
Guiding Inlining Decisions Using Post-Inlining
Transformations

by

Erick Ochoa

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Erick Ochoa, 2019

Abstract

Inlining strategies in just-in-time (JIT) compilers have relied on a mixture of

heuristics and frequency information to discriminate between inlining candi-

dates. Even though nested inlining is the norm in JIT compilers, modeling

inlining as a variation of the greedy knapsack algorithm provides sub-optimal

solutions. Recent advancements by Craik et al. [14] allow for solutions for

the nested inlining problem, however, they require grading inlining candidates

based on an abstract notion of “benefit”. In this thesis, we define this abstract

notion of “benefit” through the use of static analysis and frequency information.

The choice of using static analysis instead of heuristics has consequences on

the guarantees that an inlining strategy provides and on the compilation time

incurred by the compiler. We show that our proposed static analysis is compa-

rable to heuristics in terms of compilation time, memory resources used during

compilation, and impact on run time. While our proposed inlining strategy

has a slow down of 4% compared to the default inlining strategies found in the

OpenJ9 Java Virtual Machine (JVM), our inlining strategy allows compiler

engineers to fine tune the abstract notion of “benefit” and provides human

readable reports that show why inlining decisions were taken. The number

of proposed inlining plans that differ between the heuristics and the static

analyses is small, however, it provides a lower bound for how more powerful

static analyses may improve inlining in the future.

ii

Preface

We intend to publish the results of this thesis after future work and known

improvements have been made. The contents of Chapters 4, 5, and 6 fall under

a patent filed with the U.S Patent Office as A. Craik, E. Ochoa, J. N. Amaral,

K. Ali “Assessment of the benefit of post-inlining program transformation in

inlining decisions”, Patent Reference “P201803683US01”, filed on April 30,

2019. I was responsible for designing, building, and experimentally evaluating

the framework within the OpenJ9 JVM. A. Craik contributed to many technical

discussions and OpenJ9 specific advice. K. Ali was the supervisory author and

contributed to guiding the research direction of the project. J.N. Amaral was

the co-supervisor and also contributed to guiding the research direction of the

project. Many thanks to A. Craik, J.N. Amaral and K. Ali for proofreading

and help editing this thesis.

Another research result, which is not part of this thesis, but was completed

during my M.Sc program at the University of Alberta is a research project

published as T. Lloyd, A. Chikin, E. Ochoa, K. Ali, J.N. Amaral, “A Case

for Better Integration of Host and Target Compilation When Using OpenCL

for FPGAs”, Proceedings of Fourth International Workshop on FPGAs for

Software Programmers, in October 2017. This work introduced a series of

interconnected compiler transformations aimed at improving performance of

Field-Programmable Gate Array (FPGA) programs generated through high-

level synthesis of Open Compute Language (OpenCL). My roles on the project

included setting up and maintaining required infrastructure, implementing the

host analysis and transformation optimization passes, and the evaluation of

the project.

Another research result, which is not part of this thesis, also completed

iii

during my M.Sc program is a research project published as J.N. amaral, E.

Borin, D. Ashley, C. Benedicto, E. Colp, J.H.S. Hoffmam, M. Karpoff, E.

Ochoa, M. Redshaw, and R.E. Rodrigues, “The Alberta Workloads for the

SPEC CPU 2017 Benchmark Suite”, 2018 IEEE International Symposium

on Performance Analysis of Systems and Software in April 2018. This work

introduces alternative workloads for the SPEC benchmarking suite aimed

at correcting overfitting in profile driven optimization evaluations. My roles

on the project included creating new workloads for the omnetpp benchmark,

mantaining infrastructure related to the evaluation, and running evaluation

scripts for multiple benchmarks with the new workloads.

iv

To my family.

v

Acknowledgements

I would like to thank my supervisors, Dr. Karim Ali and Dr. J. Nelson Amaral,

for their patience and support throughout these three years. Their guidance

and support cannot be understated.

I would like to thank Andrew Craik for lending his expertise uncountable

number of times and answering so many of my questions promptly.

I would also like to thank to my friends and co-workers at the University of

Alberta (listed in alphabetical order): Zaheen Ahmad, Quinn Barber, Artem

Chikin, Shrimanti Ghosh, Adriana Hernandez, J. Fernando Hernandez, Ashley

Herman, Martin I. Oliveira, Ifaz Kabir, Marcus Karpoff, Braedy Kuzma,

Gustavo Leite, Bernard Llanos, Taylor Lloyd, Fernando Lopez de la Mora,

Mehran Mahdi, John Wood, and others that I’ve failed to mention. Thanks

for the many technical insight and discussions we had. But most importantly,

thank you for making these years fun.

I gratefully acknowledge the funding support of the IBM Center for Advance

Studies (CAS) Canada, the Government of Alberta, and the University of

Alberta.

vi

Contents

1 Introduction 1

2 Background 4
2.1 The Java Virtual Machine . 4

2.1.1 Just in Time Compilation 4
2.1.2 The Java Bytecode . 5
2.1.3 Run Time Structures in the JVM 6

2.2 Eclipse OpenJ9 . 7
2.2.1 VPConstraints . 7
2.2.2 Profiler . 9

2.3 Data-flow Problems . 9
2.3.1 Lattices . 12
2.3.2 Abstract Interpretation 13
2.3.3 Interesting Run-Time Properties of Programs 13

2.4 Inline Substitution . 14
2.4.1 Inlining Non-virtual Functions 14
2.4.2 Inlining Virtual Functions 14
2.4.3 Inlining Multiple Virtual Functions 15

2.5 The Knapsack Problem . 15
2.5.1 The Greedy Solution to the Knapsack Problem 16
2.5.2 The Dynamic Programming Solution to the Knapsack

Problem . 16
2.5.3 Solving the Nested Knapsack Problem 16
2.5.4 Inlining Dependency Tree 17

2.6 Summary . 18

3 Related Work 20
3.1 Inlining Strategies . 21
3.2 Different Types of Analyses 24

4 Inlining Dependency Tree (IDT)-Based Inliner 26
4.1 Building an Inlining Dependency Tree 28
4.2 Dynamic Inlining Benefits . 30

5 Estimating Run-Time Argument Values 33
5.1 Call Stack . 33
5.2 Control Flow . 35
5.3 Abstract Semantics . 39

5.3.1 Transfer Functions . 39
5.3.2 Relating Argument Estimates to Call Sites 49

vii

6 Determining Possible Optimizations 51
6.1 Computing Constant String Length 54
6.2 Null-Check Folding . 55
6.3 Instance Of Checking . 56
6.4 Cast Folding . 57
6.5 Partial Evaluation . 57
6.6 Combining Static and Dynamic Benefits 59
6.7 Summary . 61

7 Evaluation 64
7.1 Experimental Setup . 64
7.2 Following Best Practices . 65
7.3 Measurements . 67

7.3.1 Run Time . 67
7.3.2 Compilation Time . 68
7.3.3 Difference in Factors Influencing Inlining 69
7.3.4 Generated Code Size 70
7.3.5 Memory Usage . 71

7.4 Case Studies . 72
7.4.1 arrayAtPut() . 74
7.4.2 renderInlineArea() 74
7.4.3 regionMatches() . 74
7.4.4 loadClassHelper() . 77
7.4.5 StringBuilder() . 77
7.4.6 getZero() . 77

8 Conclusion 82

References 83

viii

List of Tables

5.1 Summary of JVM bytecodes 40
5.2 Values in abstract array at different line numbers 50

6.1 Method summary for Figure 6.2 54
6.2 Method summary for Figure 6.3 55
6.3 Method summary for Figure 6.4 56
6.4 Method summary for Figure 6.5 57
6.5 Method summary for Figure 6.6 58
6.6 Method summary for Figure 6.7 59
6.7 Example method summary to illustrate how argument estimates

and argument constraints interact 60
6.8 Method summary for Figure 6.9 63
6.9 Method summary for Figure 6.9 after future work 63

7.1 Warm up iterations and repetitions for each benchmark 66

ix

List of Figures

2.1 Example of value propagation in which only range propagation
is possible. 8

2.2 Factorial pseudocode . 11
2.3 Data flow equations to solve for finding reachable definitions. . 12
2.4 Pseudocode for method test obtained from [29] 15
2.5 Pseudocode for method test with multiple virtual functions inlined. 15
2.6 Pseudo-code to illustrate properties of an IDT 18
2.7 IDT corresponding to Figure 2.6 19

4.1 Main algorithm of the proposed inliner. 27
4.2 Generating the IDT . 28

5.1 Different cases of input abstract state transmission. 37
5.2 The computation of tŜ for abstract states. 38
5.3 The computation of tŝ for abstract stacks. 38
5.4 The computation of tâ for abstract arrays. 38
5.5 Example to illustrate abstract interpretation 49
5.6 Abstract stack containing abstract argument estimates. De-

rivedClass is known to be not null because its provinance is
from the instruction new. 50

6.1 Pseudocode for generating method summaries 52
6.2 Example code to show branch folding constraints 52
6.3 Example code to show string length constraints 55
6.4 Example code to show null check constraints 56
6.5 Example code to show check cast constraints 57
6.6 Example code to show check cast constraints 58
6.7 Example code to show partial evaluation constraints 59
6.8 Abstract stack containing abstract argument estimates. 60
6.9 Example of branch being conditional on multiple arguments . 62

7.1 Normalized run time: average of 10 runs for baseline, call ratio,
and benefit inliner . 67

7.2 Normalized compilation time: average of 10 runs for baseline
inliner, call-ratio inliner, and benefit inliner 68

7.3 Normalized generated code . 71
7.4 Memory usage . 72
7.5 Java source for inlining candidate arrayAtPut(). 75
7.6 Java source for inlining candidate renderInlineArea(). . . . 76
7.7 Java source for inlining candidate regionMatches(). 78
7.8 Java source for inlining candidate loadClassHelper(). 79
7.9 Java source for inlining candidate StringBuilder(). 80
7.10 Java source for inlining candidate getZero(). 81

x

xi

List of Acronyms

AOT Ahead Of Time.

CG Call Graph.

IDT Inlining Dependency Tree.

JIT just-in-time.

JVM Java Virtual Machine.

LIFO last-in-first-out.

NUMA Non-Uniform Memory Access.

OS operating system.

VM Virtual Machine.

xii

Chapter 1

Introduction

Function inlining is a program transformation that replaces a call site with the

body of the function being called. It is considered an important transformation

for two main reasons: (1) it allows the compiler to eliminate the overhead

of invocation and frame allocation costs, and (2) it allows the compiler to

further optimize the inlined function into its calling context. These benefits are

known as the direct benefits and the indirect benefits of inlining, respectively.

However, function inlining also has its drawbacks: (a) applying function inlining

indiscriminately may lead to slower executions [43], (b) applying it to all

invocations will never terminate for recursive functions [38], and (c) inlining

usually leads to an increase in compilation time, and costs in program storage

and transmission [8]. Therefore, function inlining must be applied selectively.

Many strategies have been designed to apply inlining selectively. Each

of these strategies has its tradeoffs in the following areas: (a) compilation

time, (b) quality of generated code, (c) used resources, (d) maintainability,

and (e) extensibility. Contemporary JIT inlining strategies focus on estimating

the direct benefits of inlining using profile information and estimating the

indirect benefits of inlining by using heuristics [3], [23], [43]. These heuristics

include number of arguments, size of methods, inlining based on constant-

ness of arguments, discriminating against inlining polymorphic methods, and

not considering inlining beyond a certain stack depth. While heuristics may

provide a fast decision procedure to determine whether or not to inline a

function, heuristics may be difficult to generalize for different workloads [43].

1

Heuristics also lead to suboptimal decision making [23]. Furthermore, source-

level heuristics “do not consider the effect of optimizations applied to the body

of the called routine after inlining” [16].

Researchers have been pushing for analysis-driven inlining that provides

guarantees on the inlining process. For example, Hazelwood et al. [23] propose

an analysis to conditionally eliminate the weight given by a heuristic to an

inlining candidate. The weight assigned to an inlining candidate is restored (as

if the heuristic did not exist) if the inlining candidate has not taken advantage

of the static information provided by the heuristic [23]. Also, Shankar et al. [40]

propose an analysis to assign weights to inlining candidates depending on an

analysis to decrease the amount of objects allocated on the heap. However,

these analyses model only the semantics of interests (i.e., whether an object

will escape the stack, or whether devirtualization is likely to happen).

Dean et al. propose an inlining strategy that tentatively inlines a procedure

and matches the static information found in the caller with the optimizations

that took place [16]. Their analysis constrains optimizations to type of ar-

guments. The optimizations being considered are determining the targets of

dynamic dispatches, and constant propagation. However, their analysis per-

forms inlining before the analysis is capable of determining which optimizations

will take place. They resolve this issue by creating a database of optimizations

which is constrained by the type of the arguments. Inlining before the database

is populated might result in suboptimal decisions.

This work generalizes analysis to calculate which compile time optimiza-

tions will take place (like inlining trials). However, unlike inlining trials, the

calculation is obtained without performing an inlining trial. This dissertation

investigates if

Static analysis can be made fast enough to run in a JIT context

while providing enough benefits to justify its increase in compilation

time. Can a static analysis determine whether several optimizations

(branch folding, partial evaluation, null checking, run-time type

checking) can be applied safely? Can we have a static analysis that

2

is fast enough that it is useful in a JIT context, but also precise

enough to improve the code quality over the inlining strategies that

use heuristics? Can the static analysis be easily tuneable?

The results of abstract interpretation can determine whether optimizations can

be applied after inlining.

The results of an experimental evaluation show that a fast static analysis can

be applied in the JIT context. The run time and memory usage is comparable

with state of the art inlining strategies. While it is possible to take advantage

of the static information provided in the code, the applicability of the analysis

is limited by its precision.

The contributions of this thesis include:

1. A fast framework for performing static analysis on Java bytecode.

2. Guarantees on the optimizations unlocked after inlining.

3. A ongoing open source contribution to the OpenJ9 project.

This dissertation is organized as follows: Chapter 2 presents background

information on the JVM, JIT compilation, abstract interpretation, the knapsack

problem and their relation to inlining. Chapter 3 discusses related work and

provides a model to categorize different inlining strategies according to several

properties. Chapter 4 gives an overview of our proposed selective inlining

strategy, outlining how abstract interpretation and constraints take a part in

determining which optimizations will take place after inlining. Chapter 5 gives

in detail the semantics given to the java bytecode in order to estimate arguments

at call sites. Chapter 6 outlines the optimizations which are determined at

analysis time and how they are encoded into method summaries. Section 6.6

combines the processes described in Chapter 5 and Chapter 6 in order to

give a single numeric value to inlining candidates. Chapter 7 describes the

evaluation process and the limits of the proposed inlining strategy. Finally, the

conclusion is found on Chapter 8.

3

Chapter 2

Background

This Chapter, discusses several properties of the JVM that are important

for understanding this thesis. Furthermore, it introduces the OpenJ9 JVM,

which is the platform where a prototype for the analysis is implemented. The

profiling frameworks and VPConstraint framework available in OpenJ9 are

outlined as they both contribute to the scoring of inlining candidates. Data-

flow problems and abstract interpretation is related back to the VPConstraint

framework. Differences between inlining static functions and virtual functions

and differences in solutions to the knapsack problem are discussed.

2.1 The Java Virtual Machine

A JVM is is a Virtual Machine (VM) that enables a computer to run Java

programs as well as programs written in other languages that are compiled to

Java bytecode [44]. Different runtime services such as garbage collection and

native interfaces, are part of this execution environment [15]. While its interface

is thoroughly defined, its implementation is loosely defined to allow different

implementations. As a result of this, there are many different implementations

of JVMs including: HotSpot [27], OpenJ9 [20], Azul Zing JVM [6], Jikes

RVM [1], Kaffe [34], Maxine [7].

2.1.1 Just in Time Compilation

The Java Virtual Machine Specification does not specify the execution mode of

the bytecode [31]. Because the bytecode is architecture independent, initially

4

the JVM used interpreters to execute applications. However, even optimized

Java interpreters perform poorly when compared to compiled code [15]. As a

result, a majority of JVMs now use JIT compilation to reduce the overhead

introduced by interpretation. JIT compilation (or dynamic compilation) is an

optimization technique that compiles architecture independent bytecodes into

native code [5].

A JVM invokes the method-based JIT compiler, like the one found in

OpenJ9, at the method level. Initially the JVM interprets all methods, but

when a given method is executed multiple times, the JVM triggers a JIT

compilation of the method. In some JVMs multiple re-compilations of a given

method, at increasing optimization levels, may be requested as the frequency of

execution of the method increases. At each level different code transformations

are attempted.

2.1.2 The Java Bytecode

JVMs execute architecture-independent bytecodes. The stack-based bytecode

used by the JVMs is usually obtained through compiling Java source into

bytecodes by a Java compiler. However, other languages and compilers also

target the JVM. The semantics of the bytecodes is described in the Java Virtual

Machine Specification [31].

