Efficient Algorithms for Mining Outliers from Lar ge Data Sets

SridharRamasvamy Raje® Rastogi KyuseokShim*
Epiphary Inc. Bell Laboratories KAISTt andAITrct
Palo Alto, CA 94403 Murray Hill, NJ07974 Taejon,KOREA
sridhar@epiphancom rastogi@bell-labs.com shim@cs.kaist.ac.kr

Abstract

In this paper we proposea novel formulationfor distance-based
outliers thatis basen thedistanceof apointfrom its £** nearest
neighbor We rank eachpoint on the basisof its distanceto its
k" nearesheighboranddeclarethe top n pointsin this ranking
to beoutliers. In additionto developingrelatively straightforvard
solutionsto finding such outliers basedon the classicalnested-
loop join andindex join algorithms,we develop a highly efficient
partition-based algorithmfor mining outliers. This algorithmfirst
partitionsthe input datasetinto disjoint subsetsandthenprunes
entirepartitionsassoonasit is determinedhatthey cannotcontain
outliers. This resultsin substantiakavings in computation. We
presenthe resultsof an extensive experimentalstudy on real-life
andsyntheticdatasets. Theresultsfrom a real-life NBA database
highlight and reveal several expectedand unexpectedaspectsof
the database. The resultsfrom a study on synthetic data sets
demonstratethat the partition-basedalgorithm scaleswell with
respecto bothdatasetsizeanddatasetdimensionality

1 Intr oduction

Knowledgediscovery in databasesgommonlyreferredto
asdatamining, is generatingenormousnterestin boththe
researctandsoftwarearenasHowever, muchof thisrecent
work hasfocusedon finding “large patterns. By the phrase
“large patterns”,we meancharacteristicef the input data
that are exhibited by a (typically userdefined)significant
portion of the data. Examplesof theselarge patterns
include associationrules|[AMSt95], classification[RS98
andclustering[ZRL96§ NH94, EKX95, GRS98].

In this paperwefocusonthecornverseproblemof finding
“small patterns”or outliers. An outlier in a set of data
is an obsenation or a point thatis considerablydissimilar
or inconsistentwith the remainderof the data. From the

*Thework wasdonewhile theauthorwaswith Bell Laboratories.
TKoreaAdvancednstituteof ScienceandTechnology
fAdvancednformationTechnologyResearciCenterat KAIST

above descriptionof outliers, it may seemthat outliersare
a nuisance—impedinghe inferenceprocess—andanustbe
quickly identifiedandeliminatedsothatthey donotinterfere
with the dataanalysis.However, this viewpointis oftentoo
narron sinceoutlierscontainusefulinformation.Mining for
outliershasa numberof usefulapplicationsn telecomand
credit card fraud, loan approval, pharmaceuticatesearch,
weatherprediction, financial applications,marketing and
customersggmentation.

Forinstanceconsidetthe problemof detectingcreditcard
fraud. A major problemthat credit cardcompaniedaceis
theillegal useof lost or stolencredit cards. Detectingand
preventingsuchuseis critical sincecredit cardcompanies
assumadiability for unauthorizedxpense®n lost or stolen
cards. Sincethe usagepatternfor a stolencardis unlikely
to be similar to its usageprior to being stolen, the new
usagepointsareprobablyoutliers(in anintuitive senseyvith
respecto the old usagepattern. Detectingtheseoutliersis
clearlyanimportanttask.

The problemof detectingoutliers has beenextensvely
studiedin the statisticscommunity(see[BL94] for a good
suney of statisticaltechniques). Typically, the user has
to model the data points using a statistical distribution,
and points are determinedto be outliers dependingon
how they appearin relationto the postulatedmodel. The
main problemwith theseapproachess that in a number
of situations, the user might simply not have enough
knowledgeaboutthe underlyingdatadistribution. In order
to overcomethis problem,Knorr and Ng [KN98] propose
the following distance-basedefinition for outliersthat is
bothsimpleandintuitive: A point p in adata setisan outlier
with respect to parameters k£ and d if no more than k points
in the data set are at a distance of d or less from p'. The
distanceunctioncanbe ary metricdistancefunctior?.

Themainbenefitof theapproachn [KN98] is thatit does
not requireary apriori knowledgeof datadistributionsthat
the statisticalmethodsdo. Additionally, the definition of
outliers considereds generalenoughto model statistical

1The precisedefinition usedin [KN98] is slightly differentfrom, but
equivalentto, this definition.

2Thealgorithmsproposedissumehatthe distancebetweertwo points
is the euclideardistancebetweerthe points.

outliertestsfor normal,poissorandotherdistributions. The
autinorsgo on to proposea numberof efficient algorithms
for finding distance-basealutliers. Onealgorithmis a block
nested-loomlgorithmthathasrunningtime quadratidn the
inputsize.Anotheralgorithmis basedn dividing thespace
into a uniform grid of cells and then using thesecells to
computeoutliers. This algorithmis linearin the size of the
databaséut exponentialin thenumberof dimensions(The
algorithmsarediscussedh detailin Section2.)
Thedefinitionof outliersfrom [KN98] hastheadwantages
of beingbothintuitive andsimple,aswell asbeingcompu-
tationally feasiblefor large setsof datapoints. However, it
alsohascertainshortcomings:

1. It requiregheuserto specifyadistanceal whichcouldbe
difficult to determingtheauthorssuggestrial anderror
which couldrequireseveraliterations).

2. It does not provide a ranking for the outliers—for
instancea pointwith veryfew neighboringpointswithin
a distanced canbe regardedin somesenseasbeinga
stronger outlierthana pointwith moreneighborswithin
distanced.

3. The cell-basedlgorithmwhosecompleity is linearin
thesizeof thedatabaseoesnotscalefor highernumber
of dimensionge.g.,5) sincethe numberof cellsneeded
grows exponentiallywith dimension.

In this paperwe focuson presentinga new definitionfor
outliersand developingalgorithmsfor mining outliersthat
addressthe abore-mentioneddravbacks of the approach
from [KN98]. Specifically our definition of an outlier
doesnot require usersto specify the distanceparameter
d. Instead,it is basedon the distanceof the k" nearest
neighborof a point. For a k andpoint p, let D¥(p) denote
the distanceof the k** nearesmeighborof p. Intuitively,
D*(p) is a measureof how muchof an outlier point p is.
For example pointswith largervaluesfor D* (p) have more
sparsaneighborhoodandarethustypically strongeioutliers
than points belongingto denseclusterswhich will tendto
have lower valuesof D*(p). Since,in generalthe useris
interestedn thetopn outliers,we defineoutliersasfollows:
Givenak and n, apoint pisanoutlier if nomorethann —1
other pointsin the data set have a higher value for D* than
p. In otherwords, the top n pointswith the maximumD¥
valuesareconsideredutliers. We referto theseoutliersas
the DX (pronounceddee-kay-en”)outliersof a dataset.

