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Deep Learning: Burning Hot!

Google Trends Compare

® Deep learning . ® Statistical Analysis @ Data Analysis .
z + Add comparison
Search term Search term Search term
Worldwide Past Syears ¥ All categories Web Search «
Interest over time @ -
A ~ N o
Average Apr 22, 2012 Jan 12, 2014 Oct 4, 2015

Credit: D. Donoho/ H. Monajemi/ V. Papyan “Stats 385" @Stanford




Eric Xing added 3 new photos. -

Deep Learning

. P4 ”
Deep lea rning Is aIChemy (picture from a friend) This is a sad scene at NIPS 2017. Being alchemy is
certainly not a shame, not wanting to work on advancing to chemistry is

- Al Rahlml, NIPS 2017 a shame!

THEORETICAL ™
D“E!ITE
TO MACHINE LEARNING

WITH SEVEN SPARKS FROM
THE CAUSAL REVOLUTION

Juses Peart

woia o

oi.f_ *s° You, Kuan Chen, Fisher Yu and 71 others 11 Comments 21 Shares




Deep Learning

What are still challenging
o Learning from limited or/and weakly labelled data

> Learning from data of different types
> Theoretical guidance, transparency

Should we expect rigorous mathematical analysis of deep learning? Maybe, but...

We also wish to allow the possibility than an engineer or
team of engineers may construct a machine which works, but
whose manner of operation cannot be satisfactorily
described by its constructors because they have applied a
method which is largely experimental — Alan M. Turing




Deep Learning

What are still challenging
o Learning from limited or/and weakly labelled data

> Learning from data of different types
> Theoretical guidance, transparency

We probably should first find “frameworks” and “links” with mathematics.

Deep Network amm——) Differential Equations (DE)
Network Architecture ———> Numerical DE
Network Training —— Optimal Control



Deep Neural Networks
and Numerical ODE

NETWORK STRUCTURE DESIGN




Depth Neural Network

Deep Neural Network

f1 (fz(f3'“(x)))

A Dynamic System?



Motivation

Deep Residual Learning(@CVPR2016)

) xg =) el
Forward Euler Scheme \

- Weinan E. A Proposal on Machine Learning via Dynamical Systems. Communications in
Mathematical Science, 2017.

- Haber E, Ruthotto L. Stable architectures for deep neural networks[J]. Inverse Problems, 2017.

- Bo C, Meng L, et al. Reversible Architectures for Arbitrarily Deep Residual Neural Networks,
AAAI 2018

- Lu Y. et al., Beyond Finite Layer Neural Network: Bridging Deep Architects and Numerical
Differential Equations, ICML 2018.




Motivation

Deep Residual Learning(@CVPR2016)

) xg =) el
Forward Euler Scheme ‘3 3 :

Theoretical Convergence Results is built in:

Thorpe, Matthew, and Yves van Gennip. "Deep Limits of Residual Neural Networks
preprint arXiv:1810.11741(2018).

A New Generalization Perspective From Control:

Han, Jiequn, and Qianxiao Li. "A mean-field optimal control formulation of deep learning." arXiv
preprint arXiv:1807.01083(2018).




Depth Revolution

Deeper And Deeper

28.2

‘ | 25.8
152 layers |

\\
LZZ layers 19 |ayers I I
\ 6.7
3. 57 I_ g I ! 8 layers l ' 8 layers [ { shallow
I----I~~--

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet




Depth Revolution

Going into
infinite layer

S

. . . \
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Polynet(@CVPR2017)

Revisiting previous efforts in deep learning, we found that
diversity, another aspect in network design that is relatively
less explored, also plays a significant role

PolyStrure: Xn+1 = Xn + F(xn) + F(F(x,))

Backward Euler Scheme:
Xn+1 = Xn + F(Xpi1) 2 Xy = (U = F)7lx,

(b) Polynet Approximate the operator (I — F)~! byl + F + F% + ---

Zhang X, Li Z, Loy C C, et al. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks. CVPR 2017



FractalNet(@ICLR2017)

-» »

Runge-Kutta

Scheme(2order)

Xn+1 =

kyxn + ko(ksxy + f1(x)) + folksxy, + f1(x))

Larsson G, Maire M, Shakhnarovich G. FractalNet: Ultra-Deep Neural Networks without Residuals. ICLR 2017.



ODE: Infinite Layer Neural Network

Dynamic System ﬁ Neural Network

Continuous limit Numerical Approximation

Table 1: In this table, we list a few popular deep networks, their associated ODEs and the numerical
schemes that are connected to the architecture of the networks.

Network Related ODE Numerical Scheme
ResNet, ResNeXt, etc. u; = f(u) Forward Euler scheme
PolyNet ur = f(u) Approximation of backward Euler scheme
FractalNet us = f(u) Runge-Kutta scheme
RevNet X = f(Y),Y = f2(X) Forward Euler scheme

WRN, ResNeXt, Inception-ResNet, PolyNet, SENet etc...... :
New scheme to Approximate the right hand side term
Why not change the way to discrete u;?

