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CHAPTER

Transformers and
Large Language Models

“How much do we know at any time? Much more, or so I believe, than we
know we know.”
Agatha Christie, The Moving Finger

Fluent speakers of a language bring an enormous amount of knowledge to bear dur-
ing comprehension and production. This knowledge is embodied in many forms,
perhaps most obviously in the vocabulary, the rich representations we have of words
and their meanings and usage. This makes the vocabulary a useful lens to explore
the acquisition of knowledge from text, by both people and machines.

Estimates of the size of adult vocabularies vary widely both within and across
languages. For example, estimates of the vocabulary size of young adult speakers of
American English range from 30,000 to 100,000 depending on the resources used
to make the estimate and the definition of what it means to know a word. What
is agreed upon is that the vast majority of words that mature speakers use in their
day-to-day interactions are acquired early in life through spoken interactions with
care givers and peers, usually well before the start of formal schooling. This active
vocabulary is extremely limited compared to the size of the adult vocabulary (usually
on the order of 2000 words for young speakers) and is quite stable, with very few
additional words learned via casual conversation beyond this early stage. Obviously,
this leaves a very large number of words to be acquired by other means.

A simple consequence of these facts is that children have to learn about 7 to 10
words a day, every single day, to arrive at observed vocabulary levels by the time
they are 20 years of age. And indeed empirical estimates of vocabulary growth in
late elementary through high school are consistent with this rate. How do children
achieve this rate of vocabulary growth? Most of this growth is not happening through
direct vocabulary instruction in school, which is not deployed at the rate that would
be required to result in sufficient vocabulary growth.

The most likely explanation is that the bulk of this knowledge acquisition hap-
pens as a by-product of reading, as part of the rich processing and reasoning that we
perform when we read. Research into the average amount of time children spend
reading, and the lexical diversity of the texts they read, indicate that it is possible
to achieve the desired rate. But the mechanism behind this rate of learning must
be remarkable indeed, since at some points during learning the rate of vocabulary
growth exceeds the rate at which new words are appearing to the learner!

Many of these facts have motivated approaches to word learning based on the
distributional hypothesis, introduced in Chapter 6. This is the idea that something
about what we’re loosely calling word meanings can be learned even without any
grounding in the real world, solely based on the content of the texts we encounter
over our lives. This knowledge is based on the complex association of words with
the words they co-occur with (and with the words that those words occur with).

The crucial insight of the distributional hypothesis is that the knowledge that we
acquire through this process can be brought to bear long after its initial acquisition.
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pretraining

transformer

Of course, adding grounding from vision or from real-world interaction can help
build even more powerful models, but even text alone is remarkably useful.

In this chapter we formalize this idea of pretraining—learning knowledge about
language and the world from vast amounts of text—and call the resulting pretrained
language models large language models. Large language models exhibit remark-
able performance on all sorts of natural language tasks because of the knowledge
they learn in pretraining, and they will play a role throughout the rest of this book.
They have been especially transformative for tasks where we need to produce text,
like summarization, machine translation, question answering, or chatbots.

The standard architecture for building large language models is the transformer.
We thus begin this chapter by introducing this architecture in detail. The transformer
makes use of a novel mechanism called self-attention, which developed out of the
idea of attention that was introduced for RNNs in Chapter 9. Self-attention can
be thought of a way to build contextual representations of a word’s meaning that
integrate information from surrounding words, helping the model learn how words
relate to each other over large spans of text.

We’ll then see how to apply the transformer to language modeling, in a setting of-
ten called causal or autoregressive language models, in which we iteratively predict
words left-to-right from earlier words. These language models, like the feedforward
and RNN language models we have already seen, are thus self-trained: given a large
corpus of text, we iteratively teach the model to guess the next word in the text from
the prior words. In addition to training, we’ll introduce algorithms for generating
texts, including important methods like greedy decoding, beam search, and sam-
pling. And we’ll talk about the components of popular large language models like
the GPT family.

Finally, we’ll see the great power of language models: almost any NLP task
can be modeled as word prediction, if we think about it in the right way. We’ll
work through an example of using large language models to solve one NLP task
of summarization (generating a short text that summarizes some larger document).
The use of a large language model to generate text is one of the areas in which the
impact of the last decade of neural algorithms for NLP has been the largest. Indeed,
text generation, along with image generation and code generation, constitute a new
area of Al that is often called generative Al

We’ll save three more areas of large language models for the next three chapters;
Chapter 11 will introduce the bidirectional transformer encoder and the method of
masked language modeling, used for the popular BERT family of models. Chap-
ter 12 will introduce the most powerful way to interact with large language models:
prompting them to perform other NLP tasks by simply giving directions or instruc-
tions in natural language to a transformer that is pretrained on language modeling.
And Chapter 13 will introduce the use of the encoder-decoder architecture for trans-
formers in the context of machine translation.

