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Background & 
Motivation



Deep Learning: Burning Hot!

4Credit: D. Donoho/ H. Monajemi/ V. Papyan “Stats 385”@Stanford



Deep Learning
Deep learning is “alchemy” 
- Ali Rahimi, NIPS 2017



Deep Learning

What are still challenging
◦ Learning from limited or/and weakly labelled data

◦ Learning from data of different types

◦ Theoretical guidance, transparency

Should we expect rigorous mathematical analysis of deep learning? Maybe, but…

We also wish to allow the possibility than an engineer or 
team of engineers may construct a machine which works, but
whose manner of operation cannot be satisfactorily 
described by its constructors because they have applied a 
method which is largely experimental – Alan M. Turing



What are still challenging
◦ Learning from limited or/and weakly labelled data

◦ Learning from data of different types

◦ Theoretical guidance, transparency

We probably should first find “frameworks” and “links” with mathematics.

Deep Learning

Deep Network

Network Architecture

Network Training

Differential Equations (DE)

Numerical DE

Optimal Control



Deep Neural Networks 
and Numerical ODE
NETWORK STRUCTURE DESIGN



Depth Neural Network

𝑓1 𝑓2 𝑓3⋯ 𝑥

Deep Neural Network

A Dynamic System?



Motivation

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒇(𝒙𝒏)

Deep Residual Learning(@CVPR2016)

𝒙𝒕 = 𝒇(𝒙)

Forward Euler Scheme

- Weinan E. A Proposal on Machine Learning via Dynamical Systems. Communications in 
Mathematical Science, 2017.

- Haber E, Ruthotto L. Stable architectures for deep neural networks[J]. Inverse Problems, 2017.
- Bo C, Meng L, et al. Reversible Architectures for Arbitrarily Deep Residual Neural Networks, 

AAAI 2018
- Lu Y. et al., Beyond Finite Layer Neural Network: Bridging Deep Architects and Numerical 

Differential Equations, ICML 2018.



Motivation

Theoretical Convergence Results is built in:
Thorpe, Matthew, and Yves van Gennip. "Deep Limits of Residual Neural Networks." arXiv
preprint arXiv:1810.11741(2018).
A New Generalization Perspective From Control:
Han, Jiequn, and Qianxiao Li. "A mean-field optimal control formulation of deep learning." arXiv
preprint arXiv:1807.01083(2018).

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒇(𝒙𝒏)

Deep Residual Learning(@CVPR2016)

𝒙𝒕 = 𝒇(𝒙)

Forward Euler Scheme



Depth Revolution

Deeper And Deeper



Depth Revolution

Going into
infinite layer

Differential Equation 
As Infinite Layer 
Neural Network



Polynet(@CVPR2017)

(b) Polynet

Zhang X, Li Z, Loy C C, et al. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks. CVPR 2017

Revisiting previous efforts in deep learning, we found that 
diversity, another aspect in network design that is relatively 
less explored, also plays a significant role

PolyStrure: 𝑥𝑛+1 = 𝑥𝑛 + 𝐹 𝑥𝑛 + 𝐹(𝐹 𝑥𝑛 )

Backward Euler Scheme:
𝑥𝑛+1 = 𝑥𝑛 + 𝐹 𝑥𝑛+1 ⇒ 𝑥𝑛+1 = 𝐼 − 𝐹 −1𝑥𝑛

Approximate the operator 𝐼 − 𝐹 −1 by 𝐼 + 𝐹 + 𝐹2 +⋯



FractalNet(@ICLR2017)

fc

fc

fc

conv

Larsson G, Maire M, Shakhnarovich G. FractalNet: Ultra-Deep Neural Networks without Residuals. ICLR 2017.

Runge-Kutta
Scheme(2order)

𝑥𝑛+1 =
𝑘1𝑥𝑛 + 𝑘2(𝑘3𝑥𝑛 + 𝑓1 𝑥𝑛 ) + 𝑓2(𝑘3𝑥𝑛 + 𝑓1 𝑥𝑛 )



ODE: Infinite Layer Neural Network 

Dynamic System Neural Network

Continuous limit Numerical Approximation

WRN, ResNeXt, Inception-ResNet, PolyNet, SENet etc…… : 
New scheme to Approximate the right hand side term
Why not change the way to discrete 𝑢𝑡?

