BASIC APPLICATIONS OF WEAK KONIG’S LEMMA
IN FEASIBLE ANALYSIS

ANTONIO M. FERNANDES AND FERNANDO FERREIRA

Abstract. In the context of a feasible theory for analysis, we investigate three fun-
damental theorems of analysis: the Heine/Borel covering theorem for the closed unit
interval, and the uniform continuity and the maximum principles for real valued con-
tinuous functions defined on the closed unit interval.

81. The three results. The business of reverse mathematics is to inves-
tigate the logico-mathematical strength of the various theorems of ordinary
mathematics. This investigation is usually carried over the second-order base
theory RCAy — a theory whose proof-theoretic strength is that of primitive
recursive arithmetic. In this article, we investigate three basic theorems of
analysis over a feasible base theory, i.e., a theory whose provably total func-
tions (with appropriate graphs) are the polynomial time computable functions.
Our feasible base theory is BTFA, a theory introduced by Ferreira in a paper
entitled “A feasible theory for analysis” [8]: we presuppose familiarity with
the notation and results of that paper and an acquaintance with the basic fea-
tures of research in reverse mathematics (as exposed in the relevant sections of
chapters II, IIT and IV of [10]). Notice that the first-order part of the intended
model of BTFA is 2<“, the set of finite sequences of zeros and ones (also called
binary words or strings), as opposed to the more traditional setting of the nat-
ural numbers. As it happens, we find the binary setting more perspicuous for
dealing with theories concerned with sub-exponential classes of computational
complexity. The first-order part of a model of BTFA is denoted by W (for
words).

Given a formula A of the language of BTFA and x a distinguished (first-
order) variable, we say that A defines an infinite subtree of W, and write
Trees(Ay), if

Vavy(A(z) Ay C o — A(y)) AVn € T3z(l(z) = n A A(z)),!
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where T denotes the tally part of the domain W. If, besides Trees(A;), one
also has

Vavy(A(z) NAy) 2 CyVy C o),

then we say that A defines an infinite path, and write Path(A,). Weak Konig’s
lemma for boundedly defined trees, denoted by X% — WKL, is the principle

(1) Trees(Ay) — X (Path(X) AVz(z € X — A(x))),

where A is a bounded formula and Path(X) abbreviates the more cumbersome
Path((z € X);). The following theorem was proven in [8]:

THEOREM. The theory BTFA + X2 — WKL is conservative over BTFA with
respect to I11-sentences.

The reader should keep in mind two noteworthy features of the above the-
orem. Firstly, the theorem concerns infinite binary trees defined by bounded
formulas (i.e., X% -formulas). Therefore, these trees need not exist as sets
in BTFA (bounded formulas of the language of BTFA define in the standard
model precisely the sets of the Meyer-Stockmeyer polynomial hierarchy — see
[6] and [5]; pace the resolution of outstanding problems in computational com-
plexity, the theory BTFA does not have enough comprehension to define these
sets). Secondly, the path whose existence weak Konig’s lemma guarantees is,
of course, a set. Insofar as the infinite binary trees considered in the ordi-
nary setting of reverse mathematics are sets, we have in the above theorem
a new phenomenon. As a matter of fact, the restriction of (1) to sets (i.e.,
to formulas A(x) of the form x € X) is not sufficient for the ordinary studies
of analysis within the framework of feasibility, as Theorem 1 below indicates.
Two restrictions of (1) play an important role in the sequel: the above referred
restriction to sets (the principle simply denoted by WKL), and the restriction
to I1%-formulas (the principle 18 — WKL).

The last part of Ferreira’s unpublished thesis [5] investigates three basic
theorems of analysis in the Cantor space setting: the Heine/Borel covering
theorem, the uniform continuity theorem, and the maximum principle. The
discussion of these theorems in the Cantor space setting is specially natural
within BTFA because its elements (viz. the infinite paths through the binary
tree) and topology mesh very well with feasible constructions. In the real
number setting, on the other hand, it appears that some technical rabble is
unavoidable. We now list the three main results of this paper. The perti-
nent formalizations of the concepts of analysis used in the statements of the
theorems will be provided in the next sections.

