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Abstract
In this paper, we proposea novel formulationfor distance-based
outliers thatis basedon thedistanceof apoint from its ����� nearest
neighbor. We rank eachpoint on the basisof its distanceto its� ��� nearestneighboranddeclarethe top � pointsin this ranking
to beoutliers. In additionto developingrelatively straightforward
solutionsto finding suchoutliers basedon the classicalnested-
loop join andindex join algorithms,we developa highly efficient
partition-based algorithmfor mining outliers.This algorithmfirst
partitionsthe input datasetinto disjoint subsets,andthenprunes
entirepartitionsassoonasit is determinedthatthey cannotcontain
outliers. This resultsin substantialsavings in computation. We
presentthe resultsof an extensive experimentalstudyon real-life
andsyntheticdatasets.Theresultsfrom a real-life NBA database
highlight and reveal several expectedand unexpectedaspectsof
the database. The results from a study on syntheticdata sets
demonstratethat the partition-basedalgorithm scaleswell with
respectto bothdatasetsizeanddatasetdimensionality.

1 Intr oduction
Knowledgediscovery in databases,commonlyreferredto
asdatamining, is generatingenormousinterestin both the
researchandsoftwarearenas.However, muchof this recent
work hasfocusedon finding“largepatterns.” By thephrase
“large patterns”,we meancharacteristicsof the input data
that are exhibited by a (typically user-defined)significant
portion of the data. Examplesof these large patterns
include associationrules[AMS	 95], classification[RS98]
andclustering[ZRL96, NH94, EKX95, GRS98].

In thispaper, wefocusontheconverseproblemof finding
“small patterns”or outliers. An outlier in a set of data
is an observation or a point that is considerablydissimilar
or inconsistentwith the remainderof the data. From the
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above descriptionof outliers,it may seemthat outliersare
a nuisance—impedingthe inferenceprocess—andmustbe
quickly identifiedandeliminatedsothatthey donotinterfere
with thedataanalysis.However, this viewpoint is oftentoo
narrow sinceoutlierscontainusefulinformation.Mining for
outliershasa numberof usefulapplicationsin telecomand
credit card fraud, loan approval, pharmaceuticalresearch,
weatherprediction, financial applications,marketing and
customersegmentation.

For instance,considertheproblemof detectingcreditcard
fraud. A major problemthat credit cardcompaniesfaceis
the illegal useof lost or stolencredit cards. Detectingand
preventingsuchuseis critical sincecredit cardcompanies
assumeliability for unauthorizedexpenseson lost or stolen
cards. Sincethe usagepatternfor a stolencardis unlikely
to be similar to its usageprior to being stolen, the new
usagepointsareprobablyoutliers(in anintuitivesense)with
respectto theold usagepattern.Detectingtheseoutliersis
clearlyanimportanttask.

The problemof detectingoutliers hasbeenextensively
studiedin the statisticscommunity(see[BL94] for a good
survey of statistical techniques). Typically, the user has
to model the data points using a statistical distribution,
and points are determinedto be outliers dependingon
how they appearin relation to the postulatedmodel. The
main problemwith theseapproachesis that in a number
of situations, the user might simply not have enough
knowledgeabouttheunderlyingdatadistribution. In order
to overcomethis problem,Knorr andNg [KN98] propose
the following distance-baseddefinition for outliers that is
bothsimpleandintuitive: A point 
 in a data set is an outlier
with respect to parameters � and � if no more than � points
in the data set are at a distance of � or less from 
�� . The
distancefunctioncanbeany metricdistancefunction� .

Themainbenefitof theapproachin [KN98] is thatit does
not requireany apriori knowledgeof datadistributionsthat
the statisticalmethodsdo. Additionally, the definition of
outliers consideredis generalenoughto model statistical�

The precisedefinition usedin [KN98] is slightly different from, but
equivalentto, thisdefinition.�

Thealgorithmsproposedassumethatthedistancebetweentwo points
is theeuclideandistancebetweenthepoints.
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outlier testsfor normal,poissonandotherdistributions.The
authors� go on to proposea numberof efficient algorithms
for findingdistance-basedoutliers.Onealgorithmis ablock
nested-loopalgorithmthathasrunningtimequadraticin the
inputsize.Anotheralgorithmis basedondividing thespace
into a uniform grid of cells and then using thesecells to
computeoutliers. This algorithmis linear in thesizeof the
databasebut exponentialin thenumberof dimensions.(The
algorithmsarediscussedin detailin Section2.)

Thedefinitionof outliersfrom [KN98] hastheadvantages
of beingbothintuitive andsimple,aswell asbeingcompu-
tationally feasiblefor largesetsof datapoints. However, it
alsohascertainshortcomings:

1. It requirestheusertospecifyadistance� whichcouldbe
difficult to determine(theauthorssuggesttrial anderror
whichcouldrequireseveraliterations).

2. It does not provide a ranking for the outliers—for
instanceapointwith veryfew neighboringpointswithin
a distance� canbe regardedin somesenseasbeinga
stronger outlier thanapointwith moreneighborswithin
distance� .

3. Thecell-basedalgorithmwhosecomplexity is linear in
thesizeof thedatabasedoesnotscalefor highernumber
of dimensions(e.g.,5) sincethenumberof cellsneeded
growsexponentiallywith dimension.

In thispaper, we focuson presentinga new definitionfor
outliersanddevelopingalgorithmsfor mining outliersthat
addressthe above-mentioneddrawbacksof the approach
from [KN98]. Specifically, our definition of an outlier
doesnot require usersto specify the distanceparameter� . Instead,it is basedon the distanceof the ����� nearest
neighborof a point. For a � andpoint 
 , let ������
! denote
the distanceof the ����� nearestneighborof 
 . Intuitively,�"���#
$ is a measureof how muchof an outlier point 
 is.
For example,pointswith largervaluesfor �"���#
$ havemore
sparseneighborhoodsandarethustypicallystrongeroutliers
thanpointsbelongingto denseclusterswhich will tendto
have lower valuesof � � ��
$ . Since,in general,the useris
interestedin thetop % outliers,wedefineoutliersasfollows:
Given a � and % , a point 
 is an outlier if no more than %'&)(
other points in the data set have a higher value for ��� than
 . In otherwords,the top % pointswith the maximum �"�
valuesareconsideredoutliers. We refer to theseoutliersas
the �"�* (pronounced“dee-kay-en”)outliersof a dataset.

Theabovedefinitionhasintuitiveappealsincein essence,
it rankseachpointbasedon its distancefrom its � ��� nearest
neighbor. With our new definition, the user is no longer
requiredto specifythedistance� to definetheneighborhood
of a point. Instead,he/shehas to specify the numberof
outliers % that he/sheis in interestedin—our definition
basicallyusesthe distanceof the ����� neighborof the %����
outlierto definetheneighborhooddistance� . Usually, % can
beexpectedto beverysmallandis relatively independentof

theunderlyingdataset,thusmakingit easierfor theuserto
specifycomparedto � .