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Experiment

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒇(𝒙𝒏)

𝒙𝒕 = 𝒇(𝒙)

@Linear Multi-step Residual Network

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Experiment

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝒇(𝒙𝒏)

@Linear Multi-step Residual Network

𝒙𝒕 = 𝒇(𝒙) 𝒙𝒏+𝟏 = (𝟏 − 𝒌𝒏)𝒙𝒏 + 𝒌𝒏𝒙𝒏−𝟏 + 𝒇(𝒙𝒏)
Linear Multi-step Scheme

Linear Multi-step Residual Network

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



conv

conv

conv

conv

conv

conv

conv

convScale 1-kScale k

(b)Linear Multi-step ResNet(a) ResNet

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



conv

conv

conv

conv

conv

conv

conv

convScale 1-kScale k

(b)Linear Multi-step ResNet(a) ResNet

Only One More 
Parameter

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Experiment

@Linear Multi-step Residual Network

(a)Resnet (b)LM-Resnet

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Experiment

@Linear Multi-step Residual Network



Explanation on the performance boost via modified equations

@Linear Multi-step Residual Network

𝟏 + 𝒌𝒏 ሶ𝒖 + 𝟏 − 𝒌𝒏
𝚫𝒕

𝟐
ሷ𝒖𝒏 = 𝒇(𝒖)𝒙𝒏+𝟏 = (𝟏 − 𝒌𝒏)𝒙𝒏+𝒌𝒏𝒙𝒏−𝟏 + 𝚫𝐭𝒇(𝒙𝒏)

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝚫𝐭𝒇(𝒙𝒏)

ResNet

LM-ResNet

ሶ𝒖 +
𝚫𝐭

𝟐
ሷ𝒖𝒏 = 𝒇(𝒖)

[1] Dong B, Jiang Q, Shen Z. Image restoration: wavelet frame shrinkage, nonlinear evolution PDEs, and beyond. 

Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 2017.

[2] Su W, Boyd S, Candes E J. A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory 

and Insights. Advances in Neural Information Processing Systems, 2015.

[3] A. Wibisono, A. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in 

optimizationProceedings of the National Academy of Sciences 2016.



Plot The Momentum

@Linear Multi-step Residual Network

𝟏 + 𝒌𝒏 ሶ𝒖 + 𝟏 − 𝒌𝒏
𝚫𝒕

𝟐
ሷ𝒖𝒏 + 𝒐 𝚫𝒕𝟑 = 𝒇(𝒖)

Learn A Momentum

𝒙𝒏+𝟏 = (𝟏 − 𝒌𝒏)𝒙𝒏+𝒌𝒏𝒙𝒏−𝟏 + 𝚫𝐭𝒇(𝒙𝒏)



Plot The Momentum

@Linear Multi-step Residual Network

𝟏 + 𝒌𝒏 ሶ𝒖 + 𝟏 − 𝒌𝒏
𝚫𝒕

𝟐
ሷ𝒖𝒏 + 𝒐 𝚫𝒕𝟑 = 𝒇(𝒖)

Learn A Momentum

𝒙𝒏+𝟏 = (𝟏 − 𝒌𝒏)𝒙𝒏+𝒌𝒏𝒙𝒏−𝟏 + 𝚫𝐭𝒇(𝒙𝒏)



Connection to stochastic dynamic

Noise can avoid overfit?

Dynamic System

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Gastaldi X. Shake-Shake regularization. ICLR Workshop Track2017.

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝜼𝒇𝟏 𝒙 + 𝟏 − 𝜼 𝒇𝟐 𝒙 , 𝜼 ∼ 𝑼 𝟎, 𝟏Shake-Shake regularization

Apply data augmentation 
techniques to internal 
representations.

= 𝒙𝒏 + 𝒇𝟐 𝒙𝒏 +
𝟏

𝟐
𝒇𝟏 𝒙𝒏 − 𝒇𝟐 𝒙𝒏 + (𝜼 −

𝟏

𝟐
) 𝒇𝟏 𝒙𝒏 − 𝒇𝟐 𝒙𝒏

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018

Connection to stochastic dynamic



Huang G, Sun Y, Liu Z, et al. Deep Networks with Stochastic Depth ECCV2016.

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝜼𝒏𝒇 𝒙Deep Networks with Stochastic Depth 

To reduce the effective length of 
a neural network during training, 
we randomly skip layers entirely. 