THEOREM 1. Over BTFA, the Heine/Borel theorem for [0,1] is equivalent
to T2 — WKL.

THEOREM 2. Over BTFA, the principle that every (total) real valued con-

tinuous function defined on [0, 1] is uniformly continuous implies WKL and is
implied by 15 — WKL.
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Observe that in Theorem 2 above, we do not have a perfect match — there
is a gap that we were unable to fill.

The amount of induction present in BTFA is induction on notation for NP-
predicates. Formally,

A(e) ANVx(A(z) — A(x0) A A(xl)) — Ve A(z),

where A(z) is a ¥%-formula. We obtain a (seemingly) stronger theory if we
also admit the “slow” induction scheme:

(2) A(e) ANVz(A(z) — A(S(z))) — VaA(x),

where A(z) is also a Xj-formula. Let us explain the “successor” function S:
the elements of W can be ordered according to length and, within the same
length, lexicographically; this yields a discrete linear order, provably so in
BTFA, with least element €; by definition, S(x) is the next element after x in
this order. In the framework of Buss’ bounded arithmetic [1], the scheme (2)
corresponds to the ¥ — IND scheme, the mark of Buss’ theory T3 (more of
this in the last section). Finally:

THEOREM 3. Ouver BTFA + X2 — WKL, the following are equivalent:

(a) Ewvery continuous real valued function defined on [0,1] has a mazimum.
(b) Every continuous real valued function defined on [0,1] has a supremum.
(c) The induction scheme (2) for ¥%-formulas.

It should be remarked that the above three theorems are generalizations
of similar results over the base theory RCAq (well, Theorem 3 is void in this
setting). More precisely, they coincide with those results provided induction
for ¥:9-predicates is available (i.e., provided we have essentially RCA).2

§2. Preliminaries. As we told in the opening section, we assume familiar-
ity with the theory BTFA and, in particular, with its formal language of binary
words. In the following paragraphs, we will briefly sketch how to formalize the
basic notions of analysis in BTFA. This was first outlined by Yamazaki in [11],
and it is done in some detail in [4].

In feasible theories (more generally, in theories in which exponentiation is
not a total function), we must distinguish between tally numbers and dyadic
numbers. The distinction and interplay between these two sorts of numbers
is a very important feature of what follows. The reader not used to making
this distinction should proceed in a cautious pace, making perfectly clear for
herself whether a particular passage concerns dyadic or tally arithmetic. We
now briefly sketch this distinction.

Dyadic natural numbers y € Ny are represented by binary strings of zeros
and ones of the form lz (with x € W) or by the empty string e. If x is
T1Ty- -+ Tp_1, where each z; is 0 or 1, then we should view y as the number
Z?:_Ol 2;2" "1 where xy = 1. The empty string represents the number zero:
as usual, this number is denoted by 0 (no confusion should arise between the
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number 0, which is the empty string e, and the string 0). The basic processes
of arithmetic (i.e., sum, multiplication, modified subtraction and long division)
have polynomial time computable algorithms that can be formalized in BTFA.
Actually, the arithmetic of Ny is exactly encapsulated by Buss’ theory S}
(for this latter theory, see [1]). The tally natural numbers are, on the other
hand, just the tally strings, i.e., the elements of T. This set is also denoted
by Nj, and we usually reserve the letters k, m, n for the members of this
set. The arithmetic of Ny is straightforward: zero is given by e, successor by
concatenation with 1, addition + by concatenation, multiplication by x, and
the less than or equal relation by C. With these definitions, the system N;
becomes a model of the well-known bounded arithmetic theory [Ag.