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Experiment

@Linear Multi-step Residual Network

) x=f)

C

Xn+1 = Xp + f(Xp)

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Experiment

@Linear Multi-step Residual Network
Linear Multi-step Scheme

) x= 00 M)t = 0 k)X + knXaoq + ()

C

Xn+1 = Xp + f(Xp)

Linear Multi-step Residual Network

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



onv

C
Scale 1-k conv

(b)Linear Multi-step ResNet

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Only One More
Scale 1-k 500 Y
Parameter

(b)Linear Multi-step ResNet

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Experiment

Table 2: Comparisons of LM-ResNet/LM-ResNeXt with other networks on CIFAR

@Linear Multi-step Residual Network Model Layer Error Params  Dataset
| ResNet (He et al. (2015b)) 20 875 027M  CIFARIO
ResNet (He et al. (2015b)) 32 7.51 0.46M CIFAR10
ResNet (He et al. (2015b)) 44 717  0.66M  CIFARIO
ResNet (He et al. (2015b)) 56 6,97 0.85M CIFAR10
I ResNet (He et al. (2016)) 110, pre-act 6.37 1.7M CIFARI10 ]
LM-ResNet (Ours) 20, pre-act 8.33 0.27TM CIFARI10
LM-ResNet (Ours) 32, pre-act 7.18 0.46M CIFARI10
LM-ResNet (Ours) 44 pre-act 6.66 0.66M CIFARI10
| LM-ResNet (Ours) 56, pre-act 6.31 0.85M  CIFARIO |

94.0

2x fewer parameters

C

(a)Resnet (b)LM-Resnet

Test Accuracy(%)

2 lll é 8I 1I0 1I2 14 16 18
#Parameters(x109)

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Experiment

@Linear Multi-step Residual Network
Table 2: Linear Multi-step Resnet Test On Cifar

Model Layer Accuracy Params Dataset
Resnet 20 91.25 0.27M Cifarl0
Resnet 32 92.49 (0.46M CifarlQ
Resnet 44 9283 (.66M CifarlQ . S
Resnet P 9303 0.85M Cifarl0 Table 3: Single-crop error rate on ImageNet (validation set)
Resnet 110 93.63 1.7M Cifarl0 Model Layer top-1  top-5
LM-ResnetiOurs) 20 91.67 (0.27M CifarlQ ResNet (He et al (2015b)) 50 24 7 1R
LM- Eesnet(Ours) 32 92.82 (0.46M Cifarl0 ResNet (He et al. (2015b)) 101 236 7.1
LM- Resnet{Ours) 44 9298 (.66M Cifarl0 ResNet (He et al. (2015b)) 152 23.0 6.7
LM- Resnet(Ours) 56 93.69 (0.85M Cifarl0
EM- Resnet{Ours) 40 91.75 (0.27M Cifarl0 LM-ResNet [Ou]_'s) 50, pre-act 23 8 7.0

LM-ResNet (Ours) 101, pre-act 22.6 6.4

Resnet 110 72.24 1.7TM Cifar100
Resnet 164 75.67 2.55M Cifar100
Eespet L2202 7720 IR 88N Citarl
ResneXt 29( 8= bdd) 82.23 34.4M Cifar100
ResneXt 20016 x=64d) 82.69 68, 1M Cifarl 3
LM-ResnetiOurs) 110 T3.16 1.7TM Cifar 100
LM-ResnetiOurs) 165 16,74 2.55M Cifar 100
LM-ResneXtiOurs) 29{8=6dd) 82.51 34.4M Cifar100
LM-ResneXtiOurs) 29{16x64d) 83.21 HE. 1M Cifar100




Explanation on the performance boost via modified equations

@Linear Multi-step Residual Network

ResNet

Yus1 = X+ AU (x,) — i+ 5t = ()

LM-ResNet

A
Xn+1 = (1 — kn)xn+knxn_1 + Atf(xn) — (1 + kn) u+ (1 - kn) Ttun = f(u)

[1] Dong B, Jiang Q, Shen Z. Image restoration: wavelet frame shrinkage, nonlinear evolution PDEs, and beyond.
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 2017.

[2] Su W, Boyd S, Candes E J. A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory
and Insights. Advances in Neural Information Processing Systems, 2015.

[3] A. Wibisono, A. Wilson, and M. |. Jordan. A variational perspective on accelerated methods in
optimizationProceedings of the National Academy of Sciences 2016.



Plot The Momentum

@Linear Multi-step Residual Network

Xn+1 = (1 - kn)xn‘l'knxn—l + Atf(xn)

Learn A Momentum

1.0

1]

b

LM-ResNet20
LM-ResNet32
LM-ResNet44 | |
LM-ResNet56

l

=1.5
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Index Of Residual Block

20

25

ke

1.0

0.5

0.0}

-1.0F
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Plot The Momentum

@Linear Multi-step Residual Network

Xn+1 = (1 - kn)xn+knxn—1 + Atf(xn)

-

Learn A Momentum

1.0 ! ! !

LM-ResNet20
LM-ResNet32
LM-ResNet44 ||
LM-ResNet56

(AN

05SNNA A A . L

0.0
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Index Of Residual Block

o(At3) = f(w)

~—4 LM-ResNetll0

~—4 |LM-ResNetl64
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Index Of Residual Block
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Connection to stochastic dynamic

Noise can avoid overfit?

Dynamic System

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential
equations." ICML 2018




Connection to stochastic dynamic
Shake-Shake regularization Xn+1 = Xp + Nf1(x) + (X —n)f2(x),n ~ U0, 1]
1 . 1
= Xp T fZ(xn) + E(fl(xn) - fZ(xn)) + (71 - E)(fl(xn) - fZ(xn))

1

m(fl (X) — f2(X)) ® Anx1,08 nv—1]dB:

a; + rand(0,1)

Conv 3x3

Cony 3x3 Conv 3x3

Apply data augmentation

Mul(1-a) Mul(p) Mul(1-§) Mul(0.5) Mul(0.5)

techniques to internal
representations.

B« rand(0,1)

Figure 1: Left: Forward training pass. Center: Backward training pass. Right: At test time.

Gastaldi X. Shake-Shake regularization. ICLR Workshop Track2017.

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Connection to stochastic dynamic
Deep Networks with Stochastic Depth  Xn+1 = Xn + 1 f (x)

= Xp T En",,f(xﬂ,) + (T.’", - Enﬂ.),f(x".)

1.0

Vo) (1= p(t)f(X) ® [Inx1. 08 n_1]dB:.

0.9

active inactive

To reduce the effective length of

a neural network during training,
we randomly skip layers entirely.