= 𝒙𝒏 + 𝑬𝜼𝒏𝒇 𝒙𝒏 + 𝜼𝒏 − 𝑬𝜼𝒏 𝒇(𝒙𝒏)

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018

Connection to stochastic dynamic



Noise can avoid overfit?

ሶ𝑋 𝑡 = 𝑓 𝑋 𝑡 , 𝑎 𝑡 + 𝑔(𝑋 𝑡 , 𝑡)𝑑𝐵𝑡 , 𝑋 0 = 𝑋0

The numerical scheme is only need 
to be weak convergence!

𝑬𝒅𝒂𝒕𝒂(𝑙𝑜𝑠𝑠(𝑋 𝑇 )

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018

Connection to stochastic dynamic



Huang G, Sun Y, Liu Z, et al. Deep Networks 
with Stochastic Depth ECCV2016.

𝒙𝒏+𝟏 = 𝒙𝒏 + 𝜼𝒏𝒇 𝒙Deep Networks with Stochastic Depth 

To reduce the effective length of 
a neural network during training, 
we randomly skip layers entirely. 

= 𝒙𝒏 + 𝑬𝜼𝒏𝒇 𝒙𝒏 + 𝜼𝒏 − 𝑬𝜼𝒏 𝒇(𝒙𝒏)

We need 1 − 2𝑝𝑛 = 𝑂(√Δ𝑡)

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018

Connection to stochastic dynamic
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conv

conv

conv

conv

conv

conv

convScale 1-kScale k

(b)Linear Multi-step ResNet(a) ResNet

Stochastic 
Strategy As 
Previous

𝟏 + 𝒌𝒏 ሶ𝒖 + 𝟏 − 𝒌𝒏
𝚫𝒕

𝟐
ሷ𝒖𝒏 + 𝒐 𝚫𝒕𝟑 = 𝒇 𝒖 + 𝒈 𝒖 𝒅𝑾𝒕

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Experiment

@Linear Multi-step Residual Network

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Conclusion

@Beyond Finite Layer Neural Network

Neural Network Dynamic System

Stochastic Learning Stochastic Dynamic System

New Discretization

LM-ResNet

Original One:  LM-Resnet56 Beats Resnet110

Stochastic Depth One:  LM-Resnet110 Beats Resnet1202

Modified Equation

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential 
equations." ICML 2018



Earlier Evidence: LISTA

Gregor, K., and LeCun, Y. Learning fast approximations of sparse coding. In ICML 2010 (pp. 399-406). 

0)0()),(()1(  ZkSZXWhkZ e  

ISTA

Unrolling

𝒁(𝒌 + 𝟏)

LISTA

Unrolled Dynamics



Earlier Evidence: TRD

Learning a diffusion process for denoising

Chen Y, Yu W, Pock T. On learning optimized reaction diffusion processes for effective image restoration CVPR2015

Average PSNR among a dataset with 68 images

Unrolled Dynamics



Recent Evidence: Optimization 
Algorithm Inspired DNN

 Deep neural network as optimization algorithm:

 Faster algorithm result in better deep neural network:

𝒙𝒌+𝟏 = 𝝓(𝑾𝒙𝒌) 𝒙𝒌+𝟏 = 𝒙𝒌 − 𝛁𝑭(𝒙𝒌)

Heavy Ball Net:   
𝑥𝑘+1 = 𝑇 𝑥𝑘 + 𝑥𝑘 − 𝑥𝑘−1

Accelerated GD Net:    

𝑥𝑘+1 =෍

𝑗=0

𝑘

𝛼𝑘+1,𝑗𝑇(𝑥𝑗) + 𝛽 𝑥𝑘 −෍

𝑗=0

𝑘

ℎ𝑘+1,𝑗𝑥𝑗

Li H, Yang Y, Chen D and Lin Z. Optimization Algorithm Inspired Deep Neural Network Structure Design. ACML 2018.



X. Wang, et al. "Non-local neural networks." CVPR 2018.

Recent Evidence: Nonlocal DNN

Residual Block:

ResNet Block:

Nonlocal Block:

• “Kinetics” data set: 246k training
videos and 20k validation videos.
• Task: classification involving 400
human action categories

Instability when using multiple blocks!



Nonlocal diffusion

Nonlocal Neural 
Network

Nonlocal Markov Jump 
Process

Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling. NeurIPS 2018.

Design a new stable block

Recent Evidence: Nonlocal DNN as 
Nonlocal Diffusion



Deep Neural Networks 
and Numerical PDE
DATA DRIVEN PHYSIC LAW DISCOVERY



Can we learn principles (e.g. PDEs) from data?

