7.1 Number of records (10.4, 10.5, 10.8.2)

1 The number of records read by an explicitly formatted advancing input statement can be determined from the
following rule: a record is read at the beginning of the format scan (even if the input list is empty unless the most
recently previous operation on the unit was not a nonadvancing read operation), at each slash edit descriptor
encountered in the format, and when a format rescan occurs at the end of the format.

2 The number of records written by an explicitly formatted advancing output statement can be determined from
the following rule: a record is written when a slash edit descriptor is encountered in the format, when a format
rescan occurs at the end of the format, and at completion of execution of an advancing output statement (even if
the output list is empty). Thus, the occurrence of n successive slashes between two other edit descriptors causes
n − 1 blank lines if the records are printed. The occurrence of n slashes at the beginning or end of a complete
format specification causes n blank lines if the records are printed. However, a complete format specification
containing n slashes (n > 0) and no other edit descriptors causes n+ 1 blank lines if the records are printed. For
example, the statements

PRINT 3

3 FORMAT (/)

will write two records that cause two blank lines if the records are printed.

C.7.2 List-directed input (10.10.3)

1 The following examples illustrate list-directed input. A blank character is represented by b.

Example 1:

Program:

2 J = 3

READ *, I

READ *, J

Sequential input file:

3 record 1: b1b,4bbbbb

record 2: ,2bbbbbbbb

4 Result: I = 1, J = 3.

5 Explanation: The second READ statement reads the second record. The initial comma in the record designates
a null value; therefore, J is not redefined.

Example 2:

Program:

6 CHARACTER A *8, B *1

READ *, A, B

Sequential input file:

7 record 1: ’bbbbbbbb’
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record 2: ’QXY’b’Z’

8 Result: A = ’bbbbbbbb’, B = ’Q’

9 Explanation: In the first record, the rightmost apostrophe is interpreted as delimiting the constant (it cannot
be the first of a pair of embedded apostrophes representing a single apostrophe because this would involve
the prohibited “splitting” of the pair by the end of a record); therefore, A is assigned the character constant
’bbbbbbbb’. The end of a record acts as a blank, which in this case is a value separator because it occurs between
two constants.

C.8 Clause 11 notes

C.8.1 Main program and block data program unit (11.1, 11.3)

1 The name of the main program or of a block data program unit has no explicit use within the Fortran language.
It is available for documentation and for possible use by a processor.

2 A processor may implement an unnamed main program or unnamed block data program unit by assigning it
a default name. However, this name shall not conflict with any other global name in a standard-conforming
program. This might be done by making the default name one that is not permitted in a standard-conforming
program (for example, by including a character not normally allowed in names) or by providing some external
mechanism such that for any given program the default name can be changed to one that is otherwise unused.

C.8.2 Dependent compilation (11.2)

1 This part of ISO/IEC 1539, like its predecessors, is intended to permit the implementation of conforming pro-
cessors in which a program can be broken into multiple units, each of which can be separately translated in
preparation for execution. Such processors are commonly described as supporting separate compilation. There is
an important difference between the way separate compilation can be implemented under this part of ISO/IEC
1539 and the way it could be implemented under the Fortran 77 International Standard. Under the Fortran
77 standard, any information required to translate a program unit was specified in that program unit. Each
translation was thus totally independent of all others. Under this part of ISO/IEC 1539, a program unit can use
information that was specified in a separate module and thus may be dependent on that module. The implemen-
tation of this dependency in a processor may be that the translation of a program unit may depend on the results
of translating one or more modules. Processors implementing the dependency this way are commonly described
as supporting dependent compilation.

2 The dependencies involved here are new only in the sense that the Fortran processor is now aware of them. The
same information dependencies existed under the Fortran 77 International Standard, but it was the program-
mer’s responsibility to transport the information necessary to resolve them by making redundant specifications of
the information in multiple program units. The availability of separate but dependent compilation offers several
potential advantages over the redundant textual specification of information.

(1) Specifying information at a single place in the program ensures that different program units using that
information are translated consistently. Redundant specification leaves the possibility that different
information can be erroneously be specified. Even if an INCLUDE line is used to ensure that the
text of the specifications is identical in all involved program units, the presence of other specifications
(for example, an IMPLICIT statement) may change the interpretation of that text.

(2) During the revision of a program, it is possible for a processor to assist in determining whether
different program units have been translated using different (incompatible) versions of a module, al-
though there is no requirement that a processor provide such assistance. Inconsistencies in redundant
textual specification of information, on the other hand, tend to be much more difficult to detect.

(3) Putting information in a module provides a way of packaging it. Without modules, redundant spe-
cifications frequently are interleaved with other specifications in a program unit, making convenient
packaging of such information difficult.
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(4) Because a processor may be implemented such that the specifications in a module are translated once
and then repeatedly referenced, there is the potential for greater efficiency than when the processor
translates redundant specifications of information in multiple program units.

3 The exact meaning of the requirement that the public portions of a module be available at the time of reference
is processor dependent. For example, a processor could consider a module to be available only after it has been
compiled and require that if the module has been compiled separately, the result of that compilation shall be
identified to the compiler when compiling program units that use it.

C.8.2.1 USE statement and dependent compilation (11.2.2)

1 Another benefit of the USE statement is its enhanced facilities for name management. If one needs to use only
selected entities in a module, one can do so without having to worry about the names of all the other entities
in that module. If one needs to use two different modules that happen to contain entities with the same name,
there are several ways to deal with the conflict. If none of the entities with the same name are to be used, they
can simply be ignored. If the name happens to refer to the same entity in both modules (for example, if both
modules obtained it from a third module), then there is no confusion about what the name denotes and the name
can be freely used. If the entities are different and one or both is to be used, the local renaming facility in the
USE statement makes it possible to give those entities different names in the program unit containing the USE
statements.

2 A benefit of using the ONLY option consistently, as compared to USE without it, is that the module from which
each accessed entity is accessed is explicitly specified in each program unit. This means that one need not search
other program units to find where each one is defined. This reduces maintenance costs.

3 A typical implementation of dependent but separate compilation may involve storing the result of translating a
module in a file whose name is derived from the name of the module. Note, however, that the name of a module
is limited only by the Fortran rules and not by the names allowed in the file system. Thus the processor may
have to provide a mapping between Fortran names and file system names.

4 The result of translating a module could reasonably either contain only the information textually specified in the
module (with “pointers” to information originally textually specified in other modules) or contain all information
specified in the module (including copies of information originally specified in other modules). Although the former
approach would appear to save on storage space, the latter approach can greatly simplify the logic necessary to
process a USE statement and can avoid the necessity of imposing a limit on the logical “nesting” of modules via
the USE statement.

5 There is an increased potential for undetected errors in a scoping unit that uses both implicit typing and the
USE statement. For example, in the program fragment

SUBROUTINE SUB

USE MY_MODULE

IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)

X = F (B)

A = G (X) + H (X + 1)

END SUBROUTINE SUB

X could be either an implicitly typed real variable or a variable obtained from the module MY MODULE and
might change from one to the other because of changes in MY MODULE unrelated to the action performed by
SUB. Logic errors resulting from this kind of situation can be extremely difficult to locate. Thus, the use of these
features together is discouraged.

C.8.2.2 Accessibility attributes (5.3.2)

1 The PUBLIC and PRIVATE attributes, which can be declared only in modules, divide the entities in a module
into those that are actually relevant to a scoping unit referencing the module and those that are not. This
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information may be used to improve the performance of a Fortran processor. For example, it may be possible
to discard much of the information about the private entities once a module has been translated, thus saving on
both storage and the time to search it. Similarly, it may be possible to recognize that two versions of a module
differ only in the private entities they contain and avoid retranslating program units that use that module when
switching from one version of the module to the other.

C.8.3 Examples of the use of modules (11.2.1)

C.8.3.1 Identical common blocks (11.2.1)

1 A common block and all its associated specification statements may be placed in a module named, for example,
MY COMMON and accessed by a USE statement of the form

USE MY_COMMON

that accesses the whole module without any renaming. This ensures that all instances of the common block are
identical. Module MY COMMON could contain more than one common block.

C.8.3.2 Global data (11.2.1)

1 A module may contain only data objects, for example:

MODULE DATA_MODULE

SAVE

REAL A (10), B, C (20,20)

INTEGER :: I=0

INTEGER, PARAMETER :: J=10

COMPLEX D (J,J)

END MODULE DATA_MODULE

2 Data objects made global in this manner may have any combination of data types.

3 Access to some of these may be made by a USE statement with the ONLY option, such as:

USE DATA_MODULE, ONLY: A, B, D

and access to all of them may be made by the following USE statement:

USE DATA_MODULE

4 Access to all of them with some renaming to avoid name conflicts may be made by:

USE DATA_MODULE, AMODULE => A, DMODULE => D

C.8.3.3 Derived types (11.2.1)

1 A derived type may be defined in a module and accessed in a number of program units. For example,

MODULE SPARSE

TYPE NONZERO

REAL A

INTEGER I, J

END TYPE NONZERO

END MODULE SPARSE

defines a type consisting of a real component and two integer components for holding the numerical value of a
nonzero matrix element and its row and column indices.
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C.8.3.4 Global allocatable arrays (11.2.1)

1 Many programs need large global allocatable arrays whose sizes are not known before program execution. A
simple form for such a program is:

PROGRAM GLOBAL_WORK

CALL CONFIGURE_ARRAYS ! Perform the appropriate allocations

CALL COMPUTE ! Use the arrays in computations

END PROGRAM GLOBAL_WORK

MODULE WORK_ARRAYS ! An example set of work arrays

INTEGER N

REAL, ALLOCATABLE :: A (:), B (:, :), C (:, :, :)

END MODULE WORK_ARRAYS

SUBROUTINE CONFIGURE_ARRAYS ! Process to set up work arrays

USE WORK_ARRAYS

READ (*, *) N

ALLOCATE (A (N), B (N, N), C (N, N, 2 * N))

END SUBROUTINE CONFIGURE_ARRAYS

SUBROUTINE COMPUTE

USE WORK_ARRAYS

... ! Computations involving arrays A, B, and C

END SUBROUTINE COMPUTE

2 Typically, many subprograms need access to the work arrays, and all such subprograms would contain the
statement

USE WORK_ARRAYS

C.8.3.5 Procedure libraries (11.2.2)

1 Interface bodies for external procedures in a library may be gathered into a module. An interface body specifies
an explicit (12.4.2.2).

2 An example is the following library module:

MODULE LIBRARY_LLS

INTERFACE

SUBROUTINE LLS (X, A, F, FLAG)

REAL X (:, :)

! The SIZE in the next statement is an intrinsic function

REAL, DIMENSION (SIZE (X, 2)) :: A, F

INTEGER FLAG

END SUBROUTINE LLS

...

END INTERFACE

...

END MODULE LIBRARY_LLS

3 This module allows the subroutine LLS to be invoked:
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USE LIBRARY_LLS

...

CALL LLS (X = ABC, A = D, F = XX, FLAG = IFLAG)

...

4 Because dummy argument names in an interface body for an external procedure are not required to be the same
as in the procedure definition, different versions may be constructed for different applications using argument
keywords appropriate to each application.

C.8.3.6 Operator extensions (11.2.2)

1 In order to extend an intrinsic operator symbol to have an additional meaning, an interface block specifying that
operator symbol in the OPERATOR option of the INTERFACE statement may be placed in a module.

2 For example, // may be extended to perform concatenation of two derived-type objects serving as varying length
character strings and + may be extended to specify matrix addition for type MATRIX or interval arithmetic
addition for type INTERVAL.

3 A module might contain several such interface blocks. An operator may be defined by an external function (either
in Fortran or some other language) and its procedure interface placed in the module.

C.8.3.7 Data abstraction (11.2.2)

1 In addition to providing a portable means of avoiding the redundant specification of information in multiple
program units, a module provides a convenient means of “packaging” related entities, such as the definitions of
the representation and operations of an abstract data type. The following example of a module defines a data
abstraction for a SET type where the elements of each set are of type integer. The usual set operations of UNION,
INTERSECTION, and DIFFERENCE are provided. The CARDINALITY function returns the cardinality of
(number of elements in) its set argument. Two functions returning logical values are included, ELEMENT and
SUBSET. ELEMENT defines the operator .IN. and SUBSET extends the operator <=. ELEMENT determines
if a given scalar integer value is an element of a given set, and SUBSET determines if a given set is a subset of
another given set. (Two sets may be checked for equality by comparing cardinality and checking that one is a
subset of the other, or checking to see if each is a subset of the other.)

2 The transfer function SETF converts a vector of integer values to the corresponding set, with duplicate values
removed. Thus, a vector of constant values can be used as set constants. An inverse transfer function VECTOR
returns the elements of a set as a vector of values in ascending order. In this SET implementation, set data
objects have a maximum cardinality of 200.

3 MODULE INTEGER_SETS

! This module is intended to illustrate use of the module facility

! to define a new type, along with suitable operators.

INTEGER, PARAMETER :: MAX_SET_CARD = 200

TYPE SET ! Define SET type

PRIVATE

INTEGER CARD

INTEGER ELEMENT (MAX_SET_CARD)

END TYPE SET

INTERFACE OPERATOR (.IN.)

MODULE PROCEDURE ELEMENT
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END INTERFACE OPERATOR (.IN.)

INTERFACE OPERATOR (<=)

MODULE PROCEDURE SUBSET

END INTERFACE OPERATOR (<=)

INTERFACE OPERATOR (+)

MODULE PROCEDURE UNION

END INTERFACE OPERATOR (+)

INTERFACE OPERATOR (-)

MODULE PROCEDURE DIFFERENCE

END INTERFACE OPERATOR (-)

INTERFACE OPERATOR (*)

MODULE PROCEDURE INTERSECTION

END INTERFACE OPERATOR (*)

CONTAINS

INTEGER FUNCTION CARDINALITY (A) ! Returns cardinality of set A

TYPE (SET), INTENT (IN) :: A

CARDINALITY = A % CARD

END FUNCTION CARDINALITY

LOGICAL FUNCTION ELEMENT (X, A) ! Determines if

INTEGER, INTENT(IN) :: X ! element X is in set A

TYPE (SET), INTENT(IN) :: A

ELEMENT = ANY (A % ELEMENT (1 : A % CARD) == X)

END FUNCTION ELEMENT

FUNCTION UNION (A, B) ! Union of sets A and B

TYPE (SET) UNION

TYPE (SET), INTENT(IN) :: A, B

INTEGER J

UNION = A

DO J = 1, B % CARD

IF (.NOT. (B % ELEMENT (J) .IN. A)) THEN

IF (UNION % CARD < MAX_SET_CARD) THEN

UNION % CARD = UNION % CARD + 1

UNION % ELEMENT (UNION % CARD) = B % ELEMENT (J)

ELSE

! Maximum set size exceeded . . .

END IF

END IF

END DO
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END FUNCTION UNION

FUNCTION DIFFERENCE (A, B) ! Difference of sets A and B

TYPE (SET) DIFFERENCE

TYPE (SET), INTENT(IN) :: A, B

INTEGER J, X

DIFFERENCE % CARD = 0 ! The empty set

DO J = 1, A % CARD

X = A % ELEMENT (J)

IF (.NOT. (X .IN. B)) DIFFERENCE = DIFFERENCE + SET (1, X)

END DO

END FUNCTION DIFFERENCE

FUNCTION INTERSECTION (A, B) ! Intersection of sets A and B

TYPE (SET) INTERSECTION

TYPE (SET), INTENT(IN) :: A, B

INTERSECTION = A - (A - B)

END FUNCTION INTERSECTION

LOGICAL FUNCTION SUBSET (A, B) ! Determines if set A is

TYPE (SET), INTENT(IN) :: A, B ! a subset of set B

INTEGER I

SUBSET = A % CARD <= B % CARD

IF (.NOT. SUBSET) RETURN ! For efficiency

DO I = 1, A % CARD

SUBSET = SUBSET .AND. (A % ELEMENT (I) .IN. B)

END DO

END FUNCTION SUBSET

TYPE (SET) FUNCTION SETF (V) ! Transfer function between a vector

INTEGER V (:) ! of elements and a set of elements

INTEGER J ! removing duplicate elements

SETF % CARD = 0

DO J = 1, SIZE (V)

IF (.NOT. (V (J) .IN. SETF)) THEN

IF (SETF % CARD < MAX_SET_CARD) THEN

SETF % CARD = SETF % CARD + 1

SETF % ELEMENT (SETF % CARD) = V (J)

ELSE

! Maximum set size exceeded . . .

END IF

END IF

END DO

END FUNCTION SETF

FUNCTION VECTOR (A) ! Transfer the values of set A
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TYPE (SET), INTENT (IN) :: A ! into a vector in ascending order

INTEGER, POINTER :: VECTOR (:)

INTEGER I, J, K

ALLOCATE (VECTOR (A % CARD))

VECTOR = A % ELEMENT (1 : A % CARD)

DO I = 1, A % CARD - 1 ! Use a better sort if

DO J = I + 1, A % CARD ! A % CARD is large

IF (VECTOR (I) > VECTOR (J)) THEN

K = VECTOR (J); VECTOR (J) = VECTOR (I); VECTOR (I) = K

END IF

END DO

END DO

END FUNCTION VECTOR

END MODULE INTEGER_SETS

4 Examples of using INTEGER SETS (A, B, and C are variables of type SET; X is an integer variable):

5 ! Check to see if A has more than 10 elements

IF (CARDINALITY (A) > 10) ...

! Check for X an element of A but not of B

IF (X .IN. (A - B)) ...

! C is the union of A and the result of B intersected

! with the integers 1 to 100

C = A + B * SETF ([(I, I = 1, 100)])

! Does A have any even numbers in the range 1:100?

IF (CARDINALITY (A * SETF ([(I, I = 2, 100, 2)])) > 0) ...

PRINT *, VECTOR (B) ! Print out the elements of set B, in ascending order

C.8.3.8 Public entities renamed (11.2.2)

1 At times it may be necessary to rename entities that are accessed with USE statements. Care should be taken if
the referenced modules also contain USE statements.

2 The following example illustrates renaming features of the USE statement.

3 MODULE J; REAL JX, JY, JZ; END MODULE J

MODULE K

USE J, ONLY : KX => JX, KY => JY

! KX and KY are local names to module K

REAL KZ ! KZ is local name to module K

REAL JZ ! JZ is local name to module K

END MODULE K

PROGRAM RENAME
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USE J; USE K

! Module J’s entity JX is accessible under names JX and KX

! Module J’s entity JY is accessible under names JY and KY

! Module K’s entity KZ is accessible under name KZ

! Module J’s entity JZ and K’s entity JZ are different entities

! and shall not be referenced

...

END PROGRAM RENAME

C.8.4 Modules with submodules (11.2.3)

1 Each submodule specifies that it is the child of exactly one parent module or submodule. Therefore, a module
and all of its descendant submodules stand in a tree-like relationship one to another.

2 A separate module procedure that is declared in a module to have public accessibility can be accessed by use
association even if it is defined in a submodule. No other entity in a submodule can be accessed by use association.
Each program unit that references a module by use association depends on it, and each submodule depends on
its ancestor module. Therefore, if one changes a separate module procedure body in a submodule but does not
change its corresponding module procedure interface, a tool for automatic program translation would not need
to reprocess program units that reference the module by use association. This is so even if the tool exploits the
relative modification times of files as opposed to comparing the result of translating the module to the result of
a previous translation.

3 By constructing taller trees, one can put entities at intermediate levels that are shared by submodules at lower
levels; changing these entities cannot change the interpretation of anything that is accessible from the module
by use association. Developers of modules that embody large complicated concepts can exploit this possibility
to organize components of the concept into submodules, while preserving the privacy of entities that are shared
by the submodules and that ought not to be exposed to users of the module. Putting these shared entities at an
intermediate level also prevents cascades of reprocessing and testing if some of them are changed.

4 The following example illustrates a module, color_points, with a submodule, color_points_a, that in turn has
a submodule, color_points_b. Public entities declared within color_points can be accessed by use association.
The submodules color_points_a and color_points_b can be changed without causing retranslation of program
units that reference the module color_points.

5 The module color_points does not have a module-subprogram-part , but a module-subprogram-part is not prohi-
bited. The module could be published as definitive specification of the interface, without revealing trade secrets
contained within color_points_a or color_points_b. Of course, a similar module without the module prefix in
the interface bodies would serve equally well as documentation – but the procedures would be external procedures.
It would make little difference to the consumer, but the developer would forfeit all of the advantages of modules.

6 module color_points

type color_point

private

real :: x, y

integer :: color

end type color_point

interface ! Interfaces for procedures with separate

! bodies in the submodule color_points_a

module subroutine color_point_del ( p ) ! Destroy a color_point object
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type(color_point), allocatable :: p

end subroutine color_point_del

! Distance between two color_point objects

real module function color_point_dist ( a, b )

type(color_point), intent(in) :: a, b

end function color_point_dist

module subroutine color_point_draw ( p ) ! Draw a color_point object

type(color_point), intent(in) :: p

end subroutine color_point_draw

module subroutine color_point_new ( p ) ! Create a color_point object

type(color_point), allocatable :: p

end subroutine color_point_new

end interface

end module color_points

7 The only entities within color_points_a that can be accessed by use association are the separate module
procedures that were declared in color_points. If the procedures are changed but their interfaces are not, the
interface from program units that access them by use association is unchanged. If the module and submodule are
in separate files, utilities that examine the time of modification of a file would notice that changes in the module
could affect the translation of its submodules or of program units that reference the module by use association,
but that changes in submodules could not affect the translation of the parent module or program units that
reference it by use association.

8 The variable instance_count in the following example is not accessible by use association of color_points, but
is accessible within color_points_a, and its submodules.

9 submodule ( color_points ) color_points_a ! Submodule of color_points

integer :: instance_count = 0

interface ! Interface for a procedure with a separate

! body in submodule color_points_b

module subroutine inquire_palette ( pt, pal )

use palette_stuff ! palette_stuff, especially submodules

! thereof, can reference color_points by use

! association without causing a circular

! dependence during translation because this

! use is not in the module. Furthermore,

! changes in the module palette_stuff do not

! affect the translation of color_points.

type(color_point), intent(in) :: pt

type(palette), intent(out) :: pal

end subroutine inquire_palette

end interface

contains ! Invisible bodies for public separate module procedures

! declared in the module
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module subroutine color_point_del ( p )

type(color_point), allocatable :: p

instance_count = instance_count - 1

deallocate ( p )

end subroutine color_point_del

real module function color_point_dist ( a, b ) result ( dist )

type(color_point), intent(in) :: a, b

dist = sqrt( (b%x - a%x)**2 + (b%y - a%y)**2 )

end function color_point_dist

module subroutine color_point_new ( p )

type(color_point), allocatable :: p

instance_count = instance_count + 1

allocate ( p )

end subroutine color_point_new

end submodule color_points_a

10 The subroutine inquire_palette is accessible within color_points_a because its interface is declared therein.
It is not, however, accessible by use association, because its interface is not declared in the module, color_points.
Since the interface is not declared in the module, changes in the interface cannot affect the translation of program
units that reference the module by use association.

11 module palette_stuff

type :: palette ; ... ; end type palette

contains

subroutine test_palette ( p )

! Draw a color wheel using procedures from the color_points module

use color_points ! This does not cause a circular dependency because

! the "use palette_stuff" that is logically within

! color_points is in the color_points_a submodule.

type(palette), intent(in) :: p

...

end subroutine test_palette

end module palette_stuff

submodule ( color_points:color_points_a ) color_points_b ! Subsidiary**2 submodule

contains

! Invisible body for interface declared in the ancestor module

module subroutine color_point_draw ( p )

use palette_stuff, only: palette

type(color_point), intent(in) :: p

type(palette) :: MyPalette

...; call inquire_palette ( p, MyPalette ); ...

end subroutine color_point_draw
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! Invisible body for interface declared in the parent submodule

module procedure inquire_palette

... implementation of inquire_palette

end procedure inquire_palette

subroutine private_stuff ! not accessible from color_points_a

...

end subroutine private_stuff

end submodule color_points_b

12 There is a use palette_stuff in color_points_a, and a use color_points in palette_stuff. The use
palette_stuff would cause a circular reference if it appeared in color_points. In this case, it does not cause
a circular dependence because it is in a submodule. Submodules cannot be referenced by use association, and
therefore what would be a circular appearance of use palette_stuff is not accessed.

13 program main

use color_points

! "instance_count" and "inquire_palette" are not accessible here

! because they are not declared in the "color_points" module.

! "color_points_a" and "color_points_b" cannot be referenced by

! use association.

interface draw ! just to demonstrate it’s possible

module procedure color_point_draw

end interface

type(color_point) :: C_1, C_2

real :: RC

...

call color_point_new (c_1) ! body in color_points_a, interface in color_points

...

call draw (c_1) ! body in color_points_b, specific interface

! in color_points, generic interface here.

...

rc = color_point_dist (c_1, c_2) ! body in color_points_a, interface in color_points

...

call color_point_del (c_1) ! body in color_points_a, interface in color_points

...

end program main

14 A multilevel submodule system can be used to package and organize a large and interconnected concept without
exposing entities of one subsystem to other subsystems.

15 Consider a Plasma module from a Tokomak simulator. A plasma simulation requires attention at least to fluid
flow, thermodynamics, and electromagnetism. Fluid flow simulation requires simulation of subsonic, supersonic,
and hypersonic flow. This problem decomposition can be reflected in the submodule structure of the Plasma
module:

16 Plasma module

|

|---------------------|---------------------|

| | |
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Flow submodule Thermal submodule Electromagnetics

| Submodule

|-------------------|-------------------|

| | |

Subsonic Supersonic Hypersonic

17 Entities can be shared among the Subsonic, Supersonic, and Hypersonic submodules by putting them within
the Flow submodule. One then need not worry about accidental use of these entities by use association or by the
Thermal or Electromagnetics submodules, or the development of a dependency of correct operation of those
subsystems upon the representation of entities of the Flow subsystem as a consequence of maintenance. Since
these these entities are not accessible by use association, if any of them are changed, the new values cannot be
accessed in program units that reference the Plasma module by use association; the answer to the question “where
are these entities used” is therefore confined to the set of descendant submodules of the Flow submodule.

C.9 Clause 12 notes

C.9.1 Portability problems with external procedures (12.4.3.5)

1 There is a potential portability problem in a scoping unit that references an external procedure without explicitly
declaring it to have the EXTERNAL attribute (5.3.9). On a different processor, the name of that procedure
may be the name of a nonstandard intrinsic procedure and the processor would be permitted to interpret those
procedure references as references to that intrinsic procedure. (On that processor, the program would also be
viewed as not conforming to this part of ISO/IEC 1539 because of the references to the nonstandard intrinsic
procedure.) Declaration of the EXTERNAL attribute causes the references to be to the external procedure
regardless of the availability of an intrinsic procedure with the same name. Note that declaration of the type of
a procedure is not enough to make it external, even if the type is inconsistent with the type of the result of an
intrinsic procedure of the same name.

C.9.2 Procedures defined by means other than Fortran (12.6.3)

1 A processor is not required to provide any means other than Fortran for defining external procedures. Among the
means that might be supported are the machine assembly language, other high level languages, the Fortran lan-
guage extended with nonstandard features, and the Fortran language as supported by another Fortran processor
(for example, a previously existing Fortran 77 processor).

2 Procedures defined by means other than Fortran are considered external procedures because their definitions
are not in a Fortran program unit and because they are referenced using global names. The use of the term
external should not be construed as any kind of restriction on the way in which these procedures may be defined.
For example, if the means other than Fortran has its own facilities for internal and external procedures, it is
permissible to use them. If the means other than Fortran can create an “internal” procedure with a global
name, it is permissible for such an “internal” procedure to be considered by Fortran to be an external procedure.
The means other than Fortran for defining external procedures, including any restrictions on the structure for
organization of those procedures, are not specified by this part of ISO/IEC 1539.

3 A Fortran processor may limit its support of procedures defined by means other than Fortran such that these
procedures may affect entities in the Fortran environment only on the same basis as procedures written in Fortran.
For example, it might prohibit the value of a local variable from being changed by a procedure reference unless
that variable were one of the arguments to the procedure.

C.9.3 Abstract interfaces (12.4) and procedure pointer components (4.5)

1 This is an example of a library module providing lists of callbacks that the user may register and invoke.
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2 MODULE callback_list_module

!

! Type for users to extend with their own data, if they so desire

!

TYPE callback_data

END TYPE

!

! Abstract interface for the callback procedures

!

ABSTRACT INTERFACE

SUBROUTINE callback_procedure(data)

IMPORT callback_data

CLASS(callback_data),OPTIONAL :: data

END SUBROUTINE

END INTERFACE

!

! The callback list type.

!

TYPE callback_list

PRIVATE

CLASS(callback_record),POINTER :: first => NULL()

END TYPE

!

! Internal: each callback registration creates one of these

!

TYPE,PRIVATE :: callback_record

PROCEDURE(callback_procedure),POINTER,NOPASS :: proc

CLASS(callback_record),POINTER :: next

CLASS(callback_data),POINTER :: data => NULL();

END TYPE

PRIVATE invoke,forward_invoke

CONTAINS

!

! Register a callback procedure with optional data

!

SUBROUTINE register_callback(list, entry, data)

TYPE(callback_list),INTENT(INOUT) :: list

PROCEDURE(callback_procedure) :: entry

CLASS(callback_data),OPTIONAL :: data

TYPE(callback_record),POINTER :: new,last

ALLOCATE(new)

new%proc => entry

IF (PRESENT(data)) ALLOCATE(new%data,SOURCE=data)

new%next => list%first

list%first => new

END SUBROUTINE
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!

! Internal: Invoke a single callback and destroy its record

!

SUBROUTINE invoke(callback)

TYPE(callback_record),POINTER :: callback

IF (ASSOCIATED(callback%data) THEN

CALL callback%proc(list%first%data)

DEALLOCATE(callback%data)

ELSE

CALL callback%proc

END IF

DEALLOCATE(callback)

END SUBROUTINE

!

! Call the procedures in reverse order of registration

!

SUBROUTINE invoke_callback_reverse(list)

TYPE(callback_list),INTENT(INOUT) :: list

TYPE(callback_record),POINTER :: next,current

current => list%first

NULLIFY(list%first)

DO WHILE (ASSOCIATED(current))

next => current%next

CALL invoke(current)

current => next

END DO

END SUBROUTINE

!

! Internal: Forward mode invocation

!

RECURSIVE SUBROUTINE forward_invoke(callback)

IF (ASSOCIATED(callback%next)) CALL forward_invoke(callback%next)

CALL invoke(callback)

END SUBROUTINE

!

! Call the procedures in forward order of registration

!

SUBROUTINE invoke_callback_forward(list)

TYPE(callback_list),INTENT(INOUT) :: list

IF (ASSOCIATED(list%first)) CALL forward_invoke(list%first)

END SUBROUTINE

END

C.9.4 Pointers and targets as arguments (12.5.2.4, 12.5.2.6, 12.5.2.7)

1 If a dummy argument is declared to be a pointer the corresponding actual argument may be a pointer, or may be
a nonpointer variable. In either case, the characteristics of both arguments shall agree. Consider the two cases
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separately.
Case (i): The actual argument is a pointer. When procedure execution commences the pointer association

status of the dummy argument becomes the same as that of the actual argument. If the pointer
association status of the dummy argument is changed, the pointer association status of the actual
argument changes in the same way.

Case (ii): The actual argument is not a pointer. The actual argument shall have the TARGET attribute
and the dummy argument shall have the INTENT (IN) attribute. The dummy argument becomes
pointer associated with the actual argument.

2 When execution of a procedure completes, any pointer that remains defined and that is associated with a dummy
argument that has the TARGET attribute and is either a scalar or an assumed-shape array, remains associated
with the corresponding actual argument if the actual argument has the TARGET attribute and is not an array
section with a vector subscript.

3 REAL, POINTER :: PBEST

REAL, TARGET :: B (10000)

CALL BEST (PBEST, B) ! Upon return PBEST is associated

... ! with the ‘‘best’’ element of B

CONTAINS

SUBROUTINE BEST (P, A)

REAL, POINTER, INTENT (OUT) :: P

REAL, TARGET, INTENT (IN) :: A (:)

... ! Find the ‘‘best’’ element A(I)

P => A (I)

RETURN

END SUBROUTINE BEST

END

4 When procedure BEST completes, the pointer PBEST is associated with an element of B.

5 An actual argument without the TARGET attribute can become associated with a dummy argument with the
TARGET attribute. This permits pointers to become associated with the dummy argument during execution of
the procedure that contains the dummy argument. For example:

6 INTEGER LARGE(100,100)

CALL SUB (LARGE)

...

CALL SUB ()

CONTAINS

SUBROUTINE SUB(ARG)

INTEGER, TARGET, OPTIONAL :: ARG(100,100)

INTEGER, POINTER, DIMENSION(:,:) :: PARG

IF (PRESENT(ARG)) THEN

PARG => ARG

ELSE

ALLOCATE (PARG(100,100))

PARG = 0

ENDIF

... ! Code with lots of references to PARG
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IF (.NOT. PRESENT(ARG)) DEALLOCATE(PARG)

END SUBROUTINE SUB

END

7 Within subroutine SUB the pointer PARG is either associated with the dummy argument ARG or it is associated
with an allocated target. The bulk of the code can reference PARG without further calls to the intrinsic function
PRESENT.

8 If a nonpointer dummy argument has the TARGET attribute and the corresponding actual argument does not,
any pointers that become associated with the dummy argument, and therefore with the actual argument, during
execution of the procedure, become undefined when execution of the procedure completes.

C.9.5 Polymorphic Argument Association (12.5.2.9)

1 The following example illustrates polymorphic argument association rules using the derived types defined in Note
4.56.

2 TYPE(POINT) :: T2

TYPE(COLOR_POINT) :: T3

CLASS(POINT) :: P2

CLASS(COLOR_POINT) :: P3

! Dummy argument is polymorphic and actual argument is of fixed type

SUBROUTINE SUB2 ( X2 ); CLASS(POINT) :: X2; ...

SUBROUTINE SUB3 ( X3 ); CLASS(COLOR_POINT) :: X3; ...

CALL SUB2 ( T2 ) ! Valid -- The declared type of T2 is the same as the

! declared type of X2.

CALL SUB2 ( T3 ) ! Valid -- The declared type of T3 is extended from

! the declared type of X2.

CALL SUB3 ( T2 ) ! Invalid -- The declared type of T2 is neither the

! same as nor extended from the declared type

! type of X3.

CALL SUB3 ( T3 ) ! Valid -- The declared type of T3 is the same as the

! declared type of X3.

! Actual argument is polymorphic and dummy argument is of fixed type

SUBROUTINE TUB2 ( D2 ); TYPE(POINT) :: D2; ...