Input

Fig. 2. The linear decay of py illustrated on a ResNet with stochastic depth for pg=1

and pr, = 0.5. Conceptually, we treat the input to the first ResBlock as Hg, which is
always active.

Huang G, Sun, Liu Z, et al. Deep Networks with Stochastic Depth ECCV2016.

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Connection to stochastic dynamic

Noise can avoid overfit?

X() = f(X(®),a®)) + gX(®),t)dB,, X(0) = X,

\ 4

The numerical scheme is only need
/ to be weak convergence!

Eqqta(loss(X(T))

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Connection to stochastic dynamic

Deep Networks with Stochastic Depth  Xn+1 = Xn + 1 f (x)
= Xn + ENyf (x3) +{(0 — En) f (x3)

We need 1 — 2p,, = 0(VAt)

To reduce the effective length of

a neural network during training,
we randomly skip layers entirely.

Huang G, SunY, Liu Z, et al. Deep Networks
with Stochastic Depth ECCV2016.

20 38 56 74 92 110
network depth (in layers)

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



. At .
1+k)u+(1- kn)iun +o(At3) = f(w) + glw)dw,

Stochastic

Scale 1-k Strategy As
Previous

(b)Linear Multi-step ResNet

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Experiment

@Linear Multi-step Residual Network

Table 4: Test on stochastic training strategy on CIFAR10

Model Layer Training Strategy Error
ResNet(He et al. (2015b)) 110 Original 6.61
ResNet(He et al. (2016)) 110,pre-act  Orignial 6.37
ResNet(Huang et al.|(2016b)) 56 Stochastic depth 5.66
ResNet(Our Implement) S6.pre-act  Stochastic depth 3.55
ResNet(Huano et al (Q016b) 110 Stochastic depth 5725
ResNet(Huang et al.|(2016b)) 1202 Stochastic depth 4.91
ResNet(Ours) 110,pre-act  Gaussian noise (noise level = 0.001) 5.52
I M-ResNet(Ours) 56.pre-act Stochastic depth 5.14
[LM-ResNet(Ours) 110,pre-act  Stochastic depth 4.80

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Conclusion

@Beyond Finite Layer Neural Network

Neural Network ﬁ Dynamic System

Stochastic Learning _ Stochastic Dynamic System

New Discretization

Original One: LM-Resnet’ ¢ Beats Resnet Modified Equation

LM-ResNet

- Stochastic Depth One: LM-Resnet Beats Resnet

Lu, Yiping, et al. "Beyond finite layer neural networks: Bridging deep architectures and numerical differential

equations." ICML 2018



Earlier Evidence: LISTA

Unrolled Dynamics

Z(k+1)=h,(W,X +SZ(k)), Z(0)=0 X~ W_ e -7
ISTA
et S -

104 ’ 8 z Unrolling ‘
ZI_ . ¢ X+, L g‘ g‘ {L Z(ke+1)
1+[x FISTA (4%) ) * . 7—|—‘+-S 7—|—£+S 7—~—Z+S 7—~—Z+

x FISTA (1x) .
0.5} .
® LISTA (4x)
e LISTA (1x)
, - o LISTA
0 1 2 3 5

Gregor, K., and LeCun, Y. Learning fast approximations of sparse coding. In ICML 2010 (pp. 399-406).



Earlier Evidence: TRD

Unrolled Dynamics

Reaction force o o=15
VAT (A1) Method  —5—55— St —Irp. - TRD..;
BM3D 31.08 2856 | 2 31.14 31.30
ST T LSSC 3127 2870 5 3130 31.42
S EPLL 31.19 2868 8 31.34 31.43
N T T Y opt-MRF  31.18 28.66 o =25
Nonlinearity D RTF5 - 28.75 TRD5 X5 TRD'? X7
. N WNNM 3137 2883 | 2 2858 28.77
0 Al CSF2.. 31.14 2860 5 2878 28.92
Convolution — Convolution CSF>.. 3124 2872 | 8 28.83 28.95
Ne Average PSNR among a dataset with 68 images
Up = Up—1 — (Z ki * @i (kj % wp—1) + A (w1 — fn)) ° ° °
i=1

Learning a diffusion process for denoising

ChenY, Yu W, Pock T. On learning optimized reaction diffusion processes for effective image restoration CVPR2015



Recent Evidence: Optimization
Algorithm Inspired DNN

1 Deep neural network as optimization algorithm:

X1 = OWx) @ x4 = x — VF(xy)
] Faster algorithm result in better deep neural network:

. Model CIFAR-10 | CIFAR-100
Heavy Ball Net: ResNet (n = 9) 10.05 39.65
X1 = T(xp) + X — Xpe—1 HB-Net (16) (n = 9) 10.17 38.52
ResNet (n = 18) 9.17 38.13
Accelerated GD Net: HB-Net (16) (n = 18) 8.66 36.4
k k DenseNet (k= 12, L = 40)* 7 27.55
_ AGD-Net (18) (k =12, L = 40 6.44 26.33
X1 = z Aps1,;T(xj) + 0| Xk Z Rie+1,jXj DenseNet EL-. i(m, L =52) | 6.05 26.3
J=0 J=0 AGD-Net (18) (k =12, L =52) |  5.75 24.92

Li H, Yang Y, Chen D and Lin Z. Optimization Algorithm Inspired Deep Neural Network Structure Design. ACML 2018.



Recent Evidence: Nonlocal DNN

* “Kinetics” data set: 246k training
videos and 20k validation videos.

* Task: classification involving 400
human action categories

model top-1  top-5

baseline | 71.8 89.7
I-block | 72.7 90.5

RS0 S5-block | 73.8 91.0
10-block | 74.3 91.2
baseline | 73.1 91.0

R101 I-block | 74.3 91.3

S-block | 75.1 917
Residual Block:  ZF+! .= ZF 4 F(ZF . Wk) 10-block | 75.1  91.6

(¢) Deeper non-local models: we
compare 1, 5, and 10 non-local blocks
added to the C2D baseline. We show
ResNet-30 (top) and ResNet-101 (bot-
tom) results.