A dyadic rational number is a triple of the form (+, z, y), where = (resp., y) is
the empty string or a string starting with 1 (resp., ending with 1). We assume
that the triples are coded as strings in a smooth way. If x = zgxy---x,—1 and
Y = YoY1 - - Ym—1, Where each z; and y; is 0 or 1, then we should view the triple
(&, z,y) as representing the rational number :I:(Z?;Ol x;2nil —1-23151 bt ).
We usually write this number in radix notation: +xox1- - Tp_1.Y0° " Ym_1-
Given z € W, it is useful to denote by x* the word x with its rightmost zeros
chopped off. Thus, .x* is a dyadic rational number: it is actually the number
> i<e(x) 7itT, Where z; is the (i+1)-th bit of the word z (for a tally i less than
£(z)). It poses no problem to naturally define a structure of ordered ring in
the set D of dyadic rational numbers. In this ring, the numbers of the form

(+,100...0,¢) and (+,¢, 00...01),

n zeros n—1 zeros

where n € Ny, are (respectively) cofinal in the set of dyadic rational numbers,
and co-initial in the set of positive dyadic rational numbers DT. As usual,
these numbers are denoted (respectively) by 2", and Zi or 27 ™. Observe that
although D is not a field, we can always divide by tally powers of 2 there.

DEFINITION. (BTFA) We say that a function « : Ny — D is a real number
if |a(n) —a(m)| < 27" for all n < m. Two real numbers o and 3 are said to
be equal, and we write a = 3, if Vn € Ny|a(n) — B(n)| < 277+

This definition is taken from Yamazaki [11]. It follows closely the definition
of real numbers given in [10], with the noteworthy feature that it requires that
the domain of a real number be the set of tally numbers (in theories which
prove the totality of the exponential function, N; and Ny are essentially the
same thing; thus, the above definition coincides with the usual definition over
RCAp). Within BTFA, it is easy to embed D into the real numbers (into R).
The basic arithmetic operations can be defined on R so that BTFA proves
that R is a real closed ordered field (see [4]). An alternative definition for real
numbers would be to consider the so-called dyadic real numbers. A dyadic real
number is a triple (£, z, X ), where z € Ny and X is an infinite path. The usual
(radix point) notation for these numbers is +2.X. Informally, such dyadic real
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numbers give rise to the real numbers + (30" 2,271 4 37 ?Sfl) where
X (@) is the (i + 1)-th bit of X (for i € Ny). One can associate to each dyadic
real number a real number (as in the definition above) in a natural way.

The reader should compare the next definition with Simpson’s definition
of continuous real function in [10] (and also with Yamazaki’s different — and
inequivalent — definition in [11]).

DEFINITION. Within BTFA, a (code for a) continuous partial function from
R into R is a set os quintuples ® C W x D x Ny x D x Ny such that:

L. if (x,n)®(y, k) and (x,n)®(y', k'), then |y —¢'| < 27F + 2k

2. if (x,n)®(y, k) and (2',n’) < (x,n), then (z',n")P(y, k);

3. if (x,n)®(y, k) and (y, k) < (v, k'), then (z,n)®(y, k');
where (x,n)®(y, k) abbreviates the 3%%-relation Jw(w,x,n,y,k) € ®, and
where the notation (z,n’) < (x,n) means that |z — /| + 27" < 27",

The next two definitions should be standard. For the record, we write them
down.

DEFINITION. (BTFA) Let @ be a continuous partial real function of a real
variable. We say that a real number « is in the domain of ® and, with abuse
of language, write o € dom(®), if

Vk € NyIn € Ny3z,y € D(Jao — 2| < 27" A (x,n)P(y, k)).

DEFINITION. (BTFA) Let ® be a continuous partial real function of a real
variable, and let a be a real number in the domain of ®. We say that a real
number 3 is the value of a under the function ®, and write ®(«) = g, if

va,y € DV, k € Ni((w, n)@(y, k) Ao —z| < oo — [B -yl < 2k)

The following fact is basic, although it does not come easy (see [4]) because
minimization along the binary words is not available in BTFA:

THEOREM. (BTFA) Let ® be a continuous partial real function of a real
variable and let o be a real number in the domain of ®. Then there is a unique
real number 8 such that ®(a) = .

The following proposition is handy. The reader should note that the fact
that T below is a (set) tree plays a crucial role in the proof given below. For
instance, were T' merely a set of words of equal length (considered as end
notes of the obvious ¥%-tree), then the construction given in the argument
below wouldn’t go through.