SUBROUTINE TUB3 ( D3 ); TYPE(COLOR_POINT) :: D3; ...

CALL TUB2 ( P2 ) ! Valid -- The declared type of P2 is the same as the

! declared type of D2.

CALL TUB2 ( P3 ) ! Invalid -- The declared type of P3 differs from the

! declared type of D2.

CALL TUB2 ( P3%POINT ) ! Valid alternative to the above

CALL TUB3 ( P2 ) ! Invalid -- The declared type of P2 differs from the

! declared type of D3.

SELECT TYPE ( P2 ) ! Valid conditional alternative to the above

CLASS IS ( COLOR_POINT ) ! Works if the dynamic type of P2 is the same

CALL TUB3 ( P2 ) ! as the declared type of D3, or a type

! extended therefrom.
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CLASS DEFAULT

! Cannot work if not.

END SELECT

CALL TUB3 ( P3 ) ! Valid -- The declared type of P3 is the same as the

! declared type of D3.

! Both the actual and dummy arguments are of polymorphic type.

CALL SUB2 ( P2 ) ! Valid -- The declared type of P2 is the same as the

! declared type of X2.

CALL SUB2 ( P3 ) ! Valid -- The declared type of P3 is extended from

! the declared type of X2.

CALL SUB3 ( P2 ) ! Invalid -- The declared type of P2 is neither the

! same as nor extended from the declared

! type of X3.

SELECT TYPE ( P2 ) ! Valid conditional alternative to the above

CLASS IS ( COLOR_POINT ) ! Works if the dynamic type of P2 is the

CALL SUB3 ( P2 ) ! same as the declared type of X3, or a

! type extended therefrom.

CLASS DEFAULT

! Cannot work if not.

END SELECT

CALL SUB3 ( P3 ) ! Valid -- The declared type of P3 is the same as the

! declared type of X3.

C.9.6 Rules ensuring unambiguous generics (12.4.3.4.5)

1 The rules in 12.4.3.4.5 are intended to ensure

• that it is possible to reference each specific procedure or binding in the generic collection,
• that for any valid generic procedure reference, the determination of the specific procedure referenced is

unambiguous, and
• that the determination of the specific procedure or binding referenced can be made before execution of the

program begins (during compilation).

2 Interfaces of specific procedures or bindings are distinguished by fixed properties of their arguments, specifically
type, kind type parameters, rank, and whether the dummy argument has the POINTER or ALLOCATABLE
attribute. A valid reference to one procedure in a generic collection will differ from another because it has an
argument that the other cannot accept, because it is missing an argument that the other requires, or because one
of these fixed properties is different.

3 Although the declared type of a data entity is a fixed property, polymorphic variables allow for a limited degree
of type mismatch between dummy arguments and actual arguments, so the requirement for distinguishing two
dummy arguments is type incompatibility, not merely different types. (This is illustrated in the BAD6 example
later in this note.)

4 That same limited type mismatch means that two dummy arguments that are not type incompatible can be
distinguished on the basis of the values of the kind type parameters they have in common; if one of them has a
kind type parameter that the other does not, that is irrelevant in distinguishing them.

5 Rank is a fixed property, but some forms of array dummy arguments allow rank mismatches when a procedure is
referenced by its specific name. In order to allow rank to always be usable in distinguishing generics, such rank
mismatches are disallowed for those arguments when the procedure is referenced as part of a generic. Additionally,
the fact that elemental procedures can accept array arguments is not taken into account when applying these rules,
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so apparent ambiguity between elemental and nonelemental procedures is possible; in such cases, the reference is
interpreted as being to the nonelemental procedure.

6 For procedures referenced as operators or defined-assignment, syntactically distinguished arguments are mapped
to specific positions in the argument list, so the rule for distinguishing such procedures is that it be possible to
distinguish the arguments at one of the argument positions.

7 For defined input/output procedures, only the dtv argument corresponds to something explicitly written in the
program, so it is the dtv that is required to be distinguished. Because dtv arguments are required to be scalar,
they cannot differ in rank. Thus this rule effectively involves only type and kind type parameters.

8 For generic procedures names, the rules are more complicated because optional arguments may be omitted and
because arguments may be specified either positionally or by name.

9 In the special case of type-bound procedures with passed-object dummy arguments, the passed-object argument
is syntactically distinguished in the reference, so rule (2) in 12.4.3.4.5 can be applied. The type of passed-object
arguments is constrained in ways that prevent passed-object arguments in the same scoping unit from being type
incompatible. Thus this rule effectively involves only kind type parameters and rank.

10 The primary means of distinguishing named generics is rule (3). The most common application of that rule is a
single argument satisfying both (3a) and (3b):

INTERFACE GOOD1

FUNCTION F1A(X)

REAL :: F1A,X

END FUNCTION F1A

FUNCTION F1B(X)

INTEGER :: F1B,X

END FUNCTION F1B

END INTERFACE GOOD1

11 Whether one writes GOOD1(1.0) or GOOD1(X=1.0), the reference is to F1A because F1B would require an integer
argument whereas these references provide the real constant 1.0.

12 This example and those that follow are expressed using interface bodies, with type as the distinguishing property.
This was done to make it easier to write and describe the examples. The principles being illustrated are equally
applicable when the procedures get their explicit interfaces in some other way or when kind type parameters or
rank are the distinguishing property.

13 Another common variant is the argument that satisfies (3a) and (3b) by being required in one specific and
completely missing in the other:

INTERFACE GOOD2

FUNCTION F2A(X)

REAL :: F2A,X

END FUNCTION F2A

FUNCTION F2B(X,Y)

COMPLEX :: F2B

REAL :: X,Y

END FUNCTION F2B

END INTERFACE GOOD2

14 Whether one writes GOOD2(0.0,1.0), GOOD2(0.0,Y=1.0), or GOOD2(Y=1.0,X=0.0), the reference is to F2B,
because F2A has no argument in the second position or with the name Y. This approach is used as an alternative
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to optional arguments when one wants a function to have different result type, kind type parameters, or rank,
depending on whether the argument is present. In many of the intrinsic functions, the DIM argument works this
way.

15 It is possible to construct cases where different arguments are used to distinguish positionally and by name:

INTERFACE GOOD3

SUBROUTINE S3A(W,X,Y,Z)

REAL :: W,Y

INTEGER :: X,Z

END SUBROUTINE S3A

SUBROUTINE S3B(X,W,Z,Y)

REAL :: W,Z

INTEGER :: X,Y

END SUBROUTINE S3B

END INTERFACE GOOD3

16 If one writes GOOD3(1.0,2,3.0,4) to reference S3A, then the third and fourth arguments are consistent with a
reference to S3B, but the first and second are not. If one switches to writing the first two arguments as keyword
arguments in order for them to be consistent with a reference to S3B, the latter two arguments must also be written
as keyword arguments, GOOD3(X=2,W= 1.0,Z=4,Y=3.0), and the named arguments Y and Z are distinguished.

17 The ordering requirement in rule (3) is critical:

INTERFACE BAD4 ! this interface is invalid !

SUBROUTINE S4A(W,X,Y,Z)

REAL :: W,Y

INTEGER :: X,Z

END SUBROUTINE S4A

SUBROUTINE S4B(X,W,Z,Y)

REAL :: X,Y

INTEGER :: W,Z

END SUBROUTINE S4B

END INTERFACE BAD4

18 In this example, the positionally distinguished arguments are Y and Z, and it is W and X that are distinguished by
name. In this order it is possible to write BAD4(1.0,2,Y=3.0,Z=4), which is a valid reference for both S4A and
S4B.

19 Rule (1) can be used to distinguish some cases that are not covered by rule (3):

INTERFACE GOOD5

SUBROUTINE S5A(X)

REAL :: X

END SUBROUTINE S5A

SUBROUTINE S5B(Y,X)

REAL :: Y,X

END SUBROUTINE S5B

END INTERFACE GOOD5

20 In attempting to apply rule (3), position 2 and name Y are distinguished, but they are in the wrong order, just like
the BAD4 example. However, when we try to construct a similarly ambiguous reference, we get GOOD5(1.0,X=2.0),
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which can’t be a reference to S5A because it would be attempting to associate two different actual arguments
with the dummy argument X. Rule (3) catches this case by recognizing that S5B requires two real arguments, and
S5A cannot possibly accept more than one.

21 The application of rule (1) becomes more complicated when extensible types are involved. If FRUIT is an extensible
type, PEAR and APPLE are extensions of FRUIT, and BOSC is an extension of PEAR, then

INTERFACE BAD6 ! this interface is invalid !

SUBROUTINE S6A(X,Y)

CLASS(PEAR) :: X,Y

END SUBROUTINE S6A

SUBROUTINE S6B(X,Y)

CLASS(FRUIT) :: X

CLASS(BOSC) :: Y

END SUBROUTINE S6B

END INTERFACE BAD6

might, at first glance, seem distinguishable this way, but because of the limited type mismatching allowed,
BAD6(A_PEAR,A_BOSC) is a valid reference to both S6A and S6B.

22 It is important to try rule (1) for each type that appears:

INTERFACE GOOD7

SUBROUTINE S7A(X,Y,Z)

CLASS(PEAR) :: X,Y,Z

END SUBROUTINE S7A

SUBROUTINE S7B(X,Z,W)

CLASS(FRUIT) :: X

CLASS(BOSC) :: Z

CLASS(APPLE),OPTIONAL :: W

END SUBROUTINE S7B

END INTERFACE GOOD7

23 Looking at the most general type, S7A has a minimum and maximum of 3 FRUIT arguments, while S7B has a
minimum of 2 and a maximum of three. Looking at the most specific, S7A has a minimum of 0 and a maximum
of 3 BOSC arguments, while S7B has a minimum of 1 and a maximum of 2. However, when we look at the
intermediate, S7A has a minimum and maximum of 3 PEAR arguments, while S7B has a minimum of 1 and a
maximum of 2. Because S7A’s minimum exceeds S7B’s maximum, they can be distinguished.

24 In identifying the minimum number of arguments with a particular set of properties, we exclude optional argu-
ments and test TKR compatibility, so the corresponding actual arguments are required to have those properties.
In identifying the maximum number of arguments with those properties, we include the optional arguments and
test not distinguishable, so we include actual arguments which could have those properties but are not required
to have them.

25 These rules are sufficient to ensure that references to procedures that meet them are unambiguous, but there
remain examples that fail to meet these rules but which can be shown to be unambiguous:

26 INTERFACE BAD8 ! this interface is invalid !

! despite the fact that it is unambiguous !

SUBROUTINE S8A(X,Y,Z)

REAL,OPTIONAL :: X

INTEGER :: Y
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REAL :: Z

END SUBROUTINE S8A

SUBROUTINE S8B(X,Z,Y)

INTEGER,OPTIONAL :: X

INTEGER :: Z

REAL :: Y

END SUBROUTINE S8B

END INTERFACE BAD8

27 This interface fails rule (3) because there are no required arguments that can be distinguished from the positionally
corresponding argument, but in order for the mismatch of the optional arguments not to be relevant, the later
arguments must be specified as keyword arguments, so distinguishing by name does the trick. This interface is
nevertheless invalid so a standard- conforming Fortran processor is not required to do such reasoning. The rules
to cover all cases are too complicated to be useful.

28 The real data objects that would be valid arguments for S9A are entirely disjoint from procedures that are valid
arguments to S9B and S9C, and the procedures that valid arguments for S9B are disjoint from the procedures
that are valid arguments to S9C because the former are required to accept real arguments and the latter inte-
ger arguments. Again, this interface is invalid, so a standard-conforming Fortran processor need not examine
such properties when deciding whether a generic collection is valid. Again, the rules to cover all cases are too
complicated to be useful.

29 If one dummy argument has the POINTER attribute and a corresponding argument in the other interface body
has the ALLOCATABLE attribute the generic interface is not ambiguous. If one dummy argument has either the
POINTER or ALLOCATABLE attribute and a corresponding argument in the other interface body has neither
attribute, the generic interface might be ambiguous.

C.10 Clause 13 notes

C.10.1 Module for THIS IMAGE and IMAGE INDEX

1 The intrinsic procedures THIS IMAGE (COARRAY) and IMAGE INDEX (COARRAY, SUB) cannot be written
in Fortran since COARRAY may be of any type and THIS IMAGE (COARRAY) needs to know the index of the
image on which the code is running.

2 In the following example, the COINDEX function calculates the image index from the cobounds plus a list of
subscripts, and the COSUBSCRIPTS function calculates a set of cosubscripts that specify a given image index.

3 MODULE coindex_module

CONTAINS

INTEGER FUNCTION coindex(lcobound, ucobound, sub)

INTEGER, INTENT(IN) :: lcobound(:), ucobound(:), sub(:)

INTEGER :: i, n

n = SIZE(sub)

coindex = sub(n) - lcobound(n)

DO i = n-1, 1, -1

coindex = coindex*(ucobound(i)-lcobound(i)+1) + sub(i) - lcobound(i)

END DO

coindex = coindex + 1

END FUNCTION coindex
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FUNCTION cosubscripts(lcobound, ucobound, image_number) RESULT(sub)

INTEGER, INTENT(IN) :: lcobound(:), ucobound(:), image_number

INTEGER :: sub(SIZE(lcobound))

INTEGER :: extent, i, m, ml, n

n = SIZE(sub)

m = image_number - 1

DO i = 1, n-1

extent = ucobound(i) - lcobound(i) + 1

ml = m

m = m/extent

sub(i) = ml - m*extent + lcobound(i)

END DO

sub(n) = m + lcobound(n)

END FUNCTION cosubscripts

END MODULE coindex_module

C.11 Clause 15 notes

C.11.1 Runtime environments (15.1)

1 This part of ISO/IEC 1539 allows programs to contain procedures defined by means other than Fortran. That
raises the issues of initialization of and interaction between the runtime environments involved.

2 Implementations are free to solve these issues as they see fit, provided that
• heap allocation/deallocation (e.g., (DE)ALLOCATE in a Fortran subprogram and malloc/free in a C func-

tion) can be performed without interference,
• input/output to and from external files can be performed without interference, as long as procedures defined

by different means do not do input/output with the same external file,
• input/output preconnections exist as required by the respective standards, and
• initialized data is initialized according to the respective standards.

C.11.2 Example of Fortran calling C (15.3)

1 C Function Prototype:

int C_Library_Function(void* sendbuf, int sendcount, int *recvcounts);

2 Fortran Module:

MODULE CLIBFUN_INTERFACE

INTERFACE

INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION (SENDBUF, SENDCOUNT, RECVCOUNTS) &

BIND(C, NAME=’C_Library_Function’)

USE, INTRINSIC :: ISO_C_BINDING

IMPLICIT NONE

TYPE (C_PTR), VALUE :: SENDBUF

INTEGER (C_INT), VALUE :: SENDCOUNT

INTEGER (C_INT) :: RECVCOUNTS(*)

END FUNCTION C_LIBRARY_FUNCTION
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END INTERFACE

END MODULE CLIBFUN_INTERFACE

3 The module CLIBFUN INTERFACE contains the declaration of the Fortran dummy arguments, which corres-
pond to the C formal parameters. The NAME= specifier is used in the BIND attribute in order to handle the
case-sensitive name change between Fortran and C from “c library function” to “C Library Function”.

4 The first C formal parameter is the pointer to void sendbuf, which corresponds to the Fortran dummy argument
SENDBUF, which has the type C PTR and the VALUE attribute.

5 The second C formal parameter is the int sendcount, which corresponds to the Fortran dummy argument
SENDCOUNT, which has the type INTEGER (C INT) and the VALUE attribute.

6 The third C formal parameter is the pointer to int recvcounts, which corresponds to the Fortran dummy
argument RECVCOUNTS, which is an assumed-size array of type INTEGER (C INT).

7 Fortran Calling Sequence:

USE, INTRINSIC :: ISO_C_BINDING, ONLY: C_INT, C_FLOAT, C_LOC

USE CLIBFUN_INTERFACE

...

REAL (C_FLOAT), TARGET :: SEND(100)

INTEGER (C_INT) :: SENDCOUNT, RET

INTEGER (C_INT), ALLOCATABLE :: RECVCOUNTS(:)

...

ALLOCATE( RECVCOUNTS(100) )

...

RET = C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT, RECVCOUNTS)

...

8 The preceding code shows an example of how C Library Function might be referenced in a Fortran program unit.

9 The first Fortran actual argument is a reference to the function C LOC which returns the value of the C address
of its argument, SEND. This value becomes the value of the first formal parameter, the pointer sendbuf, in
C Library Function.

10 The second Fortran actual argument is SENDCOUNT of type INTEGER (C INT). Its value becomes the initial
value of the second formal parameter, the int sendcount, in C Library Function.

11 The third Fortran actual argument is the allocatable array RECVCOUNTS of type INTEGER (C INT). The base
C address of this array becomes the value of the third formal parameter, the pointer recvcounts, in C Library -
Function. Note that interoperability is based on the characteristics of the dummy arguments in the specified
interface and not on those of the actual arguments. Thus, the fact that the actual argument is allocatable is not
relevant here.

C.11.3 Example of C calling Fortran (15.3)

Fortran Code:

1 SUBROUTINE SIMULATION(ALPHA, BETA, GAMMA, DELTA, ARRAYS) BIND(C)

USE, INTRINSIC :: ISO_C_BINDING

IMPLICIT NONE

INTEGER (C_LONG), VALUE :: ALPHA
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REAL (C_DOUBLE), INTENT(INOUT) :: BETA

INTEGER (C_LONG), INTENT(OUT) :: GAMMA

REAL (C_DOUBLE),DIMENSION(*),INTENT(IN) :: DELTA

TYPE, BIND(C) :: PASS

INTEGER (C_INT) :: LENC, LENF

TYPE (C_PTR) :: C, F

END TYPE PASS

TYPE (PASS), INTENT(INOUT) :: ARRAYS

REAL (C_FLOAT), ALLOCATABLE, TARGET, SAVE :: ETA(:)

REAL (C_FLOAT), POINTER :: C_ARRAY(:)

...

! Associate C_ARRAY with an array allocated in C

CALL C_F_POINTER (ARRAYS%C, C_ARRAY, [ARRAYS%LENC])

...

! Allocate an array and make it available in C

ARRAYS%LENF = 100

ALLOCATE (ETA(ARRAYS%LENF))

ARRAYS%F = C_LOC(ETA)

...

END SUBROUTINE SIMULATION

C Struct Declaration:

2 struct pass {
int lenc, lenf;

float *c, *f;

};

C Function Prototype:

3 void simulation(long alpha, double *beta, long *gamma, double delta[],

struct pass *arrays);

C Calling Sequence:

4 simulation(alpha, beta, gamma, delta, arrays);

5 The above-listed Fortran code specifies a subroutine SIMULATION. This subroutine corresponds to the C void
function simulation.

6 The Fortran subroutine references the intrinsic module ISO C BINDING.

7 The first Fortran dummy argument of the subroutine is ALPHA, which has the type INTEGER(C LONG) and
the VALUE attribute. This dummy argument corresponds to the C formal parameter alpha, which is a long.
The C actual argument is also a long.

8 The second Fortran dummy argument of the subroutine is BETA, which has the type REAL(C DOUBLE) and
the INTENT (INOUT) attribute. This dummy argument corresponds to the C formal parameter beta, which is
a pointer to double. An address is passed as the C actual argument.

9 The third Fortran dummy argument of the subroutine is GAMMA, which has the type INTEGER(C LONG)
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and the INTENT (OUT) attribute. This dummy argument corresponds to the C formal parameter gamma, which
is a pointer to long. An address is passed as the C actual argument.

10 The fourth Fortran dummy argument is the assumed-size array DELTA, which has the type REAL (C DOUBLE)
and the INTENT (IN) attribute. This dummy argument corresponds to the C formal parameter delta, which is
a double array. The C actual argument is also a double array.

11 The fifth Fortran dummy argument is ARRAYS, which is a structure for accessing an array allocated in C and
an array allocated in Fortran. The lengths of these arrays are held in the components LENC and LENF; their C
addresses are held in components C and F.

C.11.4 Example of calling C functions with noninteroperable data (15.5)

1 Many Fortran processors support 16-byte real numbers, which might not be supported by the C processor.
Assume a Fortran programmer wants to use a C procedure from a message passing library for an array of these
reals. The C prototype of this procedure is

void ProcessBuffer(void *buffer, int n_bytes);

with the corresponding Fortran interface

USE, INTRINSIC :: ISO_C_BINDING

INTERFACE

SUBROUTINE PROCESS_BUFFER(BUFFER,N_BYTES) BIND(C,NAME="ProcessBuffer")

IMPORT :: C_PTR, C_INT

TYPE(C_PTR), VALUE :: BUFFER ! The ‘‘C address’’ of the array buffer

INTEGER (C_INT), VALUE :: N_BYTES ! Number of bytes in buffer

END SUBROUTINE PROCESS_BUFFER

END INTERFACE

2 This may be done using C LOC if the particular Fortran processor specifies that C LOC returns an appropriate
address:

REAL(R_QUAD), DIMENSION(:), ALLOCATABLE, TARGET :: QUAD_ARRAY

...

CALL PROCESS_BUFFER(C_LOC(QUAD_ARRAY), INT(16*SIZE(QUAD_ARRAY),C_INT))

! One quad real takes 16 bytes on this processor

C.11.5 Example of opaque communication between C and Fortran (15.3)

1 The following example demonstrates how a Fortran processor can make a modern OO random number generator
written in Fortran available to a C program.

2 USE, INTRINSIC :: ISO_C_BINDING

! Assume this code is inside a module

TYPE RANDOM_STREAM

! A (uniform) random number generator (URNG)

CONTAINS

PROCEDURE(RANDOM_UNIFORM), DEFERRED, PASS(STREAM) :: NEXT

! Generates the next number from the stream

END TYPE RANDOM_STREAM
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ABSTRACT INTERFACE

! Abstract interface of Fortran URNG

SUBROUTINE RANDOM_UNIFORM(STREAM, NUMBER)

IMPORT :: RANDOM_STREAM, C_DOUBLE

CLASS(RANDOM_STREAM), INTENT(INOUT) :: STREAM

REAL(C_DOUBLE), INTENT(OUT) :: NUMBER

END SUBROUTINE RANDOM_UNIFORM

END INTERFACE

3 A polymorphic object with declared type RANDOM STREAM is not interoperable with C. However, we can make
such a random number generator available to C by packaging it inside another nonpolymorphic, nonparameterized
derived type:

4 TYPE :: URNG_STATE ! No BIND(C), as this type is not interoperable

CLASS(RANDOM_STREAM), ALLOCATABLE :: STREAM

END TYPE URNG_STATE

5 The following two procedures will enable a C program to use our Fortran uniform random number generator:

6 ! Initialize a uniform random number generator:

SUBROUTINE INITIALIZE_URNG(STATE_HANDLE, METHOD) &

BIND(C, NAME="InitializeURNG")

TYPE(C_PTR), INTENT(OUT) :: STATE_HANDLE

! An opaque handle for the URNG

CHARACTER(C_CHAR), DIMENSION(*), INTENT(IN) :: METHOD

! The algorithm to be used

TYPE(URNG_STATE), POINTER :: STATE

! An actual URNG object

ALLOCATE(STATE)

! There needs to be a corresponding finalization

! procedure to avoid memory leaks, not shown in this example

! Allocate STATE%STREAM with a dynamic type depending on METHOD

...

STATE_HANDLE=C_LOC(STATE)

! Obtain an opaque handle to return to C

END SUBROUTINE INITIALIZE_URNG

! Generate a random number:

SUBROUTINE GENERATE_UNIFORM(STATE_HANDLE, NUMBER) &

BIND(C, NAME="GenerateUniform")

TYPE(C_PTR), INTENT(IN), VALUE :: STATE_HANDLE

! An opaque handle: Obtained via a call to INITIALIZE_URNG

REAL(C_DOUBLE), INTENT(OUT) :: NUMBER

TYPE(URNG_STATE), POINTER :: STATE
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! A pointer to the actual URNG

CALL C_F_POINTER(CPTR=STATE_HANDLE, FPTR=STATE)

! Convert the opaque handle into a usable pointer

CALL STATE%STREAM%NEXT(NUMBER)

! Use the type-bound procedure NEXT to generate NUMBER

END SUBROUTINE GENERATE_UNIFORM

C.12 Clause 16 notes

C.12.1 Examples of host association (16.5.1.4)

1 The first two examples are examples of valid host association. The third example is an example of invalid host
association.

Example 1:

2 PROGRAM A

INTEGER I, J

...

CONTAINS

SUBROUTINE B

INTEGER I ! Declaration of I hides

! program A’s declaration of I

...

I = J ! Use of variable J from program A

! through host association

END SUBROUTINE B

END PROGRAM A

Example 2:

3 PROGRAM A

TYPE T

...

END TYPE T

...

CONTAINS

SUBROUTINE B

IMPLICIT TYPE (T) (C) ! Refers to type T declared below

! in subroutine B, not type T

! declared above in program A

...

TYPE T

...

END TYPE T

...
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END SUBROUTINE B

END PROGRAM A

Example 3:

4 PROGRAM Q

REAL (KIND = 1) :: C

...

CONTAINS

SUBROUTINE R

REAL (KIND = KIND (C)) :: D ! Invalid declaration

! See below

REAL (KIND = 2) :: C

...

END SUBROUTINE R

END PROGRAM Q

5 In the declaration of D in subroutine R, the use of C would refer to the declaration of C in subroutine R, not
program Q. However, it is invalid because the declaration of C is required to occur before it is used in the
declaration of D (7.1.12).

C.13 Array feature notes

C.13.1 Summary of features (2.4.6)

C.13.1.1 Whole array expressions and assignments (7.2.1.2, 7.2.1.3)

1 An important feature is that whole array expressions and assignments are permitted. For example, the statement

A = B + C * SIN (D)

where A, B, C, and D are arrays of the same shape, is permitted. It is interpreted element-by-element; that
is, the sine function is taken on each element of D, each result is multiplied by the corresponding element of C,
added to the corresponding element of B, and assigned to the corresponding element of A. Functions, including
user-written functions, may be arrays and may be generic with scalar versions. All arrays in an expression or
across an assignment shall conform; that is, have exactly the same shape (number of dimensions and extents in
each dimension), but scalars may be included freely and these are interpreted as being broadcast to a conforming
array. Expressions are evaluated before any assignment takes place.

C.13.1.2 Array sections (2.4.6, 6.5.3.3)

1 Whenever whole arrays may be used, it is also possible to use subarrays called “sections”. For example:

A (:, 1:N, 2, 3:1:-1)

consists of a subarray containing the whole of the first dimension, positions 1 to N of the second dimension,
position 2 of the third dimension and positions 1 to 3 in reverse order of the fourth dimension. This is an artificial
example chosen to illustrate the different forms. Of course, a common use may be to select a row or column of
an array, for example:

A (:, J)

C.13 Extended notes 523



JTC 1/SC 22/WG5/N1791 FCD 1539-1 09-007r3:2009/08/25

C.13.1.3 WHERE statement (7.2.3)

1 The WHERE statement applies a conforming logical array as a mask on the individual operations in the expression
and in the assignment. For example:

WHERE (A > 0) B = LOG (A)

takes the logarithm only for positive components of A and makes assignments only in these positions.

2 The WHERE statement also has a block form (WHERE construct).

C.13.1.4 Automatic arrays and allocatable variables (5.2, 5.3.8.4)

1 Two features useful for writing modular software are automatic arrays, created on entry to a subprogram and
destroyed on return, and allocatable variables, including arrays whose rank is fixed but whose actual size and
lifetime is fully under the programmer’s control through explicit ALLOCATE and DEALLOCATE statements.
The declarations

SUBROUTINE X (N, A, B)

REAL WORK (N, N)

REAL, ALLOCATABLE :: HEAP (:, :)

specify an automatic array WORK and an allocatable array HEAP. Note that a stack is an adequate storage
mechanism for the implementation of automatic arrays, but a heap will be needed for some allocatable variables.

C.13.1.5 Array constructors (4.8)

1 Arrays, and in particular array constants, may be constructed with array constructors exemplified by:

[1.0, 3.0, 7.2]

which is a rank-one array of size 3,

[(1.3, 2.7, L = 1, 10), 7.1]

which is a rank-one array of size 21 and contains the pair of real constants 1.3 and 2.7 repeated 10 times followed
by 7.1, and

[(I, I = 1, N)]

which contains the integers 1, 2, ..., N. Only rank-one arrays may be constructed in this way, but higher dimen-
sional arrays may be made from them by means of the intrinsic function RESHAPE.

C.13.2 Examples (6.5)

C.13.2.1 Unconditional array computations (6.5)

1 At the simplest level, statements such as

A = B + C

or

S = SUM (A)

can take the place of entire DO loops. The loops were required to perform array addition or to sum all the
elements of an array.

2 Further examples of unconditional operations on arrays that are simple to write are:
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matrix multiply P = MATMUL (Q, R)
largest array element L = MAXVAL (P)
factorial N F = PRODUCT ([(K, K = 2, N)])

3 The Fourier sum F =
∑N
i=1 ai × cosxi may also be computed without writing a DO loop if one makes use of the

element-by-element definition of array expressions as described in Clause 7. Thus, we can write

F = SUM (A * COS (X))

4 The successive stages of calculation of F would then involve the arrays:

A = [ A (1), ..., A (N) ]
X = [ X (1), ..., X (N) ]

COS (X) = [ COS (X (1)), ..., COS (X (N)) ]
A * COS (X) = [ A (1) * COS (X (1)), ..., A (N) * COS (X (N)) ]

5 The final scalar result is obtained simply by summing the elements of the last of these arrays. Thus, the processor
is dealing with arrays at every step of the calculation.

C.13.2.2 Conditional array computations (7.2.3)

1 Suppose we wish to compute the Fourier sum in the above example, but to include only those terms a(i) cos x(i)
that satisfy the condition that the coefficient a(i) is less than 0.01 in absolute value. More precisely, we are now
interested in evaluating the conditional Fourier sum CF =

∑
|ai|<0.01 ai × cosxi where the index runs from 1 to

N as before.

2 This can be done by using the MASK parameter of the SUM function, which restricts the summation of the
elements of the array A * COS (X) to those elements that correspond to true elements of MASK. Clearly, the
mask required is the logical array expression ABS (A) < 0.01. Note that the stages of evaluation of this expression
are:

A = [ A (1), ..., A (N) ]
ABS (A) = [ ABS (A (1)), ..., ABS (A (N)) ]

ABS (A) < 0.01 = [ ABS (A (1)) < 0.01, ..., ABS (A (N)) < 0.01 ]

3 The conditional Fourier sum we arrive at is

CF = SUM (A * COS (X), MASK = ABS (A) < 0.01)

4 If the mask is all false, the value of CF is zero.

5 The use of a mask to define a subset of an array is crucial to the action of the WHERE statement. Thus for
example, to zero an entire array, we may write simply A = 0; but to set only the negative elements to zero, we
need to write the conditional assignment

WHERE (A < 0) A = 0

6 The WHERE statement complements ordinary array assignment by providing array assignment to any subset of
an array that can be restricted by a logical expression.

7 In the Ising model described below, the WHERE statement predominates in use over the ordinary array assign-
ment statement.
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C.13.2.3 A simple program: the Ising model (6.5, 7.2.3)

C.13.2.3.1 Description of the model

1 The Ising model is a well-known Monte Carlo simulation in 3-dimensional Euclidean space which is useful in
certain physical studies. We will consider in some detail how this might be programmed. The model may be
described in terms of a logical array of shape N by N by N. Each gridpoint is a single logical variable which is to
be interpreted as either an up-spin (true) or a down-spin (false).

2 The Ising model operates by passing through many successive states. The transition to the next state is governed
by a local probabilistic process. At each transition, all gridpoints change state simultaneously. Every spin either
flips to its opposite state or not according to a rule that depends only on the states of its 6 nearest neighbors in the
surrounding grid. The neighbors of gridpoints on the boundary faces of the model cube are defined by assuming
cubic periodicity. In effect, this extends the grid periodically by replicating it in all directions throughout space.

3 The rule states that a spin is flipped to its opposite parity for certain gridpoints where a mere 3 or fewer of the 6
nearest neighbors have the same parity as it does. Also, the flip is executed only with probability P (4), P (5), or
P (6) if as many as 4, 5, or 6 of them have the same parity as it does. (The rule seems to promote neighborhood
alignments that may presumably lead to equilibrium in the long run.)

C.13.2.3.2 Problems to be solved

1 Some of the programming problems that we will need to solve in order to translate the Ising model into Fortran
statements using entire arrays are

(1) counting nearest neighbors that have the same spin,
(2) providing an array function to return an array of random numbers, and
(3) determining which gridpoints are to be flipped.

C.13.2.3.3 Solutions in Fortran

1 The arrays needed are

LOGICAL ISING (N, N, N), FLIPS (N, N, N)

INTEGER ONES (N, N, N), COUNT (N, N, N)

REAL THRESHOLD (N, N, N)

and the array function needed is

FUNCTION RAND (N)

REAL RAND (N, N, N)

2 The transition probabilities are specified in the array

REAL P (6)

3 The first task is to count the number of nearest neighbors of each gridpoint g that have the same spin as g.

4 Assuming that ISING is given to us, the statements

ONES = 0

WHERE (ISING) ONES = 1

make the array ONES into an exact analog of ISING in which 1 stands for an up-spin and 0 for a down-spin.

5 The next array, COUNT, records for every gridpoint of ISING the number of spins to be found among the 6
nearest neighbors of that gridpoint. COUNT is computed by adding together 6 arrays, one for each of the 6

526 Extended notes C.13.2.3



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

relative positions in which a nearest neighbor is found. Each of the 6 arrays is obtained from the ONES array
by shifting the ONES array one place circularly along one of its dimensions. This use of circular shifting imparts
the cubic periodicity.

6 COUNT = CSHIFT (ONES, SHIFT = -1, DIM = 1) &

+ CSHIFT (ONES, SHIFT = 1, DIM = 1) &

+ CSHIFT (ONES, SHIFT = -1, DIM = 2) &

+ CSHIFT (ONES, SHIFT = 1, DIM = 2) &

+ CSHIFT (ONES, SHIFT = -1, DIM = 3) &

+ CSHIFT (ONES, SHIFT = 1, DIM = 3)

7 At this point, COUNT contains the count of nearest neighbor up-spins even at the gridpoints where the Ising
model has a down-spin. It is necessary to count the down spins at the grid points, so COUNT is corrected at the
down (false) points of ISING:

WHERE (.NOT. ISING) COUNT = 6 - COUNT

8 The object now is to use the counts of like-minded nearest neighbors to decide which gridpoints are to be flipped.
This decision is recorded as the true elements of an array FLIPS. The decision to flip is based on the use of
uniformly distributed random numbers from the interval 0 ≤ p < 1. These are provided at each gridpoint by the
array function RAND. The flip occurs at a given point if and only if the random number at that point is less than
a certain threshold value. In particular, making the threshold value equal to 1 at the points where there are 3 or
fewer like-minded nearest neighbors guarantees that a flip occurs at those points (because p is always less than
1). Similarly, the threshold values corresponding to counts of 4, 5, and 6 are assigned P (4), P (5), and P (6) in
order to achieve the desired probabilities of a flip at those points (P (4), P (5), and P (6) are input parameters
in the range 0 to 1).