Thecontributionsof thispaperareasfollows:+ Weproposeanoveldefinitionfor distance-basedoutliers
thathasgreatintuitiveappeal.Thisdefinitionis basedon
thedistanceof a point from its � ��� nearestneighbor.+ Themaincontribution of this paperis a partition-based
outlier detectionalgorithmthatfirst partitionsthe input
pointsusinga clusteringalgorithm,andcomputeslower
and upperboundson �"� for points in eachpartition.
It then usesthis information to identify the partitions
that cannot possibly contain the top % outliers and
prunes them. Outliers are then computedfrom the
remainingpoints (belongingto unprunedpartitions)in
a final phase.Since % is typically small, our algorithm
prunesasignificantnumberof points,andthusresultsin
substantialsavingsin theamountof computation.+ We presentthe resultsof a detailedexperimentalstudy
of thesealgorithmson real-life andsyntheticdatasets.
The results from a real-life NBA databasehighlight
and reveal several expectedandunexpectedaspectsof
the database. The results from a study on synthetic
datasetsdemonstratethat thepartition-basedalgorithm
scaleswell with respectto bothdatasetsizeanddataset
dimensionality. It alsoperformsmorethanan orderof
magnitudebetterthanthe nested-loopand index-based
algorithms.

The rest of this paper is organizedas follows. Sec-
tion 2 discussesrelatedresearchin theareaof finding out-
liers. Section3 presentsthe problem definition and the
notation that is usedin the rest of the paper. Section4
presentsthenestedloopandindex-basedalgorithmsfor out-
lier detection.Section5 discussesour partition-basedalgo-
rithm for outlier detection. Section6 containsthe results
from our experimentalanalysisof the algorithms. We an-
alyzedthe performanceof the algorithmson real-life and
syntheticdatabases.Section7 concludesthe paper. The
work reportedin this paperhasbeendonein the context
of the Serendipdata mining project at Bell Laboratories
(www.bell-labs.com/projects/serendip).

2 RelatedWork
Clusteringalgorithmslike CLARANS [NH94], DBSCAN
[EKX95], BIRCH [ZRL96] and CURE [GRS98] consider
outliers,but only to the point of ensuringthat they do not
interferewith theclusteringprocess.Further, thedefinition
of outliersusedis in a sensesubjective and relatedto the
clustersthat are detectedby thesealgorithms. This is in
contrastto ourdefinitionof distance-basedoutlierswhich is
moreobjectiveandindependentof how clustersin theinput
datasetareidentified. In [AAR96], theauthorsaddressthe
problemof detectingdeviations – after seeinga seriesof
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Symbol, Description-
Numberof neighborsof apoint thatweareinterestedin.0/
Distanceof point 1 to its

- ��� nearestneighbor2 Totalnumberof outliersweareinterestedin3
Totalnumberof input points4
Dimensionalityof theinput5
Amountof memoryavailable687�9;:
Distancebetweenapairof points

MINDIST Minimum distancebetweenapoint/MBRandMBR
MAXDIST Maximumdistancebetweenapoint/MBRandMBR

Table1: NotationUsedin thePaper

similar data,an elementdisturbingthe seriesis considered
an exception. Table analysismethodsfrom the statistics
literatureareemployed in [SAM98] to attackthe problem
of findingexceptionsin OLAP datacubes.A detailedvalue
of thedatacubeis calledanexceptionif it is foundto differ
significantly from the anticipatedvaluecalculatedusing a
modelthat takesinto accountall aggregates(group-bys)in
which thevalueparticipates.

As mentionedin theintroduction,theconceptof distance-
basedoutliers was developedand studiedby Knorr and
Ng in [KN98]. In this paper, for a � and � , the authors
definea point to beanoutlier if at most � pointsarewithin
distance� of the point. They presenttwo algorithmsfor
computingoutliers. Oneis a simplenested-loopalgorithm
with worst-casecomplexity <=�?>A@B�C where > is thenumber
of dimensionsand @ is thenumberof pointsin thedataset.
In order to overcomethe quadratic time complexity of
thenested-loopalgorithm,theauthorsproposea cell-based
approachfor computingoutliersin which the > dimensional
spaceis partitionedinto cellswith sidesof length D�FE G . The

time complexity of this cell-basedalgorithmis <=�?H8GJIK@L 
whereH is a numberthatis inverselyproportionalto � . This
complexity is linear is @ but exponentialin the numberof
dimensions.As aresult,dueto theexponentialgrowth in the
numberof cells asthe numberof dimensionsis increased,
the nestedloop outperformsthe cell-basedalgorithm for
dimensionsM andhigher.

While existingwork onoutliersfocusesonly on theiden-
tification aspect,the work in [KN99] alsoattemptsto pro-
vide intensional knowledge, which is basicallyan explana-
tion of why anidentifiedoutlier is exceptional.Recently, in
[BKNS00], thenotionof local outliersis introduced,which
like �"�* outliers,dependontheirlocalneighborhoods.How-
ever, unlike �"�* outliers,local outliersaredefinedwith re-
spectto thedensitiesof theneighborhoods.

3 ProblemDefinition and Notation
In this section,we first presenta precisestatementof the
problemof mining outliers from point datasets. We then
presentsomedefinitions that are used in describingour
algorithms. Table 1 describesthe notationthat we usein
theremainderof thepaper.

3.1 ProblemStatement
Recallfrom theintroductionthatweuse�"���#
$ to denotethe
distanceof point 
 from its ����� nearestneighbor. We rank
pointson the basisof their � � ��
$ distance,leadingto the
following definitionfor ���* outliers:

Definition 3.1: Given an input data set with @ points,
parameters% and � , a point 
 is a ���* outlier if thereareno
morethan %N&B( otherpoints
PO suchthat � � ��
$OQ SRT� � �#
$ . U

In other words, if we rank points accordingto their�"����
! distance, the top % points in this ranking are
consideredto beoutliers.We canuseany of the VXW metrics
like the V � (“manhattan”)or V � (“euclidean”)metricsfor
measuringthedistancebetweenapairof points.Alternately,
for certain application domains (e.g., text documents),
nonmetricdistancefunctionscanalsobe used,makingour
definitionof outliersverygeneral.

With theabovedefinitionfor outliers,it is possibleto rank
outliersbasedontheir �"���#
$ distances—outlierswith larger�"����
! distanceshavefewerpointscloseto themandarethus
intuitively strongeroutliers.Finally, wenotethatfor agiven� and � , if thedistance-baseddefinitionfrom [KN98] results
in % O outliers,theneachof themis a �"�*ZY outlier according
to ourdefinition.

3.2 DistancesbetweenPoints and MBRs
One of the key technical tools we use in this paper is
the approximationof a set of points using their minimum
boundingrectangle(MBR). Then,by computinglower and
upperboundson �"�[��
$ for points in eachMBR, we are
ableto identify andpruneentireMBRs thatcannotpossibly
contain �"�* outliers.Thecomputationof boundsfor MBRs
requiresus to definethe minimum and maximum distance
betweentwo MBRs. Outlier detectionis also aided by
the computationof the minimum and maximum possible
distancebetweena point and an MBR, which we define
below.