Theabove definitionhasintuitive appeakincein essence,
it rankseachpointbasednits distancerom its k** nearest
neighbor With our new definition, the useris no longer
requiredo specifythedistanced to definetheneighborhood
of a point. Instead,he/shehasto specify the numberof
outliers n that he/sheis in interestedin—our definition
basicallyusesthe distanceof the k** neighborof the nt"*
outlierto definetheneighborhoodlistanced. Usually, n can
beexpectedo beverysmallandis relatively independenof

theunderlyingdataset,thusmakingit easierfor the userto
specifycomparedo d.
The contritutionsof this paperareasfollows:

¢ We proposenovel definitionfor distance-basealtliers
thathasgreatintuitiveappeal Thisdefinitionis basedn
thedistanceof a pointfromits k* nearesheighbor

e Themaincontribution of this paperis a partition-based
outlier detectionalgorithmthatfirst partitionsthe input
pointsusinga clusteringalgorithm,andcomputedower
and upperboundson D* for pointsin eachpartition.
It then usesthis information to identify the partitions
that cannot possibly contain the top n outliers and
prunesthem. Outliers are then computedfrom the
remainingpoints (belongingto unprunedpartitions)in
afinal phase.Sincen is typically small, our algorithm
prunesasignificantnumberof points,andthusresultsin
substantiabavzingsin theamountof computation.

o We presenthe resultsof a detailedexperimentalstudy
of thesealgorithmson real-life and syntheticdatasets.
The resultsfrom a real-life NBA databasehighlight
and reveal several expectedand unexpectedaspectsof
the database. The resultsfrom a study on synthetic
datasetsdemonstraté¢hat the partition-basedlgorithm
scaleswvell with respecto bothdatasetsizeanddataset
dimensionality It alsoperformsmorethanan orderof
magnitudebetterthanthe nested-loomndindex-based
algorithms.

The rest of this paperis organizedas follows. Sec-
tion 2 discusseselatedresearctin the areaof finding out-
liers. Section3 presentsthe problem definition and the
notationthat is usedin the rest of the paper Section4
presentshe nestedoop andindex-basedalgorithmsfor out-
lier detection.Section5 discussesur partition-basedlgo-
rithm for outlier detection. Section6 containsthe results
from our experimentalanalysisof the algorithms. We an-
alyzedthe performanceof the algorithmson real-life and
syntheticdatabases.Section7 concludesthe paper The
work reportedin this paperhasbeendonein the context
of the Serendipdata mining project at Bell Laboratories
(www. bel | -1 abs. com proj ect s/ serendi p).

2 RelatedWork

Clusteringalgorithmslike CLARANS [NH94], DBSCAN
[EKX95], BIRCH [ZRL96] and CURE [GRS9§ consider
outliers, but only to the point of ensuringthat they do not
interferewith the clusteringprocess.Further the definition
of outliersusedis in a sensesubjectve and relatedto the
clustersthat are detectedby thesealgorithms. This is in
contrasto our definitionof distance-basedutlierswhichis
moreobjective andindependendf how clustersn theinput
datasetareidentified. In [AAR96], the authorsaddresghe
problemof detectingdeviations— after seeinga seriesof

Symbol Description
k Numberof neighborf a pointthatwe areinterestedn
DF Distanceof pointp toits k** nearesnheighbor
n Total numberof outlierswe areinterestedn
N Total numberof input points
é Dimensionalityof theinput
M Amountof memoryavailable
dist Distancebetweera pair of points
MINDIST | Minimum distancebetweerapoint/MBRandMBR
MAXDIST | Maximumdistancebetweerapoint/MBRandMBR

Tablel: NotationUsedin the Paper

similar data,an elementdisturbingthe seriesis considered
an exception. Table analysismethodsfrom the statistics
literatureare employed in [SAM98] to attackthe problem
of finding exceptionan OLAP datacubes.A detailedvalue
of thedatacubeis calledanexceptionif it is foundto differ
significantly from the anticipatedvalue calculatedusing a
modelthattakesinto accountall aggreyates(group-bys)in
whichthevalueparticipates.

As mentionedn theintroduction theconcepbf distance-
basedoutliers was developed and studied by Knorr and
Ng in [KN98]. In this paper for a £ and d, the authors
definea pointto beanoutlierif at mostk pointsarewithin
distanced of the point. They presenttwo algorithmsfor
computingoutliers. Oneis a simple nested-loomlgorithm
with worst-caseompleity O(§N?) whered is the number
of dimensionsand N is thenumberof pointsin thedataset.
In order to overcomethe quadratictime compleity of
the nested-loomlgorithm, the authorsproposea cell-based
approacHor computingoutliersin whichthe § dimensional

spacds partitionedinto cellswith sidesof length—Z-. The

2V/5
time compleity of this cell-basedalgorithmis O(c? + N)

wherec is anumberthatis inverselyproportionalo d. This
compleity is linearis N but exponentialin the numberof
dimensionsAs aresult,dueto theexponentialgrowthin the
numberof cells asthe numberof dimensionds increased,
the nestedloop outperformsthe cell-basedalgorithm for
dimensionst andhighet

While existing work on outliersfocusesnly ontheiden-
tification aspectthe work in [KN99] also attemptsto pro-
vide intensional knowledge, which is basicallyan explana-
tion of why anidentifiedoutlieris exceptional.Recentlyin
[BKNSQO], thenotionof local outliersis introducedwhich
like DF outliers,depencbntheirlocal neighborhoodsHow-
ever, unlike D% outliers,local outliersare definedwith re-
spectto thedensitieof theneighborhoods.

3 Problem Definition and Notation

In this section,we first presenta precisestatemenof the
problemof mining outliersfrom point datasets. We then
presentsome definitions that are usedin describingour
algorithms. Table 1 describeghe notationthat we usein
theremaindeiof thepaper

3.1 ProblemStatement

Recallfrom theintroductionthatwe useD* (p) to denotethe
distanceof point p from its k** nearesneighbor We rank
pointson the basisof their D*(p) distance Jeadingto the
following definitionfor D¥ outliers:

Definition 3.1: Given an input data set with N points,
parameters andk, apointp is a DX outlierif thereareno
morethann — 1 otherpointsp’ suchthatD*(p') > D*(p).2
1

In other words, if we rank points accordingto their
D*(p) distance, the top n points in this ranking are
consideredo beoutliers. We canuseary of the L,, metrics
like the Ly (“manhattan”)or L, (“euclidean”) metricsfor
measuringhedistancebetweerapairof points. Alternately
for certain application domains (e.g., text documents),
nonmetricdistancefunctionscanalsobe used,makingour
definitionof outliersvery general.

With theabovedefinitionfor outliers,it is possibleo rank
outliersbasedntheir D* (p) distances—outliensith larger
D*(p) distancedavefewerpointscloseto themandarethus
intuitively strongemoutliers.Finally, we notethatfor agiven
k andd, if thedistance-basedefinitionfrom [KN98] results
in n’ outliers,theneachof themis a D¥, outlier according
to ourdefinition.

3.2 DistancesbetweenPoints and MBRs

One of the key technicaltools we usein this paperis
the approximationof a setof points using their minimum
boundingrectangle(MBR). Then,by computinglower and
upperboundson D*(p) for pointsin eachMBR, we are
ableto identify andpruneentireMBRs thatcannotpossibly
containD¥ outliers. The computatiorof boundsfor MBRs
requiresus to definethe minimum and maximum distance
betweentwo MBRs. Outlier detectionis also aided by
the computationof the minimum and maximum possible
distancebetweena point and an MBR, which we define
below.