9 The thresholds are established by the statements:

THRESHOLD = 1.0

WHERE (COUNT == 4) THRESHOLD = P (4)

WHERE (COUNT == 5) THRESHOLD = P (5)

WHERE (COUNT == 6) THRESHOLD = P (6)

and the spins that are to be flipped are located by the statement:

FLIPS = RAND (N) <= THRESHOLD

10 All that remains to complete one transition to the next state of the ISING model is to reverse the spins in ISING
wherever FLIPS is true:

WHERE (FLIPS) ISING = .NOT. ISING

C.13.2.3.4 The complete Fortran subroutine

1 The complete code, enclosed in a subroutine that performs a sequence of transitions, is as follows:

2 SUBROUTINE TRANSITION (N, ISING, ITERATIONS, P)

LOGICAL ISING (N, N, N), FLIPS (N, N, N)

INTEGER ONES (N, N, N), COUNT (N, N, N)

REAL THRESHOLD (N, N, N), P (6)
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DO I = 1, ITERATIONS

ONES = 0

WHERE (ISING) ONES = 1

COUNT = CSHIFT (ONES, -1, 1) + CSHIFT (ONES, 1, 1) &

+ CSHIFT (ONES, -1, 2) + CSHIFT (ONES, 1, 2) &

+ CSHIFT (ONES, -1, 3) + CSHIFT (ONES, 1, 3)

WHERE (.NOT. ISING) COUNT = 6 - COUNT

THRESHOLD = 1.0

WHERE (COUNT == 4) THRESHOLD = P (4)

WHERE (COUNT == 5) THRESHOLD = P (5)

WHERE (COUNT == 6) THRESHOLD = P (6)

FLIPS = RAND (N) <= THRESHOLD

WHERE (FLIPS) ISING = .NOT. ISING

END DO

CONTAINS

FUNCTION RAND (N)

REAL RAND (N, N, N)

CALL RANDOM_NUMBER (HARVEST = RAND)

RETURN

END FUNCTION RAND

END

C.13.2.3.5 Reduction of storage

1 The array ISING could be removed (at some loss of clarity) by representing the model in ONES all the time.
The array FLIPS can be avoided by combining the two statements that use it as:

WHERE (RAND (N) <= THRESHOLD) ISING = .NOT. ISING

but an extra temporary array would probably be needed. Thus, the scope for saving storage while performing
whole array operations is limited. If N is small, this will not matter and the use of whole array operations is
likely to lead to good execution speed. If N is large, storage may be very important and adequate efficiency will
probably be available by performing the operations plane by plane. The resulting code is not as elegant, but all
the arrays except ISING will have size of order N2 instead of N3.

C.13.3 FORmula TRANslation and array processing (6.5)

C.13.3.1 General

1 Many mathematical formulas can be translated directly into Fortran by use of the array processing features.

2 We assume the following array declarations:

REAL X (N), A (M, N)

3 Some examples of mathematical formulas and corresponding Fortran expressions follow.

C.13.3.2 A sum of products (13.7.133, 13.7.161)

1 The expression
∑N
j=1

∏M
i=1 aij can be formed using the Fortran expression
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SUM (PRODUCT (A, DIM=1))

2 The argument DIM=1 means that the product is to be computed down each column of A. If A has the value[
B C D
E F G

]
the result of this expression is BE + CF + DG.

C.13.3.3 A product of sums (13.7.133, 13.7.161)

1 The expression
∏M
i=1

∑N
j=1 aij can be formed using the Fortran expression

PRODUCT (SUM (A, DIM=2))

2 The argument DIM = 2 means that the sum is to be computed along each row of A. If A has the value[
B C D
E F G

]
the result of this expression is (B+C+D)*(E+F+G).

C.13.3.4 Addition of selected elements (13.7.161)

1 The expression
∑
xi>0.0 xi can be formed using the Fortran expression

SUM (X, MASK = X>0.0)

2 The mask locates the positive elements of the array of rank one. If X has the vector value (0.0, −0.1, 0.2, 0.3,
0.2, −0.1, 0.0), the result of this expression is 0.7.

C.13.3.5 Sum of squared residuals (13.7.156, 13.7.161)

1 The expression
∑N
i=1(xi − xmean)2 can be formed using the Fortran statements

XMEAN = SUM (X) / SIZE (X)

SS = SUM ((X - XMEAN) ** 2)

2 Thus, SS is the sum of the squared residuals.

C.13.3.6 Vector norms (13.7.2, 13.7.109, 13.7.124)

1 The L∞-norm of vector X = (X1, . . . ,Xn), defined as the largest of the numbers |X1|, . . . , |Xn|, can be formed
using the Fortran expression MAXVAL (ABS (X)).

2 The L1-norm of vector X, defined as
∑n
i=1 |Xi|, can be formed using the Fortran expression SUM (ABS (X)).

3 The L2-norm of vector X, defined as
√∑n

i=1 |Xi|, can be formed using the Fortran expression NORM2 (X).

C.13.3.7 Matrix norms (13.7.2, 13.7.109, 13.7.124)

1 The infinity-norm of the matrix A =

 a11 . . . a1n

...
...

am1 . . . amn

, defined as

||A||∞ = maxi
n∑
j=1

|aij |

can be formed using the Fortran expression MAXVAL (SUM (ABS (A), DIM = 2)).
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2 The one-norm of the matrix A, defined as

||A||1 = maxj
m∑
i=1

|aij |

can be formed using the Fortran expression MAXVAL (SUM (ABS (A), DIM = 1)).

3 There are several definitions of the two-norm of a matrix. The Frobenius or Euclidean norm of the matrix A,
defined as

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

can be formed by the Fortran expression NORM2 (A).

C.13.4 Logical queries (13.7.10, 13.7.13, 13.7.41, 13.7.109, 13.7.115 13.7.161)

1 The intrinsic functions allow quite complicated questions about tabular data to be answered without use of loops
or conditional constructs. Consider, for example, the questions asked below about a simple tabulation of students’
test scores.

2 Suppose the rectangular table T (M, N) contains the test scores of M students who have taken N different tests.
T is an integer matrix with entries in the range 0 to 100.

3 Example: The scores on 4 tests made by 3 students are held as the table T =

 85 76 90 60
71 45 50 80
66 45 21 55

.

4 Question: What is each student’s top score?

5 Answer: MAXVAL (T, DIM = 2); in the example: [90, 80, 66].

6 Question: What is the average of all the scores?

7 Answer: SUM (T) / SIZE (T); in the example: 62.

8 Question: How many of the scores in the table are above average?

9 Answer: ABOVE = T > SUM (T) / SIZE (T); N = COUNT (ABOVE); in the example: ABOVE is the logical

array (t = true, . = false):

 t t t .
t . . t
t . . .

 and COUNT (ABOVE) is 6.

10 Question: What was the lowest score in the above-average group of scores?

11 Answer: MINVAL (T, MASK = ABOVE), where ABOVE is as defined previously; in the example: 66.

12 Question: Was there a student whose scores were all above average?

13 Answer: With ABOVE as previously defined, the answer is yes or no according as the value of the expression
ANY (ALL (ABOVE, DIM = 2)) is true or false; in the example, the answer is no.

C.13.5 Parallel computations (7.1.2)

1 The most straightforward kind of parallel processing is to do the same thing at the same time to many operands.
Matrix addition is a good example of this very simple form of parallel processing. Thus, the array assignment
A = B + C specifies that corresponding elements of the identically-shaped arrays B and C be added together in
parallel and that the resulting sums be assigned in parallel to the array A.
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2 The process being done in parallel in the example of matrix addition is of course the process of addition; the
array feature that implements matrix addition as a parallel process is the element-by-element evaluation of array
expressions.

3 These observations lead us to look to element-by-element computation as a means of implementing other simple
parallel processing algorithms.

C.13.6 Example of element-by-element computation (6.5.3)

1 Several polynomials of the same degree may be evaluated at the same point by arranging their coefficients as
the rows of a matrix and applying Horner’s method for polynomial evaluation to the columns of the matrix so
formed.

2 The procedure is illustrated by the code to evaluate the three cubic polynomials

P (t) = 1 + 2t− 3t2 + 4t3

Q(t) = 2− 3t+ 4t2 − 5t3

R(t) = 3 + 4t− 5t2 + 6t3

in parallel at the point t = X and to place the resulting vector of numbers [P (X), Q (X), R (X)] in the real array
RESULT (3).

3 The code to compute RESULT is just the one statement

RESULT = M (:, 1) + X * (M (:, 2) + X * (M (:, 3) + X * M (:, 4)))

where M represents the matrix M (3, 4) with value

 1 2 −3 4
2 −3 4 −5
3 4 −5 6

 .
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Annex D
(Informative)

Syntax rules and constraints

D.1 Extract of all syntax rules and constraints

Clause 1:
R101 xyz-list is xyz [ , xyz ] ...
R102 xyz-name is name
R103 scalar-xyz is xyz
C101 (R103) scalar-xyz shall be scalar.

Clause 2:
R201 program is program-unit

[ program-unit ] ...
R202 program-unit is main-program

or external-subprogram
or module
or submodule
or block-data

R203 external-subprogram is function-subprogram
or subroutine-subprogram

R204 specification-part is [ use-stmt ] ...
[ import-stmt ] ...
[ implicit-part ]
[ declaration-construct ] ...

R205 implicit-part is [ implicit-part-stmt ] ...
implicit-stmt

R206 implicit-part-stmt is implicit-stmt
or parameter-stmt
or format-stmt
or entry-stmt

R207 declaration-construct is derived-type-def
or entry-stmt

or enum-def
or format-stmt
or interface-block
or parameter-stmt
or procedure-declaration-stmt
or other-specification-stmt
or type-declaration-stmt
or stmt-function-stmt

R208 execution-part is executable-construct
[ execution-part-construct ] ...

R209 execution-part-construct is executable-construct
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or format-stmt
or entry-stmt

or data-stmt

R210 internal-subprogram-part is contains-stmt
[ internal-subprogram ] ...

R211 internal-subprogram is function-subprogram
or subroutine-subprogram

R212 other-specification-stmt is access-stmt
or allocatable-stmt
or asynchronous-stmt
or bind-stmt
or codimension-stmt
or common-stmt
or data-stmt
or dimension-stmt
or equivalence-stmt
or external-stmt
or intent-stmt
or intrinsic-stmt
or namelist-stmt
or optional-stmt
or pointer-stmt
or protected-stmt
or save-stmt
or target-stmt
or volatile-stmt
or value-stmt

R213 executable-construct is action-stmt
or associate-construct
or block-construct
or case-construct
or critical-construct
or do-construct
or forall-construct
or if-construct
or select-type-construct
or where-construct

R214 action-stmt is allocate-stmt
or allstop-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or end-function-stmt
or end-mp-subprogram-stmt
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or end-program-stmt
or end-subroutine-stmt
or endfile-stmt
or exit-stmt
or flush-stmt
or forall-stmt
or goto-stmt
or if-stmt
or inquire-stmt
or lock-stmt
or nullify-stmt
or open-stmt
or pointer-assignment-stmt
or print-stmt
or read-stmt
or return-stmt
or rewind-stmt
or stop-stmt
or sync-all-stmt
or sync-images-stmt
or sync-memory-stmt
or unlock-stmt
or wait-stmt
or where-stmt
or write-stmt
or arithmetic-if-stmt

or computed-goto-stmt

C201 (R208) An execution-part shall not contain an end-function-stmt , end-mp-subprogram-stmt , end-program-
stmt , or end-subroutine-stmt .

R215 keyword is name

Clause 3:
R301 alphanumeric-character is letter

or digit
or underscore

R302 underscore is
R303 name is letter [ alphanumeric-character ] ...
C301 (R303) The maximum length of a name is 63 characters.
R304 constant is literal-constant

or named-constant
R305 literal-constant is int-literal-constant

or real-literal-constant
or complex-literal-constant
or logical-literal-constant
or char-literal-constant
or boz-literal-constant

R306 named-constant is name
R307 int-constant is constant
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C302 (R307) int-constant shall be of type integer.
R308 char-constant is constant
C303 (R308) char-constant shall be of type character.
R309 intrinsic-operator is power-op

or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R310 defined-operator is defined-unary-op
or defined-binary-op
or extended-intrinsic-op

R311 extended-intrinsic-op is intrinsic-operator
R312 label is digit [ digit [ digit [ digit [ digit ] ] ] ]
C304 (R312) At least one digit in a label shall be nonzero.

Clause 4:
R401 type-param-value is scalar-int-expr

or *
or :

C401 (R401) The type-param-value for a kind type parameter shall be a constant expression.
C402 (R401) A colon shall not be used as a type-param-value except in the declaration of an entity or component

that has the POINTER or ALLOCATABLE attribute.
R402 type-spec is intrinsic-type-spec

or derived-type-spec
C403 (R402) The derived-type-spec shall not specify an abstract type (4.5.7).
R403 declaration-type-spec is intrinsic-type-spec

or TYPE ( intrinsic-type-spec )
or TYPE ( derived-type-spec )
or CLASS ( derived-type-spec )
or CLASS ( * )

C404 (R403) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall be a
specification-expr .

C405 (R403) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify an exten-
sible type (4.5.7).

C406 (R403) TYPE(derived-type-spec) shall not specify an abstract type (4.5.7).
C407 An entity declared with the CLASS keyword shall be a dummy argument or have the ALLOCATABLE

or POINTER attribute.
R404 intrinsic-type-spec is INTEGER [ kind-selector ]

or REAL [ kind-selector ]
or DOUBLE PRECISION
or COMPLEX [ kind-selector ]
or CHARACTER [ char-selector ]
or LOGICAL [ kind-selector ]

R405 kind-selector is ( [ KIND = ] scalar-int-constant-expr )
C408 (R405) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation
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method that exists on the processor.
R406 signed-int-literal-constant is [ sign ] int-literal-constant
R407 int-literal-constant is digit-string [ kind-param ]
R408 kind-param is digit-string

or scalar-int-constant-name
R409 signed-digit-string is [ sign ] digit-string
R410 digit-string is digit [ digit ] ...
R411 sign is +

or –
C409 (R408) A scalar-int-constant-name shall be a named constant of type integer.
C410 (R408) The value of kind-param shall be nonnegative.
C411 (R407) The value of kind-param shall specify a representation method that exists on the processor.
R412 signed-real-literal-constant is [ sign ] real-literal-constant
R413 real-literal-constant is significand [ exponent-letter exponent ] [ kind-param ]

or digit-string exponent-letter exponent [ kind-param ]
R414 significand is digit-string . [ digit-string ]

or . digit-string
R415 exponent-letter is E

or D
R416 exponent is signed-digit-string
C412 (R413) If both kind-param and exponent-letter appear, exponent-letter shall be E.
C413 (R413) The value of kind-param shall specify an approximation method that exists on the processor.
R417 complex-literal-constant is ( real-part , imag-part )
R418 real-part is signed-int-literal-constant

or signed-real-literal-constant
or named-constant

R419 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

C414 (R417) Each named constant in a complex literal constant shall be of type integer or real.
R420 char-selector is length-selector

or ( LEN = type-param-value ,
KIND = scalar-int-constant-expr )

or ( type-param-value ,
[ KIND = ] scalar-int-constant-expr )

or ( KIND = scalar-int-constant-expr
[ , LEN =type-param-value ] )

R421 length-selector is ( [ LEN = ] type-param-value )
or * char-length [ , ]

R422 char-length is ( type-param-value )
or int-literal-constant

C415 (R420) The value of scalar-int-constant-expr shall be nonnegative and shall specify a representation
method that exists on the processor.

C416 (R422) The int-literal-constant shall not include a kind-param.
C417 (R422) A type-param-value in a char-length shall be a colon, asterisk, or specification-expr .
C418 (R420 R421 R422) A type-param-value of * shall be used only

• to declare a dummy argument,

• to declare a named constant,
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• in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument of
type CHARACTER with an assumed character length,

• in the type-spec or derived-type-spec of a type guard statement (8.1.9), or

• in an external function, to declare the character length parameter of the function result.
C419 A function name shall not be declared with an asterisk type-param-value unless it is of type CHARACTER

and is the name of the result of an external function or the name of a dummy function.

C420 A function name declared with an asterisk type-param-value shall not be an array, a pointer, elemental, recursive, or pure.

C421 (R421) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-stmt .

C422 (R421) The optional comma in a length-selector is permitted only if no double-colon separator appears in the type-

declaration-stmt .

C423 (R420) The length specified for a character statement function or for a statement function dummy argument of type

character shall be a constant expression.

R423 char-literal-constant is [ kind-param ] ’ [ rep-char ] ... ’
or [ kind-param ] " [ rep-char ] ... "

C424 (R423) The value of kind-param shall specify a representation method that exists on the processor.
R424 logical-literal-constant is .TRUE. [ kind-param ]

or .FALSE. [ kind-param ]
C425 (R424) The value of kind-param shall specify a representation method that exists on the processor.
R425 derived-type-def is derived-type-stmt

[ type-param-def-stmt ] ...
[ private-or-sequence ] ...
[ component-part ]
[ type-bound-procedure-part ]
end-type-stmt

R426 derived-type-stmt is TYPE [ [ , type-attr-spec-list ] :: ] type-name
[ ( type-param-name-list ) ]

R427 type-attr-spec is ABSTRACT
or access-spec
or BIND (C)
or EXTENDS ( parent-type-name )

C426 (R426) A derived type type-name shall not be DOUBLEPRECISION or the same as the name of any
intrinsic type defined in this part of ISO/IEC 1539.

C427 (R426) The same type-attr-spec shall not appear more than once in a given derived-type-stmt .
C428 (R427) A parent-type-name shall be the name of a previously defined extensible type (4.5.7).
C429 (R425) If the type definition contains or inherits (4.5.7.2) a deferred type-bound procedure (4.5.5), ABS-

TRACT shall appear.
C430 (R425) If ABSTRACT appears, the type shall be extensible.
C431 (R425) If EXTENDS appears, SEQUENCE shall not appear.
C432 (R425) If EXTENDS appears and the type being defined has a coarray ultimate component, its parent

type shall have a coarray ultimate component.
C433 (R425) If EXTENDS appears and the type being defined has an ultimate component of type LOCK -

TYPE from the intrinsic module ISO FORTRAN ENV, its parent type shall have an ultimate component
of type LOCK TYPE.

R428 private-or-sequence is private-components-stmt
or sequence-stmt

C434 (R425) The same private-or-sequence shall not appear more than once in a given derived-type-def .
R429 end-type-stmt is END TYPE [ type-name ]
C435 (R429) If END TYPE is followed by a type-name, the type-name shall be the same as that in the

corresponding derived-type-stmt .
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R430 sequence-stmt is SEQUENCE
C436 (R425) If SEQUENCE appears, each data component shall be declared to be of an intrinsic type or of a

sequence type, and a type-bound-procedure-part shall not appear.
R431 type-param-def-stmt is INTEGER [ kind-selector ] , type-param-attr-spec ::

type-param-decl-list
R432 type-param-decl is type-param-name [ = scalar-int-constant-expr ]
C437 (R431) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the type-param-

names in the derived-type-stmt of that derived-type-def .
C438 (R431) Each type-param-name in the derived-type-stmt in a derived-type-def shall appear as a type-param-

name in a type-param-def-stmt in that derived-type-def .
R433 type-param-attr-spec is KIND

or LEN
R434 component-part is [ component-def-stmt ] ...
R435 component-def-stmt is data-component-def-stmt

or proc-component-def-stmt
R436 data-component-def-stmt is declaration-type-spec [ [ , component-attr-spec-list ] :: ]

component-decl-list
R437 component-attr-spec is access-spec

or ALLOCATABLE
or CODIMENSION lbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION ( component-array-spec )
or POINTER

R438 component-decl is component-name [ ( component-array-spec ) ]
[ lbracket coarray-spec rbracket ]
[ * char-length ] [ component-initialization ]

R439 component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

C439 (R436) No component-attr-spec shall appear more than once in a given component-def-stmt .
C440 (R436) If neither the POINTER nor the ALLOCATABLE attribute is specified, the declaration-type-spec

in the component-def-stmt shall specify an intrinsic type or a previously defined derived type.
C441 (R436) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec shall be

a deferred-shape-spec-list.
C442 (R436) If a coarray-spec appears, it shall be a deferred-coshape-spec-list and the component shall have

the ALLOCATABLE attribute.
C443 (R436) If a coarray-spec appears, the component shall not be of type C PTR or C FUNPTR (15.3.3).
C444 A data component whose type has a coarray ultimate component shall be a nonpointer nonallocatable

scalar and shall not be a coarray.
C445 (R436) If neither the POINTER nor the ALLOCATABLE attribute is specified, each component-array-

spec shall be an explicit-shape-spec-list.
C446 (R439) Each bound in the explicit-shape-spec shall be a specification expression in which there are

no references to specification functions or the intrinsic functions ALLOCATED, ASSOCIATED, EX-
TENDS TYPE OF, PRESENT, or SAME TYPE AS, every specification inquiry reference is a constant
expression, and the value does not depend on the value of a variable.

C447 (R436) A component shall not have both the ALLOCATABLE and POINTER attributes.
C448 (R436) If the CONTIGUOUS attribute is specified, the component shall be an array with the POINTER

attribute.
C449 (R438) The * char-length option is permitted only if the component is of type character.
C450 (R435) Each type-param-value within a component-def-stmt shall be a colon or a specification expression
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in which there are no references to specification functions or the intrinsic functions ALLOCATED, ASSO-
CIATED, EXTENDS TYPE OF, PRESENT, or SAME TYPE AS, every specification inquiry reference
is a constant expression, and the value does not depend on the value of a variable.

R440 proc-component-def-stmt is PROCEDURE ( [ proc-interface ] ) ,
proc-component-attr-spec-list :: proc-decl-list

R441 proc-component-attr-spec is POINTER
or PASS [ (arg-name) ]
or NOPASS
or access-spec

C451 (R440) The same proc-component-attr-spec shall not appear more than once in a given proc-component-
def-stmt .

C452 (R440) POINTER shall appear in each proc-component-attr-spec-list.
C453 (R440) If the procedure pointer component has an implicit interface or has no arguments, NOPASS shall

be specified.
C454 (R440) If PASS (arg-name) appears, the interface of the procedure pointer component shall have a

dummy argument named arg-name.
C455 (R440) PASS and NOPASS shall not both appear in the same proc-component-attr-spec-list.
C456 The passed-object dummy argument shall be a scalar, nonpointer, nonallocatable dummy data object

with the same declared type as the type being defined; all of its length type parameters shall be assumed;
it shall be polymorphic (4.3.1.3) if and only if the type being defined is extensible (4.5.7). It shall not
have the VALUE attribute.

R442 component-initialization is = constant-expr
or => null-init
or => initial-data-target

R443 initial-data-target is designator
C457 (R436) If component-initialization appears, a double-colon separator shall appear before the component-

decl-list.
C458 (R436) If component-initialization appears, every type parameter and array bound of the component

shall be a colon or constant expression.
C459 (R436) If => appears in component-initialization, POINTER shall appear in the component-attr-spec-

list. If = appears in component-initialization, neither POINTER nor ALLOCATABLE shall appear in
the component-attr-spec-list.

C460 (R442) If initial-data-target appears, component-name shall be data-pointer-initialization compatible
with it.

C461 (R443) The designator shall designate a nonallocatable variable that has the TARGET and SAVE attri-
butes and does not have a vector subscript. Every subscript, section subscript, substring starting point,
and substring ending point in designator shall be a constant expression.

R444 private-components-stmt is PRIVATE
C462 (R444) A private-components-stmt is permitted only if the type definition is within the specification part

of a module.
R445 type-bound-procedure-part is contains-stmt

[ binding-private-stmt ]
[ type-bound-proc-binding ] ...

R446 binding-private-stmt is PRIVATE
C463 (R445) A binding-private-stmt is permitted only if the type definition is within the specification part of

a module.
R447 type-bound-proc-binding is type-bound-procedure-stmt

or type-bound-generic-stmt
or final-procedure-stmt

R448 type-bound-procedure-stmt is PROCEDURE [ [ , binding-attr-list ] :: ] type-bound-proc-decl-list
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or PROCEDURE (interface-name), binding-attr-list :: binding-name-list
R449 type-bound-proc-decl is binding-name [ => procedure-name ]
C464 (R448) If => procedure-name appears in a type-bound-proc-decl , the double-colon separator shall appear.
C465 (R448) The procedure-name shall be the name of an accessible module procedure or an external procedure

that has an explicit interface.
R450 type-bound-generic-stmt is GENERIC [ , access-spec ] :: generic-spec => binding-name-list
C466 (R450) Within the specification-part of a module, each type-bound-generic-stmt shall specify, either im-

plicitly or explicitly, the same accessibility as every other type-bound-generic-stmt with that generic-spec
in the same derived type.

C467 (R450) Each binding-name in binding-name-list shall be the name of a specific binding of the type.
C468 (R450) If generic-spec is not generic-name, each of its specific bindings shall have a passed-object dummy

argument (4.5.4.5).
C469 (R450) If generic-spec is OPERATOR ( defined-operator ), the interface of each binding shall be as

specified in 12.4.3.4.2.
C470 (R450) If generic-spec is ASSIGNMENT ( = ), the interface of each binding shall be as specified in

12.4.3.4.3.
C471 (R450) If generic-spec is defined-io-generic-spec, the interface of each binding shall be as specified in

9.6.4.8. The type of the dtv argument shall be type-name.
R451 binding-attr is PASS [ (arg-name) ]

or NOPASS
or NON OVERRIDABLE
or DEFERRED
or access-spec

C472 (R451) The same binding-attr shall not appear more than once in a given binding-attr-list.
C473 (R448) If the interface of the binding has no dummy argument of the type being defined, NOPASS shall

appear.
C474 (R448) If PASS (arg-name) appears, the interface of the binding shall have a dummy argument named

arg-name.
C475 (R451) PASS and NOPASS shall not both appear in the same binding-attr-list.
C476 (R451) NON OVERRIDABLE and DEFERRED shall not both appear in the same binding-attr-list.
C477 (R451) DEFERRED shall appear if and only if interface-name appears.
C478 (R448) An overriding binding (4.5.7.3) shall have the DEFERRED attribute only if the binding it over-

rides is deferred.
C479 (R448) A binding shall not override an inherited binding (4.5.7.2) that has the NON OVERRIDABLE

attribute.
R452 final-procedure-stmt is FINAL [ :: ] final-subroutine-name-list
C480 (R452) A final-subroutine-name shall be the name of a module procedure with exactly one dummy argu-

ment. That argument shall be nonoptional and shall be a nonpointer, nonallocatable, nonpolymorphic
variable of the derived type being defined. All length type parameters of the dummy argument shall be
assumed. The dummy argument shall not have the INTENT (OUT) or VALUE attribute.

C481 (R452) A final-subroutine-name shall not be one previously specified as a final subroutine for that type.
C482 (R452) A final subroutine shall not have a dummy argument with the same kind type parameters and

rank as the dummy argument of another final subroutine of that type.
R453 derived-type-spec is type-name [ ( type-param-spec-list ) ]
R454 type-param-spec is [ keyword = ] type-param-value
C483 (R453) type-name shall be the name of an accessible derived type.
C484 (R453) type-param-spec-list shall appear only if the type is parameterized.
C485 (R453) There shall be at most one type-param-spec corresponding to each parameter of the type. If a

type parameter does not have a default value, there shall be a type-param-spec corresponding to that
type parameter.
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C486 (R454) The keyword= may be omitted from a type-param-spec only if the keyword= has been omitted
from each preceding type-param-spec in the type-param-spec-list.

C487 (R454) Each keyword shall be the name of a parameter of the type.
C488 (R454) An asterisk may be used as a type-param-value in a type-param-spec only in the declaration of a

dummy argument or associate name or in the allocation of a dummy argument.
R455 structure-constructor is derived-type-spec ( [ component-spec-list ] )
R456 component-spec is [ keyword = ] component-data-source
R457 component-data-source is expr

or data-target
or proc-target

C489 (R455) The derived-type-spec shall not specify an abstract type (4.5.7).
C490 (R455) At most one component-spec shall be provided for a component.
C491 (R455) If a component-spec is provided for an ancestor component, a component-spec shall not be provided

for any component that is inheritance associated with a subcomponent of that ancestor component.
C492 (R455) A component-spec shall be provided for a nonallocatable component unless it has default initializa-

tion or is inheritance associated with a subcomponent of another component for which a component-spec
is provided.

C493 (R456) The keyword= may be omitted from a component-spec only if the keyword= has been omitted
from each preceding component-spec in the constructor.

C494 (R456) Each keyword shall be the name of a component of the type.
C495 (R455) The type name and all components of the type for which a component-spec appears shall be

accessible in the scoping unit containing the structure constructor.
C496 (R455) If derived-type-spec is a type name that is the same as a generic name, the component-spec-list

shall not be a valid actual-arg-spec-list for a function reference that is resolvable as a generic reference
to that name (12.5.5.2).

C497 (R457) A data-target shall correspond to a data pointer component; a proc-target shall correspond to a
procedure pointer component.

C498 (R457) A data-target shall have the same rank as its corresponding component.
R458 enum-def is enum-def-stmt

enumerator-def-stmt
[ enumerator-def-stmt ] ...
end-enum-stmt

R459 enum-def-stmt is ENUM, BIND(C)
R460 enumerator-def-stmt is ENUMERATOR [ :: ] enumerator-list
R461 enumerator is named-constant [ = scalar-int-constant-expr ]
R462 end-enum-stmt is END ENUM
C499 (R460) If = appears in an enumerator , a double-colon separator shall appear before the enumerator-list.
R463 boz-literal-constant is binary-constant

or octal-constant
or hex-constant

R464 binary-constant is B ’ digit [ digit ] ... ’
or B " digit [ digit ] ... "

C4100 (R464) digit shall have one of the values 0 or 1.
R465 octal-constant is O ’ digit [ digit ] ... ’

or O " digit [ digit ] ... "
C4101 (R465) digit shall have one of the values 0 through 7.
R466 hex-constant is Z ’ hex-digit [ hex-digit ] ... ’

or Z " hex-digit [ hex-digit ] ... "
R467 hex-digit is digit
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or A
or B
or C
or D
or E
or F

C4102 (R463) A boz-literal-constant shall appear only as a data-stmt-constant in a DATA statement, or where
explicitly allowed in subclause 13.7 as an actual argument of an intrinsic procedure.

R468 array-constructor is (/ ac-spec /)
or lbracket ac-spec rbracket

R469 ac-spec is type-spec ::
or [type-spec ::] ac-value-list

R470 lbracket is [
R471 rbracket is ]
R472 ac-value is expr

or ac-implied-do
R473 ac-implied-do is ( ac-value-list , ac-implied-do-control )
R474 ac-implied-do-control is ac-do-variable = scalar-int-expr , scalar-int-expr

[ , scalar-int-expr ]
R475 ac-do-variable is do-variable
C4103 (R469) If type-spec is omitted, each ac-value expression in the array-constructor shall have the same type

and kind type parameters.
C4104 (R469) If type-spec specifies an intrinsic type, each ac-value expression in the array-constructor shall be

of an intrinsic type that is in type conformance with a variable of type type-spec as specified in Table
7.10.

C4105 (R469) If type-spec specifies a derived type, all ac-value expressions in the array-constructor shall be of
that derived type and shall have the same kind type parameter values as specified by type-spec.

C4106 (R473) The ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the
ac-do-variable of the containing ac-implied-do.

Clause 5:
R501 type-declaration-stmt is declaration-type-spec [ [ , attr-spec ] ... :: ] entity-decl-list
R502 attr-spec is access-spec

or ALLOCATABLE
or ASYNCHRONOUS
or CODIMENSION lbracket coarray-spec rbracket
or CONTIGUOUS
or DIMENSION ( array-spec )
or EXTERNAL
or INTENT ( intent-spec )
or INTRINSIC
or language-binding-spec
or OPTIONAL
or PARAMETER
or POINTER
or PROTECTED
or SAVE
or TARGET
or VALUE
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or VOLATILE
C501 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmt .
C502 (R501) If a language-binding-spec with a NAME= specifier appears, the entity-decl-list shall consist of a

single entity-decl .
C503 (R501) If a language-binding-spec is specified, the entity-decl-list shall not contain any procedure names.
R503 entity-decl is object-name [( array-spec )]

[ lbracket coarray-spec rbracket ]
[ * char-length ] [ initialization ]

or function-name [ * char-length ]
C504 (R503) If the entity is not of type character, * char-length shall not appear.
C505 (R501) If initialization appears, a double-colon separator shall appear before the entity-decl-list.
C506 (R503) An initialization shall not appear if object-name is a dummy argument, a function result, an

object in a named common block unless the type declaration is in a block data program unit, an object
in blank common, an allocatable variable, an external function, an intrinsic function, or an automatic
object.

C507 (R503) An initialization shall appear if the entity is a named constant (5.3.13).
C508 (R503) The function-name shall be the name of an external function, an intrinsic function, a dummy

function, a procedure pointer, or a statement function.
R504 object-name is name
C509 (R504) The object-name shall be the name of a data object.
R505 initialization is = constant-expr

or => null-init
or => initial-data-target

R506 null-init is function-reference
C510 (R503) If => appears in initialization, the entity shall have the POINTER attribute. If = appears in

initialization, the entity shall not have the POINTER attribute.
C511 (R503) If initial-data-target appears, object-name shall be data-pointer-initialization compatible with it

(4.5.4.6).
C512 (R506) The function-reference shall be a reference to the intrinsic function NULL with no arguments.
C513 An automatic object shall not have the SAVE attribute.
C514 An entity shall not be explicitly given any attribute more than once in a scoping unit.
C515 An array-spec for a nonallocatable nonpointer function result shall be an explicit-shape-spec-list.
C516 The ALLOCATABLE, POINTER, or OPTIONAL attribute shall not be specified for a dummy argument

of a procedure that has a proc-language-binding-spec.
R507 access-spec is PUBLIC

or PRIVATE
C517 (R507) An access-spec shall appear only in the specification-part of a module.
R508 language-binding-spec is BIND (C [, NAME = scalar-default-char-constant-expr ])
C518 An entity with the BIND attribute shall be a common block, variable, type, or procedure.
C519 A variable with the BIND attribute shall be declared in the specification part of a module.
C520 A variable with the BIND attribute shall be interoperable (15.3).
C521 Each variable of a common block with the BIND attribute shall be interoperable.
R509 coarray-spec is deferred-coshape-spec-list

or explicit-coshape-spec
C522 The sum of the rank and corank of an entity shall not exceed fifteen.
C523 A coarray shall be a component or a variable that is not a function result.
C524 A coarray shall not be of type C PTR or C FUNPTR (15.3.3).
C525 An entity whose type has a coarray ultimate component shall be a nonpointer nonallocatable scalar, shall

not be a coarray, and shall not be a function result.
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C526 A coarray or an object with a coarray ultimate component shall be a dummy argument or have the
ALLOCATABLE or SAVE attribute.