In this paper, we use the squareof the euclideandis-
tance(insteadof theeuclideandistanceitself)asthedistance
metric sinceit involvesfewer andlessexpensive computa-
tions.Wedenotethedistancebetweentwo points
 and \ by�^]`_ba8��
dce\Z . Let usdenoteapoint 
 in > -dimensionalspacebyf 
 � c?
 � cbghghgbc�
 GFi anda > -dimensionalrectanglej by thetwo
endpointsof its major diagonal: kml f k � c;k � cbghgbg8c;k G i andk O l f k O� cek O� chghgbghcek OG i suchthat kbnpoKk On for (qoK]ros% . Let us
denotetheminimumdistancebetweenpoint 
 andrectanglej by MINDIST( 
tcuj ). Every point in j is at a distanceof
at leastMINDIST( 
dcej ) from 
 . Thefollowing definitionof
MINDIST is from [RKV95]:

Definition 3.2: MINDIST( 
tcuj ) = v Gnxw ��y �n , wherez
Note that more than 2 points may satisfy our definition of

. /{
outliers—inthiscase,any 2 of themsatisfyingourdefinitionareconsidered. /{ outliers.
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y n l |} ~ k n &�
 n if 
 nX� k n
$n�&�k On if k On � 
Pn�
otherwise

We denotethe maximumdistancebetweenpoint 
 and
rectanglej by MAXDIST( 
dcej ). That is, no point in j is
at a distancethat exceedsMAXDIST(p, R) from point 
 .
MAXDIST( 
dcej ) is calculatedasfollows:

Definition 3.3: MAXDIST( 
tcej ) = v GnQw ��y �n , where

y n l�� k On &�
 n if 
 nX���`� 	 � Y��
 n &�k n otherwise

We next define the minimum and maximum distance
betweentwo MBRs. Let j and � be two MBRs defined
by the endpointsof their major diagonal ( kAc;kAO and _�cu_CO
respectively) asbefore. We denotethe minimum distance
betweenj and � by MINDIST( j�cu� ). Every point in j
is at a distanceof at leastMINDIST( j�cF� ) from any point
in � (and vice-versa). Similarly, the maximum distance
betweenj and � , denotedby MAXDIST( j�cu� ) is defined.
The distancescan be calculatedusing the following two
formulae:

Definition 3.4: MINDIST( j�cu� ) = v Gnxw �!y �n , where

y ndl |} ~ kbn�&�_COn if _COn � kbn_bn�&�k On if k On � _Cn�
otherwise

Definition 3.5: MAXDIST( j�cF� ) = v GnQw �!y �n , where y n l���A�!��� _ On &�kbn � c � k On &�_Cn ��� .
4 Nested-Loopand Index-Based

Algorithms
In this section,we describetwo relatively straightforward
solutionsto theproblemof computing���* outliers.

Block Nested-LoopJoin: The nested-loopalgorithmfor
computingoutliers simply computes,for eachinput point
 , �"����
! , the distanceof its ����� nearestneighbor. It then
selectsthe top % pointswith the maximum ��� values. In
order to compute �"� for points, the algorithm scansthe
databasefor eachpoint 
 . For a point 
 , a list of the �
nearestpointsfor 
 is maintained,andfor eachpoint \ from
the databasewhich is considered,a checkis madeto see
if �^]`_ba8��
dce\Z is smallerthanthe distanceof the ����� nearest
neighborfoundso far. If thechecksucceeds,\ is included
in thelist of the � nearestneighborsfor 
 (if thelist contains
morethan � neighbors,thenthe point that is furthestaway
from 
 is deletedfrom the list). Thenested-loopalgorithm
canbe madeI/O efficient by computing�"� for a block of
pointstogether.

Index-Based Join: Even with the I/O optimization,
the nested-loopapproachstill requires <=�?@B�� distance
computations.This is expensivecomputationally, especially
if the dimensionalityof points is high. The numberof
distancecomputationscanbesubstantiallyreducedby using
a spatialindex likean jN� -tree[BKSS90].

If we have all the points storedin a spatial index like
the jN� -tree,thefollowing pruningoptimization,which was
pointed out in [RKV95], can be applied to reduce the
numberof distancecomputations:Supposethat we have
computed�"���#
$ for 
 by looking at a subsetof the input
points.Thevaluethatwehave is clearlyanupperboundfor
theactual � � �#
$ for 
 . If theminimumdistancebetween

andthe MBR of a nodein the R� -tree exceedsthe ������
! 
valuethatwe have currently, none of thepointsin thesub-
tree rooted under the node will be amongthe � nearest
neighborsof 
 . This optimizationletsus pruneentiresub-
treescontainingpointsirrelevant to the � -nearestneighbor
searchfor 
 .�

In addition, sincewe are interestedin computingonly
the top % outliers, we can apply the following pruning
optimization for discontinuingthe computationof ������
! 
for a point 
 . Assumethat during eachstepof the index-
basedalgorithm,we storethe top % outlierscomputed.Let� *^� n * be the minimum �"� amongthesetop outliers. If
during the computationof �"���#
$ for a point 
 , we find
that the valuefor �"���#
$ computedso far hasfallen below� *^� n * , weareguaranteedthatpoint 
 cannotbeanoutlier.
Therefore, it can be safely discarded. This is because�"����
! monotonicallydecreases asweexaminemorepoints.
Therefore,
 is guaranteedto notbeoneof thetop % outliers.
Notethatthisoptimizationcanalsobeappliedto thenested-
loopalgorithm.

ProcedurecomputeOutliersIndex for computing�"�* out-
liers is shown in Figure1. It usesProceduregetKthNeigh-
borDist in Figure2 asa subroutine.In computeOutliersIn-
dex, pointsarefirst insertedinto anR� -tree index (any other
spatialindex structurecanbeusedinsteadof theR� -tree)in
steps1 and2. TheR� -tree is usedto computethe ����� near-
estneighborfor eachpoint. In addition,theprocedurekeeps
trackof the % pointswith themaximumvaluefor �"� atany
pointduringits executionin aheapoutHeap.Thepointsare
storedin the heapin increasingorderof ��� , suchthat the
point with thesmallestvaluefor ��� is at the top. This �"�
valueis alsostoredin thevariableminDkDistandpassedto
thegetKthNeighborDistroutine.Initially, outHeapis empty
andminDkDist is

�
.

The for loop spanningsteps5-13 calls getKthNeighbor-
Dist for eachpoint in theinput, insertingthepoint into out-
Heapif thepoint’s �"� valueis amongthetop % valuesseen�

Note that the work in [RKV95] usesa tighter bound called MIN-
MAXDIST in orderto prunenodes.This is becausethey want to find the
maximumpossibledistancefor the nearestneighborpoint of 1 , not the

-
nearestneighborsaswe aredoing. Whenlooking for thenearestneighbor
of a point, we canhave a tighter boundfor the maximumdistanceto this
neighbor.
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ProcedurecomputeOutliersIndex( � ,� )
begin
1. for eachpoint � in inputdatasetdo
2. insertIntoIndex(Tree,� )
3. outHeap:= �
4. minDkDist := 0
5. for eachpoint � in inputdatasetdo �
6. getKthNeighborDist(Tree.Root,� , � , minDkDist)
7. if (� .DkDist � minDkDist) �
8. outHeap.insert(� )
9. if (outHeap.numPoints()��� ) outHeap.deleteTop()
10. if (outHeap.numPoints() �� )
11. minDkDist := outHeap.top().DkDist
12. ¡
13. ¡
14. return outHeap
end

Figure1: Index-BasedAlgorithm for ComputingOutliers

so far (
 .DkDist storesthe �"� value for point 
 ). If the
heap’ssizeexceeds% , thepointwith thelowest �"� valueis
removedfrom theheapandminDkDistupdated.