In this paper we use the squareof the euclideandis-
tance(insteadf theeuclideardistancatself) asthedistance
metric sinceit involvesfewer andlessexpensve computa-
tions. We denotethe distancebetweenwo pointsp andg by
dist(p, q). Letusdenoteapointp in §-dimensionaspaceby
[p1, P2, - .,ps] andad-dimensionatectangler by thetwo
endpointsof its major diagonal: » = [rq,r2,...,rs] and
r' = [r{,r5,...,r5] suchthatr; <riforl <i <n.Letus
denotethe minimumdistancebetweemoint p andrectangle
R by MINDIST(p, R). Every pointin R is at a distanceof
atleastMINDIST(p, R) from p. Thefollowing definitionof
MINDIST is from [RKV95]:

Definition 3.2 MINDIST(p, R) = Ele z?, where

3Note that more than npoints may satisfy our definition of DE
outliers—inthiscaseary n of themsatisfyingourdefinitionareconsidered
DE outliers.

ri—pi ifpi<m
;=4 pi—r ifr;<p;
0 otherwise i

We denotethe maximum distancebetweenpoint p and
rectangleR by MAXDIST(p, R). Thatis, no pointin R is
at a distancethat exceedsMAXDIST(p, R) from point p.
MAXDIST(p, R) is calculatedasfollows:

Definition 3.3 MAXDIST(p, R) = Y_0_, 22, where

H i+ ;
p; —r; otherwise 1

We next define the minimum and maximum distance
betweentwo MBRs. Let R and.S be two MBRs defined
by the endpointsof their major diagonal(r,r’ and s, s’
respectiely) asbefore. We denotethe minimum distance
betweenR and S by MINDIST(R, S). Every pointin R
is at a distanceof at leastMINDIST(R, S) from ary point
in S (andvice-versa). Similarly, the maximum distance
betweenR andS, denotecby MAXDIST(R, S) is defined.
The distancescan be calculatedusing the following two
formulae:

Definition 3.4 MINDIST(R, S) = 3"_, 2, where

ri—s, ifsh<r
zi=1Q si—ry ifri<s;
0 otherwise 1

Definition 3.5 MAXDIST(R, S) = ¥.0_, 2, wherex; =
max{[s; — rq|, |r; — si[}. 1

4 Nested-Loopand Index-Based
Algorithms

In this section,we describetwo relatively straightforvard
solutionsto the problemof computingD¥ outliers.

Block Nested-LoopJoin: The nested-loomlgorithmfor

computingoutliers simply computesfor eachinput point

p, D¥(p), the distanceof its k" nearesneighbor It then
selectsthe top n pointswith the maximumD* values. In

orderto compute D* for points, the algorithm scansthe
databasdor eachpoint p. For a point p, a list of the k&

nearespointsfor p is maintainedandfor eachpointq from

the databasevhich is considereda checkis madeto see
if dist(p,q) is smallerthanthe distanceof the k* nearest
neighborfound sofar. If the checksucceedsy is included
in thelist of thek nearesheighbordor p (if thelist contains
morethank neighborsthenthe point thatis furthestaway

from p is deletedfrom thelist). The nested-loomlgorithm
canbe madel/O efficient by computingD* for a block of

pointstogether

Index-Based Join: Even with the I/O optimization,
the nested-loopapproachstill requires O(N?2) distance
computationsThisis expensve computationallyespecially
if the dimensionalityof pointsis high. The numberof
distancecomputationganbesubstantiallyeducedy using
aspatialindex likean R*-tree[BKSS9Q.

If we have all the points storedin a spatialindex like
the R*-tree,thefollowing pruningoptimization,which was
pointed out in [RKV95], can be applied to reducethe
numberof distancecomputations: Supposethat we have
computedD*(p) for p by looking at a subsetof the input
points. Thevaluethatwe haveis clearlyanupperboundfor
the actual D* (p) for p. If the minimumdistancebetweerp
andthe MBR of a nodein the R*-tree exceedsthe D*(p)
valuethatwe have currently none of the pointsin the sub-
tree rooted under the node will be amongthe k£ nearest
neighborsof p. This optimizationlets us pruneentire sub-
treescontainingpointsirrelevant to the k-nearesneighbor
searctfor p.*

In addition, sincewe are interestedin computingonly
the top n outliers, we can apply the following pruning
optimizationfor discontinuingthe computationof D*(p)
for a point p. Assumethat during eachstepof the index-
basedalgorithm,we storethe top n outlierscomputed.Let
D,min be the minimum D¥ amongthesetop outliers. If
during the computationof D*(p) for a point p, we find
thatthe valuefor D*(p) computedso far hasfallen below
D,.min, We areguaranteethatpoint p cannotbe anoutlier.
Therefore, it can be safely discarded. This is because
D*(p) monotonicallydecreases aswe examinemorepoints.
Thereforep is guaranteetb notbeoneof thetopn outliers.
Notethatthis optimizationcanalsobeappliedto thenested-
loop algorithm.

ProceduresomputeOutliersindex for computingD% out-
liersis shavn in Figurel. It usesProceduregetKthNeigh-
borDist in Figure2 asa subroutine.In computeOutliersin-
dex, pointsarefirstinsertednto anR*-tree index (any other
spatialindex structurecanbe usedinsteadof the R*-tree)in
stepsl and2. The R*-tree is usedto computethe k** near
estneighborfor eachpoint. In addition,theprocedur&eeps
trackof then pointswith the maximumvaluefor D* atary
pointduringits executionin a heapoutHeap.The pointsare
storedin the heapin increasingorderof D*, suchthatthe
point with the smallestvaluefor D* is atthetop. This D*
valueis alsostoredin the variableminDkDist andpassedo
the getKthNeighborDistoutine.Initially, outHeaps empty
andminDkDistis 0.

The for loop spanningsteps5-13 calls getkthNeighbor
Dist for eachpointin theinput, insertingthe pointinto out-
Heapif the point’s D* valueis amongthetopn valuesseen

4Note that the work in [RKV95] usesa tighter bound called MIN-
MAXDIST in orderto prunenodes.This is becausehey wantto find the
maximumpossibledistancefor the nearesneighborpoint of p, notthe k
nearesheighborsaswe aredoing. Whenlooking for the nearesheighbor
of a point, we canhave a tighter boundfor the maximumdistanceto this
neighbor

Procedure computeOutliersindék,n)
begin
for eachpointp in inputdatasetdo
insertintolnd&(Tree,p)
outHeap=§
minDkDist:= 0
for eachpointp in inputdatasetdo {
getKthNeighborDist(ifee.Rootp, k, minDkDist)
if (p.DkDist > minDkDist) {
outHeap.inserg()
if (outHeap.numPoints§} n) outHeap.deletedp()
10. if (outHeap.numPointsg n)
11. minDkDist := outHeap.top().DkDist
12. }
13.}
14. return outHeap
end

©CNOOr®WDN R

Figurel: Index-BasedAlgorithm for ComputingOutliers

so far (p.DkDist storesthe D* value for point p). If the
heaps sizeexceedsy, the pointwith thelowestD* valueis
removedfrom the heapandminDkDist updated.

ProcedurgetkthNeighborDistomputesD* (p) for point
p by examiningnodesin the R*-tree. It doesthis usinga
linked list nodeList. Initially, nodeListcontainsthe root of
the R*-tree. Elementsin nodeListaresorted,in ascending
order of their MINDIST from p.> During eachiteration
of the while loop spanningines 4-23, the first nodefrom
nodeListis examined.

If the nodeis a leaf node, pointsin the leaf nodeare
processed.In orderto aid this processingthe k£ nearest
neighborsof p among the points examined so far are
storedin the heapnearHeap nearHeaystorespointsin the
decreasingrder of their distancefrom p. p.Dkdist stores
DF for p from the pointsexamined. (It is oo until k points
are examined.) If at ary time, a point ¢ is found whose
distanceo pis lessthanp.Dkdist,q is insertednto nearHeap
(steps8-9). If nearHeapcontainsmore than k£ points,
the point at the top of nearHeapdiscarded,and p.Dkdist
updatedstepsl0-12).If atarny time, thevaluefor p.Dkdist
falls belov minDkDist (recall that p.Dkdist monotonically
decreasesas we examine more points), point p cannot
be an outlier Therefore, proceduregetkKthNeighborDist
immediately terminatesfurther computationof D* for p
andreturns(stepl13). This way, getKthNeighborDistvoids
unnecessarcomputationfor a point the momentit is
determinedhatit is notanoutlier candidate.