The Java SE Specification [31] defines the following primitive data types

supported by the Java Virtual Machine:

• byte, whose value are 8-bit signed two’s-complement integers

• short, whose values are 16-bit signed two’s-complement integers

• int, whose values are 32-bit signed two’s-complement integers

• long, whose values are 64-bit signed two’s-complement integers

• char whose values are 16-bit unsigned integers

• float whose values are of the float value set or, where supported, the

float-extended-exponent value set

5

• double whose values are elements of the double value set or, where

supported, the double-extended-exponent value set

• boolean which have limited support in the JVM, and are converted to

int s

• returnAddress which is used by the JVM’s jsr , ret , and jsr w instruc-

tions.

• references, which can point to arrays, classes or interfaces

2.1.3 Run Time Structures in the JVM

Instructions operate on several runtime data structures that are defined in the

Java Virtual Machine Specification. Of particular importance for this work, we

have the operand stack, the local variable array, and the stack frames.

Operand Stack

According to the Java Virtual Machine Specification:

Each frame contains a last-in-first-out (LIFO) stack known as its

operand stack.

The operand stack is empty when the frame that contains it is

created. The [JVM] supplies instructions to load constants or

values from local variables or fields onto the operand stack. Other

Java Virtual Machine instructions take operands from the operand

stack, operate on them, and push the result back onto the operand

stack. The operand stack is also used to prepare parameters to be

passed to methods and to receive method results.

The JVM is designed with security in mind and as such certain properties

are guaranteed to hold over the bytecode. Of particular importance is the fact

that “stack depth is known at every branching point, and two execution paths

merging at the same merge point must also have the same stack depth” [24].

This property is further outlined in the Java Virtual Machine Specification [31,

Chapter 5].

6

Local Variable Array

Each frame contains an array of variables known as its local variables.

The index of the first local variable is zero.

Frames

A frame is used to store data and partial results, as well as to

perform dynamic linking, return values for methods, and dispatch

exceptions.

A new frame is created each time a method is invoked. [...] Each

frame has its own array of local variables, its own operand stack, and

a reference to the runtime constant pool of the class of the current

method. The sizes of the local variable array and the operand stack

are determined at compile-time and are supplied along with the

code for the method associated with the frame.

2.2 Eclipse OpenJ9

In 2018 IBM opened source its OpenJ9 JVM as the Eclipse OpenJ9 project [20],

[26]. It includes an open sourced subset of IBM’s Testarossa JIT [22]. Eclipse

OpenJ9 uses selective dynamic asynchronous compilation. The VM selects

methods to compile by inspecting method invocation counters and sampling

the execution stack. The methods selected for compilation are then placed into

the compilation queue. Multiple compilation threads query the compilation

queue for work while the VM is asynchronously running the application.

Dynamic asynchronous compilation uses the profiling and the value propa-

gation constraint frameworks. The next sections describe these frameworks in

detail.

2.2.1 VPConstraints

Value propagation is a compiler transformation that propagates the definition

of constant values to their uses. Value propagation can help alleviate register

pressure by removing register use, replacing register use with immediate values,

7

1 a = 0

2 if (p) a = 10

3 else a = -10

4 return a

Figure 2.1: Example of value propagation in which only range propagation is
possible.

and pruning entire unreachable program paths which simplifies subsequent

analysis. In some cases, the analysis is not interested in just propagating the

exact value but propagating a safe approximation to the value.

The VPConstraints library is a set of C++ classes that are available in the

OMR project [19]. These set of classes model potential types and values that

can be expected at run-time.

For example, a value of type short is modeled by the VPShortConstraint

class which is a class that holds two integers that correspond to the lower and

upper bound that the value may hold.

For example, in Figure 2.1, the value returned can either be 10 or −10.

The value depends on the condition p, which is not known at analysis time.

Since VPShortConstraint work by modeling integer values as ranges, using

the VPConstraints library would indicate that the return value could be any

of the values in the range of [−10, 10].

Some operations that are valid with short data types are also modeled

. For example, the methods add() and subtract() take another VPShort-

Constraint. In this case, if the value 5 is added to the previously calculated

value, we would obtain the range [−5, 15]. Classes can be modeled according to

constraints on the class hierarchy. The least precise estimate for a class is the

Java primitive object Object. This corresponds to the > of the semi-lattice

which models classes. The rest of the semi-lattice corresponds to the class

hierarhcy.

8

2.2.2 Profiler

Eclipse OpenJ9 has two different active profiling frameworks, the IProfiler, the

JITProfiler [4], [21]. These two sources of profile information are used during

inlining and compilation to determine which targets of virtual call sites are

visited often, which leads to determining hot regions of code.

The IProfiler framework is the least expensive profiling framework available

in OMR. It records branch biases in methods and the percentage of virtual

call-site targets during interpretation of Java bytecodes. The branch biases are

used to compute an estimate of basic block frequencies. Eclipse OpenJ9 uses

this information during inlining to determine which call sites are frequently

executed. The basic block frequencies are used to avoid inlining methods that

are called from basic blocks that have not been visited .

The JITProfiler is the most expensive profiling framework available in

OMR. The VM may decide to profile using the JITProfiler framework only

if the method is executed frequently enough. The JITProfiler compiles an

instrumented version of a method to record accurate basic block frequencies

and virtual method receiver types. The instrumented version undergoes limited

optimization and is interleaved with the corresponding uninstrumented version

of the code. The execution of the instrumented version is interleaved with

an optimized version of the code. A new low-overhead profiling framework is

currently in development by the OpenJ9 team [13].

2.3 Data-flow Problems

Data-flow problems are a kind of program analysis task that asks “what kind

of values a variable may hold at a particular point in the program” without

running the program itself. Data-flow problems are generally undecidable

and are closely related to the halting problem [30]. However, while data-flow

problems generally cannot be solved precisely, a solution to them can be

estimated safely and in finite time.

Different program optimization questions can be formulated as data-flow

problems. For example, which variables are alive, reachable expressions, and

9

which statements are dead can all be formulated as data-flow problems. The

implementation of these analyses would differ in what equations are used to

model instructions, and what domain these equations operate on. For example,

in variable liveness problems, the domain of the data-flow functions is P(v)

(i.e., the power set of variables). In reachable definitions, the domain of the

data-flow functions is P(v × L) (i.e., the power set of the cross product of

variables and labels in the program).

Reachable definitions and live variables would also differ on the equations

used to model instructions. For example, reachable definitions and live variables

model the assignment instruction. However, reachable definitions propagates

the information of variable definition to succeeding program points, while

variable liveness is interested in propagating variable assignments to preceding

program points. As such, how these analyses model the assignment instruction’s

impact on the program’s state would differ.

Solutions to data-flow problems typically model data-flow problems as a

recursive set of equations. Each equation represents a program state trans-

formation and takes as an input the program state at program point p and

outputs the program state at program point p+1. These equations are typically

called flow functions. These equations are restricted to operate on lattices, and

should be monotone. Different solutions for data-flow problems exist and vary

on their generality, complexity and precision [12], [30], [33], [35], [36], [37].

The set of recursive equations to be solved for Figure 2.2 can be found on

Figure 2.3 In this example, we want to find out what definitions (a tuple of the

form, (v, L) reaches the program points p. All nodes with multiple incoming

edges must perform the t operation on the values supplied by the incoming

edges. After that, all statements which are not assignment statements will use

the identity flow function (where the output data-flow facts equal the incoming

data-flow facts). Only the assignment statements will have a flow function

of the form f(X) = X u K t G where K and G are sets of data-flow facts

determined by the statements. K and G are normally called in the literature

the Kill and Gen sets because the K set will remove data-flow facts from X

and G will generate data-flow facts that will be in union with the result of

10

p5

p2

p1

p3

p0

p4

p6

x = y

n1

entry

n0

if (x != 1)

n3

y = 1

n2

y = x * y

n5

exit

n4

x = x - 1

n6

Figure 2.2: Factorial pseudocode

11

∅ = p0

p0 uKx t {(x, n1)} v p1

p1 uKy t {(y, n2)} v p2

p2 t p6 v p3

p2 t p6 v p4

p4 uKy t {(y, n5)} v p5

p5 uKx t {(x, n6)} v p6

where

Kx = {(y, n0), (y, n1)...(y, n6)}
Ky = {(x, n0), (x, n1)...(x, n6)}

Figure 2.3: Data flow equations to solve for finding reachable definitions.

X uK.

Pt+1 = S(Pt)

Iterative solutions to data-flow problems can be seen as a function S that

takes an approximate solution Pt for all program points pi and returns a better

approximate solution Pt+1. Iterative solutions stop when a fixed point (i.e.,

Pt+1 = Pt is found). Because the flow functions are monotonic and the analyses

operate on a finite height lattices, a solution is guaranteed to exist [30].

2.3.1 Lattices

A lattice [17] is any set that has a binary relation, w, between the elements

and satisfies the following five properties:

1. the binary relation w is reflexive;

2. the binary relation w is transitive;

3. the binary relation w is anti-symmetric;

4. there is a unique least upper bound between any two elements in the set,

A tB; and

12

5. there is a unique greatest lower bound between any two elements in the

set, A uB.

Bounded lattices also have a > and a ⊥ element. The > element is in-

dempotent for the least upper bound operator. Similarly, the ⊥ element is

indempotent for the greatest lower bound operator. In data-flow analyses

with bounded lattices, the > element is usually interpreted as the union of all

possible values. Similarly, the ⊥ element is usually interpreted as an undefined

value.

2.3.2 Abstract Interpretation

Abstract interpretation is the theory of data-flow problems [12]. It formalizes

the relationship between concrete values (i.e., those used in the program) and

the abstract values (i.e., those used in the analyses). This formalization is

known as the Galois connection. Abstract interpretation also specifies a frame-

work for solving data-flow frameworks by modeling the concrete semantics of a

program by approximating them using abstract semantics. The abstract seman-

tics operate on abstract values and provide a safe estimate of the program’s

execution.

2.3.3 Interesting Run-Time Properties of Programs

Abstract interpretation can estimate interesting run-time properties of programs.

Branch tests, the classes of references in the variable array, or the null-ness of

arguments are run-time properties of interest. These run-time properties of

programs are useful because they might lead to program optimization or aid

the user in debugging. For example, if an analysis is capable of determining

the value of branch tests, then that branch may be folded away. If a class of

a reference is known, then it is possible to replace a dynamically-dispatched

procedure calls with a direct call. These interesting run-time properties are all

properties that can be obtained by inspecting the operand stack or the variable

array. Fortunately, abstract interpretation allows us to safely estimate these

program properties.

13

2.4 Inline Substitution

Inline substitution or function inlining is the replacement of a function call

with the body of the function being called. While this definition is usually

sufficient for the general understanding of inlining, it omits a lot of details that

need to be explained when introducing other definitions like inlining candidate

and inlining decision.

2.4.1 Inlining Non-virtual Functions

Non-virtual functions are functions that are resolved statically (i.e., at compile

time). The target of non-virtual function calls is unique and non-ambiguous.

As a result, the previous definition for inline substitution is enough to explain

how inlining of non-virtual functions work. A function call would be equivalent

to an inlining candidate as for all non-virtual functions we can find the target

of the function and inline it. An inlining decision is just a yes-or-no decision

on whether the target of the non-virtual function replaces the call site.

2.4.2 Inlining Virtual Functions

Virtual functions are functions that are resolved dynamically (i.e., at run-time).

Virtual function calls may have multiple potential targets for each call. As a

result, virtual functions preclude inlining without safety checks.

Substituting the function call with any of the target functions is unsafe

unless there is a mechanism to resolve the call dynamically. One way of doing

safely resolving a virtual call is through method test [29]. A method test can

be understood as an if-else statement that tests for a particular method. If the

condition in the if-statement is true, then the path that is executed contains

the body of the target method. If the condition is false, then the path that

is executed contains the virtual function call to be resolved at run-time. We

expand the definition of inlining to allow the inlining of virtual function calls.

As a result, an inlining candidate now becomes a call-site-callee-method pair.

This generalization implies that there are multiple inlining candidates for a

single call site. The inlining decision is still just a yes-or-no decision on which

14

1 R0 := <receiver object>

2 R1 := load(R0 + <offset-of-class-in-object>)

3 R2 := load(R1 + <offset-of-method-in-class>)

4 if (R2 == <address-of-inlined-method>) {

5 <method inlining>

6 } else {

7 call R2

8 }

Figure 2.4: Pseudocode for method test obtained from [29]

1 R0 := <receiver object>

2 R1 := load(R0 + <offset-of-class-in-object>)

3 R2 := load(R1 + <offset-of-method-in-class>)

4 if (R2 == <address-of-inlined-method-1>) {

5 <method-1 inlining>

6 } else if (R2 == <address-of-inlined-method-2>) {

7 <method-2 inlining>

8 } else {

9 call R2

10 }

Figure 2.5: Pseudocode for method test with multiple virtual functions inlined.

of the targets are inlined.

2.4.3 Inlining Multiple Virtual Functions

It is possible for the method test to allow for the inlining of multiple virtual

functions at one particular call site. In this case, the method test is now not

just a simple if-else statement but it is a chain of if-statements followed by an

else-statement. We expand the definition of inlining to allow multiple target

functions be inlined to call sites to virtual functions.

2.5 The Knapsack Problem

The Knapsack Problem is a well known optimization problem where: (a)

there exists a set of objects with a value and a weight, (b) another empty

set (the knapsack) which is to be filled with the objects, and (c) a constraint

on the objects’ total weight in the knapsack. There exists multiple strategies

15

on how to solve the knapsack problem. Understanding the solutions to the

Knapsack Problem is important in the context of inlining because many inlining

strategies model solutions to the Knapsack Problem. In this section, we will

give a general introduction to the different solutions to the Knapsack Problem

without relating it to inlining. In Chapter 3, these different solutions to the

inlining problem will be referenced.

2.5.1 The Greedy Solution to the Knapsack Problem

A linear relaxation of the knapsack problem yields a greedy solution. Linear

relaxation in this context implies that a fraction of the objects may be added to

the knapsack instead of considering the item as a whole. The Greedy Solution

to the Knapsack Problem is simple: sort the objects by the ratio of their value

and their weight, then add objects in descending order and stop when the total

weight is matched. Iterating over the sorted objects has a time complexity of

O
(
n
)
.

2.5.2 The Dynamic Programming Solution to the Knap-
sack Problem

The Greedy Solution to the Knapsack Problem does not give optimal solu-

tions when linear relaxation is applied. The Dynamic Programming Solution

explores the set of partial solutions to the Knapsack Problem. The Dynamic

Programming Solution to the Knapsack Problem has an asymptote of time

O
(
nw
)

in the time required for its execution, where w is the constrain on the

weight the knapsack is allowed to carry.

2.5.3 Solving the Nested Knapsack Problem

Variations on the Knapsack Problem exist. Besides the linear-relaxation

Knapsack Problem and the non-linear-relaxed Knapsack Problem, there is also

a variation of the Knapsack Problem known as the Nested Knapsack Problem.

The Nested Knapsack Problem is stated as follows: (a) there exists a set of

objects with a value and a weight, (b) there exists a hierarchical relationship

between the objects, (c) another empty set (the knapsack) which is to be filled

16

by the objects, (d) only objects whose predecessors have been added to the

knapsack may be added to the knapsack, and (e) a constraint on the objects’

total weight on the knapsack.

The Dynamic Programming Solution for the Knapsack Problem presented

in Section 2.5.2 is modified by Craik et al. as follows [14]: (a) the input to the

algorithm is a list of functions to process in postorder over the hierarchical

relation, (b) the list must also be considered in order of lowest to highest

cumulative benefit, (c) backtracking over the partial optimal solutions, and (d)

another backtracking step over a backwards traversal up a column of uniform

cost to identify a previous less optimal solution to augment.

The Nested Knapsack Solution presented by Craik et al. has a time

complexity of O
(
nwh

)
, where h is the average depth of the hierarchy tree being

considered [14].

2.5.4 Inlining Dependency Tree

The IDT is a data structure that models inlining decisions and, in the absence

of partial inlining, corresponds directly to a call tree. Call sites are modeled as

directed edges and methods as nodes in a tree. With one edge per call site,

the IDT differentiates between call sites to the same callee by creating distinct

nodes. The caller-callee relationship is maintained by the directionality of the

edges with callers pointing to callees. Unlike a Call Graph (CG), nodes in the

IDT only contain a single parent and do not loop. This tree-like structure

preserves context sensitivity in the inlining decisions.

Let us take a look at example pseudocode in Figure 2.6 considering that

method A defined in line 1 as the root of the IDT. First, we note that there are

two distinct call sites for method B. One call site is at line 2 and another is at

line 3. Let us enumerate the call sites to give them unique names. As such,

the call site at line 2 is 1, and the call site at line 3 is 2. In Figure 2.7, we can

see two edges starting from node A to two distinct nodes labeled B. There are

two other nodes labeled C to denote the call-site method pair in lines 4 and 5.

Node C also contains a call to method B.