ProceduregetKthNeighborDistcomputes�"����
! for point
 by examiningnodesin the R� -tree. It doesthis usinga
linked list nodeList. Initially, nodeListcontainstheroot of
the R� -tree. Elementsin nodeListaresorted,in ascending
order of their MINDIST from 
 . ¢ During eachiteration
of the while loop spanninglines 4–23,the first nodefrom
nodeListis examined.

If the node is a leaf node, points in the leaf node are
processed. In order to aid this processing,the � nearest
neighborsof 
 among the points examined so far are
storedin theheapnearHeap.nearHeapstorespointsin the
decreasingorderof their distancefrom 
 . 
 .Dkdist stores�"� for 
 from thepointsexamined.(It is £ until � points
are examined.) If at any time, a point \ is found whose
distanceto 
 is lessthan
 .Dkdist, \ is insertedintonearHeap
(steps8–9). If nearHeapcontainsmore than � points,
the point at the top of nearHeapdiscarded,and 
 .Dkdist
updated(steps10–12).If at any time,thevaluefor 
 .Dkdist
falls below minDkDist (recall that 
 .Dkdist monotonically
decreasesas we examine more points), point 
 cannot
be an outlier. Therefore,proceduregetKthNeighborDist
immediatelyterminatesfurther computationof �"� for 

andreturns(step13). Thisway, getKthNeighborDistavoids
unnecessarycomputationfor a point the moment it is
determinedthatit is notanoutlier candidate.

On the other hand, if the nodeat the headof nodeList
is an interior node,the nodeis expandedby appendingits
childrento nodeList. ThennodeListis sortedaccordingto
MINDIST (steps17–18). In the final steps20–22,nodes
whose minimum distancefrom 
 exceed 
 .DkDist, are
pruned. Pointscontainedin thesenodesobviously cannot
qualify to be amongst
 ’s � nearestneighborsand can be¤

Distancesfor nodesareactuallycomputedusingtheirMBRs.

ProceduregetKthNeighborDist(Root,� , � , minDkDist)
begin
1. nodeList:= � Root ¡
2. � .Dkdist:= ¥
3. nearHeap:= �
4. while nodeListis notemptydo �
5. deletethefirst element,Node,from nodeList
6. if (Nodeis a leaf) �
7. for eachpoint ¦ in Nodedo
8. if ( §A¨ª©u«u¬��$­®¦C¯�°�� .DkDist) �
9. nearHeap.insert(¦ )
10. if (nearHeap.numPoints()�)� ) nearHeap.deleteTop()
11. if (nearHeap.numPoints() L� )
12. � .DkDist := §A¨ª©u« (� , nearHeap.top())
13. if (� .Dkdist ± minDkDist) return
14. ¡
15. ¡
16. else �
17. appendNode’s childrento nodeList
18. sortnodeListby MINDIST
19. ¡
20. for eachNodein nodeListdo
21. if (� .DkDist ± MINDIST( � ,Node))
22. deleteNodefrom nodeList
23. ¡
end

Figure2: Computationof Distancefor ����� NearestNeighbor

safelyignored.

5 Partition-Based Algorithm
Thefundamentalshortcomingwith thealgorithmspresented
in the previous section is that they are computationally
expensive. This is becausefor eachpoint 
 in thedatabase
we initiate the computationof ������
$ , its distancefrom its����� nearestneighbor. Sincewe areonly interestedin the
top % outliers, and typically % is very small, the distance
computationsfor mostof the remainingpointsareof little
useandcanbealtogetheravoided.

The partition-basedalgorithm proposedin this section
prunesout points whosedistancesfrom their ����� nearest
neighborsare so small that they cannotpossiblymake it
to the top % outliers. Furthermore,by partitioning the
dataset,it is ableto make this determinationfor a point 

withoutactuallycomputingtheprecisevalueof � � ��
! . Our
experimentalresultsin Section6 indicatethat this pruning
strategy canresultin substantialperformancespeedupsdue
to savingsin bothcomputationandI/O.

5.1 Overview
The key idea underlying the partition-basedalgorithm is
to first partition the dataspace,and then prunepartitions
as soonas it can be determinedthat they cannotcontain
outliers.Since% will typically beverysmall,thisadditional
preprocessingstepperformedat thegranularityof partitions
ratherthanpointseliminatesa significantnumberof points
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as outlier candidates.Consequently, ����� nearestneighbor
computations² needto beperformedfor veryfew points,thus
speedingup thecomputationof outliers.Furthermore,since
thenumberof partitionsin thepreprocessingstepis usually
much smallercomparedto the numberof points, and the
preprocessingis performedat the granularityof partitions
ratherthanpoints,theoverheadof preprocessingis low.

We briefly describethestepsperformedby thepartition-
basedalgorithmbelow, anddeferthepresentationof details
to subsequentsections.

1. Generatepartitions: In thefirst step,we usea cluster-
ing algorithmto clusterthedataandtreateachclusteras
a separatepartition.

2. Compute boundson �"� for points in eachpartition:
For each partition ³ , we compute lower and upper
bounds(storedin ³ .lower and ³ .upper, respectively)
on �"� for pointsin thepartition. Thus,for every point
�´)³ , � � �#
$ SµJ³ .lowerand � � �#
$ SoJ³ .upper.

3. Identify candidate partitions containing outliers: In
this step,we identify the candidate partitions, that is,
the partitions containingpoints which are candidates
for outliers. Supposewe could computeminDkDist,
the lower bound on ��� for the % outliers. Then, if³ .upperfor a partition ³ is lessthanminDkDist, none
of the points in ³ can possibly be outliers. Thus,
only partitions ³ for which ³ .upper µ minDkDist are
candidatepartitions.

minDkDist canbe computedfrom ³ .lower for thepar-
titions asfollows. Considerthepartitionsin decreasing
orderof ³ .lower. Let ³ � chgbghghcu³t¶ be thepartitionswith
themaximumvaluesfor ³ .lowersuchthatthenumberof
pointsin thepartitionsis at least% . Then,a lowerbound
on � � for anoutlier is �=·Q¸�� ³ n g lower ¹[(ºoT]poT» � .

4. Compute outliers fr om points in candidate parti-
tions: In the final step,the outliersarecomputedfrom
amongthe points in the candidatepartitions. For each
candidatepartition ³ , let ³ .neighborsdenotetheneigh-
boring partitionsof ³ , whichareall thepartitionswithin
distance³ .upperfrom ³ . Pointsbelongingto neighbor-
ing partitionsof ³ aretheonly pointsthatneedto beex-
aminedwhencomputing�"� for eachpoint in ³ . Since
thenumberof pointsin thecandidatepartitionsandtheir
neighboringpartitionscouldbecomequitelarge,wepro-
cessthe points in the candidatepartitions in batches,
eachbatchinvolving asubsetof thecandidatepartitions.