PROPOSITION 1. (BTFA) Let T be a subtree of W with no infinite paths.
Given a function f : W — D¢, there is a continuous (total) function defined
on [0,1] such that, for all end nodes x of T, ®(.x*) = f(x). Moreover, we can
take ® with the following property: For all a € [0,1], there is an end node x
of T such that ®(a) < f(z).
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PrROOF. Let us call two end nodes = and y of T' consecutive if .x* < .y* and
for no end node z of T, .x* < .z* < .y*. For the sake of uniformity, introduce
an imaginary node g such that, for all w € W, .w* < .p* = 1. If need be
(i.e., if no string of zeros is an end node of T'), let us also introduce another
imaginary node v of T such that, for all w € W, 0 = .v* < .w*. The idea is to
define ®(.z*) = f(z) for all end nodes  of T' (putting f(1) = 0 and, if need
be, f(0) = 0) and, otherwise, define ®(«) by piecewise linearity, i.e., for o in
the closed interval [.z*,.y*], where x and y are consecutive end nodes of T,
define

®(a) = f(z) + m(f(y) — f(2)).
Such a continuous function has the desired properties, and it is standard to
construct a continuous function code for ® provided that the following two
conditions hold:

1. For all w € W, there are consecutive end nodes x and y of T" such that
at < awr <yt
2. One can check in polynomial time (within BTFA) whether, on inputs
z,y,w € W, z and y are consecutive end nodes of T such that .x* <
wt < Lyt
The fact that the above two conditions hold in BTFA should be clear for a
reader of like mind: The consecutive nodes = and y of (1) can be found by a
suitable (bounded) recursions along the tally part; the ternary relation of (2)
can be described via a subword quantification formula. -

The idea of the following proposition is well-known:

PROPOSITION 2. BTFA + X2 — WKL proves weak Kénig’s lemma (i.e., the
scheme (1)) for trees defined by I19-formulas. Similarly, BTFA + II — WKL
proves weak Konig’s lemma for trees defined by VI1%-formulas.

PRrROOF. We can treat both cases together, since it is the very same reason
that accounts for the truth of the two statements above, viz. that the classes
of bounded formulas and I1}-formulas are both closed under universal bounded
quantifications. Let A(z) be a I19-formula (resp., a VII}-formula) which defines
an infinite subtree of W. A(x) is of the form VzB(z,x), where B is a bounded
formula (resp., a I1%-formula). Define

T(x) :=Vz < aVy C z2B(2,y).

T(x) is still a bounded formula (resp., a I1%-formula), and it is easy to check
that it defines an infinite subtree of W. Hence, by hypothesis, there is a path
X through this tree. It is straightforward to check that this path is also a path
through the original tree defined by A(x). -

Finally, we find that it might me helpful to finish this section with four
remarks on the problem of working within BTFA:
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1. We cannot define functions by primitive recursion in BTFA. However, we
can define functions by bounded recursion on notation and, in particular,
by bounded recursion along the tally part.

2. We cannot define sets by bounded quantification, i.e., by quantification
ranging over all words of length less than a given length, or (equivalently)
ranging over all dyadic natural numbers less than a certain given one. We
can, however, define sets by quantification ranging over all subwords of a
given word, or over all tally numbers less than a given tally one.

3. Not every bounded set of words can be coded by a word. Such a possi-
bility is, in fact, a re-statement of the totality of exponentiation (see the
appendix of [7]).

4. Given a non empty set of words of equal length, BTFA does not seem to
be strong enough to pick the lexicographically least (greatest) word of
this set. However, BTFA is able to pick the least tally number satisfying
a given X%-formula (if the formula is satisfiable by a tally number at all).

83. The Heine-Borel and the uniform continuity theorems. The
following definition is a suitable adaptation of the definition of an open set as
given in [10, p. 81]:

DEFINITION. (BTFA) A (code for an) open set U of Ris a set U C W x D x
N;. We say that a real number « is an element of U, and write a € U, if

1
JzeDIneNy(la—z| < o A Jw(w, z,n) € U).

Suppose that U is an open set and that [0,1] C U (i.e., every real number in
the closed unit interval is an element of U). In this situation, the Heine-Borel
theorem guarantees the existence of & € Ny with the following property: For
all @ € [0,1], there are z € D, n € Ny and w € W of length less than k such
that |a — z| < 27" and (w, z,n) € U4