As mentioned earlier, the IDT allows us to make context sensitive inlining

17

1 A() {

2 B()

3 B()

4 C()

5 C()

6 }

7

8 B() {

9 }

10

11 C() {

12 B()

13 }

Figure 2.6: Pseudo-code to illustrate properties of an IDT

decisions by referring to the call site indeces. We can choose to inline the call

at call site index 5 as opposed to inlining method B at all call sites, or even

inlining method B when called by method C.

2.6 Summary

We will be working on the Eclipse OpenJ9 JVM in order to determine which

inlining candidates should be inlined. In order to determine which inlining

candidates will be inlined, we have developed an analysis which relies on the

concepts of abstract interpretation, the class VPConstraints and the profiling

frameworks available in OpenJ9. Unlike other inlining strategies (which are

reduced to the knapsack problem), our solution leverages recent innovations in

the solution to the nested knapsack problem. As such, we will be working on

the IDT as opposed to other abstract program representations. This allows us

to make context sensitive decisions on the inlining process.

18

Figure 2.7: IDT corresponding to Figure 2.6

A

B

1

B

2

C

3

C

4

B B

5 6

19

Chapter 3

Related Work

Function inlining is an optimization that touches many different subsystems

and concepts from compilers. In Section 3.1 we outline previous literature in

inlining research. The research is categorized in what we believe is a model

that explains the differences in inlining. Inlining research can be explained by

looking into the concepts and different subsystems that inlining can influence

or that are influenced by inlining. The properties of inlining that our model

examines are:

1. Problem formulation. Inlining is often modeled as a knapsack problem,

but the literature also presents alternative formulations.

2. Algorithmic differences. There are different algorithms that can solve the

knapsack problem and they have trade-offs in run time, memory usage,

and the constraints handled.

3. Implementation differences. Even within the same algorithms, there can

be room for implementation-specific details that may result in different

inlining decisions.

4. Goal differences. Normally inlining tries to minimize the run time of a

program, however there may be different goals for inlining.

5. Goal estimation differences. There is only one way to measure the impact

of an inlining decision, and that is running the program. As such, in order

to discriminate between different inlining candidates, inlining strategies

20

estimate the impact of an inlining decision. Different inlining strategies

may have the same goal but a different way to estimate the impact of

inlining in achieving that goal.

6. Differences in search space. Finally, inlining strategies may differ from

one another by differences the search space. There may be different

strategies based on how the search space is pruned. For instance some

inlining strategies may consider the whole call graph while others only

consider a section of the call graph. Some may be based on hotness, etc.

3.1 Inlining Strategies

Problem formulation. Inlining is usually formulated as a knapsack problem.

Scheifler was one of the first people to reduce inlining to a knapsack problem [38]

in an Ahead Of Time (AOT) compiler. Since then, reducing inlining to the

knapsack problem has been the default way to solve inlining problems. Paul

Berube describes the inlining strategies used by the LLVM compiler as using

the greedy knapsack solution over strongly connected components in the CG [8].

Arnold et al. study of different inlining strategies that use a solution to the

knapsack solution as a meta-algorithm [3]. Shankar et al. explicitly mention

reducing inlining to the knapsack problem [40] in the J9 IBM JVM. However,

this is not the only formulation of the problem. Chang et. al showed that the

expansion of nested call sites cannot be modeled as a knapsack problem [11] due

to the changes in method size of any method F once inlining of method L into

method F . As such, Chang et al. [11] treat inlining as an expansion sequence

control minimization problem. “The goal of expansion sequence control is

to minimize the computation cost incurred by the expansion of [...] selected

function calls.” While the formulation of the inlining problem described by

Chang et al. is similar to the knapsack problem, it includes another constraint

on the order in which procedures should be expanded. Inlining can also be

formulated similarly to the knapsack solution, however heuristics are also used

in order to guarantee that call sites that meet some properties are inlined.

Hazelwood et al. describe an inlining strategy that is augmented with heuristics

21

in the Jikes RVM [23]. While the inlining problem is often formulated as a

knapsack problem, nested inlining is actually a more complex problem than

the knapsack problem. Dean et al. [16] formulate the problem without a notion

of available budget. Instead the final inlining decision happens as long as it is

deemed the ratio of time savings to space cost is above a particular threshold.

Algorithmic differences. There are multiple algorithms to solve the knapsack

problem. There is the traditional greedy inlining algorithm (which solves the

linear relaxation on the knapsack problem). There is the dynamic-programming

algorithm for solving the integer-programming problem formulation of the

knapsack problem. Arnold et al. studies the greedy knapsack algorithm with

different weights and values of inlining candidates [3]. Shankar et al. also use

the greedy inlining algorithm [40]. Even though the greedy solution to the

knapsack problem does not guarantee an optimal solution, it is often favoured

to the dynamic-programming algorithm because of the lower complexity. The

dynamic-programming algorithm must consider all elements that may be

included in the knapsack. However, when performing nested inlining, every

time a new inlining candidate is added to the set of inlined call sites, more call

sites may be added to the set of call sites to consider. Even though the same is

true for the greedy inlining algorithm, it is easier to modify the greedy inlining

algorithm to take into account the newly created call sites. One can add the

newly created call sites at the beginning of the list, at the end, or just re-sort

the list. While this variation on the greedy knapsack algorithm provides no

guarantees about the optimality of the results, experimentally it performs well

enough.

Implementation differences. If an algorithm is vague enough to allow

implementation differences, then even though the same high-level algorithm is

followed, differences in implementation may exist. For example, when modeling

inlining as the greedy solution to the inlining problem inlining candidates are

sorted from highest to lowest benefit-cost ratio. After an inlining candidate

has been chosen to be inlined, new call sites are added to the list of inlining

candidates to consider. Since the traditional greedy solution to the knapsack

problem requires all elements to be known in advance, and nested inlining

22

produces new elements after each element is selected for inlining, the traditional

greedy solution to the knapsack problem does not specify where to place these

newly created elements in the queue. One can consider placing them at the

beginning, the end, or re-sorting the queue of inlining candidates to consider.

Goal differences. The majority of inlining strategies attempt to minimize

run time of the program [3], [8], [38]. The inlining strategy proposed by

Hazelwood et al. attempts to minimize run time, however due to heuristics

it also guarantees that methods smaller than a size thresholds are always

inlined. Dean et al. also use inlining trials to minimize run time [16]. However,

some inlining strategies may attempt to minimize or maximize other program

properties. For example, Appel describes rules for inlining that minimizes

the size of the program representation [2]. Shankar et al. design an inlining

strategy that minimizes object churn (i.e., the excessive creation of short lived

objects) [40]. Sewe et al. extend the Jikes RVM inlining strategy to take into

account optimizations that will take place after inlining has happened [39].

Goal estimate differences. The way the impact of inlining on the optization

criteria (or the goal) is estimated may differ. For example, there are a lot of

inlining strategies that attempt to minimize run time. Scheifler estimates the

impact of inlining on run time by looking at offline profile information and

estimating the number of dynamic calls from the offline profile information. [38].

The use of offline profile information is popular for AOT compilation. Paul

Berube extends offline profile information by combining profile information from

multiple inputs [8]. Arnold et al. describe several ways to estimate the impact

of inlining on reducing the number of dynamic calls [3]. For example, the nodes

in the call graph may be annotated with method invocation counters, or the

edges in the call graph may be annotated with call counters. Method invocation

counters are counters placed in instrumented methods that increment every

time the method has been called. These do not preserve context sensitivity as

the counter is increased independently of which method is the caller. The call

counters differ from method invocation counters in that call counters allow to

determine how often a method is called from a specific call site. Hazelwood

et al. mantain records to preserve more context on the method invocation

23

counters [23]. Dean et al. determine the number of instructions saved from

optimizations by estimating how many instructions are saved by an optimization

and multiply it with their expected execution frequency [16]. As these examples

illustrate, there are many different ways of estimating a program property.

Differences in search space. There may be different heuristics used to prune

the search space, thus leading to only exploring a subset of all possible inlining

decisions. Some of the ways in which the search space is pruned is by using

heuristics based on the hotness of a method. If a method is cold and does

not reach a hotness threshold, then neither that method, nor its descendants,

will be considered for inlining. This restriction may lead to some suboptimal

inlining decisions in cases where descendants of the cold method have loops

that are repeatedly executed.

3.2 Different Types of Analyses

The previous section describes all the different ways in which an analysis may

influence inlining. However, we also need to compare the analysis themselves.

There are two approaches to interprocedural data-flow analysis. The first may

be called functional approach [41, Chapter 7], method summary approach [10],

[32], or bottom-up [45] analyses. The second may be called k-CFA [42], call-

strings approach [41, Chapter 7], or top-down analysis [45].

The call-strings approach to interprocedural data-flow analyses can be seen

as an immediate extension of intraprocedural data-flow, where the control flow

graph has been augmented to include edges between call sites and beginning of

procedure, and return statements to call sites. The call-string approach implies

that every time a call site is encountered, the callee has to be reanalyzed under

the new context. To improve the efficiency of this interprocedural analysis,

sometimes analyses are limited to k contexts. Limiting analyses to k contexts

is called k-limiting. While k-limiting produces results, the analysis’ running

time is exponential for large programs.

In the functional approach, summary flow functions are computed for each

procedure. These summary flow functions are used as the flow function for

24

the entire call block. The flow functions need to be distributive and close

under composition. IFDS/IDE are two well-known examples of interprocedural

analysis frameworks done in the functional approach [35], [37] The functional

approach, tends to be faster because functions are not reanalyzed.

One can think of the call-strings analysis as a function that takes a program

and some inputs and produces results. Meanwhile, the functional approach is

a function that takes a program and produces a function that takes inputs and

produces results. In other words, the functional approach is just a curried ver-

sion of the call-strings analysis. Method summaries produced by the functional

approach are the functions returned by the functional approach.

call-strings analysis : program× inputs→ results

functional approach : program→ (inputs→ results)

25

Chapter 4

IDT-Based Inliner

To use the procedure described in by Craik et al., we need to provide an IDT

and annotate it with weights and values corresponding to the cost and benefit

of a given inlining candidate [14]. The value used for the cost of inlining should

reflect the compilation time. There are several different metrics that serve

as an approximation to compilation time (e.g., nodes in the AST, arithmetic

operations, number of instructions). We use the number of bytecodes in a

method as the cost of inlining. The benefit of inlining should be a function

of how often a method is executed and how optimized a method will be

to its calling context. That is, the benefit of inlining is a function of the

direct benefits and the indirect benefits of inlining. Direct benefits will be

covered more extensively in Section 4.2 and indirect benefits will be covered in

Chapters 5 and 6

Figure 4.1 describes the proposed inlining strategy in pseudocode. The

generateIDT function on Line 2 builds the IDT. The cost and the direct benefits

of inlining are calculated during the generation of the IDT.

The next step is to compute the indirect benefits of inlining. The indirect

benefits of inlining are calculated using a data structure called method summary

and through the static approximation of arguments’ run-time values. The

method summaries encode constraints to be satisfied for potential optimization

opportunities. The static approximation to arguments’ run-time values are

used to see if the constraints are satisfied.

Line 9 shows a call that takes a target method as an input and generates

26

Require: method is method requested for compilation by the VM
Require: budget is inlining budget for method
Ensure: ∀node ∈ IDT, node has benefit > 0 and methodSummary exists
1: procedure Inliner(method, budget)
2: IDT← generateIDT(method, budget)
3: for each node ∈ dfs(IDT) do
4: argumentEstimates← estimateArgumentsToCallsitesIn(node)

5: for each target ∈ node do
6: if target.methodSummary then
7: methodSummary← target.methodSummary
8: else
9: methodSummary← generateMethodSummary(target)
10: end if
11: target.benefit← methodSummary(argumentEstimates)
12: end for
13: end for
14: end procedure

Figure 4.1: Main algorithm of the proposed inliner.

a method summary. The potential optimization opportunities are dependent

on the arguments and the contents of the method being summarized. The

process of creating an entry in the method summary is the task of the compiler

developer. The prototype described in this thesis includes several optimizations

in the method summary. These optimizations and their encoding into a method

summary are described in Chapter 6.

Method summaries need an estimate of the argument values to compute

which optimizations will take place. If the estimate of the arguments satisfies

the constraints, then the optimization is realizable and only depends upon

the function being inlined. The abstract interpretater estimates the run-time

values held by the arguments. Line 4 calls the method to estimate the values

held by each argument at call sites. The abstract semantics and the transfer

functions are detailed in Chapter 5.

The static benefit to be assigned to each inlining candidate is computed

after the argument estimates and method summaries. This static benefit is the

aggregation of individual weights assigned to different realizable optimizations.

After the IDT is annotated with the benefit value, the inliner uses the knapsack

27

1: procedure generateIDT(method, budget, root)
2: if budget < 0 then
3: return
4: end if
5: for each basicBlock ∈ ReversePostOrder(method.cfg) do
6: for each instruction ∈ basicBlock do
7: if instruction = invocation then
8: targets = findCallSiteTarget(method, instruction)
9: for each target ∈ targets do
10: node = new Node(target)
11: insert(root, node)
12: budget = budget− size(target)
13: generateIDT(target, budget, node)
14: budget = budget + size(target)
15: end for
16: end if
17: end for
18: end for
19: end procedure

Figure 4.2: Generating the IDT

algorithm described by Craik et al [14]. This process computes the set of nodes

in the IDT and, given a constraint on a budget, maximizes the benefit of the

nodes in the set.

4.1 Building an Inlining Dependency Tree

The IDT is constructed during the inlining pass. The inlining pass receives,

as arguments, the method requested for compilation (i.e., the compilation

request) and a budget. The budget constrains inlining to a maximum increase

in bytecode count. The algorithm used for constructing the IDT in Figure 4.2.

The generateIDT procedure receives the compilation request, the budget, and

a root node that holds the compilation request as arguments. The construction

of the IDT is a recursive process that halts when the inlining budget has been

exhausted.

After checking for the stopping condition on Line 2, the algorithm iterates

over each basic block on the argument method. Each instruction of each basic-

block is inspected to determine whether it is a call site. If a call site is found,

28

the targets of the call site are resolved through the method findCallSiteTar-

gets() available in OpenJ9. On line 8, the pseudocode shows the resolution

of targets through findCallSiteTargets(). Because of dynamic loading and

dynamic dispatch, it is impossible to determine all potential targets of a call

site. However, findCallSiteTargets() provides a list of targets for interface

call sites and virtual call sites that have a high likelihood of being called.

The method findCallSiteTargets() may use method invocation counts,

argument pre-existence information and other analyses to resolve indirect call

sites. In the prototype, the IDT allows for a single target of indirect call sites

to be considered; however, there is no real restriction on how many targets may

be added per call site. The decision about how many targets should be added

per call site must consider the trade-off between analysis time and likelihood

that considering more targets improves the inlining plans. This trade-off is

likely a function of how monomorphic the call site is and the depth at which

the call site is found on the IDT.

Similar to the default inlining strategies in OpenJ9, in our implementation,

findCallSiteTargets() does not attempt to resolve methods that have never

been called. This design decision is an example of pruning the search space

during the inlining process, because inlining methods that have never been

called is likely to be a bad decision. Inlining relies on the principle that past

behaviour is an indication of future behaviour. Thus a method that has never

been visited implies that a method is likely to not be executed in the future. If

a method is likely to not be executed in the future, then inlining it will not

have any direct benefits.

A new node in the IDT is constructed after a target for a call site is found.

This node holds all the necessary information that describes this call site. This

node becomes a child to the node holding the current method. The algorithm

updates the budget on Line 12 by subtracting the size of the target. Each target

then undergoes the same process recursively until the budget is consumed.

When the inspection of a method is finished, the algorithm adds the size

of the target to the budget as seen on Line 14. Resetting the budget to its

previous value ensures that each branch of the IDT, from the root node to the

29

leaves, holds methods whose sizes do not exceed the budget. The nodes in the

IDT correspond to the universe of possible inlining decisions.

4.2 Dynamic Inlining Benefits

The algorithm annotates nodes in the IDT with weights that correspond to the

direct benefits of inlining. It also computes the call ratio, a value to represent

the direct benefits of inlining. The call ratio estimates how often the program

invokes a method upon executing the method at the root node of the IDT. If a

method is inside a loop, its call ratio has a value higher than one, if the method

is inside a conditional block, then its call ratio will be less than one, and if the

method is unconditionally executed with no loops, its call ratio estimate is 1.

The value of callRatio(mroot) is defined axiomatically as 1. The algorithm

computes the basic-block frequency using online profile information provided

by the profiling infrastructure in OpenJ9. Generally, the root method contains

n basic-blocks. We use the notation bbmi .frequency to denote the frequency of

basic-block i in method m. The frequency is a value scaled from 0 to 10,000.

Where a value of 0 indicates that a block has never been visited and a value

of 10,000 indicates that the basic-block is the most visited basic-block in the

method.

To compute the call ratio for any method mcallee with respect to the method

mcaller, the algorithm queries for the entry basic-block in method in mcaller

(bbcallerentry), and the basic-block containing the call site (bbcallercall site to callee). Next, the

algorithm queries for the block frequency from OpenJ9’s profiling infrastructure.