R510 deferred-coshape-spec is :
C527 A coarray with the ALLOCATABLE attribute shall have a coarray-spec that is a deferred-coshape-spec-

list.
R511 explicit-coshape-spec is [ [ lower-cobound : ] upper-cobound , ]...

[ lower-cobound : ] *
C528 A nonallocatable coarray shall have a coarray-spec that is an explicit-coshape-spec.
R512 lower-cobound is specification-expr
R513 upper-cobound is specification-expr
C529 (R511) A lower-cobound or upper-cobound that is not a constant expression shall appear only in a

subprogram, BLOCK construct, or interface body.
C530 An entity with the CONTIGUOUS attribute shall be an array pointer or an assumed-shape array.
R514 dimension-spec is DIMENSION ( array-spec )
R515 array-spec is explicit-shape-spec-list

or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec
or implied-shape-spec-list

R516 explicit-shape-spec is [ lower-bound : ] upper-bound
R517 lower-bound is specification-expr
R518 upper-bound is specification-expr
C531 (R516) An explicit-shape-spec whose bounds are not constant expressions shall appear only in a subpro-

gram, derived type definition, BLOCK construct, or interface body.
R519 assumed-shape-spec is [ lower-bound ] :
R520 deferred-shape-spec is :
C532 An array with the POINTER or ALLOCATABLE attribute shall have an array-spec that is a deferred-

shape-spec-list.
R521 assumed-size-spec is [ explicit-shape-spec , ]... [ lower-bound : ] *
C533 An assumed-size-spec shall not appear except as the declaration of the array bounds of a dummy data

object.
C534 An assumed-size array with the INTENT (OUT) attribute shall not be polymorphic, finalizable, of a

type with an allocatable ultimate component, or of a type for which default initialization is specified.
R522 implied-shape-spec is [ lower-bound : ] *
C535 An implied-shape array shall be a named constant.
C536 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.
C537 In an external subprogram, the EXTERNAL attribute shall not be specified for a procedure defined by

the subprogram.
R523 intent-spec is IN

or OUT
or INOUT

C538 An entity with the INTENT attribute shall be a dummy data object or a dummy procedure pointer.
C539 (R523) A nonpointer object with the INTENT (IN) attribute shall not appear in a variable definition

context (16.6.7).
C540 A pointer with the INTENT (IN) attribute shall not appear in a pointer association context (16.6.8).
C541 An entity with the INTENT (OUT) attribute shall not be an allocatable coarray or have a subobject

that is an allocatable coarray.
C542 An entity with the INTENT (OUT) attribute shall not be of type LOCK TYPE (13.8.2.16) of the intrinsic

module ISO FORTRAN ENV or have a subcomponent of this type.
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C543 If the generic name of an intrinsic procedure is explicitly declared to have the INTRINSIC attribute,
and it is also the generic name of one or more generic interfaces (12.4.3.2) accessible in the same scoping
unit, the procedures in the interfaces and the specific intrinsic procedures shall all be functions or all
be subroutines, and the characteristics of the specific intrinsic procedures and the procedures in the
interfaces shall differ as specified in 12.4.3.4.5.

C544 An entity with the OPTIONAL attribute shall be a dummy argument.
C545 An entity with the PARAMETER attribute shall not be a variable, a coarray, or a procedure.
C546 An entity with the POINTER attribute shall not have the ALLOCATABLE, INTRINSIC, or TARGET

attribute, and shall not be a coarray.
C547 A procedure with the POINTER attribute shall have the EXTERNAL attribute.
C548 The PROTECTED attribute shall be specified only in the specification part of a module.
C549 An entity with the PROTECTED attribute shall be a procedure pointer or variable.
C550 An entity with the PROTECTED attribute shall not be in a common block.
C551 A nonpointer object that has the PROTECTED attribute and is accessed by use association shall not

appear in a variable definition context (16.6.7) or as the data-target or proc-target in a pointer-assignment-
stmt .

C552 A pointer that has the PROTECTED attribute and is accessed by use association shall not appear in a
pointer association context (16.6.8).

C553 An entity with the SAVE attribute shall be a common block, variable, or procedure pointer.
C554 The SAVE attribute shall not be specified for a dummy argument, a function result, an automatic data

object, or an object that is in a common block.
C555 An entity with the TARGET attribute shall be a variable.
C556 An entity with the TARGET attribute shall not have the POINTER attribute.
C557 An entity with the VALUE attribute shall be a dummy data object that is not an assumed-size array or

a coarray, and does not have a coarray ultimate component.
C558 An entity with the VALUE attribute shall not have the ALLOCATABLE, INTENT (INOUT), INTENT

(OUT), POINTER, or VOLATILE attributes.
C559 An entity with the VOLATILE attribute shall be a variable that is not an INTENT (IN) dummy argu-

ment.
C560 The VOLATILE attribute shall not be specified for a coarray that is accessed by use (11.2.2) or host

(16.5.1.4) association.
C561 Within a BLOCK construct (8.1.4), the VOLATILE attribute shall not be specified for a coarray that is

not a construct entity (16.4) of that construct.
R524 access-stmt is access-spec [ [ :: ] access-id-list ]
R525 access-id is use-name

or generic-spec
C562 (R524) An access-stmt shall appear only in the specification-part of a module. Only one accessibility

statement with an omitted access-id-list is permitted in the specification-part of a module.
C563 (R525) Each use-name shall be the name of a named variable, procedure, derived type, named constant,

or namelist group.
R526 allocatable-stmt is ALLOCATABLE [ :: ] allocatable-decl-list
R527 allocatable-decl is object-name [ ( array-spec ) ]

[ lbracket coarray-spec rbracket ]
R528 asynchronous-stmt is ASYNCHRONOUS [ :: ] object-name-list
R529 bind-stmt is language-binding-spec [ :: ] bind-entity-list
R530 bind-entity is entity-name

or / common-block-name /
C564 (R529) If the language-binding-spec has a NAME= specifier, the bind-entity-list shall consist of a single

bind-entity .
R531 codimension-stmt is CODIMENSION [ :: ] codimension-decl-list
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R532 codimension-decl is coarray-name lbracket coarray-spec rbracket
R533 contiguous-stmt is CONTIGUOUS [ :: ] object-name-list
R534 data-stmt is DATA data-stmt-set [ [ , ] data-stmt-set ] ...
R535 data-stmt-set is data-stmt-object-list / data-stmt-value-list /
R536 data-stmt-object is variable

or data-implied-do
R537 data-implied-do is ( data-i-do-object-list , data-i-do-variable =

scalar-int-constant-expr ,
scalar-int-constant-expr
[ , scalar-int-constant-expr ] )

R538 data-i-do-object is array-element
or scalar-structure-component
or data-implied-do

R539 data-i-do-variable is do-variable
C565 A data-stmt-object or data-i-do-object shall not be a coindexed variable.
C566 (R536) In a variable that is a data-stmt-object , each subscript, section subscript, substring starting point,

and substring ending point shall be a constant expression.
C567 (R536) A variable whose designator appears as a data-stmt-object or a data-i-do-object shall not be a

dummy argument, accessed by use or host association, in a named common block unless the DATA
statement is in a block data program unit, in blank common, a function name, a function result name,
an automatic object, or an allocatable variable.

C568 (R536) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an object designator
in which a pointer appears other than as the entire rightmost part-ref .

C569 (R538) The array-element shall be a variable.
C570 (R538) The scalar-structure-component shall be a variable.
C571 (R538) The scalar-structure-component shall contain at least one part-ref that contains a subscript-list.
C572 (R538) In an array-element or scalar-structure-component that is a data-i-do-object , any subscript shall

be a constant expression, and any primary within that subscript that is a data-i-do-variable shall be a
DO variable of this data-implied-do or of a containing data-implied-do.

R540 data-stmt-value is [ data-stmt-repeat * ] data-stmt-constant
R541 data-stmt-repeat is scalar-int-constant

or scalar-int-constant-subobject
C573 (R541) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named constant, it

shall have been declared previously in the scoping unit or made accessible by use or host association.
R542 data-stmt-constant is scalar-constant

or scalar-constant-subobject
or signed-int-literal-constant
or signed-real-literal-constant
or null-init
or initial-data-target
or structure-constructor

C574 (R542) If a DATA statement constant value is a named constant or a structure constructor, the named
constant or derived type shall have been declared previously in the scoping unit or accessed by use or
host association.

C575 (R542) If a data-stmt-constant is a structure-constructor , it shall be a constant expression.
R543 int-constant-subobject is constant-subobject
C576 (R543) int-constant-subobject shall be of type integer.
R544 constant-subobject is designator
C577 (R544) constant-subobject shall be a subobject of a constant.
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C578 (R544) Any subscript, substring starting point, or substring ending point shall be a constant expression.
R545 dimension-stmt is DIMENSION [ :: ] array-name ( array-spec )

[ , array-name ( array-spec ) ] ...
R546 intent-stmt is INTENT ( intent-spec ) [ :: ] dummy-arg-name-list
R547 optional-stmt is OPTIONAL [ :: ] dummy-arg-name-list
R548 parameter-stmt is PARAMETER ( named-constant-def -list )
R549 named-constant-def is named-constant = constant-expr
R550 pointer-stmt is POINTER [ :: ] pointer-decl-list
R551 pointer-decl is object-name [ ( deferred-shape-spec-list ) ]

or proc-entity-name
C579 A proc-entity-name shall have the EXTERNAL attribute.
R552 protected-stmt is PROTECTED [ :: ] entity-name-list
R553 save-stmt is SAVE [ [ :: ] saved-entity-list ]
R554 saved-entity is object-name

or proc-pointer-name
or / common-block-name /

R555 proc-pointer-name is name
C580 (R553) If a SAVE statement with an omitted saved entity list appears in a scoping unit, no other

appearance of the SAVE attr-spec or SAVE statement is permitted in that scoping unit.
C581 A proc-pointer-name shall be the name of a procedure pointer.
R556 target-stmt is TARGET [ :: ] target-decl-list
R557 target-decl is object-name [ ( array-spec ) ]

[ lbracket coarray-spec rbracket ]
R558 value-stmt is VALUE [ :: ] dummy-arg-name-list
R559 volatile-stmt is VOLATILE [ :: ] object-name-list
R560 implicit-stmt is IMPLICIT implicit-spec-list

or IMPLICIT NONE
R561 implicit-spec is declaration-type-spec ( letter-spec-list )
R562 letter-spec is letter [ – letter ]
C582 (R560) If IMPLICIT NONE is specified in a scoping unit, it shall precede any PARAMETER statements

that appear in the scoping unit and there shall be no other IMPLICIT statements in the scoping unit.
C583 (R562) If the minus and second letter appear, the second letter shall follow the first letter alphabetically.
R563 namelist-stmt is NAMELIST

/ namelist-group-name / namelist-group-object-list
[ [ , ] / namelist-group-name /
namelist-group-object-list ] . . .

C584 (R563) The namelist-group-name shall not be a name accessed by use association.
R564 namelist-group-object is variable-name
C585 (R564) A namelist-group-object shall not be an assumed-size array.
C586 (R563) A namelist-group-object shall not have the PRIVATE attribute if the namelist-group-name has

the PUBLIC attribute.
R565 equivalence-stmt is EQUIVALENCE equivalence-set-list
R566 equivalence-set is ( equivalence-object , equivalence-object-list )
R567 equivalence-object is variable-name

or array-element
or substring

C587 (R567) An equivalence-object shall not be a designator with a base object that is a dummy argument,
a result variable, a pointer, an allocatable variable, a derived-type object that has an allocatable or
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pointer ultimate component, an object of a nonsequence derived type, an automatic object, a coarray,
a variable with the BIND attribute, a variable in a common block that has the BIND attribute, or a
named constant.

C588 (R567) An equivalence-object shall not be a designator that has more than one part-ref .
C589 (R567) An equivalence-object shall not have the TARGET attribute.
C590 (R567) Each subscript or substring range expression in an equivalence-object shall be an integer constant

expression (7.1.12).
C591 (R566) If an equivalence-object is default integer, default real, double precision real, default complex,

default logical, or of numeric sequence type, all of the objects in the equivalence set shall be of these
types and kinds.

C592 (R566) If an equivalence-object is default character or of character sequence type, all of the objects in
the equivalence set shall be of these types and kinds.

C593 (R566) If an equivalence-object is of a sequence type that is not a numeric sequence or character sequence
type, all of the objects in the equivalence set shall be of the same type with the same type parameter
values.

C594 (R566) If an equivalence-object is of an intrinsic type but is not default integer, default real, double
precision real, default complex, default logical, or default character, all of the objects in the equivalence
set shall be of the same type with the same kind type parameter value.

C595 (R567) If an equivalence-object has the PROTECTED attribute, all of the objects in the equivalence set
shall have the PROTECTED attribute.

C596 (R567) The name of an equivalence-object shall not be a name made accessible by use association.
C597 (R567) A substring shall not have length zero.
R568 common-stmt is COMMON

[ / [ common-block-name ] / ] common-block-object-list
[ [ , ] / [ common-block-name ] /
common-block-object-list ] ...

R569 common-block-object is variable-name [ ( array-spec ) ]
or proc-pointer-name

C598 (R569) An array-spec in a common-block-object shall be an explicit-shape-spec-list.
C599 (R569) Only one appearance of a given variable-name or proc-pointer-name is permitted in all common-

block-object-lists within a scoping unit.
C5100 (R569) A common-block-object shall not be a dummy argument, a result variable, an allocatable variable,

a derived-type object with an ultimate component that is allocatable, an automatic object, a variable
with the BIND attribute, an unlimited polymorphic pointer, or a coarray.

C5101 (R569) If a common-block-object is of a derived type, the type shall have the BIND attribute or the
SEQUENCE attribute and it shall have no default initialization.

C5102 (R569) A variable-name or proc-pointer-name shall not be a name made accessible by use association.

Clause 6:
R601 designator is object-name

or array-element
or array-section
or coindexed-named-object
or complex-part-designator
or structure-component
or substring

R602 variable is designator
or expr

C601 (R602) designator shall not be a constant or a subobject of a constant.
C602 (R602) expr shall be a reference to a function that has a pointer result.
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R603 variable-name is name
C603 (R603) variable-name shall be the name of a variable.
R604 logical-variable is variable
C604 (R604) logical-variable shall be of type logical.
R605 char-variable is variable
C605 (R605) char-variable shall be of type character.
R606 default-char-variable is variable
C606 (R606) default-char-variable shall be default character.
R607 int-variable is variable
C607 (R607) int-variable shall be of type integer.
R608 substring is parent-string ( substring-range )
R609 parent-string is scalar-variable-name

or array-element
or coindexed-named-object
or scalar-structure-component
or scalar-constant

R610 substring-range is [ scalar-int-expr ] : [ scalar-int-expr ]
C608 (R609) parent-string shall be of type character.
R611 data-ref is part-ref [ % part-ref ] ...
R612 part-ref is part-name [ ( section-subscript-list ) ] [ image-selector ]
C609 (R611) Each part-name except the rightmost shall be of derived type.
C610 (R611) Each part-name except the leftmost shall be the name of a component of the declared type of the

preceding part-name.
C611 (R611) If the rightmost part-name is of abstract type, data-ref shall be polymorphic.
C612 (R611) The leftmost part-name shall be the name of a data object.
C613 (R612) If a section-subscript-list appears, the number of section-subscripts shall equal the rank of part-

name.
C614 (R612) If image-selector appears, the number of cosubscripts shall be equal to the corank of part-name.
C615 (R612) If image-selector appears and part-name is an array, section-subscript-list shall appear.
C616 (R611) If image-selector appears, data-ref shall not be of type C PTR or C FUNPTR (15.3.3).
C617 (R611) Except as an actual argument to an intrinsic inquiry function or as the designator in a type

parameter inquiry, a data-ref shall not be a polymorphic subobject of a coindexed object and shall not
be a coindexed object that has a polymorphic allocatable subcomponent.

C618 (R611) There shall not be more than one part-ref with nonzero rank. A part-name to the right of a
part-ref with nonzero rank shall not have the ALLOCATABLE or POINTER attribute.

R613 structure-component is data-ref
C619 (R613) There shall be more than one part-ref and the rightmost part-ref shall not have a section-

subscript-list.
R614 coindexed-named-object is data-ref
C620 (R614) The data-ref shall contain exactly one part-ref . The part-ref shall contain an image-selector .

The part-name shall be the name of a scalar coarray.
R615 complex-part-designator is designator % RE

or designator % IM
C621 (R615) The designator shall be of complex type.
R616 type-param-inquiry is designator % type-param-name
C622 (R616) The type-param-name shall be the name of a type parameter of the declared type of the object

designated by the designator .
R617 array-element is data-ref
C623 (R617) Every part-ref shall have rank zero and the last part-ref shall contain a subscript-list.
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R618 array-section is data-ref [ ( substring-range ) ]
or complex-part-designator

C624 (R618) Exactly one part-ref shall have nonzero rank, and either the final part-ref shall have a section-
subscript-list with nonzero rank, another part-ref shall have nonzero rank, or the complex-part-designator
shall be an array.

C625 (R618) If a substring-range appears, the rightmost part-name shall be of type character.
R619 subscript is scalar-int-expr
R620 section-subscript is subscript

or subscript-triplet
or vector-subscript

R621 subscript-triplet is [ subscript ] : [ subscript ] [ : stride ]
R622 stride is scalar-int-expr
R623 vector-subscript is int-expr
C626 (R623) A vector-subscript shall be an integer array expression of rank one.
C627 (R621) The second subscript shall not be omitted from a subscript-triplet in the last dimension of an

assumed-size array.
R624 image-selector is lbracket cosubscript-list rbracket
R625 cosubscript is scalar-int-expr
R626 allocate-stmt is ALLOCATE ( [ type-spec :: ] allocation-list

[, alloc-opt-list ] )
R627 alloc-opt is ERRMSG = errmsg-variable

or MOLD = source-expr
or SOURCE = source-expr
or STAT = stat-variable

R628 stat-variable is scalar-int-variable
R629 errmsg-variable is scalar-default-char-variable
R630 source-expr is expr
R631 allocation is allocate-object [ ( allocate-shape-spec-list ) ]

[ lbracket allocate-coarray-spec rbracket ]
R632 allocate-object is variable-name

or structure-component
R633 allocate-shape-spec is [ lower-bound-expr : ] upper-bound-expr
R634 lower-bound-expr is scalar-int-expr
R635 upper-bound-expr is scalar-int-expr
R636 allocate-coarray-spec is [ allocate-coshape-spec-list , ] [ lower-bound-expr : ] *
R637 allocate-coshape-spec is [ lower-bound-expr : ] upper-bound-expr
C628 (R632) Each allocate-object shall be a data pointer or an allocatable variable.
C629 (R626) If any allocate-object has a deferred type parameter, is unlimited polymorphic, or is of abstract

type, either type-spec or source-expr shall appear.
C630 (R626) If type-spec appears, it shall specify a type with which each allocate-object is type compatible.
C631 (R626) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object is a

dummy argument for which the corresponding type parameter is assumed.
C632 (R626) If type-spec appears, the kind type parameter values of each allocate-object shall be the same as

the corresponding type parameter values of the type-spec.
C633 (R631) If allocate-object is an array either allocate-shape-spec-list shall appear or source-expr shall appear

and have the same rank as allocate-object . If allocate-object is scalar, allocate-shape-spec-list shall not
appear.

C634 (R631) An allocate-coarray-spec shall appear if and only if the allocate-object is a coarray.
C635 (R631) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as the rank
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of the allocate-object . The number of allocate-coshape-specs in an allocate-coarray-spec shall be one less
than the corank of the allocate-object .

C636 (R627) No alloc-opt shall appear more than once in a given alloc-opt-list.
C637 (R626) At most one of source-expr and type-spec shall appear.
C638 (R626) Each allocate-object shall be type compatible (4.3.1.3) with source-expr . If SOURCE= appears,

source-expr shall be a scalar or have the same rank as each allocate-object .
C639 (R626) Corresponding kind type parameters of allocate-object and source-expr shall have the same values.
C640 (R626) type-spec shall not specify a type that has a coarray ultimate component.
C641 (R626) type-spec shall not specify the type C PTR or C FUNPTR if an allocate-object is a coarray.
C642 (R626) The declared type of source-expr shall not be C PTR, C FUNPTR, LOCK TYPE (13.8.2.16), or

have a subcomponent of type LOCK TYPE, if an allocate-object is a coarray.
C643 (R630) The declared type of source-expr shall not have a coarray ultimate component.
C644 (R632) An allocate-object shall not be a coindexed object.
R638 nullify-stmt is NULLIFY ( pointer-object-list )
R639 pointer-object is variable-name

or structure-component
or proc-pointer-name

C645 (R639) Each pointer-object shall have the POINTER attribute.
R640 deallocate-stmt is DEALLOCATE ( allocate-object-list [ , dealloc-opt-list ] )
R641 dealloc-opt is STAT = stat-variable

or ERRMSG = errmsg-variable
C646 (R641) No dealloc-opt shall appear more than once in a given dealloc-opt-list.

Clause 7:
R701 primary is constant

or designator
or array-constructor
or structure-constructor
or function-reference
or type-param-inquiry
or type-param-name
or ( expr )

C701 (R701) The type-param-name shall be the name of a type parameter.
C702 (R701) The designator shall not be a whole assumed-size array.
R702 level-1-expr is [ defined-unary-op ] primary
R703 defined-unary-op is . letter [ letter ] ... .
C703 (R703) A defined-unary-op shall not contain more than 63 letters and shall not be the same as any

intrinsic-operator or logical-literal-constant .
R704 mult-operand is level-1-expr [ power-op mult-operand ]
R705 add-operand is [ add-operand mult-op ] mult-operand
R706 level-2-expr is [ [ level-2-expr ] add-op ] add-operand
R707 power-op is **
R708 mult-op is *

or /
R709 add-op is +

or –
R710 level-3-expr is [ level-3-expr concat-op ] level-2-expr
R711 concat-op is //
R712 level-4-expr is [ level-3-expr rel-op ] level-3-expr
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R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <

or <=
or >

or >=
R714 and-operand is [ not-op ] level-4-expr
R715 or-operand is [ or-operand and-op ] and-operand
R716 equiv-operand is [ equiv-operand or-op ] or-operand
R717 level-5-expr is [ level-5-expr equiv-op ] equiv-operand
R718 not-op is .NOT.
R719 and-op is .AND.
R720 or-op is .OR.
R721 equiv-op is .EQV.

or .NEQV.
R722 expr is [ expr defined-binary-op ] level-5-expr
R723 defined-binary-op is . letter [ letter ] ... .
C704 (R723) A defined-binary-op shall not contain more than 63 letters and shall not be the same as any

intrinsic-operator or logical-literal-constant .
R724 logical-expr is expr
C705 (R724) logical-expr shall be of type logical.
R725 default-char-expr is expr
C706 (R725) default-char-expr shall be default character.
R726 int-expr is expr
C707 (R726) int-expr shall be of type integer.
R727 numeric-expr is expr
C708 (R727) numeric-expr shall be of type integer, real, or complex.
R728 specification-expr is scalar-int-expr
C709 (R728) The scalar-int-expr shall be a restricted expression.
R729 constant-expr is expr
C710 (R729) constant-expr shall be a constant expression.
R730 default-char-constant-expr is default-char-expr
C711 (R730) default-char-constant-expr shall be a constant expression.
R731 int-constant-expr is int-expr
C712 (R731) int-constant-expr shall be a constant expression.
R732 assignment-stmt is variable = expr
C713 (R732) The variable shall not be a whole assumed-size array.
R733 pointer-assignment-stmt is data-pointer-object [ (bounds-spec-list) ] => data-target

or data-pointer-object (bounds-remapping-list ) => data-target
or proc-pointer-object => proc-target

R734 data-pointer-object is variable-name
or scalar-variable % data-pointer-component-name
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C714 (R733) If data-target is not unlimited polymorphic, data-pointer-object shall be type compatible (4.3.1.3)
with it and the corresponding kind type parameters shall be equal.

C715 (R733) If data-target is unlimited polymorphic, data-pointer-object shall be unlimited polymorphic, or of
a type with the BIND attribute or the SEQUENCE attribute.

C716 (R733) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of data-pointer-
object .

C717 (R733) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the rank of
data-pointer-object .

C718 (R733) If bounds-remapping-list is not specified, the ranks of data-pointer-object and data-target shall be
the same.

C719 (R733) A coarray data-target shall have the VOLATILE attribute if and only if the data-pointer-object
has the VOLATILE attribute.

C720 (R734) A variable-name shall have the POINTER attribute.
C721 (R734) A scalar-variable shall be a data-ref .
C722 (R734) A data-pointer-component-name shall be the name of a component of scalar-variable that is a

data pointer.
C723 (R734) A data-pointer-object shall not be a coindexed object.
R735 bounds-spec is lower-bound-expr :
R736 bounds-remapping is lower-bound-expr : upper-bound-expr
R737 data-target is variable

or expr
C724 (R737) A variable shall have either the TARGET or POINTER attribute, and shall not be an array

section with a vector subscript.
C725 (R737) A data-target shall not be a coindexed object.
C726 (R737) An expr shall be a reference to a function whose result is a data pointer.
R738 proc-pointer-object is proc-pointer-name

or proc-component-ref
R739 proc-component-ref is scalar-variable % procedure-component-name
C727 (R739) The scalar-variable shall be a data-ref that is not a coindexed object.
C728 (R739) The procedure-component-name shall be the name of a procedure pointer component of the

declared type of scalar-variable.
R740 proc-target is expr

or procedure-name
or proc-component-ref

C729 (R740) An expr shall be a reference to a function whose result is a procedure pointer.
C730 (R740) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a

procedure pointer, or a specific intrinsic function listed in 13.6 and not marked with a bullet (•).
C731 (R740) The proc-target shall not be a nonintrinsic elemental procedure.
R741 where-stmt is WHERE ( mask-expr ) where-assignment-stmt
R742 where-construct is where-construct-stmt

[ where-body-construct ] ...
[ masked-elsewhere-stmt

[ where-body-construct ] ... ] ...
[ elsewhere-stmt

[ where-body-construct ] ... ]
end-where-stmt

R743 where-construct-stmt is [where-construct-name:] WHERE ( mask-expr )
R744 where-body-construct is where-assignment-stmt

or where-stmt
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or where-construct
R745 where-assignment-stmt is assignment-stmt
R746 mask-expr is logical-expr
R747 masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name]
R748 elsewhere-stmt is ELSEWHERE [where-construct-name]
R749 end-where-stmt is END WHERE [where-construct-name]
C732 (R745) A where-assignment-stmt that is a defined assignment shall be elemental.
C733 (R742) If the where-construct-stmt is identified by a where-construct-name, the corresponding end-where-

stmt shall specify the same where-construct-name. If the where-construct-stmt is not identified by a
where-construct-name, the corresponding end-where-stmt shall not specify a where-construct-name. If
an elsewhere-stmt or a masked-elsewhere-stmt is identified by a where-construct-name, the corresponding
where-construct-stmt shall specify the same where-construct-name.

C734 (R744) A statement that is part of a where-body-construct shall not be a branch target statement.
R750 forall-construct is forall-construct-stmt

[forall-body-construct ] ...
end-forall-stmt

R751 forall-construct-stmt is [forall-construct-name :] FORALL forall-header
R752 forall-header is ( [ type-spec :: ] forall-triplet-spec-list [, scalar-mask-expr ] )
R753 forall-triplet-spec is index-name = forall-limit : forall-limit [ : forall-step]
R754 forall-limit is scalar-int-expr
R755 forall-step is scalar-int-expr
R756 forall-body-construct is forall-assignment-stmt

or where-stmt
or where-construct
or forall-construct
or forall-stmt

R757 forall-assignment-stmt is assignment-stmt
or pointer-assignment-stmt

R758 end-forall-stmt is END FORALL [forall-construct-name ]
C735 (R758) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have the same

forall-construct-name. If the end-forall-stmt has a forall-construct-name, the forall-construct-stmt shall
have the same forall-construct-name.

C736 (R752) type-spec shall specify type integer.
C737 (R752) The scalar-mask-expr shall be scalar and of type logical.
C738 (R752) Any procedure referenced in the scalar-mask-expr , including one referenced by a defined operation,

shall be a pure procedure (12.7).
C739 (R753) The index-name shall be a named scalar variable of type integer.
C740 (R753) A forall-limit or forall-step in a forall-triplet-spec shall not contain a reference to any index-name

in the forall-triplet-spec-list in which it appears.
C741 (R756) A statement in a forall-body-construct shall not define an index-name of the forall-construct .
C742 (R756) Any procedure referenced in a forall-body-construct , including one referenced by a defined opera-

tion, assignment, or finalization, shall be a pure procedure.
C743 (R756) A forall-body-construct shall not be a branch target.
R759 forall-stmt is FORALL forall-header forall-assignment-stmt

Clause 8:
R801 block is [ execution-part-construct ] ...
R802 associate-construct is associate-stmt

block
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end-associate-stmt
R803 associate-stmt is [ associate-construct-name : ] ASSOCIATE

(association-list )
R804 association is associate-name => selector
R805 selector is expr

or variable
C801 (R804) If selector is not a variable or is a variable that has a vector subscript, associate-name shall not

appear in a variable definition context (16.6.7).
C802 (R804) An associate-name shall not be the same as another associate-name in the same associate-stmt .
C803 (R805) variable shall not be a coindexed object.
C804 (R805) expr shall not be a variable.
R806 end-associate-stmt is END ASSOCIATE [ associate-construct-name ]
C805 (R806) If the associate-stmt of an associate-construct specifies an associate-construct-name, the corres-

ponding end-associate-stmt shall specify the same associate-construct-name. If the associate-stmt of an
associate-construct does not specify an associate-construct-name, the corresponding end-associate-stmt
shall not specify an associate-construct-name.

R807 block-construct is block-stmt
[ specification-part ]
block
end-block-stmt

R808 block-stmt is [ block-construct-name : ] BLOCK
R809 end-block-stmt is END BLOCK [ block-construct-name ]
C806 (R807) The specification-part of a BLOCK construct shall not contain a COMMON, EQUIVALENCE,

IMPLICIT, INTENT, NAMELIST, OPTIONAL, statement function, or VALUE statement.
C807 (R807) A SAVE statement in a BLOCK construct shall contain a saved-entity-list that does not specify

a common-block-name.
C808 (R807) If the block-stmt of a block-construct specifies a block-construct-name, the corresponding end-block-

stmt shall specify the same block-construct-name. If the block-stmt does not specify a block-construct-
name, the corresponding end-block-stmt shall not specify a block-construct-name.

R810 critical-construct is critical-stmt
block
end-critical-stmt

R811 critical-stmt is [ critical-construct-name : ] CRITICAL
R812 end-critical-stmt is END CRITICAL [ critical-construct-name ]
C809 (R810) If the critical-stmt of a critical-construct specifies a critical-construct-name, the corresponding

end-critical-stmt shall specify the same critical-construct-name. If the critical-stmt of a critical-construct
does not specify a critical-construct-name, the corresponding end-critical-stmt shall not specify a critical-
construct-name.

C810 (R810) The block of a critical-construct shall not contain a RETURN statement or an image control
statement.

C811 A statement that branches from the block of a critical-construct to outside the critical-construct is
not permitted. A CYCLE or EXIT statement in a critical-construct that transfers control outside the
critical-construct is not permitted.

R813 do-construct is block-do-construct
or nonblock-do-construct

R814 block-do-construct is do-stmt
do-block
end-do

R815 do-stmt is label-do-stmt
or nonlabel-do-stmt
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R816 label-do-stmt is [ do-construct-name : ] DO label [ loop-control ]
R817 nonlabel-do-stmt is [ do-construct-name : ] DO [ loop-control ]
R818 loop-control is [ , ] do-variable = scalar-int-expr , scalar-int-expr

[ , scalar-int-expr ]
or [ , ] WHILE ( scalar-logical-expr )
or [ , ] CONCURRENT forall-header

R819 do-variable is scalar-int-variable-name
C812 (R819) The do-variable shall be a variable of type integer.
R820 do-block is block
R821 end-do is end-do-stmt

or continue-stmt
R822 end-do-stmt is END DO [ do-construct-name ]
C813 (R814) If the do-stmt of a block-do-construct specifies a do-construct-name, the corresponding end-do

shall be an end-do-stmt specifying the same do-construct-name. If the do-stmt of a block-do-construct
does not specify a do-construct-name, the corresponding end-do shall not specify a do-construct-name.

C814 (R814) If the do-stmt is a nonlabel-do-stmt , the corresponding end-do shall be an end-do-stmt .
C815 (R814) If the do-stmt is a label-do-stmt , the corresponding end-do shall be identified with the same label .
R823 nonblock-do-construct is action-term-do-construct

or outer-shared-do-construct
R824 action-term-do-construct is label-do-stmt

do-body
do-term-action-stmt

R825 do-body is [ execution-part-construct ] ...
R826 do-term-action-stmt is action-stmt

C816 (R826) A do-term-action-stmt shall not be an allstop-stmt , arithmetic-if-stmt , continue-stmt , cycle-
stmt , end-function-stmt , end-mp-subprogram-stmt , end-program-stmt , end-subroutine-stmt , exit-stmt ,
goto-stmt , return-stmt , or stop-stmt .

C817 (R823) The do-term-action-stmt shall be identified with a label and the corresponding label-do-stmt shall
refer to the same label.

R827 outer-shared-do-construct is label-do-stmt
do-body
shared-term-do-construct

R828 shared-term-do-construct is outer-shared-do-construct
or inner-shared-do-construct

R829 inner-shared-do-construct is label-do-stmt
do-body
do-term-shared-stmt

R830 do-term-shared-stmt is action-stmt

C818 (R830) A do-term-shared-stmt shall not be an allstop-stmt , arithmetic-if-stmt , cycle-stmt , end-function-
stmt , end-program-stmt , end-mp-subprogram-stmt , end-subroutine-stmt , exit-stmt , goto-stmt , return-
stmt , or stop-stmt .

C819 (R828) The do-term-shared-stmt shall be identified with a label and all of the label-do-stmts of the
inner-shared-do-construct and outer-shared-do-construct shall refer to the same label.