On the other hand, if the nodeat the headof nodeList
is aninterior node,the nodeis expandedby appendingts
childrento nodeList. ThennodeListis sortedaccordingto
MINDIST (steps17-18). In the final steps20-22,nodes
whose minimum distancefrom p exceed p.DkDist, are
pruned. Pointscontainedin thesenodesobviously cannot
qualify to be amongstp’s k nearesineighborsand canbe

5Distancedor nodesareactuallycomputedusingtheir MBRs.

Procedure getkthNeighborDist(Roof, k&, minDkDist)
begin

1. nodeList:= { Root}

2. p.Dkdist:= co

3. nearHeap=0

4. while nodeListis notemptydo {

5. deletethefirst elementNode,from nodeList
6 if (Nodeis aleaf) {

7 for eachpointq in Nodedo

8 if (dist(p,q) < p.DkDist) {

9 nearHeap.insegj

10. if (nearHeap.numPointsg k) nearHeap.deletep()
11. if (nearHeap.numPointsf k)

12. p.DKDist:= dist(p, nearHeap.top())
13. if (p.Dkdist< minDkDist) return

14. }

15. }

16. else{

17. appendNodes childrento nodelList

18. sortnodeListby MINDIST

19. }

20. for eachNodein nodeListdo

21. if (p.DkDist < MINDIST(p,Node))

22. deleteNodefrom nodeList

23.}

end

Figure2: Computatiorof Distancefor k" NearesNeighbor
safelyignored.

5 Partition-Based Algorithm

Thefundamentashortcomingvith thealgorithmspresented
in the previous sectionis that they are computationally
expensve. This is becausdor eachpoint p in the database
we initiate the computationof D*(p), its distancefrom its
kth nearesmneighbor Sincewe are only interestedn the
top n outliers, and typically n is very small, the distance
computationdor mostof the remainingpointsare of little
useandcanbealtogethervoided.

The partition-basedalgorithm proposedin this section
prunesout points whosedistancesfrom their k" nearest
neighborsare so small that they cannotpossibly make it
to the top n outliers. Furthermore,by partitioning the
dataset, it is ableto make this determinatiorfor a point p
without actuallycomputingthe precisevalueof D* (p). Our
experimentalresultsin Section6 indicatethat this pruning
stratgy canresultin substantiaperformancespeedupsiue
to savingsin bothcomputatiorand|/O.

5.1 Overview

The key idea underlying the partition-basedalgorithm is
to first partition the dataspace,and then prune partitions
as soonasit canbe determinedthat they cannotcontain
outliers.Sincen will typically bevery small,this additional
preprocessingtepperformedatthe granularityof partitions
ratherthanpointseliminatesa significantnumberof points

as outlier candidates.Consequentlykt” nearesmneighbor
computationsieedto beperformedor veryfew points,thus
speedingip the computatiorof outliers. Furthermoresince
thenumberof partitionsin the preprocessingtepis usually
much smallercomparedto the numberof points, and the
preprocessings performedat the granularityof partitions
ratherthanpoints,theoverheacdf preprocessings low.

We briefly describethe stepsperformedby the partition-
basedalgorithmbelow, anddeferthe presentatiorf details
to subsequergections.

1. Generatepartitions: In thefirst step,we usea cluster
ing algorithmto clusterthedataandtreateachclusteras
aseparat@artition.

2. Compute boundson D* for points in eachpartition:
For each partition P, we computelower and upper
bounds(storedin P.lower and P.upper respectiely)
on D for pointsin the partition. Thus,for every point
p € P, D¥(p) >P.lowerandD*(p) <P.upper

3. Identify candidate partitions containing outliers: In
this step, we identify the candidate partitions, that is,
the partitions containing points which are candidates
for outliers. Supposewe could computeminDkDist,
the lower bound on D¥ for the n outliers. Then, if
P.upperfor a partition P is lessthanminDkDist, none
of the pointsin P can possibly be outliers. Thus,
only partitions P for which P.upper> minDkDist are
candidatepartitions.

minDKkDist canbe computedrom P.lower for the par
titions asfollows. Considerthe partitionsin decreasing
orderof P.lower. Let P, ..., P, bethe partitionswith
themaximumvaluesor P.lowersuchthatthenumberof
pointsin the partitionsis atleastn. Then,alowerbound
on D* for anoutlieris min{P;.lower: 1 < i < I}.

4. Compute outliers from points in candidate parti-
tions: In thefinal step,the outliersare computedfrom
amongthe pointsin the candidatepartitions. For each
candidatepartition P, let P.neighborglenotethe neigh-
boring partitionsof P, which areall the partitionswithin
distanceP.upperfrom P. Pointsbelongingto neighbor
ing partitionsof P aretheonly pointsthatneedto be ex-
aminedwhencomputingD* for eachpointin P. Since
thenumberof pointsin thecandidateartitionsandtheir
neighboringpartitionscouldbecomeguitelarge,wepro-
cessthe pointsin the candidatepartitionsin batches,
eachbatchinvolving a subsetf thecandidategartitions.

5.2 Generating Partitions

Partitioning the dataspacento cellsandthentreatingeach
cell as a partition is impractical for higher dimensional
spacesThis approachwasfoundto beineffective for more
than4 dimensionsn [KN98] dueto theexponentialgrowth

in thenumberof cellsasthenumberof dimensionsncrease.

For effective pruning,we would like to partitionthe data
suchthat pointswhich are closetogetherare assignedo a
singlepartition. Thus,emplgying a clusteringalgorithmfor
partitioningthe datapointsis a goodchoice. A numberof
clusteringalgorithmshave beenproposedn the literature,
most of which have at least quadratictime compleity
[JD8F. Since N could be quite large, we are more
interestedn clusteringalgorithmsthatcanhandlelargedata
sets. Among algorithmswith lower complecities is the
pre-clusteringphaseof BIRCH [ZRL96], a state-of-the-art
clusteringalgorithm that can handlelarge datasets. The
pre-clusteringphasehastime compleity thatis linearin
the input size and performsa single scanof the database.
It storesa compactsummarizatiorior eachclusterin a CF-
treewhich is a balancedree structuresimilar to an R-tree
[Sam89. For eachsuccessie point, it traversesthe CF-
treeto find the closestcluster andif the point is within a
thresholddistance: of theclusterit is absorbednto it; else,
it startsanew cluster In casethesizeof the CF-treeexceeds
the main memorysize M, the thresholde is increasedand
clustersin the CF-treethatarewithin (the new increasedy
distanceof eachotherarememged.

The main memorysize M andthe pointsin the dataset
are given as inputs to BIRCH's pre-clusteringalgorithm.
BIRCH generates setof clusterswith generallyuniform
sizesandthatfit in M. We treateachclusterasa separate
partition — the pointsin the partition are simply the points
that were assignedo its clusterduring the pre-clustering
phase. Thus, by controlling the memorysize M input to
BIRCH, we cancontrolthe numberof partitionsgenerated.
We represeneachpartitionby the MBR for its points.Note
thatthe MBRs for partitionsmayoverlap.

We mustemphasizehat we use clusteringheresimply
asa heuristicfor efficiently generatingdesirablepartitions,
andnotfor computingoutliers. Most clusteringalgorithms,
includingBIRCH, performoutlierdetectionhoweverunlike
our notion of outliers, their definition of outliers is not
mathematically precise and is more a consequenceof
operationakonsiderationshatneedto be addresseduring
theclusteringprocess.