The call ratio for a method mcallee with respect to a caller mcaller is computed

via the following formula.

callRatioCallerCallee(mcaller,mcallee) =
bbmcaller

call site to mcallee
.frequency

bbmcaller
entry .frequency

(4.1)

We also extend the call ratio caller-callee formula to account for virtual

methods. The targetPercentage field is an estimate of how often method mcallee

is the target of the call obtained from its call site. The profiling framework

30

for OpenJ9 provides the values of targetPercentage, which depending on the

profiling infrastructure (chosen at run-time) may be either context insensitive

or context sensitive. A value of 1 indicates that mcallee is the sole target of the

call site and a value of 0 indicates that it has never been called from that call

site.

callRatioCallerCallee(mcaller,mcallee) =

bbmcaller
call site to mcallee

.frequency

bbcallerentry .frequency
×mcallee.targetPercentage (4.2)

This formula works well to compute the call ratio between caller and callee.

However, we are interested in computing the call ratio between any node in

the IDT and the root method. That is, callRatio(mroot,mc) is computed by

the following formula.

callRatio(mroot,mc) =∏
∀mα∈ancestors(mc)∪{mc}−mroot

callRatioCallerCallee(parent(mα),mα) (4.3)

Which can also be re-written as:

callRatio(mroot,mc) =

callRatio(mroot, parent(mc))× callRatioCallerCallee(parent(mc),mc) (4.4)

This formula allows the ancestors’ call ratios to contribute to the descen-

dant’s call ratio. Specifically, the callRatioCallerCallee(parent(mc),mc) value

is scaled by parent(mc)’s call ratio. This is a desirable property of the for-

mula because the invocation frequency of a method depends on the execution

frequency of its parent.

The calculation of call ratios is done during the construction of the IDT to

save time. Call ratios are stored as doubles during the construction of the IDT.

However, once the algorithm finishes building the IDT annotated with call

ratios, call ratios are scaled to integers between the values of 1 and 10,000. The

31

reason why call ratios are scaled is to mimic OpenJ9’s profiling infrastructure

which uses values between 1 and 10,000 to denote basic-blocks’ frequencies.

32

Chapter 5

Estimating Run-Time
Argument Values

We have already talked about the types and values available in the JVM in

Section 2.1.2 and how the abstract interpretation framework allows for a safe

estimate of run-time values of a program in Section 2.3. In Section 2.2.1,

we also reviewed the VPConstraint framework available in OpenJ9 and how

it serves as an abstraction of the concrete types found in the JVM. Those

sections serve as the basis for this chapter in which we will discuss our concrete

implementation of an abstract interpreter and its differences with the traditional

abstract interpretation framework.

In Section 5.1, we specify the handling of the calls. In Section 5.2, we

specify the flow of control used in the abstract interpreter. We show how the

abstract state is transferred from different points in the program as inputs to

the transfer functions. We also define how we merge abstracts states within

the program. In Section 5.3, we summarize the abstract semantics for all the

bytecodes available in the JVM.

5.1 Call Stack

At the beginning of a method’s abstract interpretation (i.e., when calling

method estimateArgumentsToCallsitesIn() in Figure 4.1), the abstract

frame loads the root method, and the analysis loads the abstract local variable

array with an estimate of the call site’s arguments. The abstract interpretation

33

of the root method differs from the rest of the nodes in the IDT, because, unlike

the rest of the nodes, the root method has no parent node in the IDT. Having

no calling context for the root method means that the abstract arguments

passed onto the root method contain as much static information as the formal

arguments in the root method signature. All other nodes in the IDT have the

abstract arguments from the operand stack passed as arguments. The root

method then undergoes abstract interpretation the same way the rest of the

nodes as discussed in Section 5.3.

Visiting a node n on the IDT is equivalent to performing abstract interpreta-

tion on the method m stored in the node n. During the abstract interpretation

of method mcaller, if a call site c is found, the targets of the call site are no longer

resolved with findCallSiteTargets. Instead, because the target methods are

already encoded in the IDT as child nodes, the call site c is resolved by looking

at the children of node n. There can be multiple targets t for a single call site

c, so we adopt the notation ti to distinguish individual targets of a call site.

The order in which multiple targets t are abstractly interpreted is undefined.

After picking a target to abstractly interpret, an abstract frame f̂ is created

and placed on top of the abstract call stack.

Each abstract frame f̂ contains an abstract operand stack ŝ and an abstract

variable array â. Upon encountering a call site c to a method mcallee, the

elements in the abstract operand stack ŝcaller of the abstract frame f̂caller

correspond to the arguments to method mcallee. These abstract arguments are

placed in the local abstract variable array âcallee of the abstract frame f̂callee

corresponding to the method mcallee and an empty abstract operand stack ŝcallee

is initialized in abstract frame f̂callee. The placement of the arguments in the

caller’s stack to the callee’s array matches the concrete semantics specified by

the Java Virtual Machine Specification [31].

After the creation of the abstract frame f̂callee the abstract interpreter

proceeds as follows: halt the interpretation of method mcaller in frame f̂caller;

abstractly interpret method mcallee in frame f̂callee; recursively interpret methods

that are called; Upon finishing interpreting method mcallee, pop the the frame

fcallee off the abstract call stack and continue analyzing method mcaller.

34

When call-sites in leaf nodes are visited the abstract interpreter safely

approximates the return values by placing > in the stack if the method returns

values. If no return value is expected, then nothing is placed on the stack.

The process continues until all nodes in the IDT are visited. If method

mcallee’s signature indicates a return value, the abstract interpreter places a safe

approximation based on the function’s signature on the operand stack ŝcaller.

Our current implementation limits the amount of information transferred

from caller to callee. When the interpreter finishes analyzing method mcallee,

no information except the return value’s type (as specified by the method’s

signature) may be transferred to mcaller. Future work includes extending the

abstract interpreter to allow for more precise estimates to be returned from

call sites. For example, the type returned by a method may be a class derived

from the method signature’s class. Obtaining the return value’s type from the

method’s signature is less precise than inspecting the type of the value at the

return statements. Optimizations that depend on more precise estimates of

return values will likely not satisfy the constraints needed to guarantee that

the optimization will take place.

5.2 Control Flow

The analysis interprets the basic blocks in reverse post-order. This order ensures

that in the absence of cycles, when interpreting node n, all predecessors of

node n have been interpreted before n is interpreted. During the interpretation,

the abstract operand stack, the abstract variable array, and the abstract call

stack are mantained according to the abstract semantics. The abstract state of

the program is completely determined by the abstract variable array, abstract

operand stack and the abstract call stack.

At the beginning of the interpretation of basic block x, the abstract state

must be transferred from the directPredecessors(x) (according to the control

flow graph) to x to be interpreted. At the end of the interpretation of x, the

abstract state is stored and can be accessed through x. This stored abstract

state will be used as an input for the successors of x. The abstract state will be

35

used together with instructions to compute the next abstract state according

to the transfer function and the abstract semantics. Because reverse post-order

is used to iterate over the basic blocks, we have to consider the following cases:

Case 1 |directPredecessors(x)| = 1 and directPredecessor(x) = y: y has al-

ready been interpreted and has an abstract state stored.

Case 2 |directPredecessors(x)| > 1 and |backEdges(x)| = 0 and

directPredecessors(x) = Y : all nodes in Y have been interpreted and thus

have an abstract state stored.

Case 3 |directPredecessors(x)| > 1 and |backEdges(x)| > 0 and backEdges(x) =

Z: none of the nodes in Z have been interpreted and thus have no abstract

state stored.

These three cases are shown pictorially in Figure 5.1.

For Case 1, the final abstract state found in y needs to be used as an input

to the flow function used to interpret the beginning of x. For Case 2, the final

abstract states found in nodes in Y need to be merged and used as an input to

the flow function used to interpret the beginning of x. For Case 3, the final

abstract states in nodes in Y can be known, however the abstract states in

nodes in Z remain unknown.

In a traditional abstract interpreter, when x is encountered for the first

time, only the abstract states in Y are considered as input for x. The output

abstract state of x is then propagated to its successors. In traditional abstract

interpretation, in subsequent interpretations of x, the nodes in Z would then

have an abstract state, and would be included as input to x. Intermediate

abstract states, those states that are computed before reaching the least fixed

point, would be considered unsafe estimates to run-time values. Only after the

abstract interpreter finds the least fixed point, are the abstract states safe to

use for analysis.

Our implementation of abstract interpretation differs from the traditional

case in that nodes are only interpreted once. This design decision is made

on the basis that JIT compilation needs to be done fast and iterating until a

36

x

Ŝi,1

Ŝo

(a) Input abstract state
Ŝi,1 is transferred to block
x and x produces output
abstract state Ŝo.

x

Ŝi,1

Ŝo

Ŝi,2

(b) Input abstract state
Ŝi,1 and Ŝi,2 is transferred
to block x and x produces
output abstract state Ŝo.

Ŝi,2x

Ŝi,1

Ŝo

(c) Input abstract state
Ŝi,1 and Ŝi,2 is transferred
to block x and x produces
output abstract state Ŝo.
However, Ŝi,2 is a back
edge so there is no ab-
stract state to be trans-
ferred.

Figure 5.1: Different cases of input abstract state transmission.

fixed point is reached may be too costly. This decision however has the impact

that our implementation is would not be considered safe. In order to maintain

safety, we decrease the precision of our analysis. Instead of iterating over the

basic blocks until fixed point is reached, our abstract interpreter upon seeing

Case 3 will immediately discard the abstract state from Y and assume >Ŝ for

the abstract state used as input. >Ŝ is defined as replacing all values in the

abstract operand stack ŝ and abstract variable array â with > elements. This

jump in the lattice from Ŝ to >Ŝ reduces precision but maintains safety.

A possible extension for the current implementation would be to switch

between single iteration and iteration until fixed point is reached. Depending

on the precision of the analysis requested and the budget allocated for analysis,

it would be possible to decide how long to execute the analysis at run-time. If

a more precise analysis is requested, then the number of iterations could be

increased. This extension requires a non-trivial modification to the current

implementation.

We define the tŜ operator as a binary operator between two abstract states

Ŝi and Ŝj. The tŝ operator performs the least upper bound operation for

the abstract operand stacks ŝi and ŝj, and the abstract variable arrays âi and

âj. We define the tŝ and tâ operator for the abstract operand stack and the

37

1: procedure tŜ(Ŝi, Ŝj)

2: returnState← new Ŝ
3: if Case 1 then
4: returnState.stack← Ŝi.stack
5: returnState.array← Ŝi.array
6: else if Case 2 then
7: returnState.stack← Ŝi.stack tŝ Ŝj.stack

8: returnState.array← Ŝi.array tâ Ŝj.array
9: else
10: returnState.stack← >ŝ
11: returnState.array← >â
12: end if
13: end procedure

Figure 5.2: The computation of tŜ for abstract states.

1: procedure tŝ(ŝi, ŝj)
2: returnStack← new ŝ
3: for each êi, êj ∈Zip(ŝi, ŝj) do
4: êres ← êi tê êj
5: returnStack.push(êres)
6: end for
7: end procedure

Figure 5.3: The computation of tŝ for abstract stacks.

abstract variable array. These procedures are described in Figures 5.2, 5.3, and

5.4.

The tê operator for each abstract element is defined in terms of the merge

function as found in the VPConstraint framework. The merge function com-

putes the least upper bound operation for the different classes modeled by

VPConstraint. For example, the merge operator for the VPClass constraint

1: procedure tâ(âi, âj)
2: returnArray← new â
3: for each êi, êj ∈Zip(ŝi, ŝj) do
4: êres ← êi tê êj
5: returnArray.pushBack(êres)
6: end for
7: end procedure

Figure 5.4: The computation of tâ for abstract arrays.

38

is defined as the first common ancestor in the class hierarchy between the

two classes being merged. Similarly the uê operator for each abstract element

is defined in terms of the intersect function as found in the VPConstraint

framework. However, instead uê computes the greatest lower bound.

5.3 Abstract Semantics

To show the effect of instructions on the abstract operand stack, the abstract

frame, and the abstract variable array, we define the abstract semantics in a

similar way to the Java Virtual Machine Specification [31, Chapter 6]. However,

instead of listing all bytecodes, Table 5.1 groups the instructions encountered

in the JVM. The first column contains the name we use to refer to a group of

similar instructions. The second column contains the mnemonic name for the

instructions in the JVM.

The description of the semantics is in Section 5.3. Please note that the

semantics for callstack and controlflow are more thoroughly explained

in Sections 5.1 and 5.2.

5.3.1 Transfer Functions

Category controlflow
Operation Jump conditionally or unconditionally.
Description The concrete instruction would normally jump to a different

segment of code. However, because the flow of control is
changed, when abstractly interpreting instructions that are
supposed to change the flow of control, we only change
elements on the stack and pass the current block’s abstract
state to the successor blocks. These instructions are also
described more thoroughly in Section 5.2.

39

Table 5.1: Summary of JVM bytecodes

Category Instructions

aload aaload , baload , caload , daload , faload , iaload , laload , sa-
load

astore aastore, bastore, castore, dastore, fastore, iastore, lastore,
sastore

load aload , aload <n>, dload , dload <n>, fload , fload <n>,
iload , iload <n>, lload , lload <n>

store astore, astore <n>, dstore, dstore <n>, fstore, fstore -
<n>, istore, istore <n>, lstore, lstore <n>

return areturn, dreturn, freturn, ireturn, lreturn, ret , return

abinop dadd , fadd , iadd , ladd , ddiv , fdiv , idiv , ldiv , dmul , fmul ,
imul , lmul , drem, frem, irem, lrem, dsub, fsub, isub, lsub,

neg dneg , fneg , ineg , lneg

iinc iinc

cast checkcast , instanceof , d2f , d2i , d2l , f2d , f2i , f2l , i2b, i2d ,
i2f , i2l

ldc ldc, ldc w , ldc2 w

const bipush, sipush, aconst null , dconst <d>, fconst <f>,
iconst <i>, lconst <l>

controlflow goto, goto w , if acmp<cond>, if icmp<cond>, if<cond>,
ifnonnull , ifnull , lookupswitch, tableswitch

cmp dcmp<op>, fcmp<op>, lcmp

lbinop iand , land , ior , lor , ishl , lshl , ishr , lshr , iushr , ixor , lxor

stack dup, dup x1 , dup x2 dup2 , dup2 x1 , dup2 x2 , nop, pop,
pop2, swap

callstack jsr , jsr w , invokedynamic, invokeinterface, invokespecial ,
invokestatic, invokevirtual

monitor monitorenter , monitorexit

athrow athrow

get getfield , getstatic

put putfield , putstatic

wide wide

40

Category callstack
Operation Push onto call stack
Description The concrete instruction would normally calls a method.

These instructions are also described more thoroughly in
Section 5.1.
Dynamic methods are a not handled and are a source of im-
precision. Future work includes handling correctly dynamic
invocation instructions.

Category aload
Operation Load from array.
Format aload
Operand Stack ...,arrayref,index→

...,value
Description The arrayref must be a valid abstract value of the ab-

stract array domain. The index must be a valid abstract
value of the integer interval domain. The value placed
in the operand stack is an abstract value of the type
corresponding to the type of the concrete instruction.
For example, if the concrete instruction is iaload , then
value is of the integer interval domain type.

Note If the arrayref is null in the concrete instruction seman-
tics, then aload throws a NullPointerException. In
future work, method summaries can be extended with an
entry to check for the null-ness of arrayref . The current
implementation of creating method summary entries does
not take arrayref ’s null-ness into account.
If index is not within the bounds imposed by the
length of arrayref , in the concrete instruction seman-
tics, then aload throws a ArrayIndexOutOfBoundsEx-

ception. In future work, method summaries can be
extended with an entry to check the bounds of index .
The current implementation of creating method summary
entries does not take the bounds of index into account.

41

Category astore
Operation Store into array.
Format astore
Operand Stack ...,arrayref,index,value→

...
Description The arrayref must be a valid abstract value of the ab-

stract array domain. The index must be a valid abstract
value of the integer interval domain. The value must be
a valid abstract value capable of being stored in arrayref
For example if the concrete instruction is iaload then
value is of the integer interval domain type.

Note If the arrayref is null in the concrete instruction seman-
tics, then aload throws a NullPointerException. In
future work, method summaries can be extended with an
entry to check for the null-ness of arrayref . The current
implementation of creating method summary entries does
not take arrayref ’s null-ness into account.
If index is not within the bounds imposed by the
length of arrayref , in the concrete instruction seman-
tics, then aload throws a ArrayIndexOutOfBoundsEx-

ception. In future work, method summaries can be
extended with an entry to check the bounds of index .
The current implementation of creating method summary
entries does not take the bounds of index into account.
If the type of value is not assignment compatible with
the concrete type component of arrayref in the concrete
instruction semantics, then store throws an Array-

StoreException. In future work, method summaries
can be extentended with an entry to check the class of
value. The current implementation of creating method
summary entries does not take the class of value into
account.

42

Category load
Operation Load from local variable array.