PROOF OF THEOREM 1. The proof of both directions of this theorem are adap-
tations of well-known arguments. In order to prove the Heine-Borel theorem,
we reason in BTFA + II? — WKL. Let U be an open set such that U C [0, 1].
To each x € W, we associate the dyadic rational numbers a, = .z* and
by = a, +27®) . Consider the VII}-formula 7T'(z) defined by:

1 1

ﬂ<ar<br<z+27)'
Clearly, T(z) and y C « implies T(y). Suppose, in order to reach a con-
tradiction, that there are elements of arbitrary length satisfying the above
formula. Then, by the second part of Proposition 2, there is an infinite path
X throught T'. In this situation, it is easy to argue that the real o = Eioio ;f(jl)
is an element [0, 1] which is not an element of U, contradicting our assumption.

Therefore, the elements satisfying T have length bounded by a certain r € Nj.

—Jw € W3z € DIn € Ny((w,2,n) €U Az —
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Equivalently:

1
2")

By bounded collection, we can bound the lengths of the above w, z and n by
a certain k € Ny. Using the fact that the closed intervals [ay, by], for £(z) = r
cover the closed unit interval, it follows that the above k does the job.

Reciprocally, assume the Heine-Borel covering theorem. Let us consider the
following adaptation of Cantor’s middle-third set: let C' C [0,1] consist of all
real numbers of the form

V(T (z) AN (x )—rﬁﬂwzn(wzn)EU/\z—Qi<aI<b <z+

y 2w

i=0
where X is an infinite path through W. For each x € W let
1
w=y = 41“ d by =a:+ 7y

i<L(x)

Note that these numbers are dyadic rational numbers, i.e., they are in D (this
is the reason why we have slightly modified the definition of Cantor’s middle-
third set). Let,

1 ) 1
_a'L_W and bl—bx-f-m

The following two properties are easy to prove (in BTFA):

i. Given X an infinite path through W and z € W, if a = Y7 34);(? is in
the open interval (al,b,), then z C X (i.e., z is an initial segment of X).
ii. For all @ € [0,1], a is not in C' if, and only if, a € (by0, az1) for a certain

xeW.

Take now a VII}-formula 7'(z) defining a subtree of W with no infinite paths
through it. Let T'(x) be of the form Yw (w,z) € @, for a certain set Q. Define
the open set U = Uy U Uy, where

Up = {(w,d,,20(z)) : (w,z) ¢ Q} and Uy = {(e, ¢z, 2(l(x) + 1)) : x € W},

and where ¢, = (al, +V)/2 and ¢; = (byo + az1)/2. Remark that the open
intervals (a’,, b)) and (b0, a,1) are, respectively, the open intervals with centers
¢! and ¢, and radius 272/®) and 272+ If o € [0,1]\ C, then a € U;. On
the other hand, if a € C then (using the fact that there are no infinite paths
through T') it is easy to show that o € Uy. In sum, U is an open covering of
[0,1]. Therefore, by the Heine-Borel theorem, there is k € Ny such that for
all « € [0, 1], there are x € D, n € Ny and w € W of length less than k with
o — x| <27 and (w,z,n) € U. We want to show that the elements of T'(z)
are not of arbitrarily large length. In fact, we claim that

V(T (z) — U(z) < k).

/

gy
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Suppose not. Take x of length k satisfying T. Consider an infinite path X
of W with 2 C X. Since the real & = Y .2 ix—ﬂ) is in C' and since U covers
[0,1], @ must be in Up. Thus, there are w and y such that (w, ¢}, 2((y)) € Uy,
a, < a < by and {(y) < k. This implies that y C X. Thus, both z and y are
initial segments of X and £(y) < £(z). Therefore, y C x. Since we have T'(z),

we can conclude T'(y). This is a contradiction. !

DEFINITION 1. (BTFA) Let @ : [0,1] — R be a (total) continuous function.
We say that @ is uniformly continuous if

1

Vk € N;3m € NiVa, 8 € [0,1](Ja — 8] < QLm — |®(a) - (B)] < 2_k)

PROPOSITION 3. (BTFA) Let @ : [0,1] — R be a uniformly continuous func-
tion. Then there is n € Ny such that, for all o € [0,1], ®(a) < 27.