5.2 GeneratingPartitions
Partitioningthedataspaceinto cellsandthentreatingeach
cell as a partition is impractical for higher dimensional
spaces.This approachwasfoundto beineffective for more
than4 dimensionsin [KN98] dueto theexponentialgrowth
in thenumberof cellsasthenumberof dimensionsincrease.

For effective pruning,we would like to partitionthedata
suchthat pointswhich areclosetogetherareassignedto a
singlepartition.Thus,employing a clusteringalgorithmfor
partitioningthe datapointsis a goodchoice. A numberof
clusteringalgorithmshave beenproposedin the literature,
most of which have at least quadratic time complexity
[JD88]. Since @ could be quite large, we are more
interestedin clusteringalgorithmsthatcanhandlelargedata
sets. Among algorithmswith lower complexities is the
pre-clusteringphaseof BIRCH [ZRL96], a state-of-the-art
clusteringalgorithm that can handlelarge datasets. The
pre-clusteringphasehas time complexity that is linear in
the input size andperformsa singlescanof the database.
It storesa compactsummarizationfor eachclusterin a CF-
treewhich is a balancedtreestructuresimilar to an j -tree
[Sam89]. For eachsuccessive point, it traversesthe CF-
tree to find the closestcluster, and if the point is within a
thresholddistance¼ of thecluster, it is absorbedinto it; else,
it startsanew cluster. In casethesizeof theCF-treeexceeds
the main memorysize ½ , the threshold¼ is increasedand
clustersin theCF-treethatarewithin (thenew increased)¼
distanceof eachotheraremerged.

Themain memorysize ½ andthe pointsin the dataset
are given as inputs to BIRCH’s pre-clusteringalgorithm.
BIRCH generatesa set of clusterswith generallyuniform
sizesandthat fit in ½ . We treateachclusterasa separate
partition – the points in the partition aresimply the points
that were assignedto its clusterduring the pre-clustering
phase. Thus, by controlling the memorysize ½ input to
BIRCH, we cancontrol thenumberof partitionsgenerated.
We representeachpartitionby theMBR for its points.Note
thattheMBRs for partitionsmayoverlap.

We must emphasizethat we useclusteringheresimply
asa heuristicfor efficiently generatingdesirablepartitions,
andnot for computingoutliers.Most clusteringalgorithms,
includingBIRCH,performoutlierdetection;howeverunlike
our notion of outliers, their definition of outliers is not
mathematicallyprecise and is more a consequenceof
operationalconsiderationsthatneedto beaddressedduring
theclusteringprocess.

5.3 Computing Boundsfor Partitions
For the purposeof identifying the candidatepartitions,we
need to first computethe bounds ³ .lower and ³ .upper,
which have the following property: for all points 
�´¾³ ,³ .lower o��"����
! Xo�³ .upper. Thebounds³ .lower/³ .upper
for apartition ³ canbedeterminedby findingthe » partitions
closestto ³ with respectto MINDIST/MAXDIST suchthat
the numberof points in ³ � chghgbghcu³t¶ is at least � . Sincethe
partitionsfit in mainmemory, a mainmemoryindex canbe
usedto find the » partitionsclosestto ³ (for eachpartition,
its MBR is storedin theindex).

ProcedurecomputeLowerUpper for computing ³ .lower
and ³ .upperfor partition ³ is shown in Figure3. Amongits
input parametersaretheroot of theindex containingall the
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Procedure computeLowerUpper(Root,¿ ,
-
, minDkDist)

begin
1. nodeListÀ := Á Root Â
2. ¿ .lower := ¿ .upper:= Ã
3. lowerHeap:= upperHeap:= Ä
4. while nodeListis not emptydo Á
5. deletethefirst element,Node,from nodeList
6. if (Nodeis a leaf) Á
7. for eachpartition Å in NodeÁ
8. if (MINDIST( ¿ , Å ) Æ=¿ .lower) Á
9. lowerHeap.insert(Å )
10. while lowerHeap.numPoints()Ç
11. lowerHeap.top().numPoints()È - do
12. lowerHeap.deleteTop()
13. if (lowerHeap.numPoints()È - )
14. ¿ .lower := MINDIST( ¿ , lowerHeap.top())
15. Â
16. if (MAXDIST( ¿ , Å ) Æ=¿ .upper)Á
17. upperHeap.insert(Å )
18. while upperHeap.numPoints()Ç
19. upperHeap.top().numPoints()È - do
20. upperHeap.deleteTop()
21. if (upperHeap.numPoints()È - )
22. ¿ .upper:= MAXDIST( ¿ , upperHeap.top())
23. if ( ¿ .upper É minDkDist) return
24. Â
25. Â
26. Â
27. else Á
28. appendNode’s childrento nodeList
29. sortnodeListby MINDIST
30. Â
31. for eachNodein nodeListdo
32. if ( ¿ .upper É MAXDIST( ¿ ,Node)and
33. ¿ .lower É MINDIST( ¿ ,Node))
34. deleteNodefrom nodeList
35. Â
end

Figure 3: Computationof Lower and Upper Boundsfor
Partitions

partitionsandminDkDist,whichis a lowerboundon �"� for
anoutlier. Theprocedureis invokedby theprocedurewhich
computesthecandidatepartitions,computeCandidateParti-
tions, shown in Figure4 that we will describein the next
subsection. ProcedurecomputeCandidatePartitions keeps
trackof minDkDistandpassesthis to computeLowerUpper
so thatcomputationof the boundsfor a partition ³ canbe
optimized. The idea is that if ³ .upperfor partition ³ be-
comeslessthanminDkDist, thenit cannotcontainoutliers.
Computationof boundsfor it canceaseimmediately.

computeLowerUpper is similar to proceduregetKth-
NeighborDistdescribedin the previous section(seeFig-
ure 2). It stores partitions in two heaps, lowerHeap
and upperHeap,in the decreasingorderof MINDIST and
MAXDIST from ³ , respectively – thus,partitionswith the
largestvaluesof MINDIST andMAXDIST appearat thetop
of theheaps.

5.4 Computing CandidatePartitions
This is the crucial stepin our partition-basedalgorithmin
which we identify the candidatepartitionsthat canpoten-
tially containoutliers,and prunethe remainingpartitions.

Theideais to usetheboundscomputedin theprevioussec-
tion to first estimateminDkDist,which is a lower boundon�"� for an outlier. Thena partition ³ is a candidateonly
if ³ .upper µ minDkDist. Thelower boundminDkDist can
be computedusingthe ³ .lower valuesfor thepartitionsas
follows. Let ³ � ghgbg8ce³ ¶ bethepartitionswith themaximum
valuesfor ³ .lower andcontainingat least % points. Then
minDkDist l �=·Q¸�� ³ n g lower ¹�(�oÊ]JoË» � is a lower bound
on ��� for anoutlier.

The procedurefor computing the candidatepartitions
from among the set of partitions PSet is illustrated in
Figure 4. The partitions are stored in a main memory
index andcomputeLowerUpperis invoked to computethe
lower and upper bounds for each partition. However,
insteadof computingminDkDistaftertheboundsfor all the
partitionshavebeencomputed,computeCandidatePartitions
stores,in the heappartHeap,the partitionswith the largest³ .lower values and containing at least % points among
them. The partitions are stored in increasingorder of³ .lowerin partHeapandminDkDistis thusequalto ³ .lower
for the partition ³ at the top of partHeap. The benefit
of maintaining minDkDist is that it can be passedas
a parameterto computeLowerUpper(in Step 6) and the
computationof boundsfor a partition ³ canbehaltedearly
if ³ .upperfor it falls below minDkDist. If, for a partition³ , ³ .lower is greaterthanthecurrentvalueof minDkDist,
thenit is insertedinto partHeapandthevalueof minDkDist
is appropriatelyadjusted(steps8–13).