ResNet Block: F(Z*; W*)=WFf (WFf(Z%)), f=ReLUoBN

W.Fc
Nonlocal Block: [F(Z";W*)]. = rghzw(zf,z‘?ﬁ
T vlj

Instability when using multiple blocks!

X. Wang, et al. "Non-local neural networks." CVPR 2018.



Recent Evidence: Nonlocal DNN as
Nonlocal Diffusion

Design a new stable block

ko) . o
n+l . on Nonlocal diffusion
Zi =0 e » w(Xi X;)(Z} - 27
1 Vj
Model Error (%)
bascline 819 Nonlocal Neural
2-block (original) 7.83
3-block (original) 8.28 Network
4-block (original) 15.02
Same Place 2-block (proposed) 7.74
3-block (proposed) 7.62
4-block (proposed) | 7.37 Nonlocal Markov Jump
5-block (proposed) 7.29
6-block (proposed) |  7.55 Process
: 3-block (original) 8.07
Different Places 3-block (proposed) 7.33

Tao Y, Sun Q, Du Q, et al. Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling. NeurlIPS 2018.



Deep Neural Networks
and Numerical PDE

DATA DRIVEN PHYSIC LAW DISCOVERY




PDE-Net: Learning PDEs from Data

Can we learn principles (e.g. PDEs) from data?

Credit: Kebin Shi,
Physics@PKU

Dynamics of actin in Immunocytoskeleton Dynamics of Mitochondria

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data

Can we Iearn prmuples (e.g. PDEs) from data?

Prellmlnary attempt S. Satoetal Siggraph 2018
> Combine deep learning and numerical PDEs

Objectives:
° Predictive power (deep learning)

> Transparency (numerical PDEs)

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data

PDE-Net: a flexible and transparent deep network Prior knowledge on F:
du Type of the PDE
Assuming : E = F(x’ u,Vu, Vzu, ) *  Maximum order

ot-block PDE-Net: multiple 6t-blocks

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data

Constraints on kernels (granting transparency)
> Moment matrix (related to vanishing moments in wavelets)

1 . .

E:k@—lkf—lq[/ﬁ ko)

- (5 I 1 2 1, 2
(e =1y —1)! =

> We can approximate any differential operator at any prescribed order by constraining M (q)

M(Q) — (m’i,j)NXNg Where m’l,j —

o For example: approximation of g—i with a 3 X 3 kernel

0 0 = 0O 0 0 0 0 0

1 % % 1 0 =% I 0 0

* Kk 0 = * 0 0 0
1t order 25t order 1st order
learnable learnable frozen

Dong, Q. Jiang and Z. Shen, Multiscale Modeling & Simulation, 2017

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data

Numerical experiments: data set generation
> Convection-diffusion equation (linear)

{ ou = a(x, Y)ue + b(x, Y) Uy + Clpr + dity,
ult=0 = uo(x,y), a(x,y) = 0.5(cos(y) + x(2m — x)sin(x)) + 0.6,
b(x,y) = 2(cos(y) + sin(x)) + 0.8,
o Diffusion with a nonlinear source (nonlinear) ¢c=0.2and d = 0.3
Ou
gu — cAu + fs(u)
It = c=0.3and f,(u) = 15sin(u
{ ult:O :uO(:’Uay)a f( ) ( )

o Initialization: random function with frequency < 9 and 6
o Assumptions on F

Oty
° Linear: X,
Z fij y ;Ulay.?
0<itj<4
. o'y
> Nonlinear = ) file y 9270y + fs(u)
1<i+5<2

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data

Numerical experiments: results
o Prediction: linear (5 X 5 and 7 X 7 filters)

REE

warm-up 1 ot-block 3 ot-block 10 6t-block 19 6t-block

5%5

15 30 45 3 30
warm-up 1 ot-block 3 oi-block

5 30 45 (S 15 30 A5
10 ot-block 19 ot-block

7 X7 ‘° //

T
=001

Learnable filters (orange) v.s. frozen filters (blue) in prediction

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net: Learning PDEs from Data

Numerical experiments: results
o Model estimation: linear

Co0 _ co1 _ C10 co2 . ci1 . Cc20 .

0.5

0.0

—0.5

-1.0
1.0

0.5

0.0

—0.5

-1.0
1.0

0.5

0.0

—0.5

-1.0

0.325 A
4 0.6 0.22 1
0.7 0.6 0.300 -
0.20 0.20 -
0.6 1 0.5 0.5 0.275
0.18 - Q:28

0.5 . 0.250
0.4 4 0.4 1 0.16

o 0.16 - 02254 '\
0.4 s

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.




PDE-Net: Learning PDEs from Data

Numerical experiments: results
o Prediction and model estimation: nonlinear (7 X 7 filters)

warm-up 1 6t-block 3 6t-block 10 6t-block 19 6t-block

102

Long Z et al. PDE-Net: Learning PDEs from Data. ICML 2018.



PDE-Net 2.0: Numeric-Symbolic Hybrid
Representation

Symbolic network (granting transparency)

Prior knowledge on F:

au *  Addition and multiplication of
- : = 2 the terms;
Assum ne - Bt F(u, V’LL, V w ) *  Maximum or der.

Approximation

to the nonlinear
unction [F

= SymNetk,(Dyo U, Doy U,

. Uopge = U +6t-F
Dy, ) ] t+ét t




PDE-Net 2.0: Numeric-Symbolic Hybrid
Representation

Symbolic network (granting transparency)

More Constraints:

e Pseudo-upwinding

* Sparsity on moment matrices

e Sparsity on the symbolic network

Motivated by EQL
* Sahoo, S. S.; Lampert, C. H. & Martius, G. ICML 2018.