R831 cycle-stmt is CYCLE [ do-construct-name ]
C820 (R831) If a do-construct-name appears, the CYCLE statement shall be within the range of that do-

construct ; otherwise, it shall be within the range of at least one do-construct .
C821 (R831) A cycle-stmt shall not appear within the range of a DO CONCURRENT construct if it belongs

to an outer construct.
C822 A RETURN statement shall not appear within a DO CONCURRENT construct.
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C823 An image control statement shall not appear within a DO CONCURRENT construct.
C824 A branch (8.2) within a DO CONCURRENT construct shall not have a branch target that is outside

the construct.
C825 A reference to a nonpure procedure shall not appear within a DO CONCURRENT construct.
C826 A reference to the procedure IEEE GET FLAG, IEEE SET HALTING MODE, or IEEE GET HAL-

TING MODE from the intrinsic module IEEE EXCEPTIONS, shall not appear within a DO CONCUR-
RENT construct.

R832 if-construct is if-then-stmt
block

[ else-if-stmt
block ] ...

[ else-stmt
block ]

end-if-stmt
R833 if-then-stmt is [ if-construct-name : ] IF ( scalar-logical-expr ) THEN
R834 else-if-stmt is ELSE IF ( scalar-logical-expr ) THEN [ if-construct-name ]
R835 else-stmt is ELSE [ if-construct-name ]
R836 end-if-stmt is END IF [ if-construct-name ]
C827 (R832) If the if-then-stmt of an if-construct specifies an if-construct-name, the corresponding end-if-

stmt shall specify the same if-construct-name. If the if-then-stmt of an if-construct does not specify an
if-construct-name, the corresponding end-if-stmt shall not specify an if-construct-name. If an else-if-
stmt or else-stmt specifies an if-construct-name, the corresponding if-then-stmt shall specify the same
if-construct-name.

R837 if-stmt is IF ( scalar-logical-expr ) action-stmt
C828 (R837) The action-stmt in the if-stmt shall not be an end-function-stmt , end-mp-subprogram-stmt , end-

program-stmt , end-subroutine-stmt , or if-stmt .
R838 case-construct is select-case-stmt

[ case-stmt
block ] ...

end-select-stmt
R839 select-case-stmt is [ case-construct-name : ] SELECT CASE ( case-expr )
R840 case-stmt is CASE case-selector [case-construct-name]
R841 end-select-stmt is END SELECT [ case-construct-name ]
C829 (R838) If the select-case-stmt of a case-construct specifies a case-construct-name, the corresponding end-

select-stmt shall specify the same case-construct-name. If the select-case-stmt of a case-construct does
not specify a case-construct-name, the corresponding end-select-stmt shall not specify a case-construct-
name. If a case-stmt specifies a case-construct-name, the corresponding select-case-stmt shall specify the
same case-construct-name.

R842 case-expr is scalar-expr
C830 case-expr shall be of type character, integer, or logical.
R843 case-selector is ( case-value-range-list )

or DEFAULT
C831 (R838) No more than one of the selectors of one of the CASE statements shall be DEFAULT.
R844 case-value-range is case-value

or case-value :
or : case-value
or case-value : case-value

R845 case-value is scalar-constant-expr
C832 (R838) For a given case-construct , each case-value shall be of the same type as case-expr . For character
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type, the kind type parameters shall be the same; character length differences are allowed.
C833 (R838) A case-value-range using a colon shall not be used if case-expr is of type logical.
C834 (R838) For a given case-construct , there shall be no possible value of the case-expr that matches more

than one case-value-range.
R846 select-type-construct is select-type-stmt

[ type-guard-stmt
block ] ...

end-select-type-stmt
R847 select-type-stmt is [ select-construct-name : ] SELECT TYPE

( [ associate-name => ] selector )
C835 (R847) If selector is not a named variable, associate-name => shall appear.
C836 (R847) If selector is not a variable or is a variable that has a vector subscript, associate-name shall not

appear in a variable definition context (16.6.7).
C837 (R847) The selector in a select-type-stmt shall be polymorphic.
R848 type-guard-stmt is TYPE IS ( type-spec ) [ select-construct-name ]

or CLASS IS ( derived-type-spec ) [ select-construct-name ]
or CLASS DEFAULT [ select-construct-name ]

C838 (R848) The type-spec or derived-type-spec shall specify that each length type parameter is assumed.
C839 (R848) The type-spec or derived-type-spec shall not specify a type with the BIND attribute or the SE-

QUENCE attribute.
C840 (R846) If selector is not unlimited polymorphic, each TYPE IS or CLASS IS type-guard-stmt shall specify

an extension of the declared type of selector .
C841 (R846) For a given select-type-construct , the same type and kind type parameter values shall not be

specified in more than one TYPE IS type-guard-stmt and shall not be specified in more than one CLASS
IS type-guard-stmt .

C842 (R846) For a given select-type-construct , there shall be at most one CLASS DEFAULT type-guard-stmt .
R849 end-select-type-stmt is END SELECT [ select-construct-name ]
C843 (R846) If the select-type-stmt of a select-type-construct specifies a select-construct-name, the correspon-

ding end-select-type-stmt shall specify the same select-construct-name. If the select-type-stmt of a select-
type-construct does not specify a select-construct-name, the corresponding end-select-type-stmt shall not
specify a select-construct-name. If a type-guard-stmt specifies a select-construct-name, the corresponding
select-type-stmt shall specify the same select-construct-name.

R850 exit-stmt is EXIT [ construct-name ]
C844 If a construct-name appears, the EXIT statement shall be within that construct; otherwise, it shall be

within the range (8.1.6.4) of at least one do-construct .
C845 An exit-stmt shall not belong to a DO CONCURRENT construct, nor shall it appear within the range

of a DO CONCURRENT construct if it belongs to a construct that contains that DO CONCURRENT
construct.

R851 goto-stmt is GO TO label
C846 (R851) The label shall be the statement label of a branch target statement that appears in the same

scoping unit as the goto-stmt .
R852 computed-goto-stmt is GO TO ( label-list ) [ , ] scalar-int-expr
C847 (R852 Each label in label-list shall be the statement label of a branch target statement that appears in

the same scoping unit as the computed-goto-stmt .
R853 arithmetic-if-stmt is IF ( scalar-numeric-expr ) label , label , label
C848 (R853) Each label shall be the label of a branch target statement that appears in the same scoping unit

as the arithmetic-if-stmt .
C849 (R853) The scalar-numeric-expr shall not be of type complex.
R854 continue-stmt is CONTINUE
R855 stop-stmt is STOP [ stop-code ]
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R856 allstop-stmt is ALL STOP [ stop-code ]
R857 stop-code is scalar-default-char-constant-expr

or scalar-int-constant-expr
C850 (R857) The scalar-int-constant-expr shall be of default kind.
R858 sync-all-stmt is SYNC ALL [ ( [ sync-stat-list ] ) ]
R859 sync-stat is STAT = stat-variable

or ERRMSG = errmsg-variable
C851 No specifier shall appear more than once in a given sync-stat-list.
R860 sync-images-stmt is SYNC IMAGES ( image-set [ , sync-stat-list ] )
R861 image-set is int-expr

or *
C852 An image-set that is an int-expr shall be scalar or of rank one.
R862 sync-memory-stmt is SYNC MEMORY [ ( [ sync-stat-list ] ) ]
R863 lock-stmt is LOCK ( lock-variable [ , lock-stat-list ] )
R864 lock-stat is ACQUIRED LOCK = scalar-logical-variable

or sync-stat
R865 unlock-stmt is UNLOCK ( lock-variable [ , sync-stat-list ] )
R866 lock-variable is scalar-variable
C853 (R866) A lock-variable shall be of type LOCK TYPE (13.8.2.16).

Clause 9:
R901 io-unit is file-unit-number

or *
or internal-file-variable

R902 file-unit-number is scalar-int-expr
R903 internal-file-variable is char-variable
C901 (R903) The char-variable shall not be an array section with a vector subscript.
C902 (R903) The char-variable shall be default character, ASCII character, or ISO 10646 character.
R904 open-stmt is OPEN ( connect-spec-list )
R905 connect-spec is [ UNIT = ] file-unit-number

or ACCESS = scalar-default-char-expr
or ACTION = scalar-default-char-expr
or ASYNCHRONOUS = scalar-default-char-expr
or BLANK = scalar-default-char-expr
or DECIMAL = scalar-default-char-expr
or DELIM = scalar-default-char-expr
or ENCODING = scalar-default-char-expr
or ERR = label
or FILE = file-name-expr
or FORM = scalar-default-char-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or NEWUNIT = scalar-int-variable
or PAD = scalar-default-char-expr
or POSITION = scalar-default-char-expr
or RECL = scalar-int-expr
or ROUND = scalar-default-char-expr
or SIGN = scalar-default-char-expr
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or STATUS = scalar-default-char-expr
R906 file-name-expr is scalar-default-char-expr
R907 iomsg-variable is scalar-default-char-variable
C903 No specifier shall appear more than once in a given connect-spec-list.
C904 (R904) If the NEWUNIT= specifier does not appear, a file-unit-number shall be specified; if the optional

characters UNIT= are omitted, the file-unit-number shall be the first item in the connect-spec-list.
C905 (R904) The label used in the ERR= specifier shall be the statement label of a branch target statement

that appears in the same scoping unit as the OPEN statement.
C906 (R904) If a NEWUNIT= specifier appears, a file-unit-number shall not appear.
R908 close-stmt is CLOSE ( close-spec-list )
R909 close-spec is [ UNIT = ] file-unit-number

or IOSTAT = scalar-int-variable
or IOMSG = iomsg-variable
or ERR = label
or STATUS = scalar-default-char-expr

C907 No specifier shall appear more than once in a given close-spec-list.
C908 A file-unit-number shall be specified in a close-spec-list ; if the optional characters UNIT= are omitted,

the file-unit-number shall be the first item in the close-spec-list.
C909 (R909) The label used in the ERR= specifier shall be the statement label of a branch target statement

that appears in the same scoping unit as the CLOSE statement.
R910 read-stmt is READ ( io-control-spec-list ) [ input-item-list ]

or READ format [ , input-item-list ]
R911 write-stmt is WRITE ( io-control-spec-list ) [ output-item-list ]
R912 print-stmt is PRINT format [ , output-item-list ]
R913 io-control-spec is [ UNIT = ] io-unit

or [ FMT = ] format
or [ NML = ] namelist-group-name
or ADVANCE = scalar-default-char-expr
or ASYNCHRONOUS = scalar-default-char-constant-expr
or BLANK = scalar-default-char-expr
or DECIMAL = scalar-default-char-expr
or DELIM = scalar-default-char-expr
or END = label
or EOR = label
or ERR = label
or ID = id-variable
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or PAD = scalar-default-char-expr
or POS = scalar-int-expr
or REC = scalar-int-expr
or ROUND = scalar-default-char-expr
or SIGN = scalar-default-char-expr
or SIZE = scalar-int-variable

R914 id-variable is scalar-int-variable
C910 No specifier shall appear more than once in a given io-control-spec-list.
C911 An io-unit shall be specified in an io-control-spec-list ; if the optional characters UNIT= are omitted, the

io-unit shall be the first item in the io-control-spec-list.
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C912 (R913) A DELIM= or SIGN= specifier shall not appear in a read-stmt .
C913 (R913) A BLANK=, PAD=, END=, EOR=, or SIZE= specifier shall not appear in a write-stmt .
C914 (R913) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch target

statement that appears in the same scoping unit as the data transfer statement.
C915 (R913) A namelist-group-name shall be the name of a namelist group.
C916 (R913) A namelist-group-name shall not appear if a REC= specifier, format , input-item-list, or an

output-item-list appears in the data transfer statement.
C917 (R913) An io-control-spec-list shall not contain both a format and a namelist-group-name.
C918 (R913) If format appears without a preceding FMT=, it shall be the second item in the io-control-spec-list

and the first item shall be io-unit .
C919 (R913) If namelist-group-name appears without a preceding NML=, it shall be the second item in the

io-control-spec-list and the first item shall be io-unit .
C920 (R913) If io-unit is not a file-unit-number , the io-control-spec-list shall not contain a REC= specifier or

a POS= specifier.
C921 (R913) If the REC= specifier appears, an END= specifier shall not appear, and the format , if any, shall

not be an asterisk.
C922 (R913) An ADVANCE= specifier may appear only in a formatted sequential or stream input/output

statement with explicit format specification (10.2) whose io-control-spec-list does not contain an internal-
file-variable as the io-unit .

C923 (R913) If an EOR= or SIZE= specifier appears, an ADVANCE= specifier also shall appear.
C924 (R913) The scalar-default-char-constant-expr in an ASYNCHRONOUS= specifier shall have the value

YES or NO.
C925 (R913) An ASYNCHRONOUS= specifier with a value YES shall not appear unless io-unit is a file-unit-

number .
C926 (R913) If an ID= specifier appears, an ASYNCHRONOUS= specifier with the value YES shall also

appear.
C927 (R913) If a POS= specifier appears, the io-control-spec-list shall not contain a REC= specifier.
C928 (R913) If a DECIMAL=, BLANK=, PAD=, SIGN=, or ROUND= specifier appears, a format or

namelist-group-name shall also appear.
C929 (R913) If a DELIM= specifier appears, either format shall be an asterisk or namelist-group-name shall

appear.
C930 (R914) The scalar-int-variable shall have a decimal range no smaller than that of default integer.
R915 format is default-char-expr

or label
or *

C931 (R915) The label shall be the label of a FORMAT statement that appears in the same scoping unit as
the statement containing the FMT= specifier.

R916 input-item is variable
or io-implied-do

R917 output-item is expr
or io-implied-do

R918 io-implied-do is ( io-implied-do-object-list , io-implied-do-control )
R919 io-implied-do-object is input-item

or output-item
R920 io-implied-do-control is do-variable = scalar-int-expr ,

scalar-int-expr [ , scalar-int-expr ]
C932 (R916) A variable that is an input-item shall not be a whole assumed-size array.
C933 (R920) The do-variable shall be a named scalar variable of type integer.
C934 (R919) In an input-item-list, an io-implied-do-object shall be an input-item. In an output-item-list, an

io-implied-do-object shall be an output-item.
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C935 (R917) An expression that is an output-item shall not have a value that is a procedure pointer.
R921 dtv-type-spec is TYPE( derived-type-spec )

or CLASS( derived-type-spec )
C936 (R921) If derived-type-spec specifies an extensible type, the CLASS keyword shall be used; otherwise, the

TYPE keyword shall be used.
C937 (R921) All length type parameters of derived-type-spec shall be assumed.
R922 wait-stmt is WAIT (wait-spec-list)
R923 wait-spec is [ UNIT = ] file-unit-number

or END = label
or EOR = label
or ERR = label
or ID = scalar-int-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable

C938 No specifier shall appear more than once in a given wait-spec-list.
C939 A file-unit-number shall be specified in a wait-spec-list ; if the optional characters UNIT= are omitted,

the file-unit-number shall be the first item in the wait-spec-list.
C940 (R923) The label in the ERR=, EOR=, or END= specifier shall be the statement label of a branch target

statement that appears in the same scoping unit as the WAIT statement.
R924 backspace-stmt is BACKSPACE file-unit-number

or BACKSPACE ( position-spec-list )
R925 endfile-stmt is ENDFILE file-unit-number

or ENDFILE ( position-spec-list )
R926 rewind-stmt is REWIND file-unit-number

or REWIND ( position-spec-list )
R927 position-spec is [ UNIT = ] file-unit-number

or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or ERR = label

C941 No specifier shall appear more than once in a given position-spec-list.
C942 A file-unit-number shall be specified in a position-spec-list ; if the optional characters UNIT= are omitted,

the file-unit-number shall be the first item in the position-spec-list.
C943 (R927) The label in the ERR= specifier shall be the statement label of a branch target statement that

appears in the same scoping unit as the file positioning statement.
R928 flush-stmt is FLUSH file-unit-number

or FLUSH ( flush-spec-list )
R929 flush-spec is [UNIT =] file-unit-number

or IOSTAT = scalar-int-variable
or IOMSG = iomsg-variable
or ERR = label

C944 No specifier shall appear more than once in a given flush-spec-list.
C945 A file-unit-number shall be specified in a flush-spec-list ; if the optional characters UNIT= are omitted

from the unit specifier, the file-unit-number shall be the first item in the flush-spec-list.
C946 (R929) The label in the ERR= specifier shall be the statement label of a branch target statement that

appears in the same scoping unit as the FLUSH statement.
R930 inquire-stmt is INQUIRE ( inquire-spec-list )

or INQUIRE ( IOLENGTH = scalar-int-variable )
output-item-list

R931 inquire-spec is [ UNIT = ] file-unit-number
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or FILE = file-name-expr
or ACCESS = scalar-default-char-variable
or ACTION = scalar-default-char-variable
or ASYNCHRONOUS = scalar-default-char-variable
or BLANK = scalar-default-char-variable
or DECIMAL = scalar-default-char-variable
or DELIM = scalar-default-char-variable
or DIRECT = scalar-default-char-variable
or ENCODING = scalar-default-char-variable
or ERR = label
or EXIST = scalar-logical-variable
or FORM = scalar-default-char-variable
or FORMATTED = scalar-default-char-variable
or ID = scalar-int-expr
or IOMSG = iomsg-variable
or IOSTAT = scalar-int-variable
or NAME = scalar-default-char-variable
or NAMED = scalar-logical-variable
or NEXTREC = scalar-int-variable
or NUMBER = scalar-int-variable
or OPENED = scalar-logical-variable
or PAD = scalar-default-char-variable
or PENDING = scalar-logical-variable
or POS = scalar-int-variable
or POSITION = scalar-default-char-variable
or READ = scalar-default-char-variable
or READWRITE = scalar-default-char-variable
or RECL = scalar-int-variable
or ROUND = scalar-default-char-variable
or SEQUENTIAL = scalar-default-char-variable
or SIGN = scalar-default-char-variable
or SIZE = scalar-int-variable
or STREAM = scalar-default-char-variable
or UNFORMATTED = scalar-default-char-variable
or WRITE = scalar-default-char-variable

C947 No specifier shall appear more than once in a given inquire-spec-list.
C948 An inquire-spec-list shall contain one FILE= specifier or one file-unit-number , but not both.
C949 In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are omitted,

the file-unit-number shall be the first item in the inquire-spec-list.
C950 If an ID= specifier appears in an inquire-spec-list, a PENDING= specifier shall also appear.
C951 (R929) The label in the ERR= specifier shall be the statement label of a branch target statement that

appears in the same scoping unit as the INQUIRE statement.

Clause 10:
R1001 format-stmt is FORMAT format-specification
R1002 format-specification is ( [ format-items ] )

or ( [ format-items, ] unlimited-format-item )
C1001 (R1001) The format-stmt shall be labeled.
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R1003 format-items is format-item [ [ , ] format-item ] ...
R1004 format-item is [ r ] data-edit-desc

or control-edit-desc
or char-string-edit-desc
or [ r ] ( format-items )

R1005 unlimited-format-item is * ( format-items )
R1006 r is int-literal-constant
C1002 (R1003) The optional comma shall not be omitted except

• between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit descriptor
(10.8.5), possibly preceded by a repeat specification,

• before a slash edit descriptor when the optional repeat specification does not appear (10.8.2),

• after a slash edit descriptor, or

• before or after a colon edit descriptor (10.8.3)
C1003 (R1006) r shall be positive.
C1004 (R1006) A kind parameter shall not be specified for r .
R1007 data-edit-desc is I w [ . m ]

or B w [ . m ]
or O w [ . m ]
or Z w [ . m ]
or F w . d
or E w . d [ E e ]
or EN w . d [ E e ]
or ES w . d [ E e ]
or G w [ . d [ E e ] ]
or L w
or A [ w ]
or D w . d
or DT [ char-literal-constant ] [ ( v-list ) ]

R1008 w is int-literal-constant
R1009 m is int-literal-constant
R1010 d is int-literal-constant
R1011 e is int-literal-constant
R1012 v is signed-int-literal-constant
C1005 (R1011) e shall be positive.
C1006 (R1008) w shall be zero or positive for the I, B, O, Z, F, and G edit descriptors. w shall be positive for

all other edit descriptors.
C1007 (R1007) For the G edit descriptor, d shall be specified if w is not zero.
C1008 (R1007) For the G edit descriptor, e shall not be specified if w is zero.
C1009 (R1007) A kind parameter shall not be specified for the char-literal-constant in the DT edit descriptor,

or for w , m, d , e, and v .
R1013 control-edit-desc is position-edit-desc

or [ r ] /
or :
or sign-edit-desc
or k P
or blank-interp-edit-desc
or round-edit-desc
or decimal-edit-desc
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R1014 k is signed-int-literal-constant
C1010 (R1014) A kind parameter shall not be specified for k .
R1015 position-edit-desc is T n

or TL n
or TR n
or n X

R1016 n is int-literal-constant
C1011 (R1016) n shall be positive.
C1012 (R1016) A kind parameter shall not be specified for n.
R1017 sign-edit-desc is SS

or SP
or S

R1018 blank-interp-edit-desc is BN
or BZ

R1019 round-edit-desc is RU
or RD
or RZ
or RN
or RC
or RP

R1020 decimal-edit-desc is DC
or DP

R1021 char-string-edit-desc is char-literal-constant
C1013 (R1021) A kind parameter shall not be specified for the char-literal-constant .
R1022 hex-digit-string is hex-digit [ hex-digit ] ...

Clause 11:
R1101 main-program is [ program-stmt ]

[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-program-stmt

R1102 program-stmt is PROGRAM program-name
R1103 end-program-stmt is END [ PROGRAM [ program-name ] ]
C1101 (R1101) The program-name may be included in the end-program-stmt only if the optional program-stmt

is used and, if included, shall be identical to the program-name specified in the program-stmt .
R1104 module is module-stmt

[ specification-part ]
[ module-subprogram-part ]
end-module-stmt

R1105 module-stmt is MODULE module-name
R1106 end-module-stmt is END [ MODULE [ module-name ] ]
R1107 module-subprogram-part is contains-stmt

[ module-subprogram ] ...
R1108 module-subprogram is function-subprogram

or subroutine-subprogram
or separate-module-subprogram

C1102 (R1104) If the module-name is specified in the end-module-stmt , it shall be identical to the module-name
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specified in the module-stmt .
C1103 (R1104) A module specification-part shall not contain a stmt-function-stmt, an entry-stmt , or a format-stmt .
R1109 use-stmt is USE [ [ , module-nature ] :: ] module-name [ , rename-list ]

or USE [ [ , module-nature ] :: ] module-name ,
ONLY : [ only-list ]

R1110 module-nature is INTRINSIC
or NON INTRINSIC

R1111 rename is local-name => use-name
or OPERATOR (local-defined-operator) =>

OPERATOR (use-defined-operator)
R1112 only is generic-spec

or only-use-name
or rename

R1113 only-use-name is use-name
C1104 (R1109) If module-nature is INTRINSIC, module-name shall be the name of an intrinsic module.
C1105 (R1109) If module-nature is NON INTRINSIC, module-name shall be the name of a nonintrinsic module.
C1106 (R1109) A scoping unit shall not access an intrinsic module and a nonintrinsic module of the same name.
C1107 (R1111) OPERATOR(use-defined-operator) shall not identify a type-bound generic interface.
C1108 (R1112) The generic-spec shall not identify a type-bound generic interface.
C1109 (R1112) Each generic-spec shall be a public entity in the module.
C1110 (R1113) Each use-name shall be the name of a public entity in the module.
R1114 local-defined-operator is defined-unary-op

or defined-binary-op
R1115 use-defined-operator is defined-unary-op

or defined-binary-op
C1111 (R1115) Each use-defined-operator shall be a public entity in the module.
R1116 submodule is submodule-stmt

[ specification-part ]
[ module-subprogram-part ]

end-submodule-stmt
R1117 submodule-stmt is SUBMODULE ( parent-identifier ) submodule-name
R1118 parent-identifier is ancestor-module-name [ : parent-submodule-name ]
R1119 end-submodule-stmt is END [ SUBMODULE [ submodule-name ] ]
C1112 (R1116) A submodule specification-part shall not contain a format-stmt , entry-stmt , or stmt-function-stmt.
C1113 (R1118) The ancestor-module-name shall be the name of a nonintrinsic module; the parent-submodule-

name shall be the name of a descendant of that module.
C1114 (R1116) If a submodule-name appears in the end-submodule-stmt , it shall be identical to the one in the

submodule-stmt .
R1120 block-data is block-data-stmt

[ specification-part ]
end-block-data-stmt

R1121 block-data-stmt is BLOCK DATA [ block-data-name ]
R1122 end-block-data-stmt is END [ BLOCK DATA [ block-data-name ] ]
C1115 (R1120) The block-data-name shall be included in the end-block-data-stmt only if it was provided in the

block-data-stmt and, if included, shall be identical to the block-data-name in the block-data-stmt .
C1116 (R1120) A block-data specification-part shall contain only definitions of derived-type definitions and

ASYNCHRONOUS, BIND, COMMON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT, INTRIN-
SIC, PARAMETER, POINTER, SAVE, TARGET, USE, VOLATILE, and type declaration statements.
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C1117 (R1120) A type declaration statement in a block-data specification-part shall not contain ALLOCA-
TABLE, EXTERNAL, or BIND attribute specifiers.

Clause 12:
R1201 interface-block is interface-stmt

[ interface-specification ] ...
end-interface-stmt

R1202 interface-specification is interface-body
or procedure-stmt

R1203 interface-stmt is INTERFACE [ generic-spec ]
or ABSTRACT INTERFACE

R1204 end-interface-stmt is END INTERFACE [ generic-spec ]
R1205 interface-body is function-stmt

[ specification-part ]
end-function-stmt

or subroutine-stmt
[ specification-part ]
end-subroutine-stmt

R1206 procedure-stmt is [ MODULE ] PROCEDURE [ :: ] procedure-name-list
R1207 generic-spec is generic-name

or OPERATOR ( defined-operator )
or ASSIGNMENT ( = )
or defined-io-generic-spec

R1208 defined-io-generic-spec is READ (FORMATTED)
or READ (UNFORMATTED)
or WRITE (FORMATTED)
or WRITE (UNFORMATTED)

C1201 (R1201) An interface-block in a subprogram shall not contain an interface-body for a procedure defined
by that subprogram.

C1202 (R1201) If the end-interface-stmt includes generic-name, the interface-stmt shall specify the same generic-
name. If the end-interface-stmt includes ASSIGNMENT(=), the interface-stmt shall specify ASSIGN-
MENT(=). If the end-interface-stmt includes defined-io-generic-spec, the interface-stmt shall specify
the same defined-io-generic-spec. If the end-interface-stmt includes OPERATOR(defined-operator), the
interface-stmt shall specify the same defined-operator . If one defined-operator is .LT., .LE., .GT., .GE.,
.EQ., or .NE., the other is permitted to be the corresponding operator <, <=, >, >=, ==, or /=.

C1203 (R1203) If the interface-stmt is ABSTRACT INTERFACE, then the function-name in the function-stmt
or the subroutine-name in the subroutine-stmt shall not be the same as a keyword that specifies an
intrinsic type.

C1204 (R1202) A procedure-stmt is allowed only in an interface block that has a generic-spec.
C1205 (R1205) An interface-body of a pure procedure shall specify the intents of all dummy arguments except

pointer, alternate return, and procedure arguments.
C1206 (R1205) An interface-body shall not contain a data-stmt , format-stmt , entry-stmt , or stmt-function-stmt.
C1207 (R1206) A procedure-name shall be a nonintrinsic procedure that has an explicit interface.
C1208 (R1206) If MODULE appears in a procedure-stmt , each procedure-name in that statement shall be ac-

cessible as a module procedure.
C1209 (R1206) A procedure-name shall not specify a procedure that is specified previously in any procedure-stmt

in any accessible interface with the same generic identifier.
R1209 import-stmt is IMPORT [[ :: ] import-name-list
C1210 (R1209) The IMPORT statement is allowed only in an interface-body that is not a module procedure

interface body.
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C1211 (R1209) Each import-name shall be the name of an entity in the host scoping unit.
C1212 Within a scoping unit, if two procedures have the same generic operator and the same number of argu-

ments or both define assignment, one shall have a dummy argument that corresponds by position in the
argument list to a dummy argument of the other that is distinguishable from it.

C1213 Within a scoping unit, if two procedures have the same defined-io-generic-spec (12.4.3.2), they shall be
distinguishable.

C1214 Within a scoping unit, two procedures that have the same generic name shall both be subroutines or
both be functions, and

(1) there is a non-passed-object dummy data object in one or the other of them such that

(a) the number of dummy data objects in one that are nonoptional, are not passed-object, and
with which that dummy data object is TKR compatible, possibly including that dummy
data object itself,

exceeds

(b) the number of non-passed-object dummy data objects, both optional and nonoptional, in
the other that are not distinguishable from that dummy data object,

(2) both have passed-object dummy arguments and the passed-object dummy arguments are distin-
guishable, or

(3) at least one of them shall have both

(a) a nonoptional non-passed-object dummy argument at an effective position such that either
the other procedure has no dummy argument at that effective position or the dummy argu-
ment at that position is distinguishable from it, and

(b) a nonoptional non-passed-object dummy argument whose name is such that either the other
procedure has no dummy argument with that name or the dummy argument with that name
is distinguishable from it.

and the dummy argument that disambiguates by position shall either be the same as or occur
earlier in the argument list than the one that disambiguates by name.

R1210 external-stmt is EXTERNAL [ :: ] external-name-list
R1211 procedure-declaration-stmt is PROCEDURE ( [ proc-interface ] )

[ [ , proc-attr-spec ] ... :: ] proc-decl-list
R1212 proc-interface is interface-name

or declaration-type-spec
R1213 proc-attr-spec is access-spec

or proc-language-binding-spec
or INTENT ( intent-spec )
or OPTIONAL
or POINTER
or SAVE

R1214 proc-decl is procedure-entity-name [ => proc-pointer-init ]
R1215 interface-name is name
R1216 proc-pointer-init is null-init

or initial-proc-target
R1217 initial-proc-target is procedure-name
C1215 (R1215) The name shall be the name of an abstract interface or of a procedure that has an explicit

interface. If name is declared by a procedure-declaration-stmt it shall be previously declared. If name
denotes an intrinsic procedure it shall be one that is listed in 13.6 and not marked with a bullet (•).

C1216 (R1215) The name shall not be the same as a keyword that specifies an intrinsic type.
C1217 (R1211) If a proc-interface describes an elemental procedure, each procedure-entity-name shall specify an

external procedure.
C1218 (R1214) If => appears in proc-decl , the procedure entity shall have the POINTER attribute.
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C1219 (R1217) The procedure-name shall be the name of a nonelemental external or module procedure, or a
specific intrinsic function listed in 13.6 and not marked with a bullet (•).

C1220 (R1211) If proc-language-binding-spec with a NAME= is specified, then proc-decl-list shall contain exactly
one proc-decl , which shall neither have the POINTER attribute nor be a dummy procedure.

C1221 (R1211) If proc-language-binding-spec is specified, the proc-interface shall appear, it shall be an interface-
name, and interface-name shall be declared with a proc-language-binding-spec.

R1218 intrinsic-stmt is INTRINSIC [ :: ] intrinsic-procedure-name-list
C1222 (R1218) Each intrinsic-procedure-name shall be the name of an intrinsic procedure.
R1219 function-reference is procedure-designator ( [ actual-arg-spec-list ] )
C1223 (R1219) The procedure-designator shall designate a function.
C1224 (R1219) The actual-arg-spec-list shall not contain an alt-return-spec.

R1220 call-stmt is CALL procedure-designator [ ( [ actual-arg-spec-list ] ) ]
C1225 (R1220) The procedure-designator shall designate a subroutine.
R1221 procedure-designator is procedure-name

or proc-component-ref
or data-ref % binding-name

C1226 (R1221) A procedure-name shall be the name of a procedure or procedure pointer.
C1227 (R1221) A binding-name shall be a binding name (4.5.5) of the declared type of data-ref .
C1228 (R1221) A data-ref shall not be a polymorphic subobject of a coindexed object.
C1229 (R1221) If data-ref is an array, the referenced type-bound procedure shall have the PASS attribute.
R1222 actual-arg-spec is [ keyword = ] actual-arg
R1223 actual-arg is expr

or variable
or procedure-name
or proc-component-ref
or alt-return-spec

R1224 alt-return-spec is * label
C1230 (R1222) The keyword = shall not appear if the interface of the procedure is implicit in the scoping unit.
C1231 (R1222) The keyword = shall not be omitted from an actual-arg-spec unless it has been omitted from

each preceding actual-arg-spec in the argument list.
C1232 (R1222) Each keyword shall be the name of a dummy argument in the explicit interface of the procedure.
C1233 (R1223) A nonintrinsic elemental procedure shall not be used as an actual argument.
C1234 (R1223) A procedure-name shall be the name of an external, internal, module, or dummy procedure, a

specific intrinsic function listed in 13.6 and not marked with a bullet (•), or a procedure pointer.
C1235 (R1224) The label shall be the statement label of a branch target statement that appears in the same scoping unit as the

call-stmt .

C1236 An actual argument that is a coindexed object shall not have a pointer ultimate component.
C1237 An actual argument that is a coindexed object with the ASYNCHRONOUS or VOLATILE attribute shall

not correspond to a dummy argument that has either the ASYNCHRONOUS or VOLATILE attribute.
C1238 (R1223) If an actual argument is a nonpointer array that has the ASYNCHRONOUS or VOLATILE

attribute but is not simply contiguous (6.5.4), and the corresponding dummy argument has either the
VOLATILE or ASYNCHRONOUS attribute, that dummy argument shall be an assumed-shape array
that does not have the CONTIGUOUS attribute.

C1239 (R1223) If an actual argument is an array pointer that has the ASYNCHRONOUS or VOLATILE
attribute but does not have the CONTIGUOUS attribute, and the corresponding dummy argument has
either the VOLATILE or ASYNCHRONOUS attribute, that dummy argument shall be an array pointer
or an assumed-shape array that does not have the CONTIGUOUS attribute.

C1240 The actual argument corresponding to a dummy pointer with the CONTIGUOUS attribute shall be
simply contiguous (6.5.4).

C1241 The actual argument corresponding to a dummy pointer shall not be a coindexed object.

570 Syntax rules and constraints D.1



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

R1225 prefix is prefix-spec [ prefix-spec ] ...
R1226 prefix-spec is declaration-type-spec

or ELEMENTAL
or IMPURE
or MODULE
or PURE
or RECURSIVE

C1242 (R1225) A prefix shall contain at most one of each prefix-spec.
C1243 (R1225) A prefix shall not specify both PURE and IMPURE.
C1244 (R1225) A prefix shall not specify both ELEMENTAL and RECURSIVE.
C1245 An elemental procedure shall not have the BIND attribute.
C1246 (R1225) MODULE shall appear only in the function-stmt or subroutine-stmt of a module subprogram or

of a nonabstract interface body that is declared in the scoping unit of a module or submodule.
C1247 (R1225) If MODULE appears in the prefix of a module subprogram, an accessible separate interface body

(12.6.2.5) shall appear in the specification part of the module or submodule in which the subprogram
appears, or shall appear in an ancestor of that program unit.