PDE-Net: Learning PDEs from Data

Dynamics of actin in Immunocytoskeleton Dynamics of Mitochondria

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.

Credit: Kebin Shi, 
Physics@PKU



Can we learn principles (e.g. PDEs) from data?

Preliminary attempt: 
◦ Combine deep learning and numerical PDEs

Objectives:
◦ Predictive power (deep learning)
◦ Transparency (numerical PDEs) 

PDE-Net: Learning PDEs from Data

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.

S. Sato et al., Siggraph 2018



PDE-Net: Learning PDEs from Data
PDE-Net: a flexible and transparent deep network

42

𝜕𝑢

𝜕𝑡
= 𝐹(𝑥, 𝑢, 𝛻𝑢, 𝛻2𝑢,… )Assuming：

𝛿𝑡-block PDE-Net: multiple 𝛿𝑡-blocks

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.

Prior knowledge on 𝐹:
• Type of the PDE
• Maximum order



PDE-Net: Learning PDEs from Data
Constraints on kernels (granting transparency)
◦ Moment matrix (related to vanishing moments in wavelets)

◦ We can approximate any differential operator at any prescribed order by constraining 𝑀(𝑞)

◦ For example: approximation of  
𝜕𝑓

𝜕𝑥
with a 3 × 3 kernel

1st order
learnable

2st order
learnable

1st order
frozen

Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data
Numerical experiments: data set generation

◦ Convection-diffusion equation (linear)

◦ Diffusion with a nonlinear source (nonlinear)

◦ Initialization: random function with frequency ≤ 9 and 6

◦ Assumptions on 𝐹

◦ Linear: 

◦ Nonlinear

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data
Numerical experiments: results

◦ Prediction: linear (5 × 5 and 7 × 7 filters)

5 × 5

7 × 7

Learnable filters (orange) v.s. frozen filters (blue) in prediction

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data
Numerical experiments: results

◦ Model estimation: linear

46

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data
Numerical experiments: results

◦ Prediction and model estimation: nonlinear (7 × 7 filters)

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net 2.0: Numeric-Symbolic Hybrid 
Representation
Symbolic network (granting transparency)

Prior knowledge on 𝐹:
• Addition and multiplication of 

the terms;
• Maximum order.

𝜕𝑢

𝜕𝑡
= 𝐹(𝑢, 𝛻𝑢, 𝛻2𝑢,… )Assuming：



PDE-Net 2.0: Numeric-Symbolic Hybrid 
Representation
Symbolic network (granting transparency)

Long Z, Lu Y and Dong B. “PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network”, arXiv:1812.04426, 2018

Motivated by EQL
• Sahoo, S. S.; Lampert, C. H. & Martius, G. ICML 2018.
• Martius, Georg, and Christoph H. Lampert. arXiv

preprint arXiv:1610.02995 (2016).

𝜂1

𝜉1 𝜂2

𝜉2

𝑣

𝑤

⋯

𝑢

𝑓(⋅,⋅)

𝑣

𝑤

⋯

𝑢

𝑓(⋅,⋅)

𝑣

𝑤

⋯

𝑢

⋯

𝐹(𝑢, 𝑣,
𝑤,… )

W3

⋅ +𝑏3

W1

⋅ +b1

W2

⋅ +b2

identity identity

More Constraints:
• Pseudo-upwinding
• Sparsity on moment matrices
• Sparsity on the symbolic network



PDE-Net 2.0: Numeric-Symbolic Hybrid 
Representation
Weaker assumption on 𝐹: unknown type

Long Z, Lu Y and Dong B. “PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network”, arXiv:1812.04426, 2018

𝜈 = 0.05

Remainer weights of 𝒖, 𝒗

Prediction

Model recovery

Burger’s Equation



Application In Image 
Processing
BLIND IMAGE RESTORATION



Deep Learning For Restoration

Network 1             𝝈 = 𝟐𝟓

One Noise Level One Net



Deep Learning For Restoration

Network 1             𝝈 = 𝟐𝟓

Network 2             𝝈 = 𝟑𝟓

One Noise Level One Net



What We Want

One   Model

One Model For All Noise Level



What Happen When Meet High Noise Level

BM3D DnCNN
(Zhang et al. TIP, 2017)

Fails!