* Martius, Georg, and Christoph H. Lampert. arXiv
preprint arXiv:1610.02995 (2016).

Long Z, Lu Y and Dong B. “PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network”, arXiv:1812.04426, 2018



PDE-Net 2.0: Numeric-Symbolic Hybrid
Representation

Weaker assumption on F: unknown type Burger’s Equation
2
up = —utty — Uity + 0.05(tgg + tiyy) " atu _|_ (u . V) u = ]/v u
Correct PDE o 0.05(0s + 11y 0010
ug = —0.906uu, — 0.901vuy, + 0.0331z, + 0.037uy,
Frozen-PDE-Net 2.0 0000
v = —=0.907vvy — 0.902uv, + 0.039%0, + 0.0320,,
up = —0.986uug — 0.972uy0 + 0.054uy + 0.052uy, -
PDE-Net 2.0 -0.010
vy = —0.984uv, — 0.9820vy + 0.05504, + 0.0500,,

15 20 25 30 35 40

Model recovery Remainer weights of u, v
warm-up 2 6t-block 9 6t-block 12 6t-block 15 6t-block

1.25
1.00
0.75
0.50 -

[
|
|
|
/

0.25 |-

1 100 200 300 1 100 200 300 1 100 200 300 1 100 200 300 1 100 200 300
Prediction

Long Z, Lu Y and Dong B. “PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network”, arXiv:1812.04426, 2018




Application In Image
Processing

BLIND IMAGE RESTORATION




Deep Learning For Restoration

One Noise Level One Net

Network 1




Deep Learning For Restoration

One Noise Level One Net

Network 1

Network 2




What We Want
One Model For All Noise Level




What Happen When Meet High Noise Level




PDEs In Image Processing

input )
. 6_’;” = div (e(|Vul?) Vu) in Qx (0,7T),
¢ Ou
N = 0 on 90 x (0,7),
u(0,7) = ug(xr) in €,

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Moving Endpoint Control

Terminal time as a variable to train

Early Stopping Is
A Regularization

Restoration
Dynamics

Can we train it?

Mildly
Damaged ¢

Damage-
free

Need to be learn

mmLX. /th)t

st. X = f(X(t),w(t)),t € (0,7)
X(O)=.’l'0.

Restoration
Dynamics

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Our Approach: Dynamically Unfolding Recurrent Restorer

| Intermediate

Done
Restoration

Unit

Damaged
Input

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



A Good Policy Leads
To A Good Restorer

min L(X(7),y) + R(w(t), t)dt Policy Unit

w.T 0

st. X = f(X(t),w(t)),t € (0,7)
X (0) = zo. Restoration Unit

Given A Policy -> Train The Restorer

- Good Policy Leads To Better Restorer
- Good Policy Leads To Better Generalization

Average Peak Time

=+ 35-45 Naive
| =+ 35-45 Refined

—+= 40 Naive Ve

Table 1: Average peak PSNR on BSD68 with different training strategies.

Strategy Noise Level
Training Noise Policy | 25 30 35 40 45 50 55
40 Naive 28.61 28.13 27.62 27.19 26.57 26.17 24.00
35,45 Naive 2774 2717 2666 2624 26775 25.61 2475
35,45 Refined | 29.14 28.33 27.67 27.19 27.69 26.61 25.88

T T T T T

35 40 45 50 55
Noise Level

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.




DURR Model
Discretize: Turn To An RL Problem

]"'lr-(

d
min 303" Ry(w)di + N(Xy, f)

N (i=1.2,--
w,Ny(i=1,2, i=1 j=1

st Xi =X |+ Atf(Xi L w(t)n=1,% - Ny(i=12,--.d)
Xi=1:i=1,2-.d

Consider the objective as a reward

; AML(xp—1.y;) — Lz, y; If choose to continue
T({Xn})={ﬂ(( 1. i) ( y})

Otherwise

Algorithm 1 Dynamically Unfolding Recurrent Restorer (DURR) Training via Policy Gradient
Input: The target y; and noisy observation x;
1: Initialize the weights of the restoration unit and the policy unit.

You can also choose other

2: Pretrain the restoration unit with defined policies. a roaches:

3: Set epochs M and the hyper-parameters in the algorithm. p p i ] ]

4: fort + 1to M do - A good image quality assessment without

5: Fix the restoration unit and simulate the forward trajectories using 7y reference

6: Calculate the policy gradient and then perform the optimization: o
- " - A Classifer

0 «— 0 —nVeEx.n, !(Z r({X;;,w})> (Vg > " log P(X;,.()))] - Fixed loop times according to the noise level

e il A Person

The expectation here is estimated on the sampled trajectory.

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.




DURR Model
Results

Table 2: The average PSNR (dB) results on the BSD68 dataset. Values with * means the corresponding
noise level 1s not present in the training data of the model. The top two methods are indicated with
colors (red and blue) in top-down order of performance.

BM3D [11] WNMM [2I] DnCNN-B [44] UNLNets DURR
c=15| 3107 31.31 31.60 31.47 31.38*
c=25| 2855 28.73 29.15 28.96 20.15
c=35| 27.07 27.28 27.66 27.50 27.70
c=45| 2599 26.26 26.62 26.48 26.71
=55 | 2526 25.49 25.80 25.64 25.91
c=065| 2469 24.51 23.40* : 25.25°
c=75| 2263 22.71 18.73* : 24,69

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



DURR Model
Results

Table 2: The average PSNR (dB) results on the BSD68 dataset. Values with * means the corresponding
noise level 1s not present in the training data of the model. The top two methods are indicated with
colors (red and blue) in top-down order of performance.

BM3D [11] WNMM [21] DnCNN-B [44] UNLNets [28] DURR

ad =15 31.07 31.31 31.60 31.47 31.387
ad =25 28.55 28.73 29.15 28.96 29.15
ad =35 27.07 27.28 27.66 27.50 27.70
ad =45 25.99 26.26 26.62 26.48 26.71
T — 55 AL 1 s 5

24.69

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.