C1248 (R1225) If MODULE appears in the prefix of a module subprogram, it shall have been declared to be a
separate module procedure in the containing program unit or an ancestor of that program unit.

C1249 (R1225) If MODULE appears in the prefix of a module subprogram, the subprogram shall specify the
same characteristics and dummy argument names as its corresponding separate interface body.

C1250 (R1225) If MODULE appears in the prefix of a module subprogram and a binding label is specified, it
shall be the same as the binding label specified in the corresponding separate interface body.

C1251 (R1225) If MODULE appears in the prefix of a module subprogram, RECURSIVE shall appear if and
only if RECURSIVE appears in the prefix in the corresponding separate interface body.

R1227 function-subprogram is function-stmt
[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-function-stmt

R1228 function-stmt is [ prefix ] FUNCTION function-name
( [ dummy-arg-name-list ] ) [ suffix ]

C1252 (R1228) If RESULT appears, result-name shall not be the same as function-name and shall not be the same

as the entry-name in any ENTRY statement in the subprogram.
C1253 (R1228) If RESULT appears, the function-name shall not appear in any specification statement in the

scoping unit of the function subprogram.
R1229 proc-language-binding-spec is language-binding-spec
C1254 (R1229) A proc-language-binding-spec with a NAME= specifier shall not be specified in the function-stmt

or subroutine-stmt of an internal procedure, or of an interface body for an abstract interface or a dummy
procedure.

C1255 (R1229) If proc-language-binding-spec is specified for a procedure, each of the procedure’s dummy ar-
guments shall be a nonoptional interoperable variable (15.3.5, 15.3.6) or a nonoptional interoperable
procedure (15.3.7). If proc-language-binding-spec is specified for a function, the function result shall be
an interoperable scalar variable.

R1230 dummy-arg-name is name
C1256 (R1230) A dummy-arg-name shall be the name of a dummy argument.
R1231 suffix is proc-language-binding-spec [ RESULT ( result-name ) ]

or RESULT ( result-name ) [ proc-language-binding-spec ]
R1232 end-function-stmt is END [ FUNCTION [ function-name ] ]
C1257 (R1227) An internal function subprogram shall not contain an internal-subprogram-part .
C1258 (R1232) If a function-name appears in the end-function-stmt , it shall be identical to the function-name
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specified in the function-stmt .
R1233 subroutine-subprogram is subroutine-stmt

[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-subroutine-stmt

R1234 subroutine-stmt is [ prefix ] SUBROUTINE subroutine-name
[ ( [ dummy-arg-list ] ) [ proc-language-binding-spec ] ]

C1259 (R1234) The prefix of a subroutine-stmt shall not contain a declaration-type-spec.
R1235 dummy-arg is dummy-arg-name

or *

R1236 end-subroutine-stmt is END [ SUBROUTINE [ subroutine-name ] ]
C1260 (R1233) An internal subroutine subprogram shall not contain an internal-subprogram-part .
C1261 (R1236) If a subroutine-name appears in the end-subroutine-stmt , it shall be identical to the subroutine-

name specified in the subroutine-stmt .
R1237 separate-module-subprogram is mp-subprogram-stmt

[ specification-part ]
[ execution-part ]
[ internal-subprogram-part ]
end-mp-subprogram-stmt

R1238 mp-subprogram-stmt is MODULE PROCEDURE procedure-name
R1239 end-mp-subprogram-stmt is END [PROCEDURE [procedure-name]]
C1262 (R1237) The procedure-name shall have been declared to be a separate module procedure in the containing

program unit or an ancestor of that program unit.
C1263 (R1239) If a procedure-name appears in the end-mp-subprogram-stmt , it shall be identical to the procedure-

name in the MODULE PROCEDURE statement.
R1240 entry-stmt is ENTRY entry-name [ ( [ dummy-arg-list ] ) [ suffix ] ]
C1264 (R1240) If RESULT appears, the entry-name shall not appear in any specification or type-declaration

statement in the scoping unit of the function program.
C1265 (R1240) An entry-stmt shall appear only in an external-subprogram or a module-subprogram that does

not define a separate module procedure. An entry-stmt shall not appear within an executable-construct .
C1266 (R1240) RESULT shall appear only if the entry-stmt is in a function subprogram.
C1267 (R1240) A dummy-arg shall not be an alternate return indicator if the ENTRY statement is in a function subprogram.

C1268 (R1240) If RESULT appears, result-name shall not be the same as the function-name in the FUNCTION
statement and shall not be the same as the entry-name in any ENTRY statement in the subprogram.

R1241 return-stmt is RETURN [ scalar-int-expr ]

C1269 (R1241) The return-stmt shall be in the scoping unit of a function or subroutine subprogram.
C1270 (R1241) The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.

R1242 contains-stmt is CONTAINS
R1243 stmt-function-stmt is function-name ( [ dummy-arg-name-list ] ) = scalar-expr
C1271 (R1243) The primaries of the scalar-expr shall be constants (literal and named), references to variables,

references to functions, and intrinsic operations. If scalar-expr contains a reference to a function, the
reference shall not require an explicit interface, the function shall not require an explicit interface unless
it is an intrinsic function, the function shall not be a transformational intrinsic, and the result shall be
scalar. If an argument to a function is an array, it shall be an array name. If a reference to a statement
function appears in scalar-expr , its definition shall have been provided earlier in the scoping unit and
shall not be the name of the statement function being defined.

C1272 (R1243) Named constants in scalar-expr shall have been declared earlier in the scoping unit or made
accessible by use or host association. If array elements appear in scalar-expr , the array shall have been
declared as an array earlier in the scoping unit or made accessible by use or host association.
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C1273 (R1243) If a dummy-arg-name, variable, function reference, or dummy function reference is typed by
the implicit typing rules, its appearance in any subsequent type declaration statement shall confirm this
implied type and the values of any implied type parameters.

C1274 (R1243) The function-name and each dummy-arg-name shall be specified, explicitly or implicitly, to be
scalar.

C1275 (R1243) A given dummy-arg-name shall not appear more than once in any dummy-arg-name-list.
C1276 The specification-part of a pure function subprogram shall specify that all its nonpointer dummy data

objects have the INTENT (IN) or the VALUE attribute.
C1277 The specification-part of a pure subroutine subprogram shall specify the intents of all its nonpointer

dummy data objects that do not have the VALUE attribute.
C1278 A local variable of a pure subprogram, or of a BLOCK construct within a pure subprogram, shall not

have the SAVE attribute.
C1279 The specification-part of a pure subprogram shall specify that all its dummy procedures are pure.
C1280 If a procedure that is neither an intrinsic procedure nor a statement function is used in a context that requires

it to be pure, then its interface shall be explicit in the scope of that use. The interface shall specify that
the procedure is pure.

C1281 All internal subprograms in a pure subprogram shall be pure.
C1282 A designator of a variable with the VOLATILE attribute shall not appear in a pure subprogram.
C1283 In a pure subprogram any designator with a base object that is in common or accessed by host or use

association, is a dummy argument with the INTENT (IN) attribute, is a coindexed object, or an object
that is storage associated with any such variable, shall not be used

(1) in a variable definition context (16.6.7),
(2) as the data-target in a pointer-assignment-stmt ,
(3) as the expr corresponding to a component with the POINTER attribute in a structure-constructor ,
(4) as the expr of an intrinsic assignment statement in which the variable is of a derived type if the

derived type has a pointer component at any level of component selection, or
(5) as an actual argument corresponding to a dummy argument with INTENT (OUT) or INTENT

(INOUT) or with the POINTER attribute.
C1284 Any procedure referenced in a pure subprogram, including one referenced via a defined operation, defined

assignment, defined input/output, or finalization, shall be pure.
C1285 A pure subprogram shall not contain a print-stmt , open-stmt , close-stmt , backspace-stmt , endfile-stmt ,

rewind-stmt , flush-stmt , wait-stmt , or inquire-stmt .
C1286 A pure subprogram shall not contain a read-stmt or write-stmt whose io-unit is a file-unit-number or *.
C1287 A pure subprogram shall not contain a stop-stmt or allstop-stmt .
C1288 A pure subprogram shall not contain an image control statement (8.5.1).
C1289 All dummy arguments of an elemental procedure shall be scalar noncoarray dummy data objects and

shall not have the POINTER or ALLOCATABLE attribute.
C1290 The result variable of an elemental function shall be scalar, shall not have the POINTER or ALLOCA-

TABLE attribute, and shall not have a type parameter that is defined by an expression that is not a
constant expression.

Clause 13:
C1301 If a boz-literal-constant is truncated as an argument to the intrinsic function REAL, the discarded bits

shall all be zero.
C1302 A named variable of type LOCK TYPE shall be a coarray. A named variable with a noncoarray sub-

component of type LOCK TYPE shall be a coarray.
C1303 A lock variable shall not appear in a variable definition context except as the lock-variable in a LOCK or

UNLOCK statement, as an allocate-object , or as an actual argument in a reference to a procedure with
an explicit interface where the corresponding dummy argument has INTENT (INOUT).

C1304 A variable with a subobject of type LOCK TYPE shall not appear in a variable definition context except
as an allocate-object or as an actual argument in a reference to a procedure with an explicit interface
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where the corresponding dummy argument has INTENT (INOUT).

Clause 14:

Clause 15:
C1501 (R425) A derived type with the BIND attribute shall not have the SEQUENCE attribute.
C1502 (R425) A derived type with the BIND attribute shall not have type parameters.
C1503 (R425) A derived type with the BIND attribute shall not have the EXTENDS attribute.
C1504 (R425) A derived type with the BIND attribute shall not have a type-bound-procedure-part .
C1505 (R425) Each component of a derived type with the BIND attribute shall be a nonpointer, nonallocatable

data component with interoperable type and type parameters.
C1506 A procedure defined in a submodule shall not have a binding label unless its interface is declared in the

ancestor module.

Clause 16:

D.2 Syntax rule cross-reference
R475 ac-do-variable R474, C508
R473 ac-implied-do R472, C508
R474 ac-implied-do-control R473
R469 ac-spec R468
R472 ac-value R469, R473, C505, C506, C507
R525 access-id R524, C563
R507 access-spec R427, R437, R441, R450, R451, R502, C517, R524, R1213
R524 access-stmt R212, C563
R214 action-stmt R213, R826, R830, R837, C828
R824 action-term-do-construct R823
R1223 actual-arg R1222
R1222 actual-arg-spec C498, R1219, C1224, R1220, C1231
R709 add-op R309, R706
R705 add-operand R705, R706
R627 alloc-opt R626, C636
R527 allocatable-decl R526
R526 allocatable-stmt R212
R636 allocate-coarray-spec R631, C634, C635
R637 allocate-coshape-spec R636, C635
R632 allocate-object R631, C628, C629, C630, C631, C632, C633, C634, C635,

C638, C639, C641, C642, C644, R640, C1303, C1304
R633 allocate-shape-spec R631, C633, C635
R626 allocate-stmt R214
R631 allocation R626
R856 allstop-stmt R214, C816, C818, C1287
R301 alphanumeric-character R303
R1224 alt-return-spec C1224, R1223

ancestor-module-name R1118, C1113
R719 and-op R309, R715
R714 and-operand R715

arg-name R441, C456, R451, C476
R853 arithmetic-if-stmt R214, C816, C818, C848
R468 array-constructor C505, C506, C507, R701

574 Syntax rules and constraints D.2



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

R617 array-element R538, C570, C573, R567, R601, R609
array-name R545

R618 array-section R601
R515 array-spec R502, R503, C515, R514, C533, R526, R527, R545, R556,

R557, R569, C599
R732 assignment-stmt R214, R745, R757
R802 associate-construct R213, C805

associate-construct-name R803, R806, C805
associate-name R804, C801, C802, R847, C835, C836

R803 associate-stmt R802, C802, C805
R804 association R803
R519 assumed-shape-spec R515
R521 assumed-size-spec R515
R528 asynchronous-stmt R212
R502 attr-spec R501, C501, C581
R924 backspace-stmt R214, C1285
R464 binary-constant R463
R530 bind-entity R529, C565
R529 bind-stmt R212
R451 binding-attr R448, C474, C477, C478

binding-name R448, R449, R450, C469, R1221, C1227
R446 binding-private-stmt R445, C465
R1018 blank-interp-edit-desc R1013
R801 block R802, R807, R810, C810, R820, R832, R838, R846
R807 block-construct R213, C808

block-construct-name R808, R809, C808
R1120 block-data R202, C1116, C1117

block-data-name R1121, R1122, C1115
R1121 block-data-stmt R1120, C1115
R814 block-do-construct R813, C813
R808 block-stmt R807, C808
R736 bounds-remapping R733, C718, C719
R735 bounds-spec R733, C717
R463 boz-literal-constant R305, C504, C1301
R1220 call-stmt R214, C1235
R838 case-construct R213, C829, C832, C834

case-construct-name R839, R840, R841, C829
R842 case-expr R839, C830, C832, C833, C834
R843 case-selector R840
R840 case-stmt R838, C829
R845 case-value R844, C832
R844 case-value-range R843, C833, C834
R308 char-constant C303
R422 char-length R421, C417, C451, R503, C504
R423 char-literal-constant R305, R1007, C1009, R1021, C1013
R420 char-selector R404
R1021 char-string-edit-desc R1004
R605 char-variable C605, R903, C901, C902
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R909 close-spec R908, C907, C908
R908 close-stmt R214, C1285

coarray-name R532
R509 coarray-spec R437, C444, C445, R502, R503, C527, C528, R527, R532
R532 codimension-decl R531
R531 codimension-stmt R212
R614 coindexed-named-object R601, R609

common-block-name R530, R554, R568, C807
R569 common-block-object R568, C599, C600, C601, C602
R568 common-stmt R212
R417 complex-literal-constant R305
R615 complex-part-designator R601, R618, C624
R439 component-array-spec R437, C443, C447
R437 component-attr-spec R436, C441, C461
R457 component-data-source R456
R438 component-decl R436, C459
R435 component-def-stmt R434, C441, C442, C452
R442 component-initialization C459, C460, C461

component-name C462
R434 component-part R425
R456 component-spec R455, C492, C493, C494, C495, C497, C498
R852 computed-goto-stmt R214, C847
R711 concat-op R309, R710
R905 connect-spec R904, C903, C904
R304 constant R307, R308, R542, R609, R701
R544 constant-subobject R542, R543, C578

construct-name R850, C844
R1242 contains-stmt R210, R445, R1107
R854 continue-stmt R214, R821, C816
R1013 control-edit-desc R1004
R625 cosubscript C614, R624
R810 critical-construct R213, C809, C810, C811

critical-construct-name R811, R812, C809
R811 critical-stmt R810, C809
R831 cycle-stmt R214, C816, C818, C821
R1010 d R1007, C1007, C1009
R436 data-component-def-stmt R435
R1007 data-edit-desc R1004
R538 data-i-do-object R537, C566, C568, C569, C573
R539 data-i-do-variable R537, C573
R537 data-implied-do R536, R538, C573

data-pointer-component-name C913, R734, C723
R734 data-pointer-object R733, C715, C716, C717, C718, C719, C720, C724
R611 data-ref C611, C616, C617, R613, R614, C620, R617, R618, C722,

C728, R1221, C1227, C1228, C1229
R534 data-stmt R209, R212, C1206
R542 data-stmt-constant C504, R540, C576
R536 data-stmt-object R535, C566, C567, C568, C569

576 Syntax rules and constraints D.2



09-007r3:2009/08/25 FCD 1539-1 JTC 1/SC 22/WG5/N1791

R541 data-stmt-repeat R540, C574
R535 data-stmt-set R534
R540 data-stmt-value R535
R737 data-target R457, C499, C500, C552, R733, C715, C716, C719, C720,

C726
R641 dealloc-opt R640, C646
R640 deallocate-stmt R214
R1020 decimal-edit-desc R1013
R207 declaration-construct R204
R403 declaration-type-spec C404, C405, C421, R436, C442, R501, R561, R1212,

R1226, C1259
R725 default-char-expr C706, R905, R906, R909, R913, R915
R606 default-char-variable C606, R629, R907, R931
R510 deferred-coshape-spec C444, R509, C527
R520 deferred-shape-spec R439, C443, R515, C533, R551
R723 defined-binary-op R310, R722, C704, R1114, R1115
R1208 defined-io-generic-spec C473, R1207, C1202, C1213
R310 defined-operator C471, R1207, C1202
R703 defined-unary-op R310, R702, C703, R1114, R1115
R425 derived-type-def R207, C436, C439, C440
R453 derived-type-spec C915, C916, C917, R402, C403, R403, C405, C406, R455,

C491, C498, R848, C838, C839, R921, C936, C937
R426 derived-type-stmt R425, C429, C437, C439, C440
R601 designator R443, C463, R544, R602, C601, C617, R615, C621, R616,

C622, R701, C702, C1282
digit R301, R312, R410, R464, C426, R465, C427, R467, R464,

C502, R465, C503, R467
R410 digit-string R407, R408, R409, R413, R414
R545 dimension-stmt R212
R820 do-block R814
R825 do-body R824, R827, R829
R813 do-construct R213, C820, C844

do-construct-name R816, R817, R822, C813, R831, C820
R815 do-stmt R814, C813, C814, C815
R826 do-term-action-stmt R824, C816, C817
R830 do-term-shared-stmt R829, C818, C819
R819 do-variable R475, R539, R818, C812, R920, C933
R1235 dummy-arg R1234, R1240, C1267
R1230 dummy-arg-name R546, R547, R558, R1228, C1256, R1235, R1243, C1273,

C1274, C1275
R1011 e R1007, C1005, C1008, C1009
R834 else-if-stmt R832, C827
R835 else-stmt R832, C827
R748 elsewhere-stmt R742, C734
R806 end-associate-stmt R802, C805
R1122 end-block-data-stmt R1120, C1115
R809 end-block-stmt R807, C808
R812 end-critical-stmt R810, C809
R821 end-do R814, C813, C814, C815
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R822 end-do-stmt R821, C813, C814
R462 end-enum-stmt R458
R758 end-forall-stmt R750, C736
R1232 end-function-stmt R214, C201, C816, C818, C828, R1205, R1227, C1258
R836 end-if-stmt R832, C827
R1204 end-interface-stmt R1201, C1202
R1106 end-module-stmt R1104, C1102
R1239 end-mp-subprogram-stmt R214, C201, C816, C818, C828, R1237, C1263
R1103 end-program-stmt R214, C201, C816, C818, C828, R1101, C1101
R841 end-select-stmt R838, C829
R849 end-select-type-stmt R846, C843
R1119 end-submodule-stmt R1116, C1114
R1236 end-subroutine-stmt R214, C201, C816, C818, C828, R1205, R1233, C1261
R429 end-type-stmt R425
R749 end-where-stmt R742, C734
R925 endfile-stmt R214, C1285
R503 entity-decl R501, C502, C503, C505

entity-name R530, R552
entry-name C1252, R1240, C1264, C1268

R1240 entry-stmt R206, R207, R209, C1103, C1112, C1206, C1265, C1266
R458 enum-def R207
R459 enum-def-stmt R458
R461 enumerator R460, C501
R460 enumerator-def-stmt R458
R721 equiv-op R309, R717
R716 equiv-operand R716, R717
R567 equivalence-object R566, C588, C589, C590, C591, C592, C593, C594, C595,

C596, C597
R566 equivalence-set R565
R565 equivalence-stmt R212
R629 errmsg-variable R627, R641, R859
R213 executable-construct R208, R209, C1265
R208 execution-part C201, R1101, R1227, R1233, R1237
R209 execution-part-construct R208, R801, R825
R850 exit-stmt R214, C816, C818, C845
R511 explicit-coshape-spec R509, C528
R516 explicit-shape-spec R439, C447, C448, C515, R515, C532, R521, C599
R416 exponent R413
R415 exponent-letter R413, C412
R722 expr R457, R472, R602, C602, R630, R701, R722, R724, R725,

R726, R727, R732, R737, C727, R740, C730, R805, C804,
R842, R917, R1223, R1243, C1271, C1272

R311 extended-intrinsic-op R310
external-name R1210

R1210 external-stmt R212
R203 external-subprogram R202, C1265
R906 file-name-expr R905, R931
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R902 file-unit-number R901, R905, C904, C906, R909, C908, C920, C925, R923,
C939, R924, R925, R926, R927, C942, R928, R929, C945,
R931, C948, C949, C1286

R452 final-procedure-stmt R447
final-subroutine-name C904, R452, C482, C483

R929 flush-spec R928, C944, C945
R928 flush-stmt R214, C1285
R757 forall-assignment-stmt R756, R759
R756 forall-body-construct R750, C742, C743, C744
R750 forall-construct R213, R756, C742

forall-construct-name R751, R758, C736
R751 forall-construct-stmt R750, C736
R752 forall-header R751, R759, R818
R754 forall-limit R753, C741
R755 forall-step R753, C741
R759 forall-stmt R214, R756
R753 forall-triplet-spec R752, C741
R915 format R910, R912, R913, C916, C917, C918, C921, C928, C929
R1004 format-item R1003
R1003 format-items R1002, R1004, R1005
R1002 format-specification R1001
R1001 format-stmt R206, R207, R209, C1001, C1103, C1112, C1206

function-name R503, C508, C1203, R1228, C1252, C1253, R1232, C1258,
C1268, R1243, C1274

R1219 function-reference R506, C512, R701
R1228 function-stmt R1205, C1203, C1246, R1227, C1254, C1258
R1227 function-subprogram R203, R211, R1108

generic-name C470, R1207, C1202
R1207 generic-spec R450, C468, C470, C471, C472, C473, R525, R1112,

C1108, C1109, R1203, R1204, C1204
R851 goto-stmt R214, C816, C818, C846
R466 hex-constant R463
R467 hex-digit R466, R1022
R914 id-variable R913
R832 if-construct R213, C827

if-construct-name R833, R834, R835, R836, C827
R837 if-stmt R214, C828
R833 if-then-stmt R832, C827
R419 imag-part R417
R624 image-selector R612, C614, C615, C616, C620
R861 image-set C852

image-team R905, R931
R205 implicit-part R204
R206 implicit-part-stmt R205
R561 implicit-spec R560
R560 implicit-stmt R205, R206
R522 implied-shape-spec R515

import-name R1209, C1211
R1209 import-stmt R204
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index-name R753, C740, C741, C742
R443 initial-data-target R442, C462, R505, C511, R542
R1217 initial-proc-target R1216
R505 initialization R503, C505, C506, C507, C510
R829 inner-shared-do-construct R828, C819
R916 input-item R910, C916, R919, C932, C934
R931 inquire-spec R930, C947, C948, C949, C950
R930 inquire-stmt R214, C1285
R307 int-constant C302, R541

int-constant-name R408, C409
R543 int-constant-subobject R541, C577
R726 int-expr R401, R474, R610, R619, R622, R623, R625, R634, R635,

C707, R728, C710, R754, R755, R818, R852, R861, C852,
R902, R905, R913, R920, R923, R931, R1241, C1270

R407 int-literal-constant R305, R406, R422, C416, R1006, R1008, R1009, R1010,
R1011, R1016

R607 int-variable C607, R628, R905, R909, R913, R914, C930, R923, R927,
R929, R930, R931

int-variable-name R819
R523 intent-spec R502, R546, R1213
R546 intent-stmt R212
R1201 interface-block R207, C1201
R1205 interface-body R1202, C1201, C1205, C1206, C1210
R1215 interface-name R448, C479, R1212, C1221
R1202 interface-specification R1201
R1203 interface-stmt R1201, C1202, C1203
R903 internal-file-variable R901, C922
R211 internal-subprogram R210
R210 internal-subprogram-part R1101, R1227, C1257, R1233, C1260, R1237
R309 intrinsic-operator R311, C703, C704

intrinsic-procedure-name R1218, C1222
R1218 intrinsic-stmt R212
R404 intrinsic-type-spec R402, R403
R913 io-control-spec R910, R911, C910, C911, C917, C918, C919, C920, C922,

C927
R918 io-implied-do R916, R917
R920 io-implied-do-control R918
R919 io-implied-do-object R918, C934
R901 io-unit R913, C911, C918, C919, C920, C922, C925, C1286
R907 iomsg-variable R905, R909, R913, R923, R927, R929, R931
R1014 k R1013, C1010
R215 keyword R454, C488, C489, R456, C495, C496, R1222, C1230,

C1231, C1232
R408 kind-param R407, C410, C411, R413, C412, C413, C416, R423, C424,

R424, C425
R405 kind-selector R404, R431
R312 label C304, R816, C815, R851, C846, R852, C847, R853, C848,

R905, C905, R909, C909, R913, C914, R915, C931, R923,
C940, R927, C943, R929, C946, R931, C951, R1224, C1235

R816 label-do-stmt R815, C815, R824, C817, R827, R829, C819
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R508 language-binding-spec R502, C502, C503, R529, C565, R1229
R470 lbracket R437, R468, R502, R503, R527, R532, R624, R631
R421 length-selector R420, C421, C422

letter R301, R303, R562, C584, R703, R723
R562 letter-spec R561
R702 level-1-expr R704
R706 level-2-expr R706, R710
R710 level-3-expr R710, R712
R712 level-4-expr R714
R717 level-5-expr R717, R722
R305 literal-constant R304
R1114 local-defined-operator R1111

local-name R1111
R864 lock-stat R863
R863 lock-stmt R214
R866 lock-variable R863, R865, C853, C1303
R724 logical-expr C705, R746, R818, R833, R834, R837
R424 logical-literal-constant R305, C703, C704
R604 logical-variable C604, R864, R931
R818 loop-control R816, R817
R517 lower-bound R516, R519, R521, R522
R634 lower-bound-expr R633, R636, R637, R735, R736
R512 lower-cobound R511, C529
R1009 m R1007, C1009
R1101 main-program R202
R746 mask-expr R741, R743, R747, R752, C738, C739
R747 masked-elsewhere-stmt R742, C734
R1104 module R202

module-name R1105, R1106, C1102, R1109, C1104, C1105
R1110 module-nature R1109, C1104, C1105
R1105 module-stmt R1104, C1102
R1108 module-subprogram R1107, C1265
R1107 module-subprogram-part R1104, R1116
R1238 mp-subprogram-stmt R1237
R708 mult-op R309, R705
R704 mult-operand R704, R705
R1016 n R1015, C1011, C1012
R303 name R102, R215, C301, R306, R504, R555, R603, R1215,

C1215, C1216, R1230
R306 named-constant R304, R418, R419, R461, R549
R549 named-constant-def R548

namelist-group-name R563, C585, C587, R913, C915, C916, C917, C919, C928,
C929

R564 namelist-group-object R563, C586, C587
R563 namelist-stmt R212
R823 nonblock-do-construct R813
R817 nonlabel-do-stmt R815, C814
R718 not-op R309, R714
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notify-stmt R214
R506 null-init R442, R505, R542, R1216
R638 nullify-stmt R214
R727 numeric-expr C708, R853, C849
R504 object-name R503, C506, C509, C511, R526, R527, R528, R533, R551,

R554, R556, R557, R559, R601
R465 octal-constant R463
R1112 only R1109
R1113 only-use-name R1112
R904 open-stmt R214, C1285
R547 optional-stmt R212
R720 or-op R309, R716
R715 or-operand R715, R716
R212 other-specification-stmt R207
R827 outer-shared-do-construct R823, R828, C819
R917 output-item R911, R912, C916, R919, C934, C935, R930
R548 parameter-stmt R206, R207
R1118 parent-identifier R1117
R609 parent-string R608, C608

parent-submodule-name R1118, C1113
parent-type-name R427, C430
part-name R612, C609, C610, C611, C612, C613, C614, C615, C618,

C620, C625
R612 part-ref C569, C572, C589, R611, C618, C619, C620, C623, C624
R733 pointer-assignment-stmt R214, C552, R757
R551 pointer-decl R550
R639 pointer-object R638, C645
R550 pointer-stmt R212
R1015 position-edit-desc R1013
R927 position-spec R924, R925, R926, C941, C942
R707 power-op R309, R704
R1225 prefix C1242, C1243, C1244, C1247, C1248, C1249, C1250,

C1251, R1228, R1234, C1259
R1226 prefix-spec R1225, C1242

primaries C1271
R701 primary R702
R912 print-stmt R214, C1285
R444 private-components-stmt R428, C464
R428 private-or-sequence R425, C436
R1213 proc-attr-spec R1211
R441 proc-component-attr-spec R440, C453, C454, C457
R440 proc-component-def-stmt R435, C453
R739 proc-component-ref R738, R740, R1221, R1223
R1214 proc-decl R440, R1211, C1218, C1220

proc-entity-name R551, C580
R1212 proc-interface R440, R1211, C1217, C1221
R1229 proc-language-binding-spec C516, R1213, C1220, C1221, C1254, C1255, R1231, R1234
R1216 proc-pointer-init R1214
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R555 proc-pointer-name R554, C582, R569, C600, C603, R639, R738
R738 proc-pointer-object R733
R740 proc-target R457, C499, C552, R733, C732

procedure-component-name C914, C729
R1211 procedure-declaration-stmt R207, C1215
R1221 procedure-designator R1219, C1223, R1220, C1225

procedure-entity-name R1214, C1217
procedure-name R449, C466, C467, R740, C731, R1206, C1207, C1208,

C1209, R1217, C1219, R1221, C1226, R1223, C1234,
R1238, R1239, C1262, C1263

R1206 procedure-stmt R1202, C1204, C1208, C1209
program-name R1102, R1103, C1101

R1102 program-stmt R1101, C1101
R202 program-unit R201
R552 protected-stmt R212

query-stmt R214
R1006 r R1004, C1003, C1004, R1013
R471 rbracket R437, R468, R502, R503, R527, R532, R624, R631
R910 read-stmt R214, C912, C1286
R413 real-literal-constant R305, R412
R418 real-part R417
R713 rel-op R309, R712
R1111 rename R1109, R1112

rep-char R423
result-name C1252, R1231, C1268

R1241 return-stmt R214, C816, C818, C1269
R926 rewind-stmt R214, C1285
R1019 round-edit-desc R1013
R553 save-stmt R212
R554 saved-entity R553, C807
R103 scalar-xyz C101
R620 section-subscript R612, C613, C615, C619, C624
R839 select-case-stmt R838, C829

select-construct-name R847, R848, R849, C843
R846 select-type-construct R213, C841, C842, C843
R847 select-type-stmt R846, C837, C843
R805 selector C917, R804, C801, R847, C835, C836, C837, C840
R1237 separate-module-subprogram R1108
R430 sequence-stmt R428
R828 shared-term-do-construct R827
R411 sign R406, R409, R412
R1017 sign-edit-desc R1013
R409 signed-digit-string R416
R406 signed-int-literal-constant R418, R419, R542, R1012, R1014
R412 signed-real-literal-constant R418, R419, R542
R414 significand R413
R630 source-expr R627, C629, C633, C637, C638, C639, C642, C643
R728 specification-expr C404, C417, R512, R513, R517, R518
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R204 specification-part C468, C517, C563, R807, C806, R1101, R1104, C1103,
R1116, C1112, R1120, C1116, C1117, R1205, R1227,
R1233, R1237, C1276, C1277, C1279

R628 stat-variable R627, R641, R859
R1243 stmt-function-stmt R207, C1103, C1112, C1206
R857 stop-code R855, R856
R855 stop-stmt R214, C816, C818, C1287
R622 stride R621
R613 structure-component R538, C571, C572, C573, R601, R609, R632, R639
R455 structure-constructor R542, C576, R701
R1116 submodule R202

submodule-name R1117, R1119, C1114
R1117 submodule-stmt R1116, C1114

subroutine-name C1203, R1234, R1236, C1261
R1234 subroutine-stmt R1205, C1203, C1246, C1254, R1233, C1259, C1261
R1233 subroutine-subprogram R203, R211, R1108
R619 subscript C572, C623, R620, R621
R621 subscript-triplet R620, C627
R608 substring R567, C598, R601
R610 substring-range R608, R618, C625
R1231 suffix R1228, R1240
R858 sync-all-stmt R214
R860 sync-images-stmt R214
R862 sync-memory-stmt R214
R859 sync-stat R858, C851, R862, R864, R865

sync-team-stmt R214
R557 target-decl R556
R556 target-stmt R212
R427 type-attr-spec R426, C429
R450 type-bound-generic-stmt R447, C468
R447 type-bound-proc-binding R445
R449 type-bound-proc-decl R448, C466
R445 type-bound-procedure-part R425, C438, C1504
R448 type-bound-procedure-stmt R447
R501 type-declaration-stmt R207, C421, C422, C501
R848 type-guard-stmt R846, C840, C841, C842, C843

type-name R426, C428, R429, C437, C473, R453, C485
R433 type-param-attr-spec R431
R432 type-param-decl R431
R431 type-param-def-stmt R425, C439, C440
R616 type-param-inquiry R701

type-param-name R426, R432, C439, C440, R616, C622, R701, C701
R454 type-param-spec R453, C486, C487, C488, C490
R401 type-param-value C401, C402, C404, R420, R421, R422, C417, C418, C419,

C420, C452, R454, C490, C631
R402 type-spec C915, C916, C917, R469, C505, C506, C507, R626, C629,

C630, C631, C632, C637, C640, C641, R752, C737, R848,
C838, C839

R302 underscore R301
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R1005 unlimited-format-item R1002
R865 unlock-stmt R214
R518 upper-bound R516
R635 upper-bound-expr R633, R637, R736
R513 upper-cobound R511, C529
R1115 use-defined-operator R1111, C1107, C1111

use-name R525, C564, R1111, R1113, C1110
R1109 use-stmt R204
R1012 v R1007, C1009
R558 value-stmt R212
R602 variable C913, C914, R536, C567, C569, R604, R605, R606, R607,

R732, C714, R734, C722, C723, R737, C725, C728, C729,
R805, C801, C803, C835, C836, R866, R916, R1223

R603 variable-name R564, R567, R569, C600, C603, R609, R632, R639, R734,
C721

R623 vector-subscript R620, C626
R559 volatile-stmt R212
R1008 w R1007, C1006, C1007, C1008, C1009
R923 wait-spec R922, C938, C939
R922 wait-stmt R214, C1285
R745 where-assignment-stmt R741, R744, C733
R744 where-body-construct R742, C735
R742 where-construct R213, R744, R756

where-construct-name R743, R747, R748, R749, C734
R743 where-construct-stmt R742, C734
R741 where-stmt R214, R744, R756
R911 write-stmt R214, C913, C1286
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Index

In the index, entries in italics denote BNF terms, and page numbers in bold face denote primary text or
definitions.