PDEs In Image Processing
input output

processing

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Moving Endpoint Control

Early Stopping Is 
A Regularization

Can we train it?

Need to be learn

Terminal time as a variable to train

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Our Approach: Dynamically Unfolding Recurrent Restorer

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Restoration Unit

Policy Unit

A Good Policy Leads
To A Good Restorer

Given A Policy -> Train The Restorer

- Good Policy Leads To Better Restorer
- Good Policy Leads To Better Generalization

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



DURR Model
Discretize: Turn To An RL Problem

Consider the objective as a reward

You can also choose other 
approaches:
- A good image quality assessment without 

reference.
- A Classifer
- Fixed loop times according to the noise level
- A Person

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



DURR Model
Results

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



DURR Model
Results

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Nose Level Doesn’t Seen In Training

DURR

DnCNN

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



JPEG Deblocking

Ground Truth DnCNN-B Our DURR

One Model For All QF

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Application In Medical 
Imaging
UNROLLING REVISITED



Sun, Li, and Xu. Deep ADMM-net for compressive sensing MRI. NIPS 2016.

Unrolled Dynamics: 
ADMM-Net



Sun, Li, and Xu. Deep ADMM-net for compressive sensing MRI. NIPS 2016.

Unrolled Dynamics: 
ADMM-Net



Further Application of Unrolling –
Task-Based Image Reconstruction

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)

Two-step approach: imaging and diagnosis

Problems of the two-step approach:
◦ Evaluation of the reconstructed image quality.

◦ Redundancy in data for a specific task.

Can we make it end-to-end, and does it help? 

Image 
Reconstruction

Abnormality 
Detection



Further Application of Unrolling –
Task-Based Image Reconstruction

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)

Unrolled SQS

ROC



Further Application of Unrolling –
Task-Based Image Reconstruction

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)

ROC Cross Entropy



Further Application of Unrolling –
Task-Based Image Reconstruction

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)

Similar Ideas



Deep Network Training
OPTIMAL CONTROL PERSPECTIVE



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms
RegularizationLoss Function

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning

Original ODE

𝑯 = 𝒑 ⋅ 𝒇 − 𝑳



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms
RegularizationLoss Function

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning

Costate

𝑯 = 𝒑 ⋅ 𝒇 − 𝑳



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms
RegularizationLoss Function

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning

Maximum 
Principle

𝑯 = 𝒑 ⋅ 𝒇 − 𝑳



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning

Solving it via Gauss-Seidel Iteration



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning

Solving it via Gauss-Seidel Iteration

Back Propagation: argmax step 
instead of a gradient ascent 



Works For Binary NN

Li Q, Hao S. An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks. ICML2018.



Neural ODE

Chen, Tian Qi, et al. “Neural Ordinary Differential Equations.” NeurIPS 2018  (best paper)

NODE

Recall the PMP



VAE and Normalizing Flow

M. I. Jordan, et al., An introduction to variational methods for graphical models. Machine Learning, 37(2):183–233, 1999.

Variational Principle: estimating the density of data 𝑥 by maximizing −𝐹(𝑥)



VAE and Normalizing Flow

Fei-Fei Li & Justin Johnson & Serena Yeung, Lecture 12-90, May 15, 2018



VAE and Normalizing Flow

Rezende, Danilo, and Shakir Mohamed. "Variational Inference with Normalizing Flows." ICML 2015.

Normalizing flow for variational inference: provides a more flexible family of 
estimators of the unknown 𝑝(𝑧|𝑥)

where 𝑓𝑗 are smooth invertible maps 



NODE for Normalizing Flow

Chen, Tian Qi, et al. “Neural Ordinary Differential Equations.” NeurIPS 2018  (best paper)

Use the change of variables theorem to compute exact changes in 
probability if samples are transformed through a bijective function 𝑓:

Use NODE:

Reducing the calculation cost of gradient from 𝑶(𝒅𝟑) to 𝑶(𝒅)



VAE and Normalizing Flow

D. P. Kingma and P. Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS 2018.

Normalizing flow for image synthesis:



VAE and Normalizing Flow

D. P. Kingma and P. Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." NeurIPS 2018.

Normalizing flow for image synthesis:



Applied Math Perspective on Deep 
Learning
Take home message:

Deep Network

Network Architecture

Network Training

Differential Equations (DE)

Numerical DE

Optimal Control

From David Wipf’s Slide@ICASSP2018



Thanks and Questions?