Procedure computeCandidatePartitions(PSet,
-
, 2 )

begin
1. for eachpartition ¿ in PSetdo
2. insertIntoIndex(Tree, ¿ )
3. partHeap:= Ä
4. minDkDist := Ì
5. for eachpartition ¿ in PSetdo Á
6. computeLowerUpper(Tree.Root,¿ ,

-
, minDkDist)

7. if ( ¿ .lower Í minDkDist) Á
8. partHeap.insert(¿ )
9. while partHeap.numPoints()Ç
10. partHeap.top().numPoints()È 2 do
11. partHeap.deleteTop()
12. if (partHeap.numPoints()È 2 )
13. minDkDist := partHeap.top().lower
14. Â
15. Â
16. candSet:= Ä
17. for eachpartition ¿ in PSetdo
18. if ( ¿ .upper È minDkDist) Á
19. candSet:= candSetÎºÁu¿pÂ
20. ¿ .neighbors:=
21. ÁFÅ : Å�Ï PSetandMINDIST( ¿ , Å ) É=¿ .upperÂ
22. Â
23. return candSet
end

Figure4: Computationof CandidatePartitions

In the for loop over steps17–22, the set of candidate
partitions candSetis computed,and for each candidate
partition ³ , partitionsÐ thatcanpotentiallycontainthe �����
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nearestneighborfor a point in ³ areaddedto ³ .neighbors
(noteÑ that ³ .neighborscontains³ ).

5.5 Computing Outliers fr om CandidatePartitions
In the final step,we computethe top % outliers from the
candidatepartitionsin candSet.If pointsin all thecandidate
partitionsand their neighborsfit in memory, then we can
simply loadall thepointsinto amainmemoryspatialindex.
Theindex-basedalgorithm(seeFigure1)canthenbeusedto
computethe % outliersby probingtheindex to compute�"�
valuesonly for pointsbelongingto thecandidatepartitions.
Sinceboth the size of the index aswell as the numberof
candidatepoints will in generalbe small comparedto the
totalnumberof pointsin thedataset,thiscanbeexpectedto
bemuchfasterthanexecutingtheindex-basedalgorithmon
theentiredatasetof points.

In the casethat all the candidatepartitions and their
neighborsexceedthesizeof mainmemory, thenweneedto
processthe candidatepartitionsin batches.In eachbatch,
a subsetof the remainingcandidatepartitions that along
with theirneighborsfit in memory, is chosenfor processing.
Dueto spaceconstraints,wereferthereaderto [RRS98]for
detailsof thebatchprocessingalgorithm.

6 Experimental Results
We empiricallycomparedtheperformanceof our partition-
basedalgorithmwith theblocknested-loopandindex-based
algorithms.In ourexperiments,we foundthatthepartition-
basedalgorithmscaleswell with both the dataset size as
well asdatasetdimensionality. In addition,in a numberof
cases,it is morethananorderof magnitudefasterthanthe
blocknested-loopandindex-basedalgorithms.

Webeginby describingin Section6.1ourexperiencewith
mining a real-life NBA (National Basketball Association)
databaseusingour notion of outliers. The resultsindicate
the efficacy of our approachin finding “interesting” and
sometimesunexpectedfactsburied in the data. We then
evaluatethe performanceof the algorithmson a classof
syntheticdatasetsin Section6.2. The experimentswere
performedon a SunUltra-2/200workstationwith 512 MB
of mainmemory, andrunningSolaris2.5.Thedatasetswere
storedona localdisk.

6.1 Analyzing NBA Statistics
We analyzedthe statisticsfor the 1998 NBA seasonwith
our outlier programsto seeif it could discover interesting
nuggetsin thosestatistics. We had information aboutallM�Ò�( NBA playerswho playedin theNBA duringthe1997-
1998season.In orderto restrictour attentionto significant
players,we removed all playerswho scoredlessthen ( �^�
points over the courseof the entire season. This left us
with Ó�Ó�Ô players. We then wantedto ensurethat all the
columnswere given equalweight. We accomplishedthis
by transformingthe value H in a column to ÕeÖt×ÕØCÙ whereÚH is the averagevalue of the column and Û Õ its standard

deviation. This transformationnormalizesthe column to
haveanaverageof

�
anda standarddeviationof ( .

We thenranour outlierprogramon thetransformeddata.
We useda value of ( � for � and looked for the top Ô
outliers. The resultsfrom someof the runs are shown in
Figure 5. (findOuts.pl is a perl front end to the outliers
programthat understandsthe namesof the columnsin the
NBA database.It simply processesits argumentsandcalls
the outlier program.) In additionto giving theactualvalue
for a column, the output also prints the normalizedvalue
usedin theoutliercalculation.Theoutliersarerankedbased
on their �"� valueswhicharelistedundertheDIST column.

The first experiment in Figure 5 focuseson the three
mostcommonlyusedaverage statisticsin the NBA: aver-
agepointspergame,averageassistspergameandaverage
reboundspergame.Whatstandsout is theextent to which
playershaving a largevaluein onedimensiontendto dom-
inatein the outlier list. For instance,DennisRodman,not
known to excel in eitherassistingor scoring, is neverthe-
lessthe top outlier becauseof his huge(nearly4.4 sigmas)
deviation from the averageon rebounds.Furthermore,his
DIST value is much higher than that for any of the other
outliers,thusmakinghim anextremelystrongoutlier. Two
otherplayersin thisoutlier list alsotendto dominatein one
or two columns. An interestingcaseis that of Shaquille
O’ Nealwho madeit to theoutlier list dueto his excellent
recordin bothscoringandrebounds,thoughheis quiteaver-
ageon assists.(Recallthattheaverageof every normalized
columnis

�
.) The first “well-rounded”playerto appearin

this list is Karl Malone,at position5. (MichaelJordanis at
position7.) In fact,in thelist of thetop25outliers,thereare
only two players,Karl MaloneandGrantHill (at positions
5 and6) that have normalizedvaluesof morethan ( in all
threecolumns.

Whenwelook atmoredefensivestatistics,theoutliersare
onceagaindominatedby playershaving large normalized
valuesfor asinglecolumn.Whenweconsideraveragesteals
andblocks,theoutliersaredominatedby shotblockerslike
MarcusCamby. HakeemOlajuwon,at position5, showsup
asthefirst “balanced”playerdueto hisaboveaveragerecord
with respectto bothstealsandblocks.

In conclusion,weweresomewhatsurpriseby theoutcome
of our experimentson the NBA data. First, we found that
very few “balanced”players(that is, playerswho areabove
averagein every aspectof thegame)arelabeledasoutliers.
Instead,theoutlier listsaredominatedby playerswhoexcel
by a wide margin in particularaspectsof the game(e.g.,
DennisRodmanonrebounds).