Nose Level Doesn’t Seen In Training

By A N RN

Noisy Input, 10.72dB

Ground Turth Noisy Input, 10.48dB DnCNN, 14.46dB DURR, 24.94dB

Figure 9: Denoising results of images from BSD68 with extreme noise conditions (o = 95).

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.




JPEG Deblocking

Ground Truth DnCNN-B Our DURR

Table 3: The average PSNR(dB) on the LIVEI dataset. Values with * means the corresponding QF is
not present in the training data of the model. The top two methods are indicated with colors (red and
blue) in top-down order of performance.

QF | JPEG SA-DCT[I8] AR-CNN[14] AR-CNN-B DnCNN-3 DURR One Model For All QF
10 | 27.77 28.65 28.98 28.53 20.40 2923+
20 | 30.07 30.81 31.29 30.88 31.59 31.68
30 | 31.41 32.08 32.69 3231 32.98 33.05
40 | 32.45 32.99 33.63 33.39 33.96 34.01°

Zhang X, Lu Y et al., Dynamically Unfolding Recurrent Restorer: A Moving Endpoint Control Method for Image Restoration ICLR 2019.




Application In Medical
lmaging

UNROLLING REVISITED




Unrolled Dynamics:
ADMM-Net

(X®) ) = FT(PTP + pI)~!

1 L [PTy + pF(z"71) — =),
min = || Az — y||3 + Z Ng(Dyz) Z™ k) — D) L (™) 4 g D)
Tz 2 =1 <

L
_ WaYl _(n,k—1)
s.t. z = . ;)\IDJ H(D; =~ ),

\ M® . g(n) — gln=1) .;’(.‘U(ﬂ) _ z('”’)),

Reconstructed
MR image

Sampling data
in k—space

X(N,+1

Xm =00 0=

1 :
n-1) _E o N, : > M(n}
— o -
X(n}__ib,i" pocol A W C, e H B C, o A -»...-bjf” HEY an
I | 2 Sub-stagen=
S I I S S N N S S S S N N S S S S S S S S S S S N S S F |

Sun, Li, and Xu. Deep ADMM-net for compressive sensing MRI. NIPS 2016.



Unrolled Dynamics:
ADMM-Net

10% 20% 30% 40% 50% Test Time
NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR CPU\ GPU
Zero-filling [46] 0.2624 2635 0.1700 2996 0.1247 3259 0.0968 3476 0.0770 36.73  0.001s\--

Method

TV [3] 0.1539 3090 0.0929 3520 0.0673 3799 0.0534 40.00 0.0440 41.69  0.739s\--
RecPF [11] 0.1498 3099 0.0917 35.32 0.0668 38.06 0.0533 40.03 0.0440 4171  0.311s\--
SIDWT ? 0.1564 30.81 0.0885 35.66 0.0620 38.72 0.0484 40.88 0.0393 42.67  7.864s\--
PBDW [24] 0.1290 3245 0.0814 36.34 0.0627 38.64 0.0518 4031 0.0437 4181  35.364s\--
PANO [7] 0.1368 3198 0.0800 36.52 0.0592 39.13 0.0477 41.01 0.0390 4276  53.478s\--
EDLCP [29] 01257 3263 0.0759 3695 0.0592 3913 0.0500  40.62 0.0428 4200 52.222s\ --

[ BM3D-MRI [30] 0.1132 33,53 0.0674 3798 0.0515 40.33 0.0426 4199 0.0359 4347  40.911s\--
Init-Net;q 0.2589 2617 0.1737 29.64 01299 32.16  0.1025 3421 0.0833 36.01  3.827s\0.644s

[ADMM-Netlg 0.1082 33.88 0.0620 38.72  0.0480 40.95 0.0395 42.66 0.0328 44.29 3.8275\0.6448]

Sun, Li, and Xu. Deep ADMM-net for compressive sensing MRI. NIPS 2016.



Further Application of Unrolling —
Task-Based Image Reconstruction

Two-step approach: imaging and diagnosis

Image
Reconstruction

Abnormality
Detection

Problems of the two-step approach:
o Evaluation of the reconstructed image quality.

o Redundancy in data for a specific task.

Can we make it end-to-end, and does it help?

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)



Further Application of Unrolling —
Task-Based Image Reconstruction

M) —
—
== 1l
~ rs ’}.
/ : 5 z 2
(=]
\ 3 2 £
b = g b
g : = 2
2 5 o
5 3 5
g £ T T 1A
6 € n | = \
" g
3 || =
rRoC L 5 T
P T e+ :
g Loa
Xrk
——/ E—
w=exp(-b) |:A’ v
w(AxD ATW(Ax,-b) { \ " .
g & (3 S P Y Y 1=
CNNo(xo) CNN|(x,) il ﬁfgbéépéﬁagéiy x|lz|=
------ S EL S E R = e A e R ad B Xl g~
_______ =) R (=R S | K0 e B R = S Bl 2|z
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=S 3 S|z Unrolled SQS

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)



Further Application of Unrolling —
Task-Based Image Reconstruction

35 .
K 1 = Two-step
3r = End-to-end |
0.8 0.8 25t
E & g 2t
o 06 o 061 2
2 2 IS
T G o 15
[=] o [72]
o [=1 w
o 04 o 044 o 1 [ ]
=] 2 &}
= =
0.2 0.2 0.5
Two-step Two-step ol is I b
End-to-end End-to-end
0 : - : : 0 ; : ‘ ‘ . . ‘ ‘
0 02 0.4 06 0.8 1 o} 0.02 0.04 0.06 0.08 0.1 -0.5 i Jul | 4
False positive rate ROC False positive rate non-smail - non-nodule ung edge
Cross Entropy
Original FBP Two-step End-to-end

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)




Further Application of Unrolling —
Task-Based Image Reconstruction

Similar Ideas

Past Normal _,, Analytic Crafted Statistical

Medical Physi

I Journal of Medical Physics R and Pncllcc .