Format
load
index

or
load

Operand Stack ...→
...,value

Description The index is an unsigned byte that must be an index into
the local abstract variable array of the current abstract
frame. The local variable at index must contain an
abstract value. The value in the local abstract variable
at index is pushed onto the abstract operand stack.

Note This instruction may be affected if preceeded by the wide
instruction.

Category store
Operation Store element into local abstract variable

Format
store
index

or
store

Operand Stack ...,value→
...

Description The index is an unsigned byte that must be an index into
the local abstract variable array of the current abstract
frame. The value at the top of the abstract operand stack
must be an abstract value. It is popped from the abstract
operand stack, and the value of the local abstract variable
at index is set to value.

Note This instruction may be affected if preceeded by the wide
instruction.

43

Category return
Operation Return value from method
Format return
Operand Stack ...,value→

[empty]
Description The value must refer to an abstract type that is assign-

ment compatible with the return type of the current
method.

Notes Because upwards propagation in the IDT is not modelled,
areturn is equivalent to pop whenever there is a return
value.
The values returned may be used in an entry in the
method summary in a future implementation. This would
allow our analysis to propagate information up the IDT.
However, that is not the case in the current implementa-
tion of the abstract interpreter.
The operand stack after the interpretation of these in-
structions is equivalent to being empty. In reality, the
operand stack is not emptied, but it is no longer propa-
gated.

Category abinop
Operation Perform arithmetic operations with abstract values.
Format abinop
Operand Stack ...,value1,value2→

...,result
Description Both value1 and value2 must be abstract values where

the operation determined by the concrete instruction is
compatible with the operands. The values are popped
from the operand stack. The result is a safe approxima-
tion to the arithmetic operation of value1 and value2 .
The result is pushed onto the operand stack.

44

Category lbinop
Operation Perform logic operations with abstract values.
Format lbinop
Operand Stack ...,value1,value2→

...,result
Description Both value1 and value2 must be abstract values where

the operation determined by the concrete instruction is
compatible with the operands. The values are popped
from the operand stack. The result is a safe approxima-
tion to the logic operation of value1 and value2 . The
result is pushed onto the operand stack.

Category neg
Operation Negate abstract value.
Format neg
Operand Stack ...,value→

...,result
Description The value must be an abstract value compatible with

the negation operator. The value is popped from the
operand stack. The result is a safe approximation to the
negation of value. The result is pushed onto the operand
stack.

Category iinc
Operation Increment local variable by constant

Format
iinc

index
const

Operand Stack No change
Description The index is an unsigned byte that must be an index into

the local variable array of the current frame. The const
is an immediate signed byte. The local abstract variable
at index must contain an abstract value belonging to the
abstract integer interval domain. The value const is first
sign-extended to an int and then the local variable at
index is incremented by that amount.

Notes This instruction may be affected by the wide instruction.

45

ldc

Category ldc
Operation Push item from constant pool

Format
ldc

index
Operand Stack ...→

...,value
Description The index is an unsigned byte that must be an index

into the runtime constant pool of the current class. The
value in the constant pool at index is converted to an
abstract value. The value is pushed onto the operand
stack. If the value cannot be resolved statically, > is
pushed onto the operand stack.

Category const
Operation Push immediate to stack
Format const

or
const
value

Operand Stack ...,→
...,value

Description Cast immediate or value into an abstract value. Push
value to abstract operand stack.

Category cmp
Operation Compare two abstract numeric types.
Format cmp
Operand Stack ...,value1,value2→

...,result
Description Both value1 and value2 must be of numeric type. The

values are popped from the operand stack. An abstract
value assignment compatible with the type of the concrete
instruction is placed in the operand stack.

46

Category stack
Operation Manipulate the stack
Description Manipulates the stack according to the concrete semantics.
Note Because of the wide diverse of formats available for this

group of instructions, please consult the Java Virtual Machine
Specification Manual [31, Chatper 6].

Category monitor
Operation Enter or exit monitor object
Format monitor
Operand Stack ...,objectref→

...
Description Because our analysis does not model monitors, only the

objectref is popped off the abstract stack.
Note The concrete instruction semantics for monitorenter and

monitorexit state that if objectref is null, the athrow
instruction throws a NullPointerException. If the ab-
stract interpreter is able to determine safely that objectref
is either null or not null then a method entry can be
added to the method summary. The current implemen-
tation does not consider this case.

Category athrow
Operation Throw exception of error
Format athrow
Operand Stack ...,objectref→

objectref
Description Because our analysis does not model exceptional control

flow, only the objectref is popped off the abstract stack.
Note The concrete instruction semantics for athrow state that

if objectref is null, the athrow instruction throws a
NullPointerException. If the abstract interpreter is
able to determine safely that objectref is either null

or not null then a method entry can be added to the
method summary. The current implementation does not
consider this case.

47

Category get
Operation Get from class or object

Format
get

indexbyte1
indexbyte2

Operand Stack ...,[objectref]→
...,value

Description Because this analysis is not field sensitive, the value
pushed to the operand stack is always null.

Note The concrete instruction semantics for getfield mention
that if objectref is null, the getfield instruction throws
a NullPointerException. If the abstract interpreter
is able to determine safely that objectref is either null
or not null then a method entry can be added to the
method summary. The current implementation does not
consider this case.

Category put
Operation Set field in class or object

Format
put

indexbyte1
indexbyte2

Operand Stack ...,[objectref],value→
...,value

Description Because this analysis is not field sensitive, this opera-
tion is equivalent to simply popping the values from the
abstract operand stack.

Note The concrete instruction semantics for putfield mention
that if objectref is null, the putfield instruction throws
a NullPointerException. If the abstract interpreter
is able to determine safely that objectref is either null
or not null then a method entry can be added to the
method summary. The current implementation does not
consider this case.

Category wide
Operation Use a wide index to access the local variable array or the

constant pool [31, Chapter 6].

48

1 public static void example(int);

2 Code:

3 iconst_0

4 istore_1

5 iload_0

6 ifge 11

7

8 iconst_1

9 istore_1

10 goto 14

11

12 bipush 100

13 istore_1

14

15 new #2 // class DerivedClass

16 dup

17 invokespecial #3 // Method DerivedClass."<init>":()V

18 astore_2

19 aload_2

20 iload_1

21 iload_0

22 invokestatic #4 // Method foo:(LBase;II)V

23 return

Figure 5.5: Example to illustrate abstract interpretation

5.3.2 Relating Argument Estimates to Call Sites

The calling convention for the JVM specifies that arguments must be placed on

the operand stack before making a call. These semantics almost allow for the

safe estimation of run time values placed on the stack. Unsafe values come from

the invokedynamic instruction. Functions which are not resolved at analysis

time can be produced due to invokedynamic. These functions use variadic

arguments. As such, in order to mantain safety, the analysis would need to

determine how many arguments are passed to the unresolved function. Future

work will address this source of unsafety.

Let’s consider the simple example shown in Figure 5.5.

The objective of the analysis is to find the contents of the stack before

executing Line 22. In order to do so, the semantics specified previously model

the stack and the abstract array. On Line 6 the contents of the variable array

49

Table 5.2: Values in abstract array at different line numbers

Line Number Array Index Content

Line 6 0 >
Line 10 0 >
Line 10 1 1
Line 12 0 >
Line 12 1 100
Line 15 0 >
Line 15 1 [1, 100]
Line 22 0 >
Line 22 1 [1, 100]
Line 22 2 DerivedClass

Top of stack
>

[1, 100]
DerivedClass

Bottom of stack

Figure 5.6: Abstract stack containing abstract argument estimates. Derived-

Class is known to be not null because its provinance is from the instruction
new.

are shown in Table 5.2. The stack at position Line 6 is empty. This abstract

state is transferred to the basic blocks starting at on Line 8 and Line 12.

The abstract variable array on Line 10 is shown in Table 5.2. Similarly, the

abstract variable array on Line 13 is shown in Table 5.2. The stacks remain

empty at these lines. These two states will be merged before Line 15 executes.

The merged states resulting on the abstract state shown in Table 5.2.

Abstractly interpreting the rest of the instructions starting at Line 15 until

Line 22 should result in the abstract stack as shown on Figure 5.6 and the

abstract variable array on Table 5.2.

50

Chapter 6

Determining Possible
Optimizations

We use abstract interpretation as described in Chapter 5 to determine an

estimate to the run-time values of arguments. These argument estimates are

used by a data structure named method summary. This chapter describes the

method summary and how we encoded several analyses in it. The method

summary contains logical predicates that reflect the optimizations done by the

compiler and the conditions on which those optimizations are applied. It is

the job of the compiler developer to determine that the construction of such

predicates correctly reflects the potential optimizations that can be applied by

the compiler due to inlining.

We have developed a procedure in order to construct predicates that reflect

the following potential optimizations:

1. branch folding

2. null checking folding

3. cast folding

4. instance of folding

5. partial evaluation

Figure 6.1 contains the pseudo-code for our algorithm to generate method

summaries. Our procedure involves finding the uses of argument definitions.

51

1: procedure generateMethodSummary(method)
2: for each argument ∈ method do
3: for each use ∈ Use(argument) do
4: if use ∈ OptimizableCode then
5: update(method.methodSummary)
6: end if
7: end for
8: end for
9: end procedure

Figure 6.1: Pseudocode for generating method summaries

1 public static boolean branchfolding(boolean);

2 Code:

3 0: iload_0

4 1: ifeq 6

5 4: iconst_1

6 5: ireturn

7 6: iconst_0

8 7: ireturn

Figure 6.2: Example code to show branch folding constraints

Potential optimizations are found when arguments are used as operands to

instructions that are capable of being eliminated. A potential optimization

is a code pattern that may enable optimizations. The optimizations may

not necessarily be realizable, because they may depend on the estimates of

the argument values. The potential optimization is encoded into the method

summary as a constraint over the possible values held by the arguments.

Figure 6.2 shows the bytecode of a method named branchfolding(). This

method takes a single boolean argument and loads it onto the concrete operand

stack. Depending on the argument’s concrete value, the method will either

return the value 1 or 0.

Iterating over the basic blocks of branchfolding() in reverse post-order

means that we start analyzing the instructions located at byte offset 0 and 1 of

method branchfolding(). The JVM Specification [31, Section 3.6] states that

upon the start of a method’s execution, the arguments are placed in the local

variable array. First, the value of the local variable array at position zero is

52

pushed onto the stack. Because no instruction has overwritten the value of the

local variable array at position zero, it is safe to say that 0: iload 0 loads

an argument onto the stack. Instruction 1: ifeq is a branching statement

that is conditional on the argument. At that point, the analysis does not

know anything about the potential values of the argument; however, due to

the semantics of the ifeq instruction, it is safe to say that if the argument is

less than or equal to zero, then the bytecode in the sixth position (i.e., the

instruction 6: iconst 0) will be the target of the branch. Otherwise, the

bytecode in the fourth position (i.e., the instruction 4: iconst 1) will the

target of the branch.

When the analysis first encounter 1: ifeq, it performs a check to deter-

mine whether the value on the operand stack is a direct use of an argument.

If the check succeeds, we determine which argument was used. The JVM

Specification [31, Section 3.6] states that the arguments are placed in order in

the local variable array upon starting the execution of a method. Since the

value on the operand stack is obtained from the instruction iload 0, we know

that the first argument is the one used as a branch test. At that point, gen-

erateMethodSummary knows that the test is performed on an argument,

and which argument is being tested.

At bytecode 1: ifeq, a potential opportunity for branch folding exists

if the first argument is equal to zero. We also say that there is another

opportunity for branch folding at 1: ifeq if the zeroth argument is not equal

to zero. The method summary encodes the use of the argument and the branch

inequality as a constraint that must be met by the argument value estimates.

Generally speaking, if the constraints are met by the argument estimates, then

the optimization can take place.

Concretely, each potential optimization opportunity is encoded as a row in

a table where each column represents arguments. Each cell under an argument

represents a constraint on that argument in order for the optimization to

be realizable. Table 6.1 shows an example of a minimal method summary

constructed for the example code in Figure 6.2.

The abstractions in VPConstraints has some limitations. We cannot

53

Table 6.1: Method summary for Figure 6.2

Potential Optimization Bytecode Argument 0

Branch Folding → 1 : ifeq [INT_MIN, −1]
Branch Folding ← 1 : ifeq [0, 0]
Branch Folding → 1 : ifeq [1,INT_MAX]

express the range [INT MIN,−1]∪[1, INT MAX] in the VPConstraints framework,

so separating it into to separate disjoint ranges is necessary. The method

summary overcomes this limitation by allowing multiple rows to encode the

same constraint. For example, the range [INT MIN, −1] ∪ [1, INT MAX] will be

expressed by two different entries in the method summary. One containing the

constraint [INT MIN, −1] and the other containing [1, INT MAX]. Additionally,

multiple potential optimizations may be encoded in the same method summary.

We outline other optimizations considered in the following sections. Ranges

constraints that model intersection (i.e., [INT MIN, 0] ∩ [−1, 0]) on a single

argument are modeled implicitly by their using the result constraint in the

method summary. Modeling the and/intersection across arguments is possible

by placing constraints on different cells. In other words, a method summary

can be read as a set of boolean functions (one for each row), where all elements

in a non-empty cell are and-ed with each other. If a boolean function evaluates

to true, it means that an optimization has been found.

6.1 Computing Constant String Length

From literal strings, it is possible to substitute a call to the method String.length()

by a compile time constant. Therefore, upon encountering calls String.length(),

a row on a method summary is created. Figure 6.3 shows that the bytecode for

the method wrapperStringLength(). On Line 4 the first argument is used as

an implicit argument to the method String.length(). To determine whether

the length of the argument can be known at compile time, we must inspect the

type of constraint.

54

1 public static void wrapperStringLength(java.lang.String);

2 Code:

3 0: aload_0

4 1: invokevirtual #2 // Method java/lang/String.

length:()I

5 4: pop

6 5: return

Figure 6.3: Example code to show string length constraints

Table 6.2: Method summary for Figure 6.3

Potential Optimization Bytecode Argument 0

String Length 1 : invokevirtual asConstString

If the argument estimate is encoded in a VPConstString constraint, then

we know that the length of the argument string can be known at compile

time. The method summary produced upon visiting the wrapperStringLength

method is found on Table 6.2. The asConstString() function is defined in the

VPConstraint framework in such a way that if the constraint is not derived from

the TR::VPConstString then it returns false. As such, when the function

asConstString() is applied on the estimate of argument, it must return true

for the call to String.length() to be folded.

6.2 Null-Check Folding

A variable containing a reference to null may produce run-time exceptions.

As such, it is important to perform a check to verify that the reference does

not point to null before an operation is performed on the variable. There are

several ways to check for the null-ness of a variable [25]. One of such ways is

to invoke the getClass() method on the variable to test. Calling getClass()

on an non-null object allows the compiler to avoid further null checks on the

same object. This is because the compiler is able to assume that if the call to

getClass() fails, an exception is thrown and instructions that execute after

getClass() are never executed. However, if the call to getClass() succeeds,

55

1 public static void nullCheck(java.lang.Object);

2 Code:

3 0: aload_0

4 1: invokevirtual #2 // Method java/lang/Object.

getClass:()Ljava/lang/Class;

5 4: pop

6 5: return

Figure 6.4: Example code to show null check constraints

Table 6.3: Method summary for Figure 6.4

Potential Optimization Bytecode Argument 0

Null Check 1 : invokevirtual isNullObject

Null Check 1 : invokevirtual isNonNullObject

the instructions that execute after getClass() are allowed to assume that the

object which called it is non-null.

The method summary in Table 6.3 is very similar to the method summary

in Table 6.2. However, in this case, instead of checking the argument’s type, we

will check for the argument’s nullness. If the argument is estimated to be null,

then the code should be replaced to always raise a NullPointerException.

If the abstract interpretation estimates the argument to never be null, then

the compiler can eliminate the null check. Table 6.3 provides the method

summary that is generated upon analyzing the method in Figure 6.4.

6.3 Instance Of Checking

The instruction instanceof can be folded away if the operand is known (or can

be estimated) at compile time. As such, upon encountering the instruction,

our analysis creates a new method summary entry.

We extended the VPConstraint framework to allow for a subset operation.

The subset operation returns true if the second operand is a class assignable

to the first operand. The subset operation allows us to determine whether the

argument is a reference to class Example or a derived class. This definition

56

1 public static boolean instanceofCheck(java.lang.Object);

2 Code:

3 0: aload_0

4 1: instanceof #2 // class Example

5 4: ifeq 9

6 7: iconst_1

7 8: ireturn

8 9: iconst_0

9 10: ireturn

Figure 6.5: Example code to show check cast constraints

Table 6.4: Method summary for Figure 6.5

Potential Optimization Bytecode Argument 0

instanceof 1 : instanceof subset(Example)

of subset corresponds to the concrete semantics of the instanceof instruction.

Therefore, if the constraint is satisfied, the instruction instanceof can be folded

at compilation time.

6.4 Cast Folding

A checkcast instruction can be folded in a similar way to the instanceof

instruction. However instead of using the subset method, we use the method

already available mustBeEqual. This corresponds to the concrete semantics of

the checkcast instruction. The example method summary found in Table 6.5

corresponds to the example code found in Figure 6.6.