Symbols
<, 145
<=, 145
>, 145
>=, 145
*, 20, 47, 50, 52, 57, 92, 95, 105, 126, 141, 220, 221,

251, 262, 267, 290, 308
**, 141
+, 141
-, 141
-stmt, 16
.AND., 144
.EQ., 145
.EQV., 144
.GE., 145
.GT., 145
.LE., 145
.LT., 145
.NE., 145
.NEQV., 144
.NOT., 144
.OR., 144
/, 141
//, 143
/=, 145
;, 46
==, 145
&, 46, 267
default-char-constant-expr (R730), 91, 152, 152, 187,

212, 213
constant-expr (R729), 19, 50, 69, 70, 88, 89, 96, 99, 107,

152, 152, 181
constantexpression, xiii, 4, 19, 24, 49, 50, 58, 65–70, 85,

88, 92, 94, 96, 104, 105, 107, 112, 150, 151,
152, 152, 215, 278, 279, 299, 314, 318, 327,
329, 330, 338–340, 349, 350, 353, 356, 358,
361–363, 365, 366, 368, 371, 376, 383–385, 388,
390, 391, 396–398, 434, 553

A
ABSTRACT attribute, 18, 77
abstract interface, 2, 11, 272, 279, 281, 287, 307, 442,

446
abstract interface block, 11, 11, 281

abstract type, 18, 51, 74, 77, 77, 80, 119, 126
ac-do-variable (R475), 85, 85, 150, 152, 444
ac-implied-do (R473), 84, 84, 85, 139, 444
ac-implied-do-control (R474), 84, 85, 139, 150–152
ac-spec (R469), 84, 84
ac-value (R472), 84, 84, 85
access-id (R525), 102, 102
access-spec (R507), 61, 62, 66, 67, 72, 73, 75, 87, 90,

90, 102, 287
access-stmt (R524), 28, 102, 102
ACCESS= specifier, 208, 235
accessibility attribute, 89, 102, 272
accessibility statement, 102
ACHAR, 59, 155
action, 198
action-stmt (R214), 4, 29, 29, 174, 180, 186
action-term-do-construct (R824), 174, 174
ACTION= specifier, 208, 235
actual argument, 2, 12, 36, 38, 54, 64, 75, 76, 82, 95–

99, 119, 121, 129, 131, 139, 148, 149, 226, 277,
284, 285, 289–302, 311–315, 317, 318, 320, 325,
327, 329, 330, 339, 340, 349, 354, 355, 359, 361,
362, 368, 369, 371, 372, 376, 377, 379, 380, 384,
392, 394–397, 409, 430, 431, 433, 435, 437, 445,
449, 450, 454, 458, 459, 467, 509–512, 515

actual-arg (R1223), 290, 290
actual-arg-spec (R1222), 80, 289, 290, 290
add-op (R709), 43, 134, 134
add-operand (R705), 134, 134, 137, 138
ADVANCE= specifier, 214
advancing input/output statement, 201
ALL STOP statement, 187
alloc-opt (R627), 126, 126, 127
allocatable, 2, 2, 16, 37, 38, 50, 52, 62, 68, 69, 71, 76, 79,

80, 82, 88, 91, 92, 95, 97, 102, 104, 112, 114,
119, 120, 126–131, 149, 151, 153–156, 158, 159,
177, 188, 217, 218, 223, 278, 279, 290, 293–297,
299, 307, 317, 330, 349, 361, 362, 374, 377, 385,
388, 390, 391, 394, 396, 397, 404, 409, 430, 433,
435, 448, 449, 457, 524

ALLOCATABLE attribute, 2, 50, 51, 60, 66, 89–92, 95,
99, 101, 103, 119, 122, 276, 279, 285, 286, 299,
314, 434, 448, 454, 455, 512, 516

ALLOCATABLE statement, 103
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allocatable-decl (R527), 103, 103
allocatable-stmt (R526), 28, 103, 446
ALLOCATE statement, 126, 158, 188, 449, 456, 458,

480, 481, 524
allocate-coarray-spec (R636), 126, 126
allocate-coshape-spec (R637), 126, 126
allocate-object (R632), 57, 58, 126, 126, 127, 128, 130–

132, 188, 401, 459, 462
allocate-shape-spec (R633), 126, 126, 128
allocate-stmt (R626), 29, 126, 459
ALLOCATED, 66, 129, 130, 132
allocation (R631), 126, 126, 128
allstop-stmt (R856), 29, 76, 174, 187, 313
alphanumeric-character (R301), 41, 41, 42
alt-return-spec (R1224), 4, 186, 289, 290, 290
ancestor component, 78
ancestor-module-name, 275
and-op (R719), 43, 136, 136
and-operand (R714), 136, 136
arg-name, 67, 69, 73, 74
argument

dummy, 294
argument association, 3, 3, 19, 50, 68, 69, 92, 95, 101,

102, 277, 291–293, 302, 309, 445, 450, 453, 454,
464, 466, 511

argument keyword, 8, 12, 38, 279, 282, 292, 317, 320,
321, 409, 442, 444, 499

arithmetic IF statement, 186, 186
arithmetic-if-stmt (R853), 30, 174, 186, 186
array, 2, 4, 9, 16, 37, 94–96, 121–124

assumed-shape, 2, 93, 95, 125, 279, 282, 283, 294,
295, 298, 300, 301, 510

assumed-size, 2, 95, 96, 101, 111, 121, 122, 133,
150, 153, 217, 294, 299, 361, 388, 390, 396,
431, 434, 435, 518, 520

deferred-shape, 2, 95
explicit-shape, 2, 68, 92, 94, 152, 294, 299, 434, 435

array bound, 4, 67, 69, 88
array constructor, 84, 84
array element, 2, 37, 122
array element order, 122–123
array pointer, 2, 93, 95, 149, 332, 435
array section, 2, 93, 104, 105, 120, 122–125, 158, 171,

203, 204, 294, 295, 300, 301, 396, 448
array-constructor (R468), 84, 85, 133
array-element (R617), 104, 105, 111, 117, 118, 121
array-name, 106, 446
array-section (R618), 2, 117, 121, 122, 123
array-spec (R515), 22, 87–89, 94, 94, 95, 103, 106, 108,

114
ASCII character, 3, 57, 59, 153, 203, 204, 219, 250,

263, 328, 338, 354, 356, 363, 364, 375, 386
ASCII collating sequence, 59, 327, 328, 338, 353, 354,

356, 363, 364, 375
ASSIGN statement, 465

assigned GO TO statement, 465
assignment, 153–168

defined, 73, 156, 284, 302
elemental, 9, 157
elemental array (FORALL), 163
masked array (WHERE), 161
pointer, 157

assignment statement, 153
assignment-stmt (R732), 29, 153, 153, 161, 164, 165,

313, 459
ASSOCIATE, 444
ASSOCIATE construct, 170, 445
associate name, 3, 3, 19, 50, 52, 79, 170, 171, 184, 445,

448, 454, 459
ASSOCIATE statement, 170, 448
associate-construct (R802), 29, 170, 170
associate-construct-name, 170
associate-name, 170, 183–185, 444
associate-stmt (R803), 4, 170, 170, 186
ASSOCIATED, 66, 129, 132
associating entity, 3, 58, 170, 171, 184, 185, 309, 454,

454
association, 3

argument, 3, 3, 19, 50, 68, 69, 92, 95, 101, 102, 277,
291–293, 302, 309, 445, 450, 453, 454, 464, 466,
511

common, 115
construct, 3, 3, 445, 448, 450, 454
equivalence, 113
host, 3, 3, 51, 58, 90, 99, 102, 104, 105, 109, 115,

150, 151, 275, 277, 282, 299, 312, 313, 444–448,
450, 454, 522

inheritance, 3, 3, 5, 77, 80, 450, 453
linkage, 3, 3, 438, 445, 448, 448
name, 3, 3, 445, 450
pointer, 3, 3, 18, 19, 36, 76, 79, 81, 93, 97, 99–102,

119, 130, 132, 157, 159, 160, 177, 188, 191, 220,
278, 292, 294, 296–299, 307, 309, 321, 331, 332,
377, 429, 430, 448–451, 454, 458, 459

sequence, 298
storage, 3, 3, 38, 111, 113–115, 277, 310, 313, 391,

450–453
use, 3, 3, 31, 39, 58, 62, 77, 90, 100, 102, 111, 112,

151, 272, 271–275, 277, 281, 309, 313, 444–
446, 449

association (R804), 170, 170
assumed type parameter, 19, 19, 50, 293, 296
assumed-shape array, 2, 93, 95, 125, 279, 282, 283, 294,

295, 298, 300, 301, 510
assumed-shape-spec (R519), 94, 95, 95
assumed-size array, 2, 95, 96, 101, 111, 121, 122, 133,

150, 153, 217, 294, 299, 361, 388, 390, 396,
431, 434, 435, 518, 520

assumed-size-spec (R521), 94, 95
ASYNCHRONOUS attribute, 90, 103, 171, 215, 272,
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274, 278, 279, 295, 446
asynchronous input/output, 90, 208, 210, 214–216, 219,

220, 227, 230, 231, 233, 235, 238
ASYNCHRONOUS statement, 103, 172, 276, 444, 446
asynchronous-stmt (R528), 28, 103
ASYNCHRONOUS= specifier, 208, 214, 235
ATAN2, xiii, 24
atomic subroutine, 18, 188, 189, 317, 321, 333, 334
ATOMIC INT KIND, 399
ATOMIC LOGICAL KIND, 399
attr-spec (R502), 87, 87, 88, 89, 108
attribute, 4, 51, 60, 64, 87–102, 274

ABSTRACT, 18, 77
accessibility, 89, 102, 272
ALLOCATABLE, 2, 50, 51, 60, 66, 89–92, 95, 99,

101, 103, 119, 122, 276, 279, 285, 286, 299,
314, 434, 448, 454, 455, 512, 516

ASYNCHRONOUS, 90, 103, 171, 215, 272, 274,
278, 279, 295, 446

BIND, 3, 4, 18, 35, 60, 62, 63, 77, 90, 91, 103, 112,
114, 158, 159, 183, 276, 278, 279, 306, 308,
433, 435, 437–439, 448, 455, 518

CODIMENSION, 67, 88, 91
CONTIGUOUS, 66, 69, 93, 104, 125, 159, 278,

294–298, 300, 301, 451
DEFERRED, 74, 77
DIMENSION, 67, 88, 94, 106, 114
EXTENDS, 18, 77
EXTERNAL, 13, 23, 96, 97, 99, 107, 272, 276, 278,

281, 286, 287, 289, 298, 303, 304, 446, 447, 507
INTENT, 97, 98, 106, 380
INTENT (IN), 97, 98, 102, 284, 293, 296, 298, 300,

301, 312, 313, 318, 333, 334, 347, 351–353, 374,
375, 381, 410, 429, 430, 510, 520

INTENT (INOUT), 97, 98, 101, 284, 295, 302, 313–
315, 347, 348, 374, 401, 459, 519

INTENT (OUT), 75, 76, 95, 97, 98, 101, 131, 150,
284, 295–297, 302, 313–315, 333, 334, 341, 342,
348, 351, 352, 374, 381, 382, 393, 411–413, 429,
430, 449, 450, 455, 456, 458, 459, 520

INTRINSIC, 96, 98, 99, 272, 289, 303, 304, 447
NON OVERRIDABLE, 74
OPTIONAL, 89, 99, 107, 150, 171, 279
PARAMETER, 6, 35, 83, 89, 99, 107, 118
PASS, 290
POINTER, 2, 13, 50, 51, 60, 66, 68, 88, 89, 95, 96,

99–101, 105, 107, 119, 122, 130, 158, 171, 278,
279, 285–287, 298–301, 313, 314, 430, 434, 448,
450, 454, 455, 476, 512, 516

PRIVATE, 62, 63, 78, 90, 102, 111, 313, 496
PROTECTED, 100, 108, 112, 273
PUBLIC, 62, 78, 90, 102, 111, 496
SAVE, xiii, 15, 20, 25, 70, 77, 88, 89, 91, 92, 100,

101, 104, 108, 113, 116, 131, 288, 313, 450
SEQUENCE, 15, 18, 60, 62–64, 77, 114, 158, 159,

183, 433
TARGET, xiv, 3, 18, 70, 99, 101, 108, 112, 116,

129, 130, 158, 171, 279, 285, 294, 296, 300,
301, 374, 429, 430, 449, 450, 458, 477, 510,
511

VALUE, 69, 75, 101, 108, 220, 278, 279, 292–294,
296, 312, 435, 436, 518, 519

VOLATILE, 101, 102, 109, 158, 159, 171, 272, 274,
278, 279, 295, 297, 446, 450, 456, 458, 478

attribute specification statements, 102–116
automatic data object, 4, 88, 91, 92, 101, 467, 524
automatic object, 4, 88, 104, 112, 114, 456

B
BACKSPACE statement, 198, 232, 489–491
backspace-stmt (R924), 29, 231, 313
base object, 4, 90, 93, 112, 119, 125, 150, 215, 299, 313
binary-constant (R464), 84, 84
BIND attribute, 3, 4, 18, 35, 60, 62, 63, 77, 90, 91, 103,

112, 114, 158, 159, 183, 276, 278, 279, 306,
308, 433, 435, 437–439, 448, 455, 518

BIND statement, 103, 276, 437
BIND(C), 82, 91
bind-entity (R530), 103, 103
bind-stmt (R529), 28, 103
binding, 4, 73, 74, 74, 77–79, 146, 157, 224, 229, 285,

305, 442, 443
binding label, 4, 90, 279, 288, 306, 308, 437–439, 441,

442
binding name, 4, 73, 74, 78, 289, 443
binding-attr (R451), 73, 73, 74
binding-name, 73, 74, 289, 305, 443
binding-private-stmt (R446), 73, 73, 75
bit model, 319
BIT SIZE, 319, 374, 375
blank common, 5, 88, 104, 114–116, 450, 452
blank interpretation mode, 208
blank-interp-edit-desc (R1018), 247, 248
BLANK= specifier, 208, 215, 235
block, 4

interface, 273
block (R801), 4, 169, 170–172, 174, 179, 180, 183
BLOCK construct, 88, 90, 92, 94, 102, 130, 131, 171,

177, 444, 449
block data program unit, 4, 13, 14, 30, 88, 104, 116,

275, 276, 286, 495
BLOCK DATA statement, 275
BLOCK statement, 88, 92, 171
block-construct (R807), 29, 171, 172
block-construct-name, 171, 172
block-data (R1120), 27, 275, 276
block-data-name, 276
block-data-stmt (R1121), 27, 275, 276, 276
block-do-construct (R814), 173, 173, 174
block-stmt (R808), 4, 171, 171, 172, 186
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bound, 2, 4, 4, 37, 38, 66, 67, 79, 82, 94, 126, 127, 132
bounds, 94–96, 121–124
bounds remapping, 159
bounds-remapping (R736), 157, 158, 158, 159
bounds-spec (R735), 157, 158, 158, 159
boz-literal-constant (R463), 43, 83, 84, 84, 106, 256,

319, 336, 337, 339, 343–345, 354, 357–359, 370,
383

branch, 186, 187, 311
branch target statement, 4, 32, 44, 54, 161, 186, 186,

187, 207, 211, 212, 231, 233, 235, 290, 311

C
C address, 4, 429–431, 433, 458, 520
C (C type), 427–436
C LOC function, 430
C SIZEOF, xiv, 150
CALL statement, 186, 277, 289, 302, 311
call-stmt (R1220), 29, 289, 290, 292
CASE statement, 181
case-construct (R838), 29, 180, 181
case-construct-name, 181
case-expr (R842), 181, 181
case-selector (R843), 181, 181
case-stmt (R840), 180, 181, 181
case-value (R845), 181, 181
case-value-range (R844), 181, 181
changeable mode, 204
CHAR, 59
char-constant (R308), 43, 43
char-length (R422), 57, 57, 58, 66, 67, 87, 88, 467
char-literal-constant (R423), 43, 47, 48, 58, 226, 247,

248, 461
char-selector (R420), 53, 57, 58
char-string-edit-desc (R1021), 246, 248
char-variable (R605), 117, 117, 204
character context, 4, 41, 45–47, 58
character length parameter, 50
character literal constant, 58
character sequence type, 16, 62, 112–115, 452, 456
character set, 41
character storage unit, 17, 17, 96, 113, 116, 399, 451,

456, 457
character string edit descriptor, 246
character type, 56–60
CHARACTER KINDS, 399
CHARACTER STORAGE SIZE, 399
characteristics, 5, 78, 99, 115, 160, 224, 225, 278, 279,

281, 288, 289, 298, 302, 306, 307, 310, 327, 377
dummy argument, 278
procedure, 278

child data transfer statement, 202, 203, 214, 216, 219,
223, 223–227, 242, 265

CLASS DEFAULT statement, 183
CLASS IS statement, 183

CLOSE statement, 198, 203, 205, 210, 492
close-spec (R909), 211, 211
close-stmt (R908), 29, 211, 313
CMPLX, 155, 319
coarray, 5, 5, 6, 33, 37, 38, 61, 66, 68, 76, 91–93, 99,

102, 112, 114, 125–128, 131, 132, 153, 156, 158,
159, 188, 189, 192, 272, 279, 290, 297, 298, 323,
325, 333, 334, 357, 362, 394, 396, 397, 401, 434

coarray-name, 103
coarray-spec (R509), 66–68, 87, 88, 91, 91, 92, 103, 108
cobound, 5, 37, 38, 91–93, 125, 128, 171, 297, 323, 325,

362, 396, 397, 516
codimension, 5, 5, 6, 37, 93, 125, 171
CODIMENSION attribute, 67, 88, 91
codimension-decl (R532), 103, 103
codimension-stmt (R531), 28, 103
coindexed object, 5, 37, 104, 119, 125, 153, 156, 158,

159, 170, 290, 293–296, 313, 333, 334, 429, 430
coindexed-named-object (R614), 117, 118, 120, 120
collating sequence, 5, 59, 60, 145, 250, 328, 338, 353,

354, 356, 363, 364, 367–369, 371–373, 375, 461
COMMAND ARGUMENT COUNT, 152, 351
comment, 46, 47, 269
common association, 115
common block, 4, 5, 25, 30, 35, 88–91, 100, 101, 103,

104, 112, 114–116, 275, 276, 437, 438, 441–445,
448, 450–452, 457, 497

common block storage sequence, 115
COMMON statement, 114, 114–116, 171, 276, 452, 453
common-block-name, 103, 108, 114, 171, 274
common-block-object (R569), 114, 114, 274, 446
common-stmt (R568), 29, 114, 446
companion processor, 4, 5, 12, 33, 39, 60, 82, 83, 91,

427, 431, 438, 439, 461
compatibility

Fortran 77, 24
Fortran 2003, 23
Fortran 90, 24
Fortran 95, 24

COMPILER OPTIONS, 150, 399
COMPILER VERSION, 150, 399
completion step, 33, 211
complex part designator, 8, 35, 120
complex type, 55–56
complex-literal-constant (R417), 43, 56
complex-part-designator (R615), 117, 120, 120, 121, 125
component, 5, 11, 12, 16, 17, 60, 62, 66, 443

direct, 5, 5, 60, 61, 70, 295, 404, 433
parent, 3, 5, 71, 72, 76–78, 81, 453, 479
ultimate, 6, 60, 61, 66, 91, 93, 95, 101, 112, 114,

127, 129, 223, 293, 451
component definition statement, 66
component keyword, 12, 38, 71, 80, 81, 443
component order, 6, 71, 72, 80, 81, 218
component-array-spec (R439), 66, 66, 67
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component-attr-spec (R437), 66, 66, 67–69
component-data-source (R457), 80, 80, 81
component-decl (R438), 58, 66, 66, 67–69
component-def-stmt (R435), 5, 66, 66
component-initialization (R442), 66, 69, 69, 70
component-name, 66, 70
component-part (R434), 61, 66, 72, 75
component-spec (R456), 80, 80, 151
computed GO TO statement, 186, 186, 466
computed-goto-stmt (R852), 30, 186, 186
concat-op (R711), 43, 135, 135
conformable, 6, 36, 128, 139, 146, 153, 157, 302, 314,

315, 349, 354, 355, 359, 368, 369, 371, 372,
378, 380, 392, 397, 417

connect-spec (R905), 206, 206, 207
connected, 6, 10, 12, 14, 198–202, 205–207, 209–211,

216, 220, 222, 223
connection mode, 204
constant, 6, 35, 36, 43, 49

integer, 53
named, 107

constant (R304), 43, 43, 105, 118, 133
constant expression, 6
constant-subobject (R544), 105, 105
construct

ASSOCIATE, 169, 170, 444, 445
BLOCK, xiii, 88, 90, 92, 94, 102, 130, 131, 169,

171, 177, 444, 449, 450, 456, 458
CRITICAL, 169, 172
DO, 169, 173, 465, 487
DO CONCURRENT, xiii, 173, 313, 314, 444, 445
FORALL, 163, 314, 444, 445, 482–484
IF, 169, 179, 465, 466
SELECT CASE, 169, 180, 466
SELECT TYPE, 169, 183, 444, 445
WHERE, 161, 483, 524

construct association, 3, 3, 445, 448, 450, 454
construct entity, 3, 6, 102, 170, 172, 183, 441, 442, 444,

450
construct-name, 185, 186
constructor

array, 84
derived-type, 80
structure, 80

CONTAINS statement, 73, 311
contains-stmt (R1242), 28, 73, 272, 311
contiguous, 6, 6, 63, 69, 93, 118, 125, 159, 160, 171,

215, 222, 360, 430, 451
CONTIGUOUS attribute, 66, 69, 93, 104, 125, 159, 278,

294–298, 300, 301, 451
CONTIGUOUS statement, 104
contiguous-stmt (R533), 104
continuation, 46, 47
CONTINUE statement, 187
continue-stmt (R854), 29, 174, 187

control character, 41, 58, 197, 200
control edit descriptor, 246, 259
control information list, 212
control mask, 162
control-edit-desc (R1013), 246, 247
conversion

numeric, 155
corank, 6, 37, 38, 68, 91, 92, 94, 119, 125, 126, 133, 170,

278, 296, 357, 362, 394, 397
cosubscript, xiv, 7, 37, 93, 125, 323, 325, 357, 362, 393,

394, 397, 516
cosubscript (R625), 119, 125, 125
COUNT, 318
CRITICAL construct, 172
CRITICAL statement, 147, 172, 188
critical-construct (R810), 29, 172, 172
critical-construct-name, 172
critical-stmt (R811), 4, 172, 172, 186
current record, 201
CYCLE statement, 172, 173, 176, 176, 487
cycle-stmt (R831), 29, 174, 176, 176

D
d (R1010), 247, 247, 252–255, 257–259, 265
data edit descriptor, 246, 250
data edit descriptors, 259
data entity, 5, 6, 7, 13–15, 20, 35–37
data object, 4–7, 7, 8, 15, 17, 19, 30–32, 35, 36, 38
data object designator, 8, 15, 36, 117
data object reference, 15, 36, 38
data pointer, 13, 13, 37
DATA statement, 104, 276, 444, 446, 455, 466, 467
data transfer, 221
data transfer input statement, 211
data transfer output statement, 211
data transfer statement, 198, 211
data type, 18, see type
data-component-def-stmt (R436), 66, 66, 67, 68
data-edit-desc (R1007), 246, 246
data-i-do-object (R538), 104, 104, 105
data-i-do-variable (R539), 104, 104, 105, 152, 444
data-implied-do (R537), xiii, 104, 104, 105, 152, 444
data-pointer-component-name, 157, 158
data-pointer-initialization compatible, 69
data-pointer-object (R734), 157, 157, 158, 159, 165,

332, 459
data-ref (R611), 4, 118, 119–121, 158, 215, 289, 290,

292, 299, 305
data-stmt (R534), 28, 29, 104, 281, 313, 446
data-stmt-constant (R542), 84, 105, 105, 106
data-stmt-object (R536), 104, 104, 105
data-stmt-repeat (R541), 105, 105
data-stmt-set (R535), 104, 104
data-stmt-value (R540), 104, 105, 105
data-target (R737), 80, 81, 100, 124, 157, 158, 158, 159,

165, 299, 313, 332, 451
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DBLE, 319
dealloc-opt (R641), 130, 130, 131
DEALLOCATE statement, 130, 188, 480, 481, 524
deallocate-stmt (R640), 29, 130, 459
decimal edit mode, 208
decimal symbol, 7, 208, 215, 236, 250–255, 262, 263
decimal-edit-desc (R1020), 247, 248
DECIMAL= specifier, 208, 215, 236
declaration, 7, 31, 87–116
declaration-construct (R207), 28, 28
declaration-type-spec (R403), 51, 51, 57, 66, 67, 87, 88,

109, 150, 287, 288, 306, 308
declared type, 18, 52, 69, 80, 119, 120, 127, 130, 146,

148, 153, 156–159, 170, 183–185, 229, 284, 289,
295, 305, 312, 348, 349, 374, 384, 385, 445

default character, 57
default complex, 56
default initialization, 7, 7, 68–71, 80, 81, 89, 95, 104,

112, 114, 116, 295, 377, 448, 453, 458
default real, 55
default-char-expr (R725), 148, 148, 152, 207–212, 214–

216
default-char-variable (R606), 117, 117, 126, 207, 234–

240
default-initialized, 7, 70, 97, 449, 450, 455, 456, 458
DEFERRED attribute, 74, 77
deferred type parameter, 19, 19, 50, 58, 82, 99, 115,

120, 126, 127, 129, 132, 153, 154, 159, 160,
278, 279, 296, 362, 377, 391, 448, 454

deferred-coshape-spec (R510), 66, 91, 92, 92
deferred-shape array, 2, 95
deferred-shape-spec (R520), 2, 66, 94, 95, 95, 107
definable, 7, 97–100, 154, 217, 292, 295, 296, 301, 450,

459
defined, 7, 7, 20, 36, 38, 137
defined assignment, 7, 18, 153, 156, 157, 161, 165, 277,

284, 285, 290, 294, 302, 313, 314, 458
defined assignment statement, 302
defined input/output, 7, 204, 209, 217–219, 223, 224,

224, 224, 225, 226, 226, 226, 226, 227, 223–
229, 240, 259, 265, 270, 277, 283, 285, 290, 302,
313, 401, 463, 513

defined operation, 7, 146, 147–149, 164, 277, 284, 290,
302, 313

defined-binary-op (R723), 44, 136, 136, 137, 146, 273
defined-io-generic-spec (R1208), 7, 73, 223–225, 229,

280, 280, 283, 286
defined-operator (R310), 44, 73, 274, 280
defined-unary-op (R703), 44, 134, 134, 137, 146, 273
definition, 7, 8
definition of variables, 454
deleted features, 23–25, 465
DELIM= specifier, 208, 215, 236
delimiter mode, 208
derived type, 8, 17, 18, 34, 38, 50, 60–82

derived type determination, 63
derived-type type specifier, 51
derived-type-def (R425), 28, 52, 61, 61, 64, 65
derived-type-spec (R453), 19, 51, 57, 79, 80, 183, 224,

443
derived-type-stmt (R426), 61, 61, 62, 64, 446
descendant, 8, 31, 62, 72, 73, 75, 100, 275, 442
designator, 5, 8, 8, 38, 96, 101, 104, 112, 113, 121, 121,

150, 151, 267, 294, 298, 299, 313
data object, 117

designator (R601), 69, 70, 105, 117, 117, 119, 120, 133,
266, 313

designator, 133
digit, 21, 41, 41, 44, 53, 84, 263
digit-string (R410), 53, 53, 55, 251, 252, 256
digit-string, 53
DIMENSION attribute, 67, 88, 94, 106, 114
DIMENSION statement, 106, 276
dimension-spec (R514), 94
dimension-stmt (R545), 29, 106, 446
direct access, 199
direct access input/output statement, 216
direct component, 5, 5, 60, 61, 70, 295, 404, 433
DIRECT= specifier, 236
disassociated, 8, 20, 37, 52, 69–71, 89, 95, 106, 129–132,

149, 157, 159, 288, 299, 317, 324, 349, 377, 385,
391, 409, 448, 449, 451, 458, 473, 481

distinguishable, 285
DO CONCURRENT, 444, 445
DO CONCURRENT construct, 173, 313, 314, 445
DO CONCURRENT statement, 173
DO construct, 173, 465, 487
DO statement, 173, 466
DO WHILE statement, 173
do-block (R820), 173, 174, 175
do-body (R825), 174, 174, 175
do-construct (R813), 29, 173, 176, 186
do-construct-name, 173, 174, 176
do-stmt (R815), 4, 173, 173, 174, 186, 459
do-term-action-stmt (R826), 4, 174, 174, 175, 176, 186
do-term-shared-stmt (R830), 4, 174, 174, 175, 176, 186
do-variable (R819), 85, 104, 173, 174, 174, 175, 217,

241, 243, 264, 455, 457, 459, 490
dtv-type-spec (R921), 224
dummy argument, xiii, 2, 3, 5, 8, 8, 12, 14, 19, 20,

38, 42, 50–52, 57, 58, 64, 67, 69, 74–76, 78,
79, 82, 88, 89, 91, 92, 95, 97–99, 101, 102, 104,
106–108, 112, 114, 126, 128, 129, 131, 146, 149,
150, 157, 188, 220, 225–227, 277–282, 284–286,
289–299, 304, 310, 314, 444, 459, 499

characteristics of, 278
restrictions, 300

dummy data object, 5, 8, 69, 88, 95, 97, 101, 278, 284,
286

dummy function, 8, 57, 88
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dummy procedure, 5, 8, 10, 11, 14, 96, 150, 159, 278–
281, 283, 287, 290, 298, 304, 305, 307, 309,
312, 313, 380, 439, 442, 446

dummy-arg (R1235), 308, 308, 310
dummy-arg-name (R1230), 106–108, 277, 306, 307, 307,

308, 312, 446
dynamic type, 13, 18, 20, 52, 75, 77, 79, 82, 102, 127,

128, 130, 131, 146, 148, 154, 156, 157, 159,
171, 183, 184, 191, 229, 290, 295, 296, 305,
324, 349, 374, 384, 385, 391, 445, 448, 454,
480

E
e (R1011), 247, 247, 253–255, 257–259, 265
edit descriptor, 246

/, 260
:, 260
A, 257
B, 256
BN, 261
BZ, 261
control edit descriptor, 259
D, 253
data edit descriptor, 250–259
E, 253
EN, 253
ES, 254
F, 252
G, 257
H, 465
I, 251
L, 256
O, 256
P, 261
S, 261
SP, 261
SS, 261
TL, 260
TR, 260
X, 260
Z, 256

effective argument, 2, 3, 9, 19, 50, 52, 58, 93, 95–97, 188,
292–296, 298, 301, 304, 305, 445, 454, 455, 458

effective item, 9, 218, 221, 223, 226, 227, 229, 241, 248,
249, 260, 263, 264, 267, 268, 463

effective position, 286
element sequence, 298
ELEMENTAL, 306
elemental, 9, 18, 36, 37, 57, 75, 78, 146, 152, 157, 160,

161, 163, 277–279, 287, 288, 294, 295, 298, 302,
304, 311, 314, 315, 317, 321, 334, 335, 374, 409,
410

elemental array assignment (FORALL), 163
elemental assignment, 9, 157
elemental operation, 9, 139, 149, 163
elemental operator, 9, 139, 404

elemental procedure, 9, 37, 149, 159, 287, 290, 299, 303,
306, 314, 314, 317, 318

elemental reference, 9, 163, 294, 302–305, 314
elemental subprogram, 9, 305, 306, 314
ELSE IF statement, 179
ELSE statement, 179
else-if-stmt (R834), 179, 179
else-stmt (R835), 179, 179
ELSEWHERE statement, 161, 484
elsewhere-stmt (R748), 161, 161
ENCODING= specifier, 208, 236
END ASSOCIATE statement, 170
END BLOCK statement, 171
END CRITICAL statement, 147, 172, 188
END DO statement, 174
END IF statement, 179, 465
END INTERFACE statement, 280
END SELECT statement, 184
END statement, 9, 32, 32, 33, 45, 47, 76, 77, 100, 116,

130, 131, 188
end-associate-stmt (R806), 4, 170, 170, 186
end-block-data-stmt (R1122), 9, 28, 32, 275, 276, 276
end-block-stmt (R809), 4, 171, 171, 172, 186
end-critical-stmt (R812), 4, 172, 172, 186
end-do (R821), 173, 174, 174, 175–177
end-do-stmt (R822), 4, 174, 174, 186
end-enum-stmt (R462), 82, 82
end-forall-stmt (R758), 163, 164, 164
end-function-stmt (R1232), 9, 27, 29, 30, 32, 174, 180,

280, 306, 307, 307, 311
end-if-stmt (R836), 4, 179, 179, 186
end-interface-stmt (R1204), 280, 280
end-module-stmt (R1106), 9, 27, 32, 272, 272
end-mp-subprogram-stmt (R1239), 9, 28–30, 32, 174,

180, 309, 309, 311
end-program-stmt (R1103), 9, 27, 29, 30, 32, 33, 76, 174,

180, 187, 271, 271
end-select-stmt (R841), 4, 180, 181, 181, 186
end-select-type-stmt (R849), 4, 183, 184, 184, 185, 186
end-submodule-stmt (R1119), 9, 27, 32, 275, 275
end-subroutine-stmt (R1236), 9, 27, 29, 30, 32, 174, 180,

280, 308, 309, 309, 311
end-type-stmt (R429), 61, 62
end-where-stmt (R749), 161, 161
END= specifier, 241
endfile record, 198
ENDFILE statement, 198, 232, 490
endfile-stmt (R925), 29, 231, 313
entity-decl (R503), 58, 67, 87, 88, 88, 89, 151, 152, 446
entity-name, 103, 108
ENTRY statement, 277, 281, 305, 306, 310, 452, 453,

466, 467
entry-name, 306, 310, 443
entry-stmt (R1240), 28, 272, 275, 281, 310, 310, 443,

446
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enum-def (R458), 28, 82, 82, 83
enum-def-stmt (R459), 82, 82
enumeration, 82
enumerator, 82
enumerator (R461), 82, 82
enumerator-def-stmt (R460), 82, 82
EOR= specifier, 241
equiv-op (R721), 43, 136, 136
equiv-operand (R716), 136, 136
equivalence association, 113
EQUIVALENCE statement, 111, 111–114, 171, 276,

452, 453
equivalence-object (R567), 111, 111, 112, 113, 274
equivalence-set (R566), 111, 111, 113
equivalence-stmt (R565), 29, 111, 446
ERR= specifier, 240
errmsg-variable (R629), 126, 126, 127, 130, 132, 189,