Explore this journal > Present Low-dose Iterative CNN-based Trained 7‘[:.-&
; R Network "
Point/Counterpoint Dataset econ L _‘ Features erwori
Radiomics in lung cancer: Its time is here Future
Mannudeep Kalra M.D., Ge Wang Ph.D., Colin G. Orton Ph.D. Low-dose L FBP Improvement Recon ROI Deep Final
Dataset Network Network Image Segmentation Features Diagnosis
First published: 12 December 2017 Full publication history
DOI: 10.1002/mp.12685  View/save citation D Radi "
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Computer Science > Computer Vision and Pattern Recognition

When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach

Ding Liu, Bihan Wen, Xianming Liu, Zhangyang Wang, Thomas S. Huang
(Submitted on 14 Jun 2017 (v1), last revised 16 Apr 2018 (this version, v3))

Computer Science > Computer Vision and Pattern Recognition

Connecting Image Denoising and High-Level Vision Tasks via Deep Learning

Ding Liu, Bihan Wen, Jianbo Jiao, Xianming Liu, Zhangyang Wang, Thomas S. Huang
(Submitted on 6 Sep 2018)

D. Wu et al., End-to-End Lung Nodule Detection in Computed Tomography, MICCAI Workshop, 2018. (arXiv:1711.02074)




Deep Network Training

OPTIMAL CONTROL PERSPECTIVE




Optimization: Solving The “KKT” Condition

Regularization

Loss Function
@Maximum Principle Based Algorithms/ HAEH /
Z / =p-J =

K T
pf> @ (x| oo Original ODE
X;=f(t,X},0,), Xi==z, 0<t<T, i=1,...,K, (1)

Theorem 1 (Pontryagin's Maximum Principle). Let 8* € U be an essentially bounded opfimal control, i.e. a
solution to (1), and X~ the corresponding optimally controlled process and ess SUP; ¢ ]||0t‘ | < oc. Then,

there exists an absolutely continuous co-state process P* : [0,T] — R? such that the/Hamilton’s equations

X7 =V, H(t, X!, Pr0), X; ==, (2)

Pr=-V,H(t X}, P;.6), P; = —V&(X3}), (3)

are satisfied. Moreover, for each t € [0,T], we have the Hamiltonian mazximization condition

H(t,X;,Pr.0;) > H(t, X!, Pr.0) for all € © (4)

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning



Optimization: Solving The “KKT” Condition

Regularization

Loss Function
@Maximum Principle Based Algorithms/ HAEH /
Z / =p-J =

K 5 iy
min > ®(Xp)H [ L@t
0

ocu

=1

Costate

X;=f(t,X},0,), Xi==z, 0<t<T, i=1,...,K,

solution to (1), and X~ the corresponding optimally controlled process and ess sup;eio.1) Wt | < oc. Then,
there exists an absolutely continuous co-state process P* : [0,T] — R? such that the H

X; =V H(t, X P 6;) Xp =z (2)
P ==V H(t, X}, P;,6}), P; = -V&(X7}), (3)

are satisfied. Moreover, for each t € [0,T], we have the Hamiltonian mazximization condition
H(t,X;,P',0;) > H(t,X;,P/,0) forall§ € © (4)

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning



Optimization: Solving The “KKT” Condition

Regularization

Loss Function
@Maximum Principle Based Algorithms/ HAEH /
Z / =p-J =

K 5 iy
min > ®(Xp)H [ L@t
0

ocu

Maximum
Principle

=1

X;=f(t,X},0,), Xi==z, 0<t<T, i=1,...,K, (1)

X7 =V, H(t, X!, Pr0), X; ==, (2)
P ==V H(t, X}, P;,6}), P; = -V&(X7}), (3)

are satisfied. Moreover, for each t € [0,T], we have the Hamiltonian mazximization conflition
H(t,X;,P',0;) > H(t,X;,P/,0) forall§ € © (4)

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms

X =V, H(t X, P .0;, X, P, X; ==, (8)
P =V, H(t,X; P60, X; P, P; = -V.®(X7), (9)
H(t, X, P;,0;, X, P[) > H(t, X;, P ,0, X, Fy), 6€0,te0,T]. (10)

Solving it via Gauss-Seidel Iteration

Algorithm 2 Extended MSA (E-MSA)
1: Initialize: #° € Y. Hyper-parameter: p
2: for k = 0 to #Ilterations do
3. Solve X% = f(t, X", 0%), X ==z
1: Solve P = —V_H(t, X! PP 6F), P8 =_ve(x)
5 Set 05! = arg max, g H(t, ka, Pfk, a, ka , Pfk} for each t € [0, 7]

Qianxiao Li, Long Chen, Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning



Optimization: Solving The “KKT” Condition

@Maximum Principle Based Algorithms

(; =V, H(t, X}, P},0;,X;, P}), 0 =7, (8)
P =V, H(t, X, P0;,X . P, P; ==V, ®(X7), (9)
H(t, X}, P,0;, X7, P7) > H(t,X], P},0, X}, P/), 6€0O,tel0,T] (10)

Solving it via Gauss-Seidel Iteration

Algorithm 2 Extended MSA (E-MSA)

1: Initialize: #° € Y. Hyper-parameter: p

2: for k = 0 to #Ilterations do

3. Solve X" = f(t, X" ,0F), X =z

4 Solve PY" = —V, H(t,X{" P! 6f), Pj =-V&(Xf)

5 Set 05! = arg max, g H(t, ka, Pfk, a, ka , Pfk] for each t € [0, 7] I

Back Propagation: argmax step
instead of a gradient ascent

Qianxiao Li, Long Chen , Cheng Tai, and Weinan E Maximum Principle Based Algorithms for Deep Learning