6.5 Partial Evaluation

The analysis that we developed to encode partial evaluation into the method

summary is limited. First, only arithmetic instructions performed over the inte-

ger data type are taken into account. Second, only when the values estimated

on the call site are members of the VPIntConst class are the optimizations

encoded.

57

1 public static int checkCast(java.lang.Object);

2 Code:

3 0: aload_0

4 1: checkcast #2 // class Example

5 4: ifnull 9

6 7: iconst_1

7 8: ireturn

8 9: iconst_0

9 10: ireturn

Figure 6.6: Example code to show check cast constraints

Table 6.5: Method summary for Figure 6.6

Potential Optimization Bytecode Argument 0

checkcast 1 : instanceof subset(Example)

Only the arithmetic instructions performed over the integers are taken into

account because in the VPConstraint framework only the integer values can

be modeled as constants in the VPIntConst class. The VPIntConstraint is

the base class of VPIntConst or VPIntRange. Similar base classes exist for

short and long types. The difference between VPIntConst and VPIntRange

is that VPIntConst is a single value, which VPIntRange models an unknown

value as a range of integers.

Partial evaluation can only take place if the argument estimates are members

of the VPIntConst class. This is because if the values estimated from the call

site are members of VPIntRange there is no certainty on which of the values in

the range will be used during partial evaluation. What is currently being done

to generate the method summary is, we keep track of the type of constraints

in the abstract operand stack, and when we encounter an arithmetic operation

two, checks are done. The first one to check if either operand is an argument.

The second one to check if is the non-argument operand is a VPIntConst

constraint.

Let’s take a look at the example shown in Figure 6.7. In bytecode 0 :

iconst 1, we obtain a VPIntConst constraint from loading an immediate value

58

1 public static int partialEvaluation(int);

2 Code:

3 0: iconst_1

4 1: iload_0

5 2: iadd

6 3: ireturn

Figure 6.7: Example code to show partial evaluation constraints

Table 6.6: Method summary for Figure 6.7

Potential Optimization Bytecode Argument 0

Partial evaluation 2 : iadd asConstInt

of 1. In bytecode 1 : iload 0 the interpreter loads a value from the argument.

In bytecode 2 : iadd both checks succeed. Then the interpreter places an

entry in the method summary as seen in Table 6.6. The constraint asConstInt

is placed in the method summary because the argument tested needs to be of

the class asConstInt.

6.6 Combining Static and Dynamic Benefits

Now that we have the frequency information, the estimate of run-time values

and the method summary, it is possible to aggregate these information into

a single notion of inlining “benefit”. First, as mentioned in Chapter 4 and

Chapter 6, the method summaries are used as constraints and the abstract

values are used to see whether those constraints are satisfied at each call site.

To generate a value out of the method summaries, each row of the method

summary is augmented with a weight. The weight corresponds to the benefit

value associated with a row’s inlining benefit. It is the job of the compiler

developer to create a meaningful weight, but it must be a positive integer value.

For example, the method summary in Table 6.4 can be extended as shown

in Table 6.7. A new column, weight, shows variable w that refers to how

beneficial this optimization is. If the constraint related to the argument is

59

Table 6.7: Example method summary to illustrate how argument estimates
and argument constraints interact

Potential Opt Weight Arg 0 Arg 1 Arg 2

Instance Of w0 subset(BaseClass)

Branch Folding w1 [INT_MIN, −1]
Branch Folding w2 [0, INT_MAX]
Null check w3 isNull

Null check w4 isNonNull

Top of stack
Argument 2 >
Argument 1 [1, 100]
Argument 0 DerivedClass

Bottom of stack

Figure 6.8: Abstract stack containing abstract argument estimates.

satisfied then the weight wc is added to an aggregate. The bytecode location

column has been omitted to save space. The estimate to the argument values

obtained through the abstract interpretation are found in Table 6.8.

With this information, it is possible to aggregate all satisfied constraints

into a single value. The next step is to iterate over every row in the method

summary, check to see if the constraint is satisfied, and if the constraint is

satisfied aggregate the weight values into a single value. For example, argument

at position 0 is a derived class from BaseClass which is stored to be used as

an argument on the constraint. Argument at position 1 has an estimate of an

integer value from 0 to 100. The second entry of the method summary is not

satisfied, but the third one is. Finally, the estimate of argument at position 2

is >. Because > is neither isNull nor isNonNull, then the last entries of the

method summary are not satisfied. The weights w0 and w2 are added into

what we consider the static benefit of inlining.

The next step is to combine the static benefits of inlining with the dynamic

benefits of inlining which is called callRatio in Section 4.2. There are an infinite

60

number of functions of the form:

f : static benefits× call ratio→ Z+

Different functions represent different design decisions and may give different

weight to the inlining candidates. We have chosen to multiply the callRatio by

the static benefit of inlining.

f(static benefits, call ratio) = static benefits× call ratio

This definition for this function scales the call ratio by the static benefits.

The procedure outlined in by Craik et al. takes as an input an IDT with

each node annotated with a cost and a benefit [14]. A procedure to determine

the cost and the benefit has been covered in this thesis. The procedure

outlined in by Craik et al. can then be used with the weights outlined in this

thesis. Furthermore, design decisions have been explicitly pointed out to allow

exploration of the design space of this solution.

6.7 Summary

In summary, we have developed a systematic way to estimate if some optimiza-

tions will take place during compilation. Most importantly, these optimizations

are conditional upon methods being inlined. That is, these optimizations are

examples of the indirect benefits of inlining. These optimizations are encoded

in a data structure that is human readable. Method summaries help compiler

developers understand why a method was inlined.

The optimizations considered in the previous sections are only a proof of

concept. The set of optimizations that are considered by the method summaries

can be expanded in future work. In the simple examples shown previously, there

was only one type of optimization encoded in each method summary, however,

in the general case method summaries contain multiple rows denoting multiple

optimizations. A method summary may encode different types of optimizations

that are unlocked by different arguments. Constraints on multiple arguments

would be equivalent to having multiple non-empty columns in the same row of

the method summary.

61

1 public static int condition(int, int);

2 Code:

3 0: iload_0

4 1: ifle 12

5 4: iload_1

6 5: ifge 12

7 8: iconst_1

8 9: goto 13

9 12: iconst_0

10 13: istore_2

11 14: iload_2

12 15: ifeq 20

13 18: iconst_1

14 19: ireturn

15 20: iconst_0

16 21: ireturn

Figure 6.9: Example of branch being conditional on multiple arguments

Limitations in method summaries exist. For example, at the moment only

a single argument is constrained (i.e., only a single cell in a method summary

entry is a constraint). Figure 6.9 shows bytecode that contains a branch (5:

ifge which depends on the target address of 1: ifle. Our current algorithm

will generate the method summary found in Table 6.8. If an argument estimate

satisfies one of the constraints for 5 : ifge, then that branch would be

folded. However, it might be of interest to calculate when both constraints

are satisfied in the way shown by Table 6.9 which is currently beyond the

capabilities of the current implementation. E.g., our current algorithm can

only generate method summary entries with a single constraint (see rows in

Table 6.8). Generating method summary entries with multiple constraints (see

third row in Table 6.9) per row would allow the current implementation to

determine whether conditional statements that test multiple values can be

folded away, as opposed to conditional statements that test a single value.

62

Table 6.8: Method summary for Figure 6.9

Potential Optimization Bytecode Argument 0 Argument 1

Branch Folding 1 : ifle [INT_MIN, 0]
Branch Folding 1 : ifle [1,INT_MAX]
Branch Folding 5 : ifge [INT_MIN, 0]
Branch Folding 5 : ifge [1,INT_MAX]

Table 6.9: Method summary for Figure 6.9 after future work

Potential Optimization Bytecode Argument 0 Argument 1

Branch Folding 1 : ifle [INT_MIN, 0]
Branch Folding 5 : ifge [1,INT_MAX]
Branch Folding 1-5 [1,INT_MAX] [INT_MIN, 0]

63

Chapter 7

Evaluation

This performance evaluation contains two comparisons: one against the OpenJ9

JVM to compare the performance of the benefit inliner against an industry-

grade inliner, and another against a call-ratio inliner, which uses only frequency

information. The inlining strategies used in the OpenJ9 JVM are publicly

available as part of the OpenJ9 JVM source code. The OpenJ9 JVM includes

two inlining strategies: TR DumbInliner is used only during cold compilation

levels, and TR MultipleCallTargetInliner is used for the compilation levels

warm and above.

The call-ratio inliner is a modified version of the benefit inliner where only

the call ratio is used to determine what to inline. This comparison allows

us to measure differences in the inlining plans when taking into account the

predicted optimizations.

7.1 Experimental Setup

This performance evaluation uses a subset of the DaCapo 9.12 Bach [9] bench-

marking suite for the evaluation. The DaCapo benchmarking suite is popular,

relevant, and has a diverse set of workloads. The following benchmarks were

excluded from the evaluation: tomcat, tradebeans, tradesoap. The

evaluation is conducted on a machine equipped with an Intel Xeon Platinum

8180 processor [28]. The machine is configured such that 28 cores are active.

The machine has an L1 data cache and an L1 instruction cache of 32K each.

The L2 cache is 1,024K and L3 cache is 39,424K, and RAM is 1TB. IBM

64

granted access to this machine with the server configured in such a way that

the ports used by the excluded benchmarks were closed.

Red Hat Enterprise Linux Server release 7.4 (Maipo) is installed as the

machine’s operating system (OS) and is running kernel version 3.10.0-693. The

machine is running an OpenJ9 JVM running Java version 1.8.0 171 1. The

OpenJ9 JVM has been modified to include the prototype implementations of

the benefit inliner and the call-ratio inliner.

We have taken care to match the inlining budgets used in the benefit-driven

and call-ratio inliner to the budgets used in the OpenJ9 JVM. However, the

inlining strategies used in the OpenJ9 JVM conflate the notion of benefit and

size into a weighted size. Furthermore, the OpenJ9 JVM inlining strategies

include a heuristic for ignoring the budget for certain call-site/callee pairs.

As a result, while we have attempted to match the budgets used by in the

different inlining strategies, there are still some differences in the inlining

budgets. Changing the OpenJ9 JVM inlining strategy to avoid conflating the

notion of benefit and size would not be advisable since that is part of our

contribution. Changing the OpenJ9 JVM inlining strategy to avoid ignoring

the budget for certain call-site callee pairs would make the comparison unfair.

As such, the inlining strategies used in the OpenJ9 JVM remain unchanged.

7.2 Following Best Practices

To avoid measuring the effects of stop-the-world garbage collection we set the

JVM heap to be 1 GB. To avoid non-determinism introduced by Non-Uniform

Memory Access (NUMA), all 28 cores have been selected to run under a single

NUMA node. NUMA allows processors in multiprocessor architectures to

access their own local memory faster than non-local memory. Because threads

may be scheduled in a non-deterministic way, NUMA may introduce some

noise. As such, we would like to reduce the noise introduced by NUMA. To

achieve this we disable multithreading on multiple processors. There were

1The commit hashes are OpenJ9: 615f0cc, OMR: 7a158d9. The JCL version is:
20180604 01.

65

Table 7.1: Warm up iterations and repetitions for each benchmark

Benchmark Warm up iterations

avrora 60
batik 100
eclipse 10
fop 1,000
h2 100
luindex 600
lusearch 100
pmd 100
sunflow 100
xalan 400

28 threads each assigned to a single microprocessor ensuring that there was

uniform memory access.

All benchmarks run until the JVM ends warming up. Table 7.1 shows

the number of warm up iterations for each benchmark. After warm up, the

benchmark runs one more time and the run time reported by this last run is

recorded. The number of iterations a benchmark needs to run to be considered

warmed up was obtained by measuring the compiler activity. The JVM is

considered to finish the warming up stage when the JVM runs at least 3

iterations of the benchmark without any compilation requests or no new

compilation requests were issued in the last thirty seconds of execution.

The benchmarks were executed in an isolated environment. To account

for variations in execution time introduced by background processes, each

measurement is repeated 10 times. The value reported is the arithmetic mean

of ten runs. The recorded points for each run is modelled as a gaussian

distribution and the standard deviation is reported in the graphs. A single

execution batch consists in running each one of the benchmarks once in a given

order. The order of execution of the benchmarks is randomized from one batch

to the next. Benchmarks are run back to back (i.e., once a benchmark finishes

executing, the next one is scheduled to run).

Source of variations also include the use of sampling profiling to determine

66

0

0.2

0.4

0.6

0.8
1

1.2

1.4

avr
ora bati

k

ecl
ipse fop h2

luinde
x

lusearc
h

pmd

sun
flo

w
xal

an

No
rm

al
ize

d
Ru

n
Ti

m
e

Run time

baseline call ratio benefit

Figure 7.1: Normalized run time: average of 10 runs for baseline, call ratio,
and benefit inliner

the frequency of execution of methods and trigger compilation requests and

profiling information used in the inlining decisions. Previous inlining decisions

may also affect the profiling information because once a method has been

inlined, it no longer gets profiled by the IProfiler framework. Variations

may be introduced by the thread scheduler because the OpenJ9 JVM uses

asynchronous compilation. These sources of variation affect the inliners by

potentially changing inlining decisions.

7.3 Measurements

7.3.1 Run Time

The DaCapo benchmarks report run time as an output during each iteration

of the benchmark. We run the benchmarks multiple times using the command

line options available in the DaCapo benchmarking suite. These multiple runs

ensure that the virtual machine has finished warming up. The reported time is

normalized against the baseline inliner.

The geometric mean across all benchmarks for the baseline inliner is 1±0.009.

The geometric mean across all benchmarks for the benefit inliner is 1.045±0.006.

This means that the benefit inliner is 4% slower than the baseline inliner.

67

0

0.5

1

1.5

2

2.5

avr
ora bati

k

ecl
ipse fop h2

luinde
x

lusearc
h

pmd

sun
flo

w
xal

anNo
rm

al
ize

d
Co

m
pi

la
tio

n
Ti

m
e

Compilation Time

baseline call ratio benefit

Figure 7.2: Normalized compilation time: average of 10 runs for baseline inliner,
call-ratio inliner, and benefit inliner

For the majority of the benchmarks, there is little impact on the run time

compared with the baseline inliner. However, for the benchmark fop, the

run time increased by almost 20% when running the benefit inliner and the

call-ratio inliner when compared to the baseline inliner. Similarly, benchmarks

h2 and luindex also had run time increased by more than 10%.

The geometric mean across all benchmarks for the call-ratio inliner is

1.056± 0.007. The difference in run time between the call-ratio inliner and the

benefit inliner is negligible.

7.3.2 Compilation Time

OpenJ9 provides infrastructure to obtain the compilation time spent by each

compilation thread. The total compilation time is obtained by adding the

compilation time reported by each compilation thread. Figure 7.2 shows the

average compilation time of each benchmark with their respective standard

deviation. The compilation time is normalized to the average of the baseline.

The geometric mean across all benchmarks for the baseline inliner is 1±

0.017. The geometric mean across all benchmarks for the call-ratio inliner is

1.119± 0.026. The geometric mean across all benchmarks for the benefit inliner

68

is 1.102 ± 0.024. We include the geometric mean for the baseline inliner to

show the difference in the standard deviation between the different inliners.

Figure 7.2 shows a large variation when comparing the benefit inliner and

the call-ratio inliner against the baseline inliner. Some of this increase in time

is attributed to the time spent analyzing code. However, as mentioned in

Section 7.1, there are some fundamental differences in the notion of inlining

budget between the benefit inliner and the baseline inliner. The differences are

that the budget in the OpenJ9 JVM inliners conflates the size of the method

to be inlined with the frequency of execution of that method. Thus, the budget

in the OpenJ9 JVM corresponds to the notion of the number of bytecodes in a

method and how hot the method is. For example, when determining which

methods to inline, the inliner determines if the frequency of invocation of a

method, and if it surpasses a threshold, then the inliner multiplies the size of

the bytecode by a value less than 1 to make this method more likely to be

inlined.

7.3.3 Difference in Factors Influencing Inlining

In Chapter 2 introduced the inlining strategies already available in OpenJ9.

The heuristic properties used by the OpenJ9 inliner are spread throughout

the OpenJ9 repository. The OpenJ9 inlining strategies adjust the weight of

inlining candidates considering the following properties:

1. heavily polymorphic interfaces

2. invokedynamic instructions

3. hotness

4. bytecode size

5. polymorphic callee sizes

6. polymorphic root sizes

7. frequency

69

8. constant arguments

9. number of callers to a method

10. inline depth

11. number of inlined call sites

12. call site is in a loop

13. number of nodes in the intermediate language

Some of these properties are obtained after generating the intermediate

language. This means that time has been spent translating from bytecode to

intermediate language. Furthermore, methods transformed to intermediate

language in the inlining pass will need to be re-compiled to intermediate

language due to internal implementation details. Because the benefit inliner

works at the byte code level, we are allowed to save the expense. However, due

to the time spent in the analysis, we still have a slow down of 10%.