459, 462
ERRMSG= specifier, 194–195
ERRMSG= specifier, 132
error termination, 33
ERROR UNIT, 204, 205, 400
evaluation

operations, 139
optional, 147
parentheses, 148

executable construct, 169
executable statement, 16, 16, 31
executable-construct (R213), 16, 28, 29, 310
execution control, 169
execution-part (R208), 27, 28, 28, 30, 271, 306–309
execution-part-construct (R209), 28, 28, 169, 174
exist, 198, 205
EXIST= specifier, 236
EXIT statement, 172, 176, 185
exit-stmt (R850), 29, 174, 185, 186
explicit formatting, 245–262
explicit initialization, 9, 70, 71, 88, 89, 104, 448, 453,

455
explicit interface, 9, 69, 73, 115, 160, 278–283, 287, 288,

290, 292, 298, 312, 313, 442, 459, 498
explicit-coshape-spec (R511), 91, 92, 92
explicit-shape array, 2, 68, 92, 94, 152, 294, 299, 434,

435
explicit-shape-spec (R516), 2, 66, 67, 89, 94, 94, 95, 96,

114
EXPONENT, 414
exponent (R416), 55, 55
exponent-letter (R415), 55, 55
expr (R722), 22, 76, 80, 84, 117, 126, 133, 136, 136, 148,

152–159, 163, 165, 170, 181, 217, 290, 312, 313,
424, 458

expression, 133, 133–152
constant, xiii, 4, 19, 24, 49, 50, 58, 65–70, 85, 88,

92, 94, 96, 104, 105, 107, 112, 150, 151, 152,

152, 215, 278, 279, 299, 314, 318, 327, 329,
330, 338–340, 349, 350, 353, 356, 358, 361–363,
365, 366, 368, 371, 376, 383–385, 388, 390, 391,
396–398, 434, 553

constant, 6
specification, 16, 19, 33, 50, 65, 66, 76, 90, 121,

150, 151, 151, 172, 311, 405, 461, 462, 467
extended real model, 320
extended type, 3, 5, 11, 18, 19, 65, 71, 72, 75–78, 453,

469, 475
extended-intrinsic-op (R311), 44, 44
EXTENDS attribute, 18, 77
EXTENDS TYPE OF, 66, 67
extensible type, 18, 51, 61, 69, 77, 224, 348, 349, 384,

479, 515
extension operation, 137
extension type, 18, 52, 77, 79, 183, 184, 295, 349, 515
extent, 9, 36
EXTERNAL attribute, 13, 23, 96, 97, 99, 107, 272, 276,

278, 281, 286, 287, 289, 298, 303, 304, 446, 447,
507

external file, 10, 10, 24, 197–202, 204–206, 210, 214,
215, 233, 250, 259, 268, 313, 439, 462, 463,
489, 517

external input/output unit, 10, 441
external linkage, 90, 427, 437–439
external procedure, 11, 14, 23, 30, 73, 96, 159, 192, 277–

283, 287, 290, 298, 304, 305, 441, 442, 446, 498,
499, 503, 507

EXTERNAL statement, 97, 286, 288
external subprogram, 14, 17, 30, 277
external unit, 10, 204–206, 220, 226, 227, 237, 242, 400,

401, 462, 463
external-name, 286
external-stmt (R1210), 29, 286
external-subprogram (R203), 27, 27, 310

F
field, 248
file

connected, 205
external, 10, 10, 24, 197–202, 204–206, 210, 214,

215, 233, 250, 259, 268, 313, 439, 462, 463,
489, 517

internal, 12, 12, 124, 197, 203–206, 214, 219, 221,
223, 226, 227, 240, 242, 259, 260, 455, 457, 463

file access method, 198–201
file connection, 203–211
file inquiry statement, 233
file position, 198, 201
file positioning statement, 198, 231
file storage unit, 10, 17, 197, 200–203, 209, 215, 216,

222, 232, 238–240, 400, 451, 462, 463
file-name-expr (R906), 207, 207, 209, 234, 235, 237
file-unit-number (R902), 203, 204, 204, 206, 207, 211,

213, 225, 230, 231, 233–240, 313, 401
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FILE= specifier, 209, 235
FILE STORAGE SIZE, 400
FINAL statement, 75
final subroutine, 4, 10, 10, 74–76, 150, 475
final-procedure-stmt (R452), 73, 75
final-subroutine-name, 75
finalizable, 10, 75, 76, 95, 131
finalization, 10, 15, 75, 76, 164, 277, 290, 302, 313, 461
fixed source form, 47, 47
FLUSH statement, 233
flush-spec (R929), 233, 233
flush-stmt (R928), 29, 233, 313
FMT= specifier, 214
FORALL, 314, 444, 445
FORALL construct, 163, 445, 482–484
FORALL statement, 139, 167, 444, 445, 484, 485
forall-assignment-stmt (R757), 164, 164, 165, 167, 314
forall-body-construct (R756), 163, 164, 164, 165, 167
forall-construct (R750), 29, 163, 164, 166
forall-construct-name, 163, 164
forall-construct-stmt (R751), 4, 163, 163, 164, 186
forall-header (R752), 163, 163, 164, 167, 168, 173, 174,

444
forall-limit (R754), 139, 164, 164, 165, 166
forall-step (R755), 139, 164, 164, 165, 166
forall-stmt (R759), 29, 164, 166, 167, 167
forall-triplet-spec (R753), 163, 164, 164, 165, 166, 482
FORM= specifier, 209, 236
format (R915), 212–214, 214, 221, 245, 246
format control, 248
format descriptor, see edit descriptor

G, 257
FORMAT statement, 214, 245
format-item (R1004), 246, 246
format-items (R1003), 245, 246, 246
format-specification (R1002), 245, 245
format-stmt (R1001), 28, 245, 245, 272, 275, 281
formatted data transfer, 222
formatted input/output statement, 197, 213
formatted record, 197
FORMATTED= specifier, 236
formatting

explicit, 245–262
list-directed, 223, 262–266
namelist, 223, 266–270

forms, 198
Fortran 2003 compatibility, 23
Fortran 77 compatibility, 24
Fortran 90 compatibility, 24
Fortran 95 compatibility, 24
Fortran character set, 41, 57
free source form, 45, 45
function, 10

intrinsic, 317
intrinsic elemental, 317

intrinsic inquiry, 317
function reference, 15, 35, 36, 302
FUNCTION statement, 305, 306, 310, 311
function-name, 88, 281, 306, 307, 310, 312, 443, 446
function-reference (R1219), 80, 88, 133, 289, 292, 302
function-stmt (R1228), 27, 280, 281, 306, 306, 307, 443,

446
function-subprogram (R1227), 17, 27, 28, 272, 306, 309

G
generic identifier, 10, 11, 272, 281, 283, 285, 304, 317,

441, 446
generic interface, 11, 74, 79, 82, 99, 146, 156, 157, 229,

273, 274, 283, 283, 284, 303, 442, 516
generic interface block, 11, 11, 281, 283
generic procedure reference, 285
GENERIC statement, 73, 74
generic-name, 73, 74, 280, 443, 446
generic-spec (R1207), 11, 73, 74, 79, 102, 146, 157, 273,

274, 280, 280, 281, 283, 443, 446
global entity, 441
global identifier, 441
GO TO statement, 186, 186
goto-stmt (R851), 29, 174, 186, 186
graphic character, 41, 58, 269

H
hex-constant (R466), 84, 84
hex-digit (R467), 84, 84, 256
hex-digit-string (R1022), 256, 256
host, 10, 30, 275, 312, 444–447
host association, 3, 3, 31, 51, 58, 90, 99, 102, 104, 105,

109, 115, 150, 151, 275, 277, 282, 299, 312,
313, 444–448, 450, 454, 522

host instance, 10, 160, 290, 291, 298, 309, 445, 450, 454,
458

host scoping unit, 10, 30, 63, 109, 282, 291, 303, 305,
447, 454

I
IACHAR, 59, 155
ICHAR, 59
id-variable (R914), 212, 212
ID= specifier, 231
ID= specifier, 215, 237
IEEE infinity, 10
IEEE NaN, 10
IEEE , 403–426
IEEE ARITHMETIC, xiv, 150, 152, 327
IEEE EXCEPTIONS, 150, 177
IEEE GET FLAG, 177
IEEE GET HALTING MODE, 177
IEEE SELECTED REAL KIND, xiv
IEEE SET HALTING MODE, 177
IF construct, 179, 465
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IF statement, 139, 180
if-construct (R832), 29, 179, 179
if-construct-name, 179
if-stmt (R837), 29, 180, 180
if-then-stmt (R833), 4, 179, 179, 186
imag-part (R419), 56, 56
image, 1, 10, 11, 32–34, 37, 91, 125, 127, 128, 131, 132,

156, 158, 159, 172, 173, 187–194, 198, 199, 204,
290, 293, 297, 317, 324, 325, 334, 357, 378, 393,
394, 397, 402, 441, 448, 450, 458

image control statement, 11, 33, 147, 172, 177, 187,
188, 189, 191, 195, 313

image index, xiv, 11, 32, 37, 125, 190, 198, 297, 323,
325, 357, 394, 397, 441, 516

image-selector (R624), 5, 7, 118–120, 125, 266
image-set (R861), 190, 190
IMAGE INDEX, 357, 516
imaginary part, 55
implicit interface, 11, 67, 115, 160, 272, 279, 288–290,

298, 430, 446
IMPLICIT statement, 109, 171, 276
implicit-part (R205), 28, 28
implicit-part-stmt (R206), 28, 28
implicit-spec (R561), 109, 109
implicit-stmt (R560), 28, 109
implied-shape array, 96
implied-shape-spec (R522), 94, 96, 96
IMPORT statement, 282, 445, 446
import-name, 282
import-name-list, 282
import-stmt (R1209), 28, 282
IMPURE, 306
INCLUDE, 47
INCLUDE line, 45, 47
index-name, 164–168, 173, 176, 444, 445, 456, 483
inherit, 3, 5, 11, 61, 74, 75, 77–79, 453, 479
inheritance association, 3, 3, 5, 77, 80, 450, 453
initial-data-target (R443), 69, 69, 70, 88, 89, 105, 106
initial-proc-target (R1217), 70, 287, 287, 288
initialization, 89

default, 7, 7, 68–71, 80, 81, 89, 95, 104, 112, 114,
116, 448, 453, 458

explicit, 9, 70, 71, 88, 89, 104, 448, 453, 455
initialization (R505), 88, 88, 89
inner-shared-do-construct (R829), 174, 174, 175
input statement, 211
input-item (R916), 212, 213, 217, 217, 229, 243, 459
input/output editing, 245–270
input/output list, 217
input/output statements, 197–242
input/output unit, 12, 20, 32
INPUT UNIT, 204, 205, 400
INQUIRE statement, 203, 205, 206, 215, 227, 233, 242,

243, 401, 489
inquire-spec (R931), 234, 234, 235, 243

inquire-stmt (R930), 29, 234, 313
inquiry function, 11, 18, 92, 95, 119, 129, 150, 292, 294,

317–321, 330, 331, 337, 343, 346, 348, 353, 357,
360–362, 367, 371, 375, 380–382, 384, 388, 390,
391, 394, 396, 399, 403, 404, 406–409, 419–423,
428, 430, 431

inquiry, type parameter, 120
instance, 309
INT, 106, 155, 319, 333, 334, 345, 354, 357, 359, 370
int-constant-expr (R731), 53, 57, 64, 65, 82, 83, 104,

152, 152, 187
int-constant (R307), 43, 43, 105
int-constant-name, 53
int-constant-subobject (R543), 105, 105
int-expr (R726), 32, 50, 85, 118, 121, 122, 125, 126,

139, 148, 148, 150–152, 164, 173, 175, 186,
190, 204, 207, 212, 217, 219, 230, 234, 311

int-literal-constant (R407), 43, 53, 53, 57, 246, 247
int-variable (R607), 117, 117, 126, 207, 211–213, 230,

231, 233–235, 237–242
int-variable-name, 174
INT16, 400
INT32, 400
INT64, 400
INT8, 400
integer constant, 53
integer editing, 251
integer model, 320
integer type, 53–54
INTEGER KINDS, 400
INTENT (IN) attribute, 97, 98, 102, 284, 293, 296, 298,

300, 301, 312, 313, 318, 333, 334, 347, 351–353,
374, 375, 381, 410, 429, 430, 510, 520

INTENT (INOUT) attribute, 97, 98, 101, 284, 295, 302,
313–315, 347, 348, 374, 401, 459, 519

INTENT (OUT) attribute, 75, 76, 95, 97, 98, 101, 131,
150, 284, 295–297, 302, 313–315, 333, 334, 341,
342, 348, 351, 352, 374, 381, 382, 393, 411–413,
429, 430, 449, 450, 455, 456, 458, 459, 520

INTENT attribute, 97, 98, 106, 380
INTENT statement, 106, 171
intent-spec (R523), 87, 97, 106, 287
intent-stmt (R546), 29, 106
interface, 11, 11, 31, 36, 38, 50, 67, 73, 74, 98, 99, 115,

224, 225, 259, 278, 279, 289, 290, 298, 302,
303, 309, 311, 313, 435–439, 499

abstract, 272, 279, 281, 287, 307, 442, 446
explicit, 9, 69, 73, 115, 160, 278–283, 287, 288, 290,

292, 298, 312, 313, 442, 459, 498
generic, 11, 74, 79, 82, 99, 146, 156, 157, 229, 273,

274, 283, 283, 284, 303, 442
implicit, 11, 67, 115, 160, 272, 279, 288–290, 298,

430, 446
procedure, 279
specific, 11, 229, 281, 303
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interface block, 11, 31, 224, 229, 273, 280–283, 303, 499
interface body, 11, 11, 15, 31, 92, 94, 97, 109, 150, 279,

280, 306, 307, 309–311, 437, 444–446, 499
INTERFACE statement, 280, 499
interface-block (R1201), 28, 280, 280
interface-body (R1205), 280, 280, 281, 282
interface-name (R1215), 287, 287, 288
interface-name, 73, 74
interface-specification (R1202), 280, 280
interface-stmt (R1203), 280, 280, 281, 283, 446
internal file, 12, 12, 124, 197, 203–206, 214, 219, 221,

223, 226, 227, 240, 242, 259, 260, 455, 457, 463
internal procedure, 10, 14, 30, 159, 277–280, 290, 291,

298, 307, 309, 439, 441, 442, 444, 446, 507
internal subprogram, 17, 30–33, 277
internal unit, 12, 12, 204, 206, 220, 226, 235, 243, 401
internal-file-variable (R903), 203, 204, 204, 213, 459
internal-subprogram (R211), 28, 28
internal-subprogram-part (R210), 27, 28, 28, 271, 306–

309
interoperable, 12, 82, 83, 91, 307, 311, 429–438
interoperate, 431
intrinsic, 6, 8–11, 12, 13, 18, 34–37, 39, 84, 303, 442,

444
intrinsic assignment statement, 153
INTRINSIC attribute, 96, 98, 99, 272, 289, 303, 304,

447
intrinsic function, 317
intrinsic operation, 139–146
intrinsic procedure, 317–398
INTRINSIC statement, 276, 289
intrinsic subroutines, 317
intrinsic type, 6, 19, 34, 52–60
intrinsic-operator (R309), 43, 44, 134, 136, 139, 140,

146, 284
intrinsic-procedure-name, 289, 446
intrinsic-stmt (R1218), 29, 289, 446
intrinsic-type-spec (R404), 51, 52, 58
io-control-spec (R913), 212, 212, 213, 216, 226, 243
io-implied-do (R918), 217, 217, 218, 222, 243, 455, 457,

459, 490
io-implied-do-control (R920), 217, 217, 219
io-implied-do-object (R919), 217, 217
io-unit (R901), 20, 203, 203, 204, 212, 213, 313
iomsg-variable (R907), 207, 207, 211, 212, 230, 231,

233, 234, 241, 242, 456
IOMSG= specifier, 242
IOSTAT= specifier, 242
IOSTAT END, 242, 400
IOSTAT EOR, 242, 400
IOSTAT INQUIRE INTERNAL UNIT, 242, 401, 402
ISO 10646 character, 12, 57, 59, 153, 203, 204, 208,

219, 250, 263, 375, 386
ISO C BINDING, xiv, 150, 398
ISO C BINDING module, 427

ISO FORTRAN ENV, xiv, 20, 61, 97, 132, 150, 194,
203, 204, 209, 220, 225, 226, 242, 333, 334,
392, 464

ISO FORTRAN ENV module, 399

K
k (R1014), 247, 247, 253, 258, 261
keyword, 12

argument, 8, 12, 38, 279, 282, 292, 317, 320, 321,
409, 442, 444, 499

component, 12, 38, 71, 80, 81, 443
statement, 12, 38
type parameter, 12, 38, 79

keyword (R215), 38, 38, 79, 80, 290
KIND, 53–57, 60, 83, 121, 155, 334
kind type parameter, 19, 23, 34, 50, 52–58, 60, 65, 75,

83, 85, 151–153, 155, 266, 284, 344, 400, 427,
428, 431

kind-param (R408), 53, 53, 55, 57, 58, 60
kind-selector (R405), 22, 52, 53, 53, 60, 64

L
label, 16

statement, 44
label (R312), 4, 44, 44, 173, 174, 186, 207, 211, 212,

214, 230, 231, 233–235, 241, 242, 290
label-do-stmt (R816), 173, 173, 174
language-binding-spec (R508), 87, 91, 103, 307
LBOUND, 154, 159, 170
lbracket (R470), 66, 84, 84, 87, 88, 103, 108, 125, 126
left tab limit, 260
LEN, 121
length type parameter, 19, 19, 34, 50, 153, 362, 430,

431
length-selector (R421), 22, 57, 57, 58
letter, 41, 41, 42, 44, 109, 134, 136
letter-spec (R562), 109, 109
level-1-expr (R702), 134, 134, 137
level-2-expr (R706), 134, 134, 135, 137, 138
level-3-expr (R710), 135, 135
level-4-expr (R712), 135, 135, 136
level-5-expr (R717), 136, 136
lexical token, 10, 12, 20, 42, 45
LGE, 60
LGT, 60
line, 12, 45–48
linkage association, 3, 3, 438, 445, 448, 448
list-directed formatting, 223, 262–266
list-directed input/output statement, 214
literal constant, 6, 35, 118
literal-constant (R305), 43, 43
LLE, 60
LLT, 60
local identifier, 441, 442
local variable, 20, 35, 88, 92, 129, 130, 150, 291, 309
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local-defined-operator (R1114), 273, 273, 274
local-name, 273, 274
LOCK statement, 188, 193, 194, 195, 401, 402
lock variable, 20
lock-stat (R864), 193, 193
lock-stmt (R863), 29, 193
lock-variable (R866), 193, 193, 401, 459
LOCK TYPE, 401
LOG, 24
logical intrinsic operation, 143
logical type, 60
logical-expr (R724), 148, 148, 161, 174–176, 179, 180
logical-literal-constant (R424), 43, 60, 134, 136
logical-variable (R604), 117, 117, 193, 234, 236, 237,

459
LOGICAL KINDS, 401
loop-control (R818), 173, 173, 175, 176, 178
lower-bound (R517), 94, 94, 95, 96
lower-bound-expr (R634), 126, 126, 158
lower-cobound (R512), 92, 92, 93

M
m (R1009), 246, 247, 247, 251, 256
main program, 13, 14, 17, 30, 33, 35
main-program (R1101), 27, 30, 271, 271
mask-expr (R746), 161, 161, 162–167
masked array assignment, 13, 161, 455
masked array assignment (WHERE), 161
masked-elsewhere-stmt (R747), 161, 161, 162, 166
MAX, 314, 318
MAXLOC, 318
MOD, 24
mode

blank interpretation, 208
changeable, 204
connection, 204
decimal edit, 208
delimiter, 208
I/O rounding, 204, 210, 216, 239, 255, 258, 261,

421
IEEE rounding, 404, 406, 407, 408
pad, 209
sign, 210, 261

model
bit, 319
extended real, 320
integer, 320
real, 320

module, 13, 13, 14, 15, 17, 18, 30, 31, 35, 271
module (R1104), 27, 272
module procedure, 14, 277, 278, 280, 282, 283, 290, 298,

309, 442, 444
module reference, 15, 272
MODULE statement, 272
module subprogram, 18, 30–32

module-name, 272, 273, 446
module-nature (R1110), 273, 273
module-stmt (R1105), 27, 272, 272
module-subprogram (R1108), 28, 272, 272, 310
module-subprogram-part (R1107), 27, 74, 78, 272, 272,

275, 503
MODULO, 24
MOVE ALLOC, 129, 317
mp-subprogram-stmt (R1238), 28, 309, 309
mult-op (R708), 43, 134, 134
mult-operand (R704), 134, 134, 137
MVBITS, 317, 318

N
n (R1016), 247, 247, 248, 259, 260
name, 13, 38, 42, 441
name (R303), 22, 38, 42, 42, 43, 88, 108, 117, 184, 221,

287, 307
name association, 3, 3, 445, 450
name-value subsequence, 266, 267
NAME= specifier, 237
named constant, 6, 19, 35, 36, 38, 42, 50, 53, 56–58, 88,

96, 99, 102, 105, 107, 112, 118, 194, 312
named-constant (R306), 43, 43, 47, 56, 82, 107, 446
named-constant-def (R549), 107, 107, 446
NAMED= specifier, 237
namelist formatting, 223, 266–270
namelist input/output statement, 214
NAMELIST statement, 111, 171
namelist-group-name, 111, 212–214, 220–222, 245, 267,

270, 274, 446, 459
namelist-group-object (R564), 111, 111, 221, 223, 229,

243, 266, 267, 274
namelist-stmt (R563), 29, 111, 446, 459
NaN, 13, 252–254, 258, 327, 348, 350, 384, 387, 390,

405, 407, 408, 413, 421, 422
NEW LINE, 257
NEXTREC= specifier, 237
NML= specifier, 214
NON OVERRIDABLE attribute, 74
nonadvancing input/output statement, 201
nonblock-do-construct (R823), 173, 174
nonexecutable statement, 16, 31
nonlabel-do-stmt (R817), 173, 173, 174
nonstandard intrinsic, 12, 23, 507
normal number, 408
normal termination, 32, 33
not-op (R718), 43, 136, 136
NULL, 82, 88, 149, 151, 152, 298, 449
null-init (R506), 69, 70, 88, 88, 89, 105, 106, 287, 288
NULLIFY statement, 129, 480, 481
nullify-stmt (R638), 29, 129, 459
NUM IMAGES, 152, 397
NUMBER= specifier, 237
numeric conversion, 155
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numeric editing, 251
numeric intrinsic operation, 140
numeric sequence type, 16, 62, 63, 112, 114, 115, 452,

453, 456
numeric storage unit, 17, 17, 116, 401, 451, 456, 457
numeric type, 19, 52–56, 140–142, 144, 148, 155, 344,

366, 367, 380, 392
numeric-expr (R727), 54, 148, 148, 186, 187
NUMERIC STORAGE SIZE, 401

O
object, 7, 7, 34–36
object designator, 8, 35, 101, 104, 118, 150, 266
object-name (R504), 88, 88, 103, 104, 107, 108, 117,

125, 446
obsolescent feature, 22, 23, 25, 466, 467
octal-constant (R465), 84, 84
only (R1112), 273, 273, 274
only-use-name (R1113), 273, 273, 274
OPEN statement, 198, 203, 205, 206, 206, 210, 489–492
open-stmt (R904), 29, 206, 313
OPENED= specifier, 237
operand, 13
operation, 49

defined, 7, 73, 146, 147–149, 164, 277, 284, 290,
302, 313

elemental, 9, 139, 149, 163
intrinsic, 139–146

logical, 143
numeric , 140
relational, 144

operator, 13, 43
character, 135
defined binary, 136
defined unary, 134
elemental, 9, 139, 404
logical, 136
numeric, 134
relational, 135

operator precedence, 137
OPTIONAL attribute, 89, 99, 107, 150, 171, 279
optional dummy argument, 299
OPTIONAL statement, 107, 171
optional-stmt (R547), 29, 107
or-op (R720), 43, 136, 136
or-operand (R715), 136, 136
other-specification-stmt (R212), 28, 28
outer-shared-do-construct (R827), 174, 174
output statement, 211
output-item (R917), 212, 213, 217, 217, 229, 234
OUTPUT UNIT, 204, 205, 401
override, 70, 78, 87, 88, 109, 223, 251, 453

P
pad mode, 209

PAD= specifier, 209, 216, 237
padding, 319, 319, 358, 383
PARAMETER attribute, 6, 35, 83, 89, 99, 107, 118
PARAMETER statement, 107, 109, 276
parameter-stmt (R548), 28, 107, 446
parent component, 3, 5, 71, 72, 76–78, 81, 453, 479
parent data transfer statement, 216, 223, 223–227, 242,

265
parent type, 5, 19, 61, 65, 72, 75–78, 285, 479
parent-identifier (R1118), 275, 275
parent-string (R609), 93, 118, 118
parent-submodule-name, 275
parent-type-name, 61
parentheses, 148
part-name, 4, 118–121, 125
part-ref (R612), 93, 104, 105, 112, 118, 118, 119–121,

123, 125
partially associated, 452
PASS attribute, 290
passed-object dummy argument, 13, 69, 73, 74, 78, 286,

292, 513
PAUSE statement, 465
PENDING= specifier, 238
pointer, 3, 13, 16, 18, 37, 62, 129, 130, 278, 279, 294,

391, 448
procedure, 430

pointer assignment, 13, 96, 129, 156, 157, 158, 299,
449, 480, 481

pointer assignment statement, 13, 18, 50, 69, 81, 95,
124, 149, 157, 159, 167, 325, 332, 482, 483

pointer association, 3, 3, 18, 19, 36, 76, 79, 81, 93, 97,
99–102, 119, 130, 132, 157, 159, 160, 177, 188,
191, 220, 278, 292, 294, 296–299, 307, 309, 321,
331, 332, 377, 429, 430, 448–451, 454, 458, 459

pointer association context, 459
pointer association status, 448
POINTER attribute, 2, 13, 50, 51, 60, 66, 68, 88, 89, 95,

96, 99–101, 105, 107, 119, 122, 130, 158, 171,
278, 279, 285–287, 298–301, 313, 314, 430, 434,
448, 450, 454, 455, 476, 512, 516

POINTER statement, 107, 276
pointer-assignment-stmt (R733), 29, 100, 157, 164, 165,

313, 459
pointer-decl (R551), 107, 107
pointer-object (R639), 129, 129, 130, 459
pointer-stmt (R550), 29, 107, 446
polymorphic, 13, 52, 69, 95, 119, 130, 148, 153, 154,

159, 170, 171, 183, 184, 217, 223, 278, 279,
290, 293–296, 374, 391, 448, 454

POS= specifier, 216, 238
position-edit-desc (R1015), 247, 247
position-spec (R927), 231, 231
POSITION= specifier, 209, 238
positional arguments, 317
power-op (R707), 43, 134, 134
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pre-existing, 454
precedence of operators, 137
PRECISION, 54, 416
preconnected, 14, 199, 204–207, 214, 221, 400, 401
preconnection, 206
prefix (R1225), 305, 306, 308
prefix-spec (R1226), 305, 306, 306, 312, 314
PRESENT, 66, 67, 99, 299, 511
present, 299
primaries, 312
primary, 133
primary (R701), 133, 133, 134
PRINT statement, 211, 220
print-stmt (R912), 29, 212, 313
PRIVATE attribute, 62, 63, 78, 90, 102, 111, 313, 496
PRIVATE statement, 62, 72, 73, 90, 103, 274
private-components-stmt (R444), 61, 72, 72
private-or-sequence (R428), 61, 61
proc-attr-spec (R1213), 287, 287, 288
proc-component-attr-spec (R441), 67, 67
proc-component-def-stmt (R440), 66, 67, 67
proc-component-ref (R739), 158, 158, 289, 290, 299
proc-decl (R1214), 67, 70, 287, 287, 288
proc-entity-name, 107
proc-interface (R1212), 67, 287, 287, 288
proc-language-binding-spec (R1229), 89, 287, 288, 307,

307, 308, 311, 435
proc-pointer-init (R1216), 287, 287
proc-pointer-name (R555), 108, 108, 114, 129, 158, 446
proc-pointer-object (R738), 157, 158, 159, 165, 332, 459
proc-target (R740), 80, 81, 100, 157, 158, 159, 165, 299,

332, 451
procedure, 8, 14, 15, 39, 99, 280

characteristics of, 278
dummy, 5, 8, 10, 11, 14, 96, 150, 159, 278–281,

283, 287, 290, 298, 304, 305, 307, 312, 313,
380, 439, 442, 446

elemental, 9, 37, 149, 159, 287, 290, 299, 303, 306,
314, 314, 317, 318

external, 11, 14, 23, 30, 73, 96, 159, 192, 277–283,
287, 290, 298, 304, 305, 441, 442, 446, 498,
499, 503, 507

internal, 10, 14, 30, 159, 277–280, 290, 291, 298,
307, 309, 439, 441, 442, 444, 446, 507

intrinsic, 317–398
module, 14, 277, 278, 280, 282, 283, 290, 298, 309,

442, 444
non-Fortran, 311
pure, 14, 164, 177, 312–314, 317, 321, 373, 409
type-bound, xiii, 4, 11, 13, 14, 60–62, 69, 74, 74,

75, 77, 78, 156, 229, 273, 290, 292, 305, 442,
443

procedure declaration statement, 97, 287, 311, 325
procedure designator, 8, 15, 36
procedure interface, 279

procedure pointer, xiii, 10, 11, 13, 13, 88, 96, 99, 115,
159, 160, 278, 283, 287, 288, 290, 292, 298,
299, 304, 305, 309, 430, 446

procedure reference, 2, 15, 36, 99, 121, 226, 278, 284,
289, 292

generic, 285
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real model, 320
real part, 55
real type, 54–55
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REAL64, 402
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SELECT TYPE, 444
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select-type-construct (R846), 29, 183, 183, 184
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SELECTED REAL KIND, xiv, 54, 318, 469
selector, 170
selector (R805), 170, 170, 183–185, 299, 448, 459
separate interface body, 281
separate module procedure, 309
separate module subprogram statement, 309
separate-module-subprogram (R1237), 28, 272, 309, 309
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signed-int-literal-constant (R406), 53, 53, 56, 105, 247
signed-real-literal-constant (R412), 55, 56, 105
significand (R414), 55, 55
simply contiguous, 6, 124, 125, 125, 159, 294–297
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size of a common block, 115
SIZE= specifier, 216, 239
source-expr (R630), 126, 126, 127–129, 449, 450
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specific name, 16
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statement, 16, 45

accessibility, 102
ALL STOP, 187
ALLOCATABLE, 103
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481, 524
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ASSIGN, 465
assigned GO TO, 465
assignment, 153
ASSOCIATE, 170, 448
ASYNCHRONOUS, 103, 172, 276, 444, 446
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BACKSPACE, 198, 232, 489–491
BIND, 103, 276, 437
BLOCK, 88, 92, 171
BLOCK DATA, 275
CALL, 186, 277, 289, 302, 311
CASE, 181
CLASS DEFAULT, 183
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CLOSE, 198, 203, 205, 210, 492
COMMON, 114, 114–116, 171, 276, 452, 453
component definition, 66
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CONTAINS, 73, 311
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CONTINUE, 187
CRITICAL, 147, 172, 188
CYCLE, 172, 173, 176, 176, 487
DATA, 104, 276, 444, 446, 455, 466, 467
data transfer, 198, 211
DEALLOCATE, 130, 188, 480, 481, 524
defined assignment, 156, 157, 302
DIMENSION, 106, 276
DO, 173, 466
DO CONCURRENT, 173
DO WHILE, 173
ELSE, 179
ELSE IF, 179
ELSEWHERE, 161, 484
END, 32, 130, 131, 188
END ASSOCIATE, 170
END BLOCK, 171
END CRITICAL, 147, 172, 188
END DO, 174
END IF, 179, 465
END INTERFACE, 280
END SELECT, 184
ENDFILE, 198, 232, 490
ENTRY, 277, 281, 305, 306, 310, 452, 453, 466,

467
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EXIT, 172, 176, 185
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file positioning, 198, 231
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FORMAT, 245
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FUNCTION, 305, 306, 310, 311
GENERIC, 73, 74
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IF, 139, 180
IMPLICIT, 109, 171, 276
IMPORT, 282, 445, 446
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nonexecutable, 16, 31
NULLIFY, 129, 480, 481
OPEN, 198, 203, 205, 206, 206, 210, 489–492
OPTIONAL, 107, 171
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PAUSE, 465
POINTER, 107, 276
pointer assignment, 13, 18, 50, 69, 81, 95, 124, 149,

157, 159, 167, 325, 332, 482, 483
PRINT, 211, 220
PRIVATE, 62, 72, 73, 90, 103, 274
PROCEDURE, 280, 283
procedure declaration, 97, 287, 311, 325
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PUBLIC, 102, 274
READ, 200, 211, 220, 489–491, 493, 494
RETURN, 130, 131, 172, 177, 311
REWIND, 198, 232, 490
SAVE, 108, 171, 276
SELECT CASE, 180
SELECT TYPE, 183, 448
separate module subprogram, 309
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statement function, 312
STOP, 187, 188
SUBMODULE, 275
SUBROUTINE, 305, 308, 311
SYNC ALL, 188, 189, 194, 195
SYNC IMAGES, 188, 190, 194, 195
SYNC MEMORY, 188, 191, 194, 195
TARGET, 108, 276
TYPE, 61
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TYPE IS, 183
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type-bound procedure, 73, 74
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UNLOCK, 188, 193, 194, 195, 401, 402
USE, 3, 272, 276, 303–305, 445, 496, 497, 502
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VOLATILE, 108, 172, 276, 444, 446
WAIT, 205, 215, 230, 493
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WRITE, 211, 220, 243, 489, 490, 492, 493
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statement function, 312, 466
statement function statement, 312
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unspecified, 17, 17, 451, 456, 457
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stride (R622), 121, 122, 123, 124, 219
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substring, 118
substring (R608), 112, 117, 118
substring ending point., 118
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suffix (R1231), 306, 307, 310
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sync-memory-stmt (R862), 30, 191
sync-stat (R859), 189, 189, 190, 191, 193
synchronous input/output, 208, 214, 216, 219

T
target, 18, 36, 37, 52, 69–71, 76, 81, 89, 91, 93, 95–101,

105, 106, 117, 119, 126, 128–131, 148, 149, 154,
157–159, 165, 168, 217, 221, 223, 288, 291, 292,
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integer, 53–54

intrinsic, 6, 19, 34, 52–60
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numeric, 19, 52–56, 140–142, 144, 148, 155, 344,

366, 367, 380, 392
operation, 149
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