5.3 Computing Boundsfor Partitions

For the purposeof identifying the candidatepartitions,we
needto first computethe bounds P.lower and P.upper
which have the following property: for all pointsp € P,
P.lower< D*(p) < P.upper TheboundsP.lower/P.upper
for apartition P canbedeterminedy findingthel partitions
closesto P with respecto MINDIST/MAXDIST suchthat
the numberof pointsin Py,..., P, is atleastk. Sincethe
partitionsfit in mainmemory a mainmemoryindex canbe
usedto find the! partitionsclosestio P (for eachpartition,
its MBR is storedin theindex).
ProcedurecomputeLowerUpper for computing P.lower
andP.upperffor partition P is shavn in Figure3. Amongits
input parameteraretheroot of theindex containingall the

Procedure computeLaverUpper(RootP, k, minDkDist)
begin

1. nodelList:= { Root}

2. P.lower:= P.upper=occ

3. lowerHeap:= upperHeap=

4. while nodeListis notemptydo {

5. deletethefirst elementNode,from nodeList

6. if (Nodeis aleaf) {

7. for eachpartition@ in Node{

8. if (MINDIST(P,Q) < P.lower) {

9. lowerHeap.insere)

10. while lowerHeap.numPoints¢:

11. lowerHeap.top().numPoints§ k do
12. lowerHeap.deletep()

13. if (lowerHeap.numPoints@ k)

14. P.lower:= MINDIST(P, lowerHeap.top())
15. }

16. if (MAXDIST(P,Q) < P.upper)

17. upperHeap.insed)

18. while upperHeap.numPointsf

19. upperHeap.top().numPointsg) k do
20. upperHeap.deletep()

21. if (upperHeap.numPoints§ k)

22. P.upper= MAXDIST(P, upperHeap.top())
23. if (P.upper< minDkDist)return

24, }

25. }

26.

27. else{

28. appendNodes childrento nodeList

29. sortnodeListby MINDIST

30.

31. for eachNodein nodeListdo

32. if (P.upper< MAXDIST(P,Node)and

33. P.lower < MINDIST(P,Node))

34. deleteNodefrom nodeList

35.}

end

Figure 3: Computationof Lower and Upper Boundsfor
Partitions

partitionsandminDkDist, whichis alowerboundon D* for
anoutlier. Theprocedures invokedby the procedurevhich
computeghe candidatepartitions,computeCandidateParti-
tions, shawvn in Figure 4 thatwe will describein the next
subsection. ProcedurecomputeCandidateftitions keeps
track of minDkDistandpasseshis to computeLaverUpper
so that computationof the boundsfor a partition P canbe
optimized. Theideais thatif P.upperfor partition P be-
comeslessthanminDKDist, thenit cannotcontainoutliers.
Computatiorof bounddor it canceasémmediately

computeLeverUpper is similar to proceduregetKth-
NeighborDistdescribedin the previous section (see Fig-
ure 2). It stores partitions in two heaps, lowerHeap
and upperHeapjn the decreasingrder of MINDIST and
MAXDIST from P, respectiely — thus, partitionswith the
largestvaluesof MINDIST andMAXDIST appeaatthetop
of theheaps.

5.4 Computing Candidate Partitions

This is the crucial stepin our partition-basedlgorithmin
which we identify the candidatepartitionsthat can poten-
tially containoutliers, and prunethe remainingpartitions.

Theideais to usethe boundscomputedn the previoussec-
tion to first estimateminDkDist, which is alower boundon
DF for an outlier Thena partition P is a candidateonly
if P.upper> minDkDist. Thelower boundminDkDist can
be computedusingthe P.lower valuesfor the partitionsas
follows. Let P, ..., P, bethepartitionswith the maximum
valuesfor P.lower and containingat leastn points. Then
minDkDist= min{P;.lower: 1 <4 < I} is alowerbound
on D* for anoutlier.

The procedurefor computing the candidatepartitions
from among the set of partitions PSetis illustrated in
Figure 4. The partitions are storedin a main memory
index and computeLeverUpperis invoked to computethe
lower and upper boundsfor each partition. However,
insteadof computingminDKkDist afterthe bound<or all the
partitionshave beencomputedcomputeCandidateftitions
stores,in the heappartHeapthe partitionswith the largest
P.lower values and containing at leastn points among
them. The partitions are stored in increasingorder of
P.lowerin partHea@ndminDkDistis thusequatlto P.lower
for the partition P at the top of partHeap. The benefit
of maintaining minDkDist is that it can be passedas
a parameterto computeLeverUpper(in Step 6) and the
computatiorof boundsfor a partition P canbe haltedearly
if P.upperfor it falls belov minDkDist. If, for a partition
P, P.loweris greaterthanthe currentvalueof minDkDist,
thenit is insertednto partHeapandthe valueof minDkDist
is appropriatehadjustedsteps8—13).

Procedure computeCandidateRitions(PSetk, n)
begin
for eachpartition P in PSetdo
insertintolnde(Tree, P)
partHeap= 0
minDkDist:= 0
for eachpartition P in PSetdo {
computeLaverUpper(Tee.Root,P, k, minDkDist)
if (P.lower > minDkDist) {
partHeap.inserit)
while partHeap.numPoints@
10. partHeap.top().numPointsf) n do
11. partHeap.delet®p()
12. if (partHeap.numPoints§ n)
13. minDKkDist := partHeap.top().\wer
14. }

CoNOrWNE

16. candSet=0
17. for eachpartition P in PSetdo
18. if (P.upper> minDkDist){

19. candSet= candSetJ { P}

20. P.neighbors=

21. {Q: Q € PSetandMINDIST(P,Q) < P.uppeh
22.

23. return candSet

end

Figure4: Computatiorof CandidatePartitions

In the for loop over steps17-22, the set of candidate
partitions candSetis computed, and for each candidate
partition P, partitions@ thatcanpotentiallycontainthe kt*

nearesheighborfor a pointin P areaddedto P.neighbors
(notethat P.neighborcontainsP).

5.5 Computing Outliers from Candidate Partitions

In the final step,we computethe top n outliers from the
candidatgoartitionsin candSetlf pointsin all thecandidate
partitionsand their neighborsfit in memory thenwe can
simply loadall the pointsinto amainmemoryspatialindex.
Theindex-basedlgorithm(seeFigurel) canthenbeusedo
computethen outliersby probingtheindex to computeD*
valuesonly for pointsbelongingto the candidatepartitions.
Sinceboth the size of the index aswell asthe numberof
candidatepointswill in generalbe small comparedo the
totalnumberof pointsin thedataset,this canbeexpectedo
be muchfasterthanexecutingtheindex-basedalgorithmon
theentiredatasetof points.

In the casethat all the candidatepartitions and their
neighborsexceedthe sizeof mainmemory thenwe needto
procesghe candidatepartitionsin batches.In eachbatch,
a subsetof the remaining candidatepartitions that along
with their neighbordit in memory is choserfor processing.
Dueto spaceconstraintsye referthereaderto [RRS98]for
detailsof the batchprocessinglgorithm.

6 Experimental Results

We empirically comparedhe performancef our partition-
basedalgorithmwith theblock nested-looandindex-based
algorithms.In our experimentsye foundthatthe partition-
basedalgorithm scaleswell with both the datasetsize as
well asdatasetdimensionality In addition,in a numberof
casesijt is morethanan orderof magnitudefasterthanthe
block nested-loo@ndindex-basedalgorithms.