Another interestingobservation we madewas that the
outliers found tended to be more interesting when we
consideredfewerattributes(e.g.,2 or 3). This is notentirely
surprisingsinceit is a well-known fact that asthe number
of dimensionsincreases,pointsspreadout moreuniformly
in the dataspaceand distancesbetweenthem are a poor
measureof their similarity/dissimilarity.
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->findOuts.pl -n 5 -k 10 reb assists pts
NAME DIST avgReb (norm) avgAssts (norm) avgPts (norm)

Dennis Rodman 7.26 15.000 (4.376) 2.900 (0.670) 4.700 (-0.459)
Rod Strickland 3.95 5.300 (0.750) 10.500 (4.922) 17.800 (1.740)

Shaquille Oneal 3.61 11.400 (3.030) 2.400 (0.391) 28.300 (3.503)
Jayson Williams 3.33 13.600 (3.852) 1.000 (-0.393) 12.900 (0.918)

Karl Malone 2.96 10.300 (2.619) 3.900 (1.230) 27.000 (3.285)

->findOuts.pl -n 5 -k 10 steal blocks
NAME DIST avgSteals (norm) avgBlocks (norm)

Marcus Camby 8.44 1.100 (0.838) 3.700 (6.139)
Dikembe Mutombo 5.35 0.400 (-0.550) 3.400 (5.580)
Shawn Bradley 4.36 0.800 (0.243) 3.300 (5.394)
Theo Ratliff 3.51 0.600 (-0.153) 3.200 (5.208)

Hakeem Olajuwon 3.47 1.800 (2.225) 2.000 (2.972)

Figure5: FindingOutliersfrom a 1998NBA StatisticsDatabase

Finally, while wewereconductingourexperimentsonthe
NBA database,we realizedthatspecifyingactualdistances,
as is required in [KN98], is fairly difficult in practice.
Instead, our notion of outliers, which only requires us
to specify the � -value used in calculating � ’ th neighbor
distance,is much simpler to work with. (The resultsare
fairly insensitive to minor changesin � , makingthe job of
specifyingit easy.) Notealsotherankingfor playersthatwe
provide in Figure5 basedon distance—this enablesus to
determinehow stronganoutlier really is.

6.2 PerformanceResultson SyntheticData
We begin this sectionby briefly describingour implemen-
tation of the threealgorithmsthatwe used.We thenmove
ontodescribingthesyntheticdatasetsthatweused.

6.2.1 Algorithms Implemented
Block Nested-Loop Algorithm: This algorithm was
describedin Section4. In orderto optimizetheperformance
of this algorithm,we implementedour own buffer manager
andperformedreadsin largeblocks.We allocatedasmuch
buffer spaceaspossibleto theouterloop.

Index-BasedAlgorithm: To speedup execution,an R� -
tree was usedto find the � nearestneighborsfor a point,
asdescribedin Section4. TheR� -treecodewasdeveloped
at the University of Maryland.Ü The R� -treewe usedwas
a main memory-basedversion. The pagesize for the R� -
tree was set to 1024 bytes. In our experiments,the R� -
treealwaysfit in memory. Furthermore,for theindex-based
algorithm,wedid not includethetime to build thetree(that
is, insertdatapoints into the tree) in our measurementsof
executiontime. Thus,ourmeasurementfor therunningtime
of theindex-basedalgorithmonly includes the CPU time for
main memory search. Note that this givesthe index-based
algorithmanadvantageover theotheralgorithms.Ý

Our thanksto ChristosFaloutsosfor providing uswith thiscode.

Partition-Basedalgorithm: Weimplementedourpartition-
basedalgorithmasdescribedin Section5. Thus,we used
BIRCH’s pre-clusteringalgorithmfor generatingpartitions,
the main memoryR� -tree to determinethe candidatepar-
titions and the block nested-loopalgorithmfor computing
outliersfrom the candidatepartitionsin the final step. We
found that for the final step,the performanceof the block
nested-loopalgorithmwascompetitivewith theindex-based
algorithmsincethepreviouspruningstepsdid a very good
job in identifying the candidatepartitionsandtheir neigh-
bors.

We configuredBIRCH to provide a boundingrectangle
for eachcluster it generated. We usedthis as the MBR
for the correspondingpartition. We storedthe MBR and
numberof points in eachpartition in an R� -tree. We used
the resulting index to identify candidateand neighboring
partitions.Sinceweneededto identify thepartitionto which
BIRCH assigneda point, we modifiedBIRCH to generate
this information.

Recall from Section5.2 that an importantparameterto
BIRCH is the amountof memoryit is allowed to use. In
the experiments,we specify this parameterin termsof the
numberof clustersor partitionsthat BIRCH is allowed to
create.

6.2.2 SyntheticData Sets
For our experiments,we usedthe grid syntheticdataset
that was employed in [ZRL96] to study the sensitivity of
BIRCH. The datasetcontains100hyper-sphericalclusters
arrangedasa ( �LÞ ( � grid. The centerof eachclusteris
locatedat �;( � ]ucb( �Cß  for (Êoà]�oá( � and (âo ß oá( � .
Furthermore,eachclusterhasa radiusof 4. Datapointsfor
a clusterareuniformly distributedin the hyper-spherethat
definesthecluster. Wealsouniformly scattered1000outlier
pointsin thespacespanning0 to 110alongeachdimension.
Table 2 shows the parametersfor the dataset, alongwith
their default valuesand the rangeof valuesfor which we
conductedexperiments.
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Parameter Default Value Rangeof Values
Numberof Points(

3
) 101000 11000to 1 million

Numberof Clusters 100
Numberof PointsperCluster 1000 100to 10000
Numberof Outliersin DataSet 1000
Numberof Outliersto beComputed( 2 ) 100 100to 500
Numberof Neighbors(

-
) 100 100to 500

Numberof Dimensions(
4
) 2 2 to 10

Maximumnumberof Partitions 6000 5000to 15000
DistanceMetric euclidean

Table2: SyntheticDataParameters
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Figure6: PerformanceResultsfor @
6.2.3 PerformanceResults
Number of Points: To study how the three algorithms
scalewith datasetsize,we variedthenumberof pointsper
clusterfrom100to10,000.Thisvariesthesizeof thedataset
from 11000to approximately1 million. Both % and � were
setto their default valuesof 100. The limit on thenumber
of partitions for the partition-basedalgorithm was set to
6000. The executiontimes for the threealgorithmsas @
is variedfrom 11000to 101000areshown usinga log scale
in Figure6(a).

As thefigure illustrates,theblock nested-loopalgorithm
is the worst performer. Sincethe numberof computations
it performsis proportionalto the squareof the numberof
points,it exhibits a quadraticdependency on theinput size.
Theindex-basedalgorithmis a lot betterthanblock nested-
loop, but it is still 2 to 6 times slower than the partition-
basedalgorithm. For 101000 points, the block nested-
loopalgorithmtakesabout5 hoursto compute100outliers,
the index-basedalgorithm less than 5 minuteswhile the
partition-basedalgorithmtakesabouthalf aminute.In order
to explain why the partition-basedalgorithm performsso
well, we presentin Table3, the numberof candidateand
neighborpartitionsaswell aspointsprocessedin the final
step. From the table, it follows that for @ lä( � ( �^��� ,
out of theapproximately6000initial partitions,only about
160 candidatepartitionsand 1500 neighborpartitionsare
processedin thefinal phase.Thus,about75%of partitions

areentirelyprunedfrom thedataset,andonly about0.25%
of thepointsin thedatasetarecandidatesfor outliers(230
outof 101000points).Thisresultsin tremendoussavingsin
both I/O andcomputation,andenablesthe partition-based
schemeto outperformtheothertwo algorithmsby almostan
orderof magnitude.