PROOF. By hypothesis, there is m € Ny such that if o — 5] < 27™ then
|®(a) — ®(5)| < 1, for o, 8 € [0,1]. It is clear that
Ve(l(z) =m — In € Ny @(.2%) < 2™).
Now, the formula after the implication sign above is a X{-formula. Thus, by
bounded collection, there is r € Ny such that Vaz(¢(z) = m — ®(.z*) < 27).

Since every real in the closed unit interval is within 27" of a certain .z* for z
of length m, it is clear that n = r + 1 does the job. -

PROOF OF THEOREM 2. We reason in BTFA. Suppose that the principle
I1® — WKL holds. Let @ : [0,1] — R be a total continuous function, and fix
k € Ny. Consider the open set U := {((w,y),x,n+2) : (w,z,n,y,k+2) € }.
Using the fact that ® is a total function, it is easy to argue that [0,1] C U. By
the Heine-Borel theorem (which is available by Theorem 1), there is m € Ny
such that, for all « € [0, 1], there are n € Ny, 2,y € D, all of length less than
m, satisfying |o — 2| < 272 and (z,n)®(y, k + 2). It is now easy to argue
that |®(a) —®(8)| < 27% whenever a and 3 are reals in the closed unit interval
whose difference is less than 2~ ("+1),

Reciprocally, assume that WKL fails. Let T be a subtree of W with elements
of arbitrarily large length but with no infinite paths. By Proposition 1, there
is a continuous real function ® defined on the closed unit interval such that
®(.x*) = 2@ for all end nodes x of T. Therefore, ® is unbounded. Hence,
by Proposition 3, ® is not uniformly continuous. -

§4. The maximum principle. The scheme of “slow” induction (2) for
Y4-formulas is equivalent (within BTFA) to a maximization principle, namely
to the principle that every non empty set X of words of equal length has a
lexicocraphically greatest (least) element. It is also equivalent to the following
seemingly more general maximization principle: If a X¢-formula is satisfiable
by a word of a given length, then there is a lexicographically greatest (least)
word of that length satisfying the given formula. The latter equivalence is
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due to Samuel Buss [1, p. 56]. The former equivalence is explained in [5, p.
88] or in [3, lemma 5.2.7.(a)]. The same arguments given in [8] show that
the theory BTFA + X2 — WKL (and, a fortiori, BTFA itself) augmented with
the scheme of “slow” induction for ¥4-formulas is II3-conservative over the
theory X% — IA (the theory T3, in Buss’ notation). The VX4-consequences
of this theory were studied by Buss and Krajicek [2, Section 5] and Ferreira
[9]. These studies showed that the witnesses of the ¥YX%-consequences of T3
are precisely the optimal solutions of polynomial local search problems. As it
happens, these witnesses are straighforwardly computable in polynomial time
using a NP-oracle, but they don’t seem to be computable in polynomial time
tout court. On the proof-theoretic side, the theory BTFA augmented with the
scheme of “slow” induction for X¢-formulas is sandwiched between BTFA and
BTFA together with the scheme of comprehension for X¢-formulas.

PrROOF OF THEOREM 3. We prove that (a) = (b) = (c) = (a). The first
implication is trivial. It is not difficult to see that (b) implies (¢). Let us
assume (b). In order to prove (c), we prove instead the first maximization
principle described in the paragraph above. Let X be a non-empty set of
words of equal length n € N;. By considering the following full (bounded)
tree T = {w € W : £(w) < n}, we can apply Proposition 1 to define a
continuous total function @ : [0, 1] — R such that, for all words w of length n,
O(w) = .w* if w € X, and ®(w) = 0 otherwise. Moreover, we may take ® with
the additional property that all values of ® are majorized by a certain .w*,
with w € X. By hypothesis, ® has a supremum. Clearly, this is the supremum
of all values of the form .w*, for w € X. Now, it is immediate to argue that
this supremum is indeed a maximum, i.e., is of the form .w* with w € X: this
is the value that we were looking for.