We begin by describingn Section6.1ourexperiencewith
mining a real-life NBA (National Baslketball Association)
databaseising our notion of outliers. The resultsindicate
the efficacy of our approachin finding “interesting” and
sometimesunexpectedfacts buried in the data. We then
evaluatethe performanceof the algorithmson a classof
syntheticdatasetdn Section6.2. The experimentswere
performedon a SunUltra-2/200workstationwith 512 MB
of mainmemoryandrunningSolaris2.5. Thedatasetswere
storedonalocal disk.

6.1 Analyzing NBA Statistics

We analyzedthe statisticsfor the 1998 NBA seasonwith
our outlier programsto seeif it could discover interesting
nuggetsin thosestatistics. We had information aboutall
471 NBA playerswho playedin the NBA duringthe 1997-
1998seasonin orderto restrictour attentionto significant
players,we removed all playerswho scoredlessthen100
points over the courseof the entire season. This left us
with 335 players. We then wantedto ensurethat all the
columnswere given equalweight. We accomplishedhis
by transformingthe value ¢ in a column to CG;E where
¢ is the averagevalue of the columnand o, its standard

deviation. This transformationnormalizesthe column to
have anaverageof 0 anda standardleviationof 1.

We thenranour outlier programon thetransformediata.
We useda value of 10 for £ and looked for the top 5
outliers. The resultsfrom someof the runs are shawvn in
Figure 5. (findOuts.plis a perl front end to the outliers
programthat understandshe namesof the columnsin the
NBA databaselt simply processefts argumentsandcalls
the outlier program.) In additionto giving the actualvalue
for a column, the output also prints the normalizedvalue
usedin theoutlier calculation.Theoutliersarerankedbased
ontheir D* valueswhich arelistedunderthe DIST column.

The first experimentin Figure 5 focuseson the three
most commonlyusedaverage statisticsin the NBA: aver-
agepointsper game,averageassistgper gameand average
reboundpergame. What standsout is the extentto which
playershaving a largevaluein onedimensiontendto dom-
inatein the outlier list. For instance DennisRodman,not
known to excel in eitherassistingor scoring, is neverthe-
lessthe top outlier becausef his huge(nearly4.4 sigmas)
deviation from the averageon rebounds.Furthermorehis
DIST valueis much higherthanthat for ary of the other
outliers,thusmakinghim an extremelystrongoutlier. Two
otherplayersin this outlier list alsotendto dominatein one
or two columns. An interestingcaseis that of Shaquille
O’ Nealwho madeit to the outlier list dueto his excellent
recordin bothscoringandreboundsthoughheis quiteaver-
ageon assists(Recallthatthe averageof every normalized
columnis 0.) Thefirst “well-rounded” playerto appeaiin
thislist is Karl Malone,at position5. (Michael Jordanis at
position7.) In fact,in thelist of thetop 25 outliers,thereare
only two players,Karl MaloneandGrantHill (at positions
5 and6) that have normalizedvaluesof morethan1 in all
threecolumns.

Whenwe look atmoredefensve statisticstheoutliersare
onceagaindominatedby playershaving large normalized
valuedfor asinglecolumn.Whenwe considerveragesteals
andblocks,the outliersaredominatedoy shotblockerslike
MarcusCamby HakeemOlajuwon, at position5, shovs up
asthefirst “balanced’playerdueto hisabore averageecord
with respecto bothstealsandblocks.

In conclusionwe weresomavhatsurpriseby theoutcome
of our experimentson the NBA data. First, we found that
very few “balanced’players(thatis, playerswho areabore
averagein every aspecbf thegame)arelabeledasoutliers.
Insteadtheoutlierlists aredominatedy playerswho excel
by a wide mamin in particularaspectsf the game(e.g.,
DennisRodmanon rebounds).

Another interestingobsenation we madewas that the
outliers found tendedto be more interestingwhen we
consideredewer attributes(e.g.,2 or 3). Thisis notentirely
surprisingsinceit is a well-known fact that asthe number
of dimensiondncreasespoints spreadout more uniformly
in the dataspaceand distancesbetweenthem are a poor
measuref their similarity/dissimilarity

->findQuts.pl -n 5 -k 10 reb assists pts

NAME DI ST avgReb (norm avgAssts (norm avgPts (norm
Dennis Rodman 7.26 15.000 (4.376) 2.900 (0.670) 4.700 (-0.459)
Rod Strickland 3.95 5.300 (0.750) 10.500 (4.922) 17.800 (1.740)
Shaquille Oneal 3.61 11.400 (3.030) 2.400 (0.391) 28.300 (3.503)
Jayson Wlliams 3.33 13.600 (3.852) 1.000 (-0.393) 12.900 (0.918)
Karl Malone 2.96 10.300 (2.619) 3.900 (1.230) 27.000 (3.285)
->findQuts.pl -n 5 -k 10 steal bl ocks
NAVE DI ST avgSteal s (norm avgBl ocks (norm
Mar cus Canmby 8. 44 1.100 (0.838) 3. 700 (6.139)
Di kembe Mutonbo 5.35 0.400 (-0.550) 3. 400 (5.580)
Shawn Bradl ey 4.36 0. 800 (0.243) 3. 300 (5.394)
Theo Ratliff 3.51 0.600 (-0.153) 3. 200 (5.208)
Hakeem A aj uwon 3. 47 1. 800 (2.225) 2. 000 (2.972)

Figure5: Finding Outliersfrom a 1998NBA StatisticsDatabase

Finally, while we wereconductingour experimentonthe
NBA databasewe realizedthatspecifyingactualdistances,
as is requiredin [KN98], is fairly difficult in practice.
Instead, our notion of outliers, which only requiresus
to specify the k-value usedin calculating k'th neighbor
distance,is much simplerto work with. (The resultsare
fairly insensitve to minor changesn k, makingthe job of
specifyingit easy) Notealsotherankingfor playersthatwe
provide in Figure5 basedon distance—this enablesus to
determinenow stronganoutlier reallyis.

6.2 PerformanceResultson Synthetic Data

We begin this sectionby briefly describingour implemen-
tation of the threealgorithmsthat we used. We thenmove
ontodescribinghe syntheticdatasetshatwe used.

6.2.1 Algorithms Implemented

Block Nested-Loop Algorithm: This algorithm was
describedn Sectior4. In orderto optimizethe performance
of this algorithm,we implementedur own buffer manager
andperformedreadsin large blocks. We allocatedasmuch
buffer spaceaspossibleto the outerloop.

Index-BasedAlgorithm: To speedup execution,an R*-
tree was usedto find the £ nearesmneighborsfor a point,
asdescribedn Section4. The R*-treecodewasdeveloped
at the University of Maryland® The R*-treewe usedwas
a main memory-basedersion. The pagesizefor the R*-
tree was setto 1024 bytes. In our experiments,the R*-
treealwaysfit in memory Furthermorefor theindex-based
algorithm,we did notincludethetime to build thetree(that
is, insertdatapointsinto the tree)in our measurementsf
executiontime. Thus,ourmeasuremerfor therunningtime
of theindex-basedalgorithmonly includes the CPU time for
main memory search. Note that this givesthe index-based
algorithmanadwantageover the otheralgorithms.

S0urthanksto ChristosFaloutsodor providing uswith this code.

Partition-Based algorithm: Weimplementeaur partition-
basedalgorithmasdescribedn Section5. Thus,we used
BIRCH'’s pre-clusteringalgorithmfor generatingpartitions,
the main memoryR*-tree to determinethe candidatepar
titions and the block nested-loopalgorithm for computing
outliersfrom the candidatepartitionsin the final step. We
found that for the final step,the performanceof the block
nested-loolgorithmwascompetitize with theindex-based
algorithmsincethe previous pruningstepsdid a very good
job in identifying the candidatepartitionsand their neigh-
bors.