Works For Binary NN

—— MSA (Train) -=-- BinaryConnect (Train)

—— MSA (Test) --- BinaryConnect (Test) Error Rate (%) 100 SparSity (%)
L Error Rate (% — MSA (Train)
101 0SS o ate (A’) 4 — MBSA (Test) 754 =TT
tﬁ i_ --- BinaryConnect (Train) —— MSA
> 5 -=- BinaryConnect (Test) 50 --- BinaryConnect
= LC R S —
- - 25
0 N, 0
0 100 200 0 100 200
30 g 100
—— MSA (Train)
o —— MSA (Test) 751 [ = eeeee
z 20 ~-- BinaryConnect (Train) MSA
P . | Binary‘C_c:llect_(‘TestJ F 50 BinaryConnect
o 10 \ 25
\\
e
0% 200 400 07 400
0 200 400
10° 307 100
\:"‘!-‘R-.. ©i_ = MSA (Train) —
Zsass — MSA(Test) |  75{| TTTTTTmmmoommoomooes
% 20 -=~- BinaryConnect (Train) MSA
S —--=_BinaryConnect (Test) BinaryConnect
v 10
0 == 0
0 100 0 100 200 0 100 200
Epoch Epoch Epoch

Li Q, Hao S. An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks. ICML2018.



Neural ODE

NODE

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters (), start time tg, stop time ¢, final state z(%;), loss gradient 9L/az(t,)
8L

ot — Sz{t} f(z(tl) t1,0)
oL
= [z(t1), az(t )*Oa_a_t,}

def aug_dynamics([z(t), a(t), —,

> Compute gradient w.r.t. ;

> Define initial augmented state

—|,,0):

> Define dynamics on augmented state

return [f(z(t),t,0), —a(t)T %L, —a(t)T 2L —a(t)T 2] > Concatenate time-derivatives
[z(to), Bf?u 9%, 5] = ODESolve(sg, aug_dynamics, 1, to, ) > Solve reverse-time ODE

return dﬁ‘L gL 8L 4L

z(o)’ 00 ° Bty 9, > Return all gradients

Recall the PMP
X; =V,H(t,X; P .0;), X, =z,
P = -V H(t, X, P.0;). Pp = -V&(X7)]

z(tn)

State
oL ! aiti+1) Adjoint State
allg) dzlt:) :I\/z o
e * aL : u(tl\f}
on A dz(tit1)
Oa(to) :\/f:fsl A oL
i z(ty)
| | | |
[ [ [ [ -
to bi tit1 i

Chen, Tian Qj, et al. “Neural Ordinary Differential Equations.” NeurIPS 2018 (best paper)



VAE and Normalizing Flow

Variational Principle: estimating the density of data x by maximizing —F (x)

log pg(x) = 10g/p9(XIZ)p(Z)dz

= 10 qé(Z‘X) X|Z Z)dZ
= log [ 2455 po(xlz)p(z)a

> Dk [gal2|) [[p(2) HE, [log po (x]2)] = —Fx).

M. I. Jordan, et al., An introduction to variational methods for graphical models. Machine Learning, 37(2):183—-233, 1999.



VAE and Normalizing Flow

Variational Autoencoders
= i

Putting it all t i Tizing th Maximize
“utling it a - Maximizing e jikelihood of ~ Sample x|z from x|z ~ N (fiz|2s Lg|2)
likelihoog'Tower bound original input

being / \

E. [logpo(a® | 2)| - Dicr(as(z | 29)||po(z) reconstructed [P Sl

g(x(ﬁ: 0, ) Decoder network \/
po(x|z)

Y4
Sample z from z|a': ~ Nl(ﬂzm, 2z|a::)

/

Make approximate
posterior distribution

close to prior Hz|z Zz|m
Encoder network
For every minibatch of input \/
data: compute this forward qu(2:|.’17)
pass, and then backprop! Input Data i

Fei-Fei Li & Justin Johnson & Serena Yeung, Lecture 12-90, May 15, 2018



VAE and Normalizing Flow

Normalizing flow for variational inference: provides a more flexible family of
estimators of the unknown p(z|x)

zx = fx ©...0 fa0 f1(2Zo) Algorithm 1 Variational Inf. with Normalizing Flows

Parameters: ¢ variational, 8 generative
while not converged do
x < {Get mini-batch}
Zo ~ qo(®|x)
where f; are smooth invertible maps 2K < fr © fk-10...0 fi(z0)
F(x)~ F(x,zx)
Af x —VQF(X)
Aqﬁ X —V¢f(x)
end while

det

Ingr(zx) = Ingo(zo) Z In ﬁzk
1

Rezende, Danilo, and Shakir Mohamed. "Variational Inference with Normalizing Flows." ICML 2015.



NODE for Normalizing Flow

Use the change of variables theorem to compute exact changes in

probability if samples are transformed through a bijective function f: Use NODE:
o Olog p(z(t
z1 = f(z2o) = logp(z1) = logp(zo) — log det% ggi ()) _
0

Reducing the calculation cost of gradient from 0(d?) to 0(d)

Chen, Tian Qj, et al. “Neural Ordinary Differential Equations.” NeurIPS 2018 (best paper)




VAE and Normalizing Flow

Normalizing flow for image synthesis:

D. P. Kingma and P. Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." NeurlPS 2018.



VAE and Normalizing Flow

Normalizing flow for image synthesis:

D. P. Kingma and P. Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." NeurlPS 2018.



Applied Math Perspective on Deep
Learning

Take home message:

Deep Network amm——) Differential Equations (DE)
Network Architecture ———> Numerical DE

Network Training —— Optimal Control

Likewise for coffee:

e 3

(—{)

From David Wipf’s Slide@ICASSP2018
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Thanks and Questions?