It remains to show that (¢) = (a). Assume (c) or, what is the same thing,
the maximization principle for ¥5-predicates described in the beginning of
this section. Without loss of generality, consider a (total) continuous function
® :[0,1] — [0,1]. In order to prove that ® has a maximum we need to make
some preliminary considerations.

Given k € Ny, consider the open set

Uy = {((way)amvn"_ 1) : (wax»nvyak+ 1) € Q)}

By the totality of ®, Uy C [0,1]. Thus, by the Heine-Borel Theorem (Theorem
1), there is m € N; such that the open set

Ul ={((w,y),z,n+1):w,z,y,n+ 1 <mA (w,z,n,y, k+1) € ®}

already covers the interval [0, 1]. In particular one gets VkImA(k, m), where
A(k,m) is the following bounded formula:

VZ((Z) <m — Jw,z,n,y < m(w,xz,n,y,k+1) € DA|Z"— 2% < W)
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Note that A(k, m) implies

1
(3) Vael0,1]3w,z,n,y<m(w,z,n,y,k+1)€PN|ja— 2" < —

on’
Remark also, that in the situation after the bounded existential quantifier,
4)  |®(a) = @(2")] < [P(a) — Y|+ [y — (") < o1 T okiT = gk

After these preliminary considerations, consider the following I19-formula:

~ ~ % * 1

* * 1

We make two claims:

1. Qy) Ay Cy— Q) and
2. VE € Ny3y(U(y) = k A Qy)).

Assume Q(y) and § C y. Since .y* + s—r < .§* + 57—, the first con-
junct of Q(7) obviously holds. To argue for the second conjunct, suppose that
A(L(g),m) holds. Take m € Ny with A(¢(y),m), and let © < m be such that
|®(.2*) — .y*| < 37—~ By (4), there is & < m with [®(.z*) — ®(.&*)| < 5745
Therefore:

[B(&") — | < |8(&") - D) + [Bla”) — 47|+ |y — 5|

o 1 11
S o otz T o) S pig)—2-

Let us now argue for the second claim. Fix k € Ny and take m € Ny such
that A(k, m). We now use, for the only time, the hypothesis (c) in order to get
the lexicographically greatest element yj, of length k satisfying the ¥-formula

(5) Jw,z,n,y < mr(y) = yp A (w, .2, n,.y" k+1) € D],

where 74(y) is y truncated at length k if & < £(y); otherwise, 74(y) is y
concatenated with k — £(y) zeros. Let us check that Q(yg) holds. Take any
z € W. By (3), there are w,z,n,y < m such that (w,.z*,n,.y*, k+1) € ®
and |.Z* — .z*| < 5. Clearly, |®(.2*) — .y*| < 5. Thus,

and this is less than .y} + W Now, in order to show that the second
conjunct of Q(yx) holds, we first remark that if 74 (y) = yx, w, x,n,y < m and
(w,.x*,n, y*, k+1) € @, then

|@(.2%) —yp| < |®(27) — "+ |y —-yk|§2kﬁ+2—k<m~
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Take m with A(¢(yx), ). By (4), pick & < 7 with [®(.2*) — ®(2*)| < 5. We
get,
1 1

~ % * ~ % * * * 1

S o

We have checked that Q defines an infinite TI9-subtree of W. Since we are
working under the assumption that ¥2 — WKL holds, by Proposition 2 there
is an infinite path Yj; throught Q. It is straightforward to argue both that
Vo € [0,1] ®(a) < .Yy, and that Vn € NyJz(. Yy < ®(.z*) + 5+). Let us now
consider the I1{-formula T'(x) defined as follows:

1 1

It is easy to check that if T(x) and & C z, then T'(2). Now, fix n € Ny.