We configuredBIRCH to provide a boundingrectangle
for eachclusterit generated. We usedthis as the MBR
for the correspondingpartition. We storedthe MBR and
numberof pointsin eachpartitionin an R*-tree. We used
the resultingindex to identify candidateand neighboring
partitions.Sincewe neededo identify the partitionto which
BIRCH assigned point, we modified BIRCH to generate
thisinformation.

Recallfrom Section5.2 that an importantparameteto
BIRCH is the amountof memoryit is allowed to use. In
the experimentswe specifythis parametein termsof the
numberof clustersor partitionsthat BIRCH is allowed to
create.

6.2.2 Synthetic Data Sets

For our experiments,we usedthe grid syntheticdata set
that was employed in [ZRL96] to study the sensitvity of

BIRCH. The datasetcontains100 hypersphericalclusters
arrangedasa 10 x 10 grid. The centerof eachclusteris

locatedat (107,105) for 1 < 7 < 10 and1 < j < 10.

Furthermoregachclusterhasa radiusof 4. Datapointsfor

a clusterare uniformly distributedin the hyperspherethat
defineghecluster We alsouniformly scattered 000outlier
pointsin thespacespanning to 110alongeachdimension.
Table 2 shaws the parametergor the dataset, along with

their default valuesand the rangeof valuesfor which we

conductedxperiments.

Parameter DefaultValue | Rangeof Values
Numberof Points(V) 101000 11000to 1 million
Numberof Clusters 100

Numberof PointsperCluster 1000 100to 10000
Numberof Outliersin DataSet 1000

Numberof Outliersto be Computedn) | 100 100to 500
Numberof Neighborqk) 100 100to 500
Numberof Dimensiong4) 2 2t010
Maximumnumberof Partitions 6000 5000to 15000
DistanceMetric euclidean

Table2: SyntheticDataParameters

100000 Block Nested-Loop —— j

Index-Based -+
Partition-Based (6k) =

10000 ¢

1000

,,,,,,,,,,,,,,,,,,,,,,,

100 ¢

Execution Time (sec.)

10 +

l L L L L
11000 26000 51000 76000 101000
N

(@)

Execution Time (sec.)

Total Execution Time ——

1000 + Clustering Time Only -+

=
o
o

10 ¢

1 . . .
101000 251000 501000 751000 1.001e+06
N

(b)

Figure6: Performanc&esultsfor N

6.2.3 PerformanceResults

Number of Points: To study how the three algorithms
scalewith datasesize,we variedthe numberof pointsper
clusterfrom 100to 10,000.Thisvariesthesizeof thedataset
from 11000to approximatelyl million. Bothn andk were
setto their default valuesof 100. Thelimit on the number
of partitionsfor the partition-basedalgorithm was set to
6000. The executiontimesfor the threealgorithmsas N
is variedfrom 11000to 101000areshovn usingalog scale
in Figure6(a).

As thefigureillustrates,the block nested-looglgorithm
is the worst performer Sincethe numberof computations
it performsis proportionalto the squareof the numberof
points,it exhibits a quadraticddependengon theinput size.
Theindex-basedalgorithmis alot betterthanblock nested-
loop, but it is still 2 to 6 times slower than the partition-
basedalgorithm. For 101000 points, the block nested-
loop algorithmtakesabout5 hoursto computelOOoutliers,
the index-basedalgorithm less than 5 minuteswhile the
partition-basedlgorithmtakesabouthalf aminute.In order
to explain why the partition-basedalgorithm performsso
well, we presentin Table 3, the numberof candidateand
neighborpartitionsaswell aspointsprocessedn the final
step. From the table, it follows that for N = 101000,
out of the approximately6000initial partitions,only about
160 candidatepartitionsand 1500 neighborpartitionsare
processedh thefinal phase.Thus,about75% of partitions

areentirely prunedfrom the dataset,andonly about0.25%
of the pointsin the datasetare candidategor outliers(230
outof 101000points). Thisresultsin tremendousavingsin
both I/O and computation,and enableshe partition-based
schemeo outperformthe othertwo algorithmsby almostan
orderof magnitude.

In Figure 6(b), we plot the execution time of only
the partition-basedalgorithm as the number of points is
increasedrom 100,000t0 1 million to seehow it scaledfor
muchlargerdatasets.We alsoplot thetime spentoy BIRCH
for generatingpartitions—from the graph, it follows that
this increaseaboutlinearly with input size. However, the
overheadf thefinal stepincreasesubstantiallyasthe data
setsizeis increased. The reasonfor this is that sincewe
generatethe samenumber 6000, of partitionseven for a
million points, the averagenumberof points per partition
exceedsk, which is 100. As a result, computedlower
bounddor partitionsarecloseto 0 andminDKkDist, thelower
boundon the D* value for an outlier is low, too. Thus,
our pruningis lesseffective if the datasetsizeis increased
withoutacorrespondingncreasen thenumberof partitions.
Specificallyin orderto ensureahighdegreepruning,agood
rule of thumbis to choosahe numberof partitionssuchthat
theaveragenumberof pointsperpartitionis fairly small(but
not too small) comparedo k. For example,N/(k/5) is a
goodvalue.This makestheclustersgeneratedby BIRCH to
have anaveragesizeof k/5.

N Avg. # of Points | # of Candidate| # of Neighbor | # of Candidate| # of Neighbor
perPartition Partitions Partitions Points Points
11000 2.46 115 1334 130 3266
26000 4.70 131 1123 144 5256
51000 8.16 141 1088 159 8850
76000 11.73 143 963 160 11273
101000 16.39 160 1505 230 24605

Table3: Statisticsfor N

k" NearestNeighbor: Figure 7(a) shaws the result of
increasingthe value of & from 100to 500. We considered
theindex-basedhlgorithmandthepartition-basedlgorithm
with 3 different settingsfor the number of partitions—
5000, 6000 and 15000. We did not explore the behaior
of the block-nestedoop algorithmbecauset is very slow
comparedo the othertwo algorithms. The valueof n was
setto 100 and the numberof pointsin the datasetwas
101000.The executiontimesareshovn usingalog scale.

As the graphconfirms,the performanceof the partition-
basedalgorithmsdo not degradeas & is increased. This
is becausewe found that as k is increasedthe number
of candidatepartitions decreaseslightly sincea larger k&
impliesa highervaluefor minDkDist which resultsin more
pruning.However, alargerk alsoimpliesmoreneighboring
partitionsfor eachcandidatepartition. Thesetwo opposing
effects canceleachotherto leave the performanceof the
partition-basedlgorithmrelatively unchanged.

On the otherhand,dueto the overheadassociatedvith
finding the k& nearestneighbors,the performanceof the
index-basedlgorithmsuffers significantlyasthevalueof
increases Sincethe partition-basedalgorithmsprunemore
than 75% of points and only 0.25% of the data set are
candidatedor outliers, they are generally10 to 70 times
fasterthantheindex-basedalgorithm.

Also, notethat asthe numberof partitionsis increased,
the performanceof the partition-basedilgorithm becomes
worse. The reasorfor this is thatwheneachpartition con-
tainstoo few points,the costof computinglower andupper
boundsfor eachpartition is no longerlow. For instance,
in caseeachpartition containsa single point, thencomput-
ing lower and upperboundsfor a partitionis equivalentto
computingD* for every point p in the datasetandso the
partition-baseélgorithmdegenerateso theindex-basedal-
gorithm. Therefore,as we increasethe numberof parti-
tions, the executiontime of the partition-basedalgorithm
cornvergesto thatof theindex-basedalgorithm.