In Figure 6(b), we plot the execution time of only
the partition-basedalgorithm as the numberof points is
increasedfrom 100,000to 1 million to seehow it scalesfor
muchlargerdatasets.Wealsoplot thetimespentby BIRCH
for generatingpartitions—from the graph,it follows that
this increasesaboutlinearly with input size. However, the
overheadof thefinal stepincreasessubstantiallyasthedata
set size is increased.The reasonfor this is that sincewe
generatethe samenumber, 6000, of partitionseven for a
million points, the averagenumberof points per partition
exceeds � , which is 100. As a result, computedlower
boundsfor partitionsarecloseto0 andminDkDist,thelower
boundon the ��� value for an outlier is low, too. Thus,
our pruningis lesseffective if thedatasetsizeis increased
withoutacorrespondingincreasein thenumberof partitions.
Specifically, in ordertoensureahighdegreepruning,agood
ruleof thumbis to choosethenumberof partitionssuchthat
theaveragenumberof pointsperpartitionis fairly small(but
not too small) comparedto � . For example, @æå��?�PåZÔ^ is a
goodvalue.Thismakestheclustersgeneratedby BIRCH to
haveanaveragesizeof �çåZÔ .
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3
Avg. # of Points # of Candidate # of Neighbor # of Candidate # of Neighbor

perPartition Partitions Partitions Points Points
11000 2.46 115 1334 130 3266
26000 4.70 131 1123 144 5256
51000 8.16 141 1088 159 8850
76000 11.73 143 963 160 11273
101000 16.39 160 1505 230 24605

Table3: Statisticsfor @
����� Nearest Neighbor: Figure7(a) shows the resultof
increasingthe valueof � from 100 to 500. We considered
theindex-basedalgorithmandthepartition-basedalgorithm
with 3 different settingsfor the number of partitions—
5000, 6000 and 15000. We did not explore the behavior
of the block-nestedloop algorithmbecauseit is very slow
comparedto theothertwo algorithms.Thevalueof % was
set to 100 and the numberof points in the data set was
101000.Theexecutiontimesareshown usinga log scale.

As thegraphconfirms,theperformanceof thepartition-
basedalgorithmsdo not degradeas � is increased. This
is becausewe found that as � is increased,the number
of candidatepartitionsdecreasesslightly sincea larger �
impliesa highervaluefor minDkDistwhich resultsin more
pruning.However, a larger � alsoimpliesmoreneighboring
partitionsfor eachcandidatepartition. Thesetwo opposing
effects canceleachother to leave the performanceof the
partition-basedalgorithmrelatively unchanged.

On the otherhand,due to the overheadassociatedwith
finding the � nearestneighbors,the performanceof the
index-basedalgorithmsufferssignificantlyasthevalueof �
increases.Sincethepartition-basedalgorithmsprunemore
than 75% of points and only 0.25% of the data set are
candidatesfor outliers, they are generally10 to 70 times
fasterthantheindex-basedalgorithm.

Also, note that as the numberof partitionsis increased,
the performanceof the partition-basedalgorithmbecomes
worse. Thereasonfor this is thatwheneachpartitioncon-
tainstoo few points,thecostof computinglower andupper
boundsfor eachpartition is no longer low. For instance,
in caseeachpartitioncontainsa singlepoint, thencomput-
ing lower andupperboundsfor a partition is equivalentto
computing � � for every point 
 in the datasetandso the
partition-basedalgorithmdegeneratesto theindex-basedal-
gorithm. Therefore,as we increasethe numberof parti-
tions, the executiontime of the partition-basedalgorithm
convergesto thatof theindex-basedalgorithm.

Number of outliers: When the numberof outliers % ,
is varied from 100 to 500 with default settingsfor other
parameters,we found that the the execution time of all
algorithmsincreasegradually. Dueto spaceconstraints,we
donotpresentthegraphsfor theseexperimentsin thispaper.
Thesecanbefoundin [RRS98].

Number of Dimensions: Figure7(b) plots the execution
timesof thethreealgorithmsasthenumberof dimensionsis
increasedfrom 2 to 10 (theremainingparametersaresetto
theirdefaultvalues).While wesettheclusterradiusto 4 for
the 2-dimensionaldataset,we reducedthe radii of clusters
for higherdimensions.We did this becausethe volumeof
the hyper-spheresof clusterstendsto grow exponentially
with dimension,andthusthe points in higherdimensional
spacebecomevery sparse. Therefore,we had to reduce
the clusterradiusto ensurethat points in eachclusterare
relatively closecomparedto points in other clusters. We
usedradiusvaluesof 2, 1.4, 1.2 and1.2, respectively, for
dimensionsfrom 4 to 10.

For 10dimensions,thepartition-basedalgorithmis about
30 times fasterthan the index-basedalgorithm and about
180timesfasterthantheblocknested-loopalgorithm.Note
thatthiswaswithout includingthebuilding time for theR� -
tree in the index-basedalgorithm. The executiontime of
the partition-basedalgorithm increasessub-linearlyas the
dimensionalityof the data set is increased. In contrast,
running times for the index-basedalgorithmincreasevery
rapidly dueto the increasedoverheadof performingsearch
in higherdimensionsusingtheR� -tree.Thus,thepartition-
basedalgorithmscalesbetterthanthe otheralgorithmsfor
higherdimensions.

7 Conclusions
In thispaper, weproposedanovel formulationfor distance-
basedoutliers that is basedon the distanceof a point
from its ����� nearestneighbor. We rank each point on
the basisof its distanceto its ����� nearestneighborand
declarethe top % points in this ranking to be outliers. In
addition to developing relatively straightforward solutions
to finding suchoutliersbasedon the classicalnested-loop
join and index join algorithms, we developed a highly
efficient partition-based algorithmfor miningoutliers.This
algorithm first partitions the input data set into disjoint
subsets,andthenprunesentirepartitionsassoonasit canbe
determinedthat they cannotcontainoutliers. Sincepeople
areusuallyinterestedin only asmallnumberof outliers,our
algorithmis ableto determineveryquickly thatasignificant
numberof theinputpointscannotbeoutliers.Thisresultsin
substantialsavingsin computation.

We presentedthe resultsof an extensive experimental
studyon real-lifeandsyntheticdatasets.Theresultsfrom a
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Figure7: PerformanceResultsfor � and >
real-lifeNBA databasehighlightandrevealseveralexpected
andunexpectedaspectsof thedatabase.Theresultsfrom a
studyon syntheticdatasetsdemonstratethat the partition-
basedalgorithmscaleswell with respectto bothdatasetsize
and dataset dimensionality. Furthermore,it outperforms
thenested-loopandindex-basedalgorithmsby morethanan
orderof magnitudefor a widerangeof parametersettings.
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