Take & € W such that |®(.Z*) — .Ya| < 5. Let @ be 7,,((2)), and suppose
that for y € DN [0,1] and & € Ny we have (.2*,{(z) — 2)®(y, k). Since

|z — 3| < & < 2,3@%, we get [®(.z*) — y| < 5. Thus,

o . 1 1
| Yo —yl < [ Y — @(2%)] + |[@(.27) —y| < 200 + ok

In sum, T defines an infinite I19-subtree of W. Therefore, there in an infinite
path X, throught T. We claim that ®(.X;) = .Yy, which finishes the proof.
Let k € Ny. Since .X)ps € dom(®), there is n > k in Ny and y € DN [0, 1]
such that (.z*,n — 2)®(y, k), where z is the initial segment of X, of length
n. Note that T(xz) and, hence, that |.Ya — y| < 5 + 5w; note also that
|. X — 2%| < 575. Therefore,

1 1 1
[ Yar = @(Xn)| < | Yar =yl + |y — 2(Xan)l < o + o5 + o5

By the arbitrarity of k, we may conclude that ®(.X;) = .Yas. o

NOTES

IWe are slightly departing from the notation used in [8]. Here, £(x) stands for 1 x z, a
more friendly say of denoting the tally length of x.

2Induction for E(l) predicates proves the totality of exponentiation. In this latter situation,
since every bounded quantification is equivalent to a subword quantification, comprehension
is closed under bounded quantification and the classes Zgo and Hll’ both collapse to sets.
One more thing: the word “essentially” in the sentence to which this note refers should be
understood has having the technical meaning of “same up to bi-interpretability.”

3The formula z < = means that the length of z is less than or equal to the length of z, i.e.,
£(z) C4(x). In [8] we used z < x instead.

4This formulation of the Heine-Borel covering lemma with a single (code for an) open set
U might seem odd, but it is admissible because we are also bounding the “index” variable
w as well. Notice, however, that the Heine-Borel theorem only guarantees the bound &, not
that the set {(w, z,n) : £(w), £(x),£(n) < kA (w,z,n) € U} can be coded by an element of
W (see the third remark at the end of section 2).



WKL IN FEASIBLE ANALYSIS 13

REFERENCES

[1] SAMUEL Buss, Bounded arithmetic, Ph.D. thesis, Princeton University, June 1985,
a revision of this thesis was published by Bibliopolis in 1986.

[2] SAMUEL Buss and JAN KRAJICEK, An application of Boolean complezity to separation
problems in bounded arithmetic, Proccedings of the London Mathematical Society, vol. 69
(1994), pp. 1-21.

[3] JaN KRAJICEK, Bounded arithmetic, propositional logic, and complezity theory,
Encyclopedia of Mathematics and its Applications, vol. 60, Cambridge University Press,
1995.

[4] ANTONIO M. FERNANDES and FERNANDO FERREIRA, Groundwork for weak analysis,
manuscript, 2000, 22 pages.

[5] FERNANDO FERREIRA, Polynomial time computable arithmetic and conservative ex-
tensions, Ph.D. thests, Pennsylvania State University, December 1988, pp. vii + 168.

6] , Stockmeyer induction, Feasible mathematics (Samuel Buss and Philip Scott,
editors), Birkhéduser, 1990, pp. 161-180.

(7] , Binary models generated by their tally part, Archive for Mathematical
Logic, vol. 33 (1994), pp. 283-289.

8] , A feasible theory for analysis, The Journal of Symbolic Logic, vol. 59
(1994), pp. 1001-1011.

9] , What are the VEEI’ -consequences of T21 and T22 2, Annals of Pure and Ap-
plied Logic, vol. 75 (1995), pp. 79-88.

[10] STEPHEN SIMPSON, Subsystems of second-order arithmetic, Perspectives in Math-
ematical Logic, Springer-Verlag, 1999.

[11] TAKESHI YAMAZAKI, Reverse mathematics and basic feasible systems of 0-1 strings,
manuscript, 7 pages, 2000.

DEPARTAMENTO DE MATEMATICA, INSTITUTO SUPERIOR TECNICO
AV. ROVISCO PAIS, 1096 LISBOA CODEX, PORTUGAL
E-mail: amfimr@mail.telepac.pt

DEPARTAMENTO DE MATEMATICA7 UNIVERSIDADE DE LISBOA
RUA ERNESTO DE VASCONCELOS, C1-3, P-1749-016 LISBOA, PORTUGAL
E-mail: ferferr@ptmat.lmc.fc.ul.pt