7.3.4 Generated Code Size

Compilation time is usually proportional to the amount of generated code size.

This is because many of the different analyses used during compilation have

super-linear time complexity on the size of the code [8]. As a result, in order

to estimate the compilation time, we must also look at the amount of code

compiled.

The size of generated code is obtained through the verbose option from the

same 10 runs of each benchmark. The verbose option outputs the start and

end addresses for each compiled method body. The size of generated code for

each compilation request is given by the difference between the end and the

start addresses. The total size of generated code for each benchmark run is

obtained by adding the generated code for each compilation issued during that

benchmark run. Figure 7.3 shows the average amount of generated code during

the execution of 10 runs of each benchmark.

70

0

0.2

0.4

0.6

0.8

1

1.2

avr
ora bati

k

ecl
ipse fop h2

luinde
x

lusearc
h

pmd

sun
flo

w
xal

an

No
rm

al
ize

d
Ge

ne
ra

te
d

Co
de

 S
ize

Generated Code Size

baseline call ratio benefit

Figure 7.3: Normalized generated code

There is a moderate correlation (coefficient 0.522) between the amount of

generated code and the amount of compilation time for the benefit inliner.

This means that more code generated implies a higher compilation time for

the benefit inliner and the call-ratio inliner.

The geometric mean of the generated code size for the call-ratio inliner

across all benchmarks is 0.845± 0.005. The geometric mean of the generated

code size for the benefit inliner across all benchmarks is 0.848 ± 0.004. On

average, using the benefit inliner produces 16% less code and increases run time

by 5%. This variability is high, but the amount of generated code is usually

equal or less than the amount of code generated by the baseline inliner. The

decrease in generated code size is attributed to the baseline inliner’s conflation

of a method size with the method frequency of invocation.

7.3.5 Memory Usage

Figure 7.4 shows the amount of memory used during compilation. This value

was obtained from the logging infrastructure available in the JIT used in

OpenJ9 JVM.

The geometric mean across all benchmarks for the baseline inliner is 1±

0.017. The geometric mean across all benchmarks for the benefit inliner is

71

0

0.2
0.4
0.6

0.8
1

1.2
1.4

1.6

avr
ora bati

k

ecl
ipse fop h2

luinde
x

lusearc
h

pmd

sun
flo

w
xal

an

No
rm

al
ize

d
Co

m
pi

la
tio

n
M

em
or

y
Us

ag
e

Compilation Memory Usage

baseline call ratio benefit

Figure 7.4: Memory usage

1.074 ± 0.004. The geometric mean across all benchmarks for the call-ratio

inliner is 1.074± 0.005.

Figure 7.4 shows that the impact of the analysis on the memory consumption

of the compiler is 7%. This difference is small taking into account the greater

amount of search space that is explored. While the benefit inliner and the

call-ratio inliner performs a more complex analysis than the inliners in the

OpenJ9 JVM, the memory consumption increases by an average of only 7%.

7.4 Case Studies

Section 7.3 compares the overall performance of the benefit inliner against a

state of the art inlining strategies. However, these measurements indicate that

the differences between the call-ratio inliner and the benefit inliner are not

statistically significant. Why is this the case? Are the inlining plans between

the call-ratio inliner and the benefit inliner the same?

Answering this question is difficult, because inlining plans for the same

compilation unit across multiple runs may differ even using the same inliner.

Ideally, we would like to have the same inlining plan across different runs.

However, due to non-determinism discussed in Section 7.2, inlining plans can

72

be affected in the following ways:

1. Considering the same nodes in the IDT but each node in the IDT may

have different values for the block frequencies.

2. Considering different nodes in the IDT. While the inliner normally con-

siders all nodes for inclusion in the IDT, there are two exceptions: (i)

When considering virtual and interface invocations, only the main target

of these methods is added to the IDT and (ii) cold methods are excluded

from the IDT.

3. The VM is in control of which methods it issues for compilation/re-

compilation which is also a non-deterministic process.

As a result of these sources of uncertainty, it is impossible to obtain fully

reproducible inlining plans for all compilation units.

To find out how different the inlining plans generated between the benefit

inliner and the call-ratio inliner, one must look at the following subset of

compilation units:

1. Concentrate on inlining plans in which the abstract interpreter found at

least one optimization.

2. Look at the top 100 hot methods.

3. Look for compilation units in the benefit inliner whose inlining plans are

different for the majority of runs when compared to the call-ratio inliner.

4. Look for the intersection of compilation units found in the benefit inliner

and the call-ratio inliner.

There is little difference between the benefit inliner and the call-ratio inliner

when looking at that subset of compilation units. After manual inspection, the

most prominent examples are outlined here as use cases. These methods are

the ones where the computed benefit by the analysis lead to better inlining

decisions compared to just considering the call ratio.

73

7.4.1 arrayAtPut()

The DaCapo benchmark eclipse has the method arrayAtPut(int, boolean).

The source of this method can be found in the CodeStream class in the

eclipse repo [18] and is also shown in Figure 7.5. In the compilation re-

quests for ArrayInitializer.generateCode(), arrayAtPut(int, boolean)

has a frequency value similar to other methods. However, due to its rela-

tively large amount of bytecode footprint, the call-ratio inliner decided against

inlining it. The abstract interpreter is capable of determining that the ar-

gument valueRequired will always be false when compiling ArrayInitial-

izer.generateCode() and that it leads to folding 8 branches. As a result, the

benefit inliner consistently inlines this method instead of several other smaller

methods. This is a prime example of the type of methods that the analysis in

the benefit inliner discovers.

7.4.2 renderInlineArea()

The method renderInlineArea(InlineArea inlineArea) can be found in

the AbstractRenderer class in the fop repo and is shown in Figure 7.6. The

benefit inliner was able to determine that the instruction instanceof was

being used heavily in this method and that the class of inlineArea can be

known at analysis time. As a result, if statements in this method can be

folded away.

7.4.3 regionMatches()

In lusearch, when compiling root method SegmentInfos.read(Directory

d,String s) both inliners consider inlining generationFromSegmentsFile-

Name(String fileName). This method calls String.startsWith(String

prefix, int start) (source available in Figure 7.7) with a static final

string obtained from the field IndexFileNames.SEGMENTS. There are other

literal values in the call chain. For example, the arguments thisStart and

start to the function String.regionMatches(int, String, int, int) in

line 18 come from literal values from ancestors in the call graph. The cur-

74

1 public void arrayAtPut(int elementTypeID, boolean valueRequired) {

2 switch (elementTypeID) {

3 case TypeIds.T_int :

4 if (valueRequired)

5 dup_x2();

6 iastore();

7 break;

8 case TypeIds.T_byte :

9 case TypeIds.T_boolean :

10 if (valueRequired)

11 dup_x2();

12 bastore();

13 break;

14 case TypeIds.T_short :

15 if (valueRequired)

16 dup_x2();

17 sastore();

18 break;

19 case TypeIds.T_char :

20 if (valueRequired)

21 dup_x2();

22 castore();

23 break;

24 case TypeIds.T_long :

25 if (valueRequired)

26 dup2_x2();

27 lastore();

28 break;

29 case TypeIds.T_float :

30 if (valueRequired)

31 dup_x2();

32 fastore();

33 break;

34 case TypeIds.T_double :

35 if (valueRequired)

36 dup2_x2();

37 dastore();

38 break;

39 default :

40 if (valueRequired)

41 dup_x2();

42 aastore();

43 }

44 }

Figure 7.5: Java source for inlining candidate arrayAtPut().

75

1 protected void renderInlineArea(InlineArea inlineArea) {

2 List<ChangeBar> changeBarList = inlineArea.

getChangeBarList();

3

4 if (changeBarList != null && !changeBarList.isEmpty()) {

5 drawChangeBars(inlineArea, changeBarList);

6 }

7 if (inlineArea instanceof TextArea) {

8 renderText((TextArea) inlineArea);

9 //} else if (inlineArea instanceof Character) {

10 //renderCharacter((Character) inlineArea);

11 } else if (inlineArea instanceof WordArea) {

12 renderWord((WordArea) inlineArea);

13 } else if (inlineArea instanceof SpaceArea) {

14 renderSpace((SpaceArea) inlineArea);

15 } else if (inlineArea instanceof InlineBlock) {

16 renderInlineBlock((InlineBlock) inlineArea);

17 } else if (inlineArea instanceof InlineParent) {

18 renderInlineParent((InlineParent) inlineArea);

19 } else if (inlineArea instanceof InlineBlockParent) {

20 renderInlineBlockParent((InlineBlockParent) inlineArea)

;

21 } else if (inlineArea instanceof Space) {

22 renderInlineSpace((Space) inlineArea);

23 } else if (inlineArea instanceof InlineViewport) {

24 renderInlineViewport((InlineViewport) inlineArea);

25 } else if (inlineArea instanceof Leader) {

26 renderLeader((Leader) inlineArea);

27 }

28 }

Figure 7.6: Java source for inlining candidate renderInlineArea().

76

rent implementation of the abstract interpreter does not model field accesses.

Therefore, it cannot determine the value of the string argument, but it can

determine that the arguments thisStart and start are constants and their

respective values. As such, the branches in Lines 20 and 21 are simplified to

eliminate the inequality comparison for thisStart and start.

The call-ratio inliner considers inlining regionMatches() but the call ratio

alone is not beneficial enough to inline regionMatches() in any of the runs.

The static benefits found by the benefit inliner provide sufficient weight to

the nodes in the algorithm such that regionMatches() is inlined in all the

runs. Similar examples can be found by the benefit inliner across different

benchmarks where only the benefit inliner chooses to inline regionMatches().

7.4.4 loadClassHelper()

The benchmark pmd uses the function loadClass(final String className,

boolean resolveClass) from the Java standard library. The source is avail-

able in Figure 7.8. The specific implementation found in the OpenJ9 repo [20]

contains the helper function loadClassHelper() that is consistently inlined

in the benefit inliner but not consistently enough in the call-ratio inliner.

The boolean value delegateToParent can be found to be true by the ben-

efit inliner every time the loadClass(final String, boolean) and load-

ClassHelper(String, boolean, boolean) are inlining candidates.

7.4.5 StringBuilder()

In sunflow and avrora and other benchmarks, there are several uses of

StringBuilder. The value INITIAL SIZE can be determined at compilation

time and can be used to fold away the branch in Line 4 in Figure 7.9.

7.4.6 getZero()

In the pmd benchmark, we found that the function getZero(Locale l) can

determine that Locale l is not null. The new instruction found in Line 2 of

Figure 7.10 when passing the second argument maps to the non null abstract

77

1 public static long generationFromSegmentsFileName(String fileName)

{

2 if (fileName.equals(IndexFileNames.SEGMENTS)) {

3 return 0;

4 } else if (fileName.startsWith(IndexFileNames.SEGMENTS)) {

5 return Long.parseLong(fileName.substring(1+IndexFileNames.

SEGMENTS.length()),

6 Character.MAX_RADIX);

7 } else {

8 throw new IllegalArgumentException("fileName \"" + fileName + "

\" is not a segments file");

9 }

10 }

11

12 public boolean startsWith(String prefix) {

13 return startsWith(prefix, 0);

14 }

15 public boolean startsWith(String prefix, int start) {

16 return regionMatches(start, prefix, 0, prefix.count);

17 }

18 public boolean regionMatches(int thisStart, String string, int

start, int length) {

19 string.getClass(); // implict null check

20 if (start < 0 || string.count - start < length) return false;

21 if (thisStart < 0 || count - thisStart < length) return false;

22 if (length <= 0) return true;

23 int o1 = offset + thisStart, o2 = string.offset + start;

24 int end = length - 1;

25 char[] source = value;

26 char[] target = string.value;

27 target.getClass(); // implicit null check

28 source.getClass(); // implicit null check

29 // fast path check - strings are much more likely to be different

at the end

30 if (source[o1 + end] != target[o2 + end]) return false;

31 for (int i = 0; i < end; ++i) {

32 if (source[o1 + i] != target[o2 + i])

33 return false;

34 }

35 return true;

36 }

Figure 7.7: Java source for inlining candidate regionMatches().

78

1 protected Class<?> loadClass(final String className, boolean

resolveClass) throws ClassNotFoundException {

2 return loadClassHelper(className, resolveClass, true)

3 }

4 Class<?> loadClassHelper(final String className, boolean

resolveClass, boolean delegateToParent

5) throws ClassNotFoundException {

6 Object lock = isParallelCapable ? getClassLoadingLock(className)

: this;

7 synchronized (lock) {

8 // Ask the VM to look in its cache.

9 Class<?> loadedClass = findLoadedClass(className);

10 // search in parent if not found

11 if (loadedClass == null) {

12 if (delegateToParent) {

13 try {

14 if (parent == null) {

15 /*[PR 95894]*/

16 if (isDelegatingCL) {

17 loadedClass = bootstrapClassLoader.findLoadedClass(

className);

18 }

19 if (loadedClass == null) {

20 loadedClass = bootstrapClassLoader.loadClass(

className);

21 }

22 } else {

23 if (isDelegatingCL) {

24 loadedClass = parent.findLoadedClass(className);

25 }

26 if (loadedClass == null) {

27 loadedClass = parent.loadClass(className,

resolveClass);

28 }

29 }

30 } catch (ClassNotFoundException e) {

31 // don’t do anything. Catching this exception is the

normal protocol for

32 // parent classloaders telling use they couldn’t find a

class.

33 }

34 }

35 if (loadedClass == null) {

36 loadedClass = findClass(className);

37 }

38 }

39 if (resolveClass) resolveClass(loadedClass);

40 return loadedClass;

41 }

42 }

Figure 7.8: Java source for inlining candidate loadClassHelper().

79

1 public StringBuilder() {

2 this(INITIAL_SIZE);

3 }

4

5 public StringBuilder(int capacity) {

6 if (capacity < 0) {

7 throw new NegativeArraySizeException();

8 }

9 int arraySize = capacity;

10

11 if (String.enableCompression) {

12 if (capacity == Integer.MAX_VALUE) {

13 arraySize = (capacity / 2) + 1;

14 } else {

15 arraySize = (capacity + 1) / 2;

16 }

17 }

18 value = new char[arraySize];

19

20 this.capacity = capacity;

21 }

Figure 7.9: Java source for inlining candidate StringBuilder().

value for the class StringBuilder. Lines 7 and 8 have no effect on the abstract

interpreter except for manipulation of the stack. However, the call in Line 9

passes a non null abstract value for the object allocated in Line 2. The

method summary for the getZero(Locale l) function includes a null check

on argument Locale l. The constraint from the method summary is satisfied

when checked against the abstract argument generated in Line 2.

80

1 public Formatter() {

2 this(Locale.getDefault(Locale.Category.FORMAT), new

StringBuilder());

3 }

4

5 private Formatter(Locale l, Appendable a) {

6 this.a = a;

7 this.l = l;

8 this.zero = getZero(l);

9 }

10

11 private static char getZero(Locale l) {

12 if ((l != null) && !l.equals(Locale.US)) {

13 DecimalFormatSymbols dfs = DecimalFormatSymbols.

getInstance(l);

14 return dfs.getZeroDigit();

15 } else {

16 return ’0’;

17 }

18 }

Figure 7.10: Java source for inlining candidate getZero().

81

Chapter 8

Conclusion

This thesis shows a systematic way of assigning a value to inlining candidates

based on their frequency of execution and the optimizations that will take

place after inlining. While data-flow analyses are not normally used in the JIT

context due to the compiler’s time constraints, our benefit inliner performs

reasonably well compared to the greedy inlining strategy. However, there is a

low number of different inlining plans when comparing the benefit inliner to

the call-ratio inliner.

Throughout the course of this thesis, abstract interpretation, a theory of

data-flow analyses, has been used to design a fast static analysis with the

purpose of estimating the benefit of inlining decisions. The benefit inliner

combines the direct and indirect benefits of inlining into a single benefit value.

Additionally, we use a method summary to encode constraints that improve the

likelihood that a method will be inlined. Method summaries are a good way of

encoding the benefits of inlining, because they are easily understandable.

This thesis has shown a lower bound on the impact of static program analysis

on inlining decisions. While the amount of constraints that were satisfied were

relatively low, the static analysis performed in the benefit inliner lacks precision.

This thesis has outlined future work to improve the precision and usability of

the benefit inliner and increase the quantity of satisfied constraints.