Number of outliers: Whenthe numberof outliers n,
is varied from 100 to 500 with default settingsfor other
parameterswe found that the the executiontime of all
algorithmsincreasegradually Dueto spaceconstraintsye
donotpresenthegraphdor thesexperimentsn this paper
Thesecanbefoundin [RRS98].

Number of Dimensions: Figure7(b) plots the execution
timesof thethreealgorithmsasthe numberof dimensionsgs

increasedrom 2 to 10 (the remainingparametersresetto

their defaultvalues).While we settheclusterradiusto 4 for

the 2-dimensionabatasetwe reducedhe radii of clusters
for higherdimensions.We did this becausehe volume of

the hyperspheresof clusterstendsto grow exponentially
with dimension,andthusthe pointsin higherdimensional
spacebecomevery sparse. Therefore,we had to reduce
the clusterradiusto ensurethat pointsin eachclusterare
relatively closecomparedto pointsin other clusters. We

usedradiusvaluesof 2, 1.4, 1.2 and 1.2, respectiely, for

dimensiondrom 4 to 10.

For 10 dimensionsthe partition-basealgorithmis about
30 times fasterthan the index-basedalgorithm and about
180timesfasterthanthe block nested-looglgorithm.Note
thatthis waswithoutincludingthebuilding time for the R*-
tree in the index-basedalgorithm. The executiontime of
the partition-basedalgorithmincreasesub-linearlyas the
dimensionalityof the data setis increased. In contrast,
runningtimesfor the index-basedalgorithmincreasevery
rapidly dueto the increasedverheadf performingsearch
in higherdimensionsusingthe R*-tree. Thus, the partition-
basedalgorithm scalesbetterthanthe otheralgorithmsfor
higherdimensions.

7 Conclusions

In this paperwe proposeda novel formulationfor distance-
basedoutliers that is basedon the distanceof a point
from its kt* nearestneighbor We rank each point on
the basis of its distanceto its k** nearestneighborand
declarethe top n pointsin this rankingto be outliers. In
additionto developing relatively straightforvard solutions
to finding suchoutliers basedon the classicalnested-loop
join and index join algorithms, we developeda highly
efficient partition-based algorithmfor mining outliers. This
algorithm first partitions the input data set into disjoint
subsetsandthenprunesentirepartitionsassoonasit canbe
determinedhatthey cannotcontainoutliers. Sincepeople
areusuallyinterestedn only a smallnumberof outliers,our
algorithmis ableto determinevery quickly thata significant
numberof theinput pointscannotbeoutliers. Thisresultsin
substantiabarzingsin computation.

We presentedhe results of an extensie experimental
studyon real-life andsyntheticdatasets.Theresultsfrom a

Index-Based ——
E Partition-Based (15k) -+ |
10000 Partition-Based (6k) =

n Partition-Based (5k)
Q
< 1000 F |
(]
=
i
=3 S—
S 100 F e — N e :
5
B g G
Q
X
i

10 ¢ |

1 . . .

100 200 300 400 500
k

@)

Execution Time (sec.)

100000

10000 ¢

1000 ¢

[y

o

o
T

=
o
T

Block Nested-Loop ——
Index-Based -+
Partition-Based (6k) ~=-

4 6 8
Number of Dimensions

10

Figure7: Performancd&esultsor £ andd

real-life NBA databaséighlightandrevealseveralexpected
andunexpectedaspectof the databaseTheresultsfrom a

study on syntheticdatasetsdemonstrat¢hat the partition-

basedalgorithmscalesvell with respecto bothdatasetsize

and datasetdimensionality Furthermore,it outperforms
thenested-loo@ndindex-basedlgorithmsby morethanan

orderof magnituddor awide rangeof parametesettings.

Acknowledgments: Without the supportof SeemaBansal
and YesookShim, it would have beenimpossibleto com-
pletethiswork.

References

[AAR96] A. Arning, RakeshAgrawal, andP. Raghaan. A lin-
earmethodfor deviation detectionin large databases.
In Int'l Conference on Knowledge Discovery in
Databases and Data Mining (KDD-95), Portland,

Oregon,August1996.

Rakesh Agrawal, Heikki Mannila, Ramakrishnan
Srikant,HannuToivonen,andA. Inkeri Verkamo Fast
Discovery of Association Rules, chapterl4. 1995.

MarkusM. Breunig,Hans-PeteKriegel, RaymondT.
Ng, andJoig Sander Lof:indetifying density-based
local outliers. In Proc. of the ACM SIGMOD Confer-
ence on Management of Data, May 2000.

N. Beckmann, H.-P. Kriegel, R. Schneider and
B. Seger The R*-tree: an efficient and robust ac-
cessmethodfor points and rectangles. In Proc. of
ACM S GMOD, pages322—-331,Atlantic City, NJ,
May 1990.

V. BarnettandT. Lewis. Outliersin Satistical Data.
JohnWiley andSonsNew York, 1994.

Martin Ester Hans-PeteKriegel, and Xiaowei Xu.
A databasdnterface for clusteringin large spatial
databasesdn Int'l Conference on Knowledge Discov-
ery in Databases and Data Mining (KDD-95), Mon-
treal,CanadaAugust1995.

Sudipto Guha, Rajee Rastogi,and KyuseokShim.
Cure: An efficient clustering algorithm for large
databasesin Proc. of the ACM SGMOD Conference
on Management of Data, June1998.

[AMS*95]

[BKNS00]

[BKSS90]

[BL94]

[EKX95]

[GRS98]

[JD88]

[KNO8]

[KN99]

[NH94]

[RKV95]

[RRS98]

[RS98]

[Sam89]

[SAMOS]

[ZRL96]

Anil K. Jainand RichardC. Dubes. Algorithms for
Clustering Data. PrenticeHall, Englevood Cliffs,
New Jersg, 1988.

Edwin Knorr and RaymondNg. Algorithms for
mining distance-basedutliersin large datasets. In
Proc. of the VLDB Conference, pages392—-403 New
York, USA, Septembe998.

Edwin Knorr andRaymondNg. Findingintensional
knowledgeof distance-basedutliers. In Proc. of the
VLDB Conference, pages211-222,Edinturgh, UK,

Septembe999.

Raymond T. Ng and Jiavei Han. Efficient and
effective clusteringmethodsfor spatialdatamining.
In Proc. of the VLDB Conference, Santiago,Chile,
Septembe994.

N. RoussopoulosS. Kelley, andF. Vincent. Nearest
neighborqueries. In Proc. of ACM SGMOD, pages
71-79,SanJose CA, 1995.

Sridhar Ramasvamy, Rajee Rastogi,and Kyuseok
Shim. Efficient algorithmsfor mining outliersfrom
large datasets. Technicalreport, Bell Laboratories,
Murray Hill, 1998.

Raje& RastogiandKyuseokShim.Public: A decision
treeclassifierthatintegratesbuilding andpruning. In
Proc. of the Int'l Conf. on Very Large Data Bases,
New York, 1998.

H. Samet. The Design and Analysis of Spatial Data
Sructures. Addison-Wesley, 1989.

S.Saravagi, R. Agrawal, andN. Megiddo.Discovery-
driven exploration of olap datacubes. In Proc. of
the Sxth Int'l Conference on Extending Database
Technology (EDBT), Valencia Spain,March1998.

Tian Zhang,RaghuRamakrishnanandMiron Livny.
Birch: An efficient dataclusteringmethodfor very
largedatabasedn Proceedings of the ACM SSGMOD
Conference on Management of Data, pagesl03-114,
Montreal,Canada,Junel996.