82

References

[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,
J. Dolby, S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen,
J. E. B. Moss, T. Ngo, V. Sarkar, and M. Trapp, “The jikes research
virtual machine project: Building an open-source research community,”
Ibm systems journal, vol. 44, no. 2, pp. 399–417, 2005, issn: 0018-8670.
doi: 10.1147/sj.442.0399. [Online]. Available: https://doi.org/10.
1147/sj.442.0399. 4

[2] A. W. Appel, Compiling with continuations. Cambridge University Press,
2006. 23

[3] M. Arnold, S. Fink, V. Sarkar, and P. F. Sweeney, “A comparative study
of static and profile-based heuristics for inlining,” Sigplan not., vol. 35, no.
7, pp. 52–64, Jan. 2000, issn: 0362-1340. doi: 10.1145/351403.351416.
[Online]. Available: http://doi.acm.org/10.1145/351403.351416. 1, 21–23

[4] M. Arnold and B. G. Ryder, “A framework for reducing the cost of
instrumented code,” Sigplan not., vol. 36, no. 5, pp. 168–179, May 2001,
issn: 0362-1340. doi: 10.1145/381694.378832. [Online]. Available:
http://doi.acm.org/10.1145/381694.378832. 9

[5] J. Aycock, “A brief history of just-in-time,” Acm comput. surv., vol. 35, no.
2, pp. 97–113, Jun. 2003, issn: 0360-0300. doi: 10.1145/857076.857077.
[Online]. Available: http://doi.acm.org/10.1145/857076.857077. 5

[6] Azul, Zing jvm, https://www.azul.com/products/zing/, 2019. 4

[7] beehive-lab, Maxine vm, https://github.com/beehive-lab/Maxine-
VM, 2019. 4

[8] P. Berube, “Methodologies for many-input feedback-directed optimiza-
tion,” AAINR89287, PhD thesis, Edmonton, Alta., Canada, 2012, isbn:
978-0-494-89287-9. doi: 10.7939/R3DW8K. [Online]. Available: https:
//doi.org/10.7939/R3DW8K. 1, 21, 23, 70

[9] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The dacapo
benchmarks: Java benchmarking development and analysis,” Sigplan not.,
vol. 41, no. 10, pp. 169–190, Oct. 2006, issn: 0362-1340. doi: 10.1145/

83

http://dx.doi.org/10.1147/sj.442.0399
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1147/sj.442.0399
http://dx.doi.org/10.1145/351403.351416
http://doi.acm.org/10.1145/351403.351416
http://dx.doi.org/10.1145/381694.378832
http://doi.acm.org/10.1145/381694.378832
http://dx.doi.org/10.1145/857076.857077
http://doi.acm.org/10.1145/857076.857077
https://www.azul.com/products/zing/
https://github.com/beehive-lab/Maxine-VM
https://github.com/beehive-lab/Maxine-VM
http://dx.doi.org/10.7939/R3DW8K
https://doi.org/10.7939/R3DW8K
https://doi.org/10.7939/R3DW8K
http://dx.doi.org/10.1145/1167515.1167488
http://dx.doi.org/10.1145/1167515.1167488

1167515.1167488. [Online]. Available: http://doi.acm.org/10.1145/
1167515.1167488. 64

[10] E. Bodden, “The secret sauce in efficient and precise static analysis: The
beauty of distributive, summary-based static analyses (and how to master
them),” in Companion proceedings for the issta/ecoop 2018 workshops,
ser. ISSTA ’18, Amsterdam, Netherlands: ACM, 2018, pp. 85–93, isbn:
978-1-4503-5939-9. doi: 10.1145/3236454.3236500. [Online]. Available:
http://doi.acm.org/10.1145/3236454.3236500. 24

[11] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W.-m. W. Hwu, “Profile-
guided automatic inline expansion for c programs,” Softw. pract. exper.,
vol. 22, no. 5, pp. 349–369, May 1992, issn: 0038-0644. doi: 10.1002/
spe.4380220502. [Online]. Available: http://dx.doi.org/10.1002/
spe.4380220502. 21

[12] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the 4th acm sigact-sigplan symposium
on principles of programming languages, ser. POPL ’77, Los Angeles,
California: ACM, 1977, pp. 238–252. doi: 10.1145/512950.512973.
[Online]. Available: http://doi.acm.org/10.1145/512950.512973. 10, 13

[13] A. Craik, https : / / github . com / eclipse / openj9 / issues / 199 #

issuecomment-334290558, [Online; accessed March-08-2019], 2017. 9

[14] A. J. Craik, R. E. Craik, and P. R. Doyle, Expanding inline function calls
in nested inlining scenarios, US Patent App. 15/245,241, Jul. 2017. ii, 17, 26, 28, 61

[15] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M.
Wolczko, “Compiling java just in time,” Ieee micro, vol. 17, no. 3, pp. 36–
43, May 1997, issn: 0272-1732. doi: 10.1109/40.591653. [Online].
Available: doi.org/10.1109/40.591653. 4, 5

[16] J. Dean and C. Chambers, “Towards better inlining decisions using
inlining trials,” Sigplan lisp pointers, vol. VII, no. 3, pp. 273–282, Jul.
1994, issn: 1045-3563. doi: 10.1145/182590.182489. [Online]. Available:
http://doi.acm.org/10.1145/182590.182489. 2, 22–24

[17] R. Dubisch, “Lattices to logic,” 1964. 12

[18] Eclipse, Eclipse jdt core, https://github.com/eclipse/eclipse.jdt.
core, 2019. 74

[19] ——, Eclipse omr, https://github.com/eclipse/omr, 2019. 8

[20] ——, Eclipse openj9, https://github.com/eclipse/openj9, 2019. 4, 7, 77

[21] I. Gartley, M. Pirvu, V. Sundaresan, and N. Grcevski, “Experiences
in designing a robust and scalable interpreter profiling framework,”
in Proceedings of the 2013 ieee/acm international symposium on code
generation and optimization (cgo), Feb. 2013, pp. 1–10. doi: 10.1109/
CGO.2013.6494981. 9

84

http://dx.doi.org/10.1145/1167515.1167488
http://dx.doi.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
http://doi.acm.org/10.1145/1167515.1167488
http://dx.doi.org/10.1145/3236454.3236500
http://doi.acm.org/10.1145/3236454.3236500
http://dx.doi.org/10.1002/spe.4380220502
http://dx.doi.org/10.1002/spe.4380220502
http://dx.doi.org/10.1002/spe.4380220502
http://dx.doi.org/10.1002/spe.4380220502
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
https://github.com/eclipse/openj9/issues/199#issuecomment-334290558
https://github.com/eclipse/openj9/issues/199#issuecomment-334290558
http://dx.doi.org/10.1109/40.591653
doi.org/10.1109/40.591653
http://dx.doi.org/10.1145/182590.182489
http://doi.acm.org/10.1145/182590.182489
https://github.com/eclipse/eclipse.jdt.core
https://github.com/eclipse/eclipse.jdt.core
https://github.com/eclipse/omr
https://github.com/eclipse/openj9
http://dx.doi.org/10.1109/CGO.2013.6494981
http://dx.doi.org/10.1109/CGO.2013.6494981

[22] M. Gaudet and M. Stoodley, “Rebuilding an airliner in flight: A retrospec-
tive on refactoring ibm testarossa production compiler for eclipse omr,”
in Proceedings of the 8th international workshop on virtual machines
and intermediate languages, ser. VMIL 2016, Amsterdam, Netherlands:
ACM, 2016, pp. 24–27, isbn: 978-1-4503-4645-0. doi: 10.1145/2998415.
2998419. [Online]. Available: http://doi.acm.org/10.1145/2998415.
2998419. 7

[23] K. Hazelwood and D. Grove, “Adaptive online context-sensitive inlining,”
in International symposium on code generation and optimization, 2003.
cgo 2003., Mar. 2003, pp. 253–264. doi: 10.1109/CGO.2003.1191550.
[Online]. Available: https://doi.org/10.1109/CGO.2003.1191550. 1, 2, 22, 24

[24] E. K. (https://stackoverflow.com/users/223429/eugene-kuleshov), How
can the jvm verify there’s no potential operand stack overflow when loading
a class? Stack Overflow, https://stackoverflow.com/a/10541774.
eprint: https://stackoverflow.com/a/10541774. [Online]. Available:
https://stackoverflow.com/a/10541774. 6

[25] R. I. (https://stackoverflow.com/users/225757/roland-illig), Java: How to
check for null pointers efficiently, Stack Overflow, https://stackoverflow.
com/q/4795455. eprint: https://stackoverflow.com/q/4795455. [On-
line]. Available: https://stackoverflow.com/q/4795455. 55

[26] IBM and the Eclipse Foundation, Eclipse openj9, [Online; accessed
January-21-2019], 2019. [Online]. Available: https://www.eclipse.

org/openj9/. 7

[27] S. M. inc., Java se hotspot vm, [Online; accessed May-06-2019]. [Online].
Available: http://java.sun.com/javase/technologies/hotspot/. 4

[28] Intel xeon platinum 8180 processor, https://ark.intel.com/products/
120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-

GHz-, [Online; accessed 11-Februrary-2019]. 64

[29] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, “A
study of devirtualization techniques for a java just-in-time compiler,”
Sigplan not., vol. 35, no. 10, pp. 294–310, Oct. 2000, issn: 0362-1340.
doi: 10.1145/354222.353191. [Online]. Available: http://doi.acm.
org/10.1145/354222.353191. 14, 15

[30] J. B. Kam and J. D. Ullman, “Monotone data flow analysis frameworks,”
Acta inf., vol. 7, no. 3, pp. 305–317, Sep. 1977, issn: 0001-5903. doi:
10.1007/BF00290339. [Online]. Available: http://dx.doi.org/10.
1007/BF00290339. 9, 10, 12

[31] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The java virtual
machine specification-java se 8 edition, march 2014. 4–6, 34, 39, 47, 48, 52, 53

85

http://dx.doi.org/10.1145/2998415.2998419
http://dx.doi.org/10.1145/2998415.2998419
http://doi.acm.org/10.1145/2998415.2998419
http://doi.acm.org/10.1145/2998415.2998419
http://dx.doi.org/10.1109/CGO.2003.1191550
https://doi.org/10.1109/CGO.2003.1191550
https://stackoverflow.com/a/10541774
https://stackoverflow.com/a/10541774
https://stackoverflow.com/a/10541774
https://stackoverflow.com/q/4795455
https://stackoverflow.com/q/4795455
https://stackoverflow.com/q/4795455
https://stackoverflow.com/q/4795455
https://www.eclipse.org/openj9/
https://www.eclipse.org/openj9/
http://java.sun.com/javase/technologies/hotspot/
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz-
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz-
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-5M-Cache-2-50-GHz-
http://dx.doi.org/10.1145/354222.353191
http://doi.acm.org/10.1145/354222.353191
http://doi.acm.org/10.1145/354222.353191
http://dx.doi.org/10.1007/BF00290339
http://dx.doi.org/10.1007/BF00290339
http://dx.doi.org/10.1007/BF00290339

[32] R. Mangal, M. Naik, and H. Yang, “A correspondence between two ap-
proaches to interprocedural analysis in the presence of join,” in Program-
ming languages and systems, Z. Shao, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 513–533, isbn: 978-3-642-54833-8. 24

[33] M. Mohnen, “A graph—free approach to data—flow analysis,” in Com-
piler construction, R. N. Horspool, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 46–61, isbn: 978-3-540-45937-8. 10

[34] K. Organization, Kaffe, https://github.com/kaffe/kaffe, 2011. 4

[35] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22nd acm sigplan-
sigact symposium on principles of programming languages, ser. POPL
’95, San Francisco, California, USA: ACM, 1995, pp. 49–61, isbn: 0-
89791-692-1. doi: 10.1145/199448.199462. [Online]. Available: http:
//doi.acm.org/10.1145/199448.199462. 10, 25

[36] B. G. Ryder and M. C. Paull, “Elimination algorithms for data flow
analysis,” Acm comput. surv., vol. 18, no. 3, pp. 277–316, Sep. 1986,
issn: 0360-0300. doi: 10.1145/27632.27649. [Online]. Available: http:
//doi.acm.org/10.1145/27632.27649. 10

[37] M. Sagiv, T. Reps, and S. Horwitz, “Precise interprocedural dataflow
analysis with applications to constant propagation,” in Tapsoft ’95: The-
ory and practice of software development, P. D. Mosses, M. Nielsen, and
M. I. Schwartzbach, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 651–665, isbn: 978-3-540-49233-7. 10, 25

[38] R. W. Scheifler, “An analysis of inline substitution for a structured
programming language,” Commun. acm, vol. 20, no. 9, pp. 647–654, Sep.
1977, issn: 0001-0782. doi: 10.1145/359810.359830. [Online]. Available:
http://doi.acm.org/10.1145/359810.359830. 1, 21, 23

[39] A. Sewe, J. Jochem, and M. Mezini, “Next in line, please!: Exploiting the
indirect benefits of inlining by accurately predicting further inlining,”
in Proceedings of the compilation of the co-located workshops on dsm’11,
tmc’11, agere! 2011, aoopes’11, neat’11, & vmil’11, ser. SPLASH ’11
Workshops, Portland, Oregon, USA: ACM, 2011, pp. 317–328, isbn:
978-1-4503-1183-0. doi: 10.1145/2095050.2095102. [Online]. Available:
http://doi.acm.org/10.1145/2095050.2095102. 23

[40] A. Shankar, M. Arnold, and R. Bodik, “Jolt: Lightweight dynamic analysis
and removal of object churn,” Sigplan not., vol. 43, no. 10, pp. 127–142,
Oct. 2008, issn: 0362-1340. doi: 10.1145/1449955.1449775. [Online].
Available: http://doi.acm.org/10.1145/1449955.1449775. 2, 21–23

[41] M. Sharir and A. Pnueli, Two approaches to interprocedural data flow
analysis. New York, NY: New York Univ. Comput. Sci. Dept., 1978.
[Online]. Available: https://cds.cern.ch/record/120118. 24

86

https://github.com/kaffe/kaffe
http://dx.doi.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://dx.doi.org/10.1145/27632.27649
http://doi.acm.org/10.1145/27632.27649
http://doi.acm.org/10.1145/27632.27649
http://dx.doi.org/10.1145/359810.359830
http://doi.acm.org/10.1145/359810.359830
http://dx.doi.org/10.1145/2095050.2095102
http://doi.acm.org/10.1145/2095050.2095102
http://dx.doi.org/10.1145/1449955.1449775
http://doi.acm.org/10.1145/1449955.1449775
https://cds.cern.ch/record/120118

[42] O. G. Shivers, “Control-flow analysis of higher-order languages of taming
lambda,” UMI Order No. GAX91-26964, PhD thesis, Pittsburgh, PA,
USA, 1991. 24

[43] D. Simon, J. Cavazos, C. Wimmer, and S. Kulkarni, “Automatic con-
struction of inlining heuristics using machine learning,” in Proceedings
of the 2013 ieee/acm international symposium on code generation and
optimization (cgo), ser. CGO ’13, Washington, DC, USA: IEEE Com-
puter Society, 2013, pp. 1–12, isbn: 978-1-4673-5524-7. doi: 10.1109/
CGO.2013.6495004. [Online]. Available: https://doi.org/10.1109/
CGO.2013.6495004. 1

[44] Wikipedia contributors, Java virtual machine — Wikipedia, the free
encyclopedia, [Online; accessed 4-June-2019], 2019. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Java_virtual_

machine&oldid=899749630. 4

[45] X. Zhang, R. Mangal, M. Naik, and H. Yang, “Hybrid top-down and
bottom-up interprocedural analysis,” Sigplan not., vol. 49, no. 6, pp. 249–
258, Jun. 2014, issn: 0362-1340. doi: 10.1145/2666356.2594328. [On-
line]. Available: http://doi.acm.org/10.1145/2666356.2594328.

24

87

http://dx.doi.org/10.1109/CGO.2013.6495004
http://dx.doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2013.6495004
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=899749630
https://en.wikipedia.org/w/index.php?title=Java_virtual_machine&oldid=899749630
http://dx.doi.org/10.1145/2666356.2594328
http://doi.acm.org/10.1145/2666356.2594328

	Introduction
	Background
	The Java Virtual Machine
	Just in Time Compilation
	The Java Bytecode
	Run Time Structures in the jvm

	Eclipse OpenJ9
	VPConstraints
	Profiler

	Data-flow Problems
	Lattices
	Abstract Interpretation
	Interesting Run-Time Properties of Programs

	Inline Substitution
	Inlining Non-virtual Functions
	Inlining Virtual Functions
	Inlining Multiple Virtual Functions

	The Knapsack Problem
	The Greedy Solution to the Knapsack Problem
	The Dynamic Programming Solution to the Knapsack Problem
	Solving the Nested Knapsack Problem
	Inlining Dependency Tree

	Summary

	Related Work
	Inlining Strategies
	Different Types of Analyses

	idt-Based Inliner
	Building an Inlining Dependency Tree
	Dynamic Inlining Benefits

	Estimating Run-Time Argument Values
	Call Stack
	Control Flow
	Abstract Semantics
	Transfer Functions
	Relating Argument Estimates to Call Sites

	Determining Possible Optimizations
	Computing Constant String Length
	Null-Check Folding
	Instance Of Checking
	Cast Folding
	Partial Evaluation
	Combining Static and Dynamic Benefits
	Summary

	Evaluation
	Experimental Setup
	Following Best Practices
	Measurements
	Run Time
	Compilation Time
	Difference in Factors Influencing Inlining
	Generated Code Size
	Memory Usage

	Case Studies
	arrayAtPut()
	renderInlineArea()
	regionMatches()
	loadClassHelper()
	StringBuilder()
	getZero()

	Conclusion
	References