10.1 The Transformer: A Self-Attention Network

transformer

In this section we introduce the architecture of the transformer, the algorithm that
underlies most modern NLP systems. When used for causal language modeling, the
input to a transformer is a sequence of words, and the output is a prediction for what
word comes next, as well as a sequence of contextual embedding that represents
the contextual meaning of each of the input words. Like the LSTMs of Chapter 9,
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transformers are a neural architecture that can handle distant information. But unlike
LSTMs, transformers are not based on recurrent connections (which can be hard to
parallelize), which means that transformers can be more efficient to implement at
scale.

Transformers are made up of stacks of transformer blocks, each of which is a
multilayer network that maps sequences of input vectors (xi,...,X,) to sequences of
output vectors (zp,...,z,) of the same length. These blocks are made by combin-
ing simple linear layers, feedforward networks, and self-attention layers, the key
innovation of transformers. Self-attention allows a network to directly extract and
use information from arbitrarily large contexts. We’ll start by describing how self-
attention works and then return to how it fits into larger transformer blocks. Finally,
we’ll describe how to use the transformer block together with some input and output
mechanisms as a language model, to predict upcoming words from prior words in
the context.

10.1.1 Transformers: the intuition

The intuition of a transformer is that across a series of layers, we build up richer and
richer contextualized representations of the meanings of input words or tokens (we
will refer to the input as a sequence of words for convenience, although technically
the input is first tokenized by an algorithm like BPE, so it is a series of tokens rather
than words). At each layer of a transformer, to compute the representation of a
word i we combine information from the representation of i at the previous layer
with information from the representations of the neighboring words. The goal is to
produce a contextualized representation for each word at each position. We can think
of these representations as a contextualized version of the static vectors we saw in
Chapter 6, which each represented the meaning of a word type. By contrast, our goal
in transformers is to produce a contextualized version, something that represents
what this word means in the particular context in which it occurs.

We thus need a mechanism that tells us how to weigh and combine the represen-
tations of the different words from the context at the prior level in order to compute
our representation at this layer. This mechanism must be able to look broadly in the
context, since words have rich linguistic relationships with words that can be many
sentences away. Even within the sentence, words have important linguistic relation-
ships with contextual words. Consider these examples, each exhibiting linguistic
relationships that we’ll discuss in more depth in later chapters:

(10.1) The keys to the cabinet are on the table.
(10.2) The chicken crossed the road because it wanted to get to the other side.

(10.3) I walked along the pond, and noticed that one of the trees along the bank
had fallen into the water after the storm.

In (10.1), the phrase The keys is the subject of the sentence, and in English and
many languages, must agree in grammatical number with the verb are; in this case
both are plural. In English we can’t use a singular verb like is with a plural sub-
ject like keys; we’ll discuss agreement more in Chapter 17. In (10.2), the pronoun
it corefers to the chicken; it’s the chicken that wants to get to the other side. We’ll
discuss coreference more in Chapter 26. In (10.3), the way we know that bank refers
to the side of a pond or river and not a financial institution is from the context, in-
cluding words like pond and water. We’ll discuss word senses more in Chapter 23.
These helpful contextual words can be quite far way in the sentence or paragraph,
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so we need a mechanism that can look broadly in the context to help compute rep-
resentations for words.

Self-attention is just such a mechanism: it allows us to look broadly in the con-
text and tells us how to integrate the representation from words in that context from
layer k — 1 to build the representation for words in layer k.
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representation for the word i at layer 6. In computing the representation for it, we attend
differently to the various words at layer 5, with darker shades indicating higher self-attention
values. Note that the transformer is attending highly to animal, a sensible result, since in this
example it corefers with the animal, and so we’d like the representation for it to draw on the
representation for animal. Figure simplified from (Uszkoreit, 2017).

Fig. 10.1 shows an schematic example simplified from a real transformer (Uszko-
reit, 2017). Here we want to compute a contextual representation for the word if, at
layer 6 of the transformer, and we’d like that representation to draw on the represen-
tations of all the prior words, from layer 5. The figure uses color to represent the
attention distribution over the contextual words: the word animal has a high atten-
tion weight, meaning that as we are computing the representation for iz, we will draw
most heavily on the representation for animal. This will be useful for the model to
build a representation that has the correct meaning for it, which indeed is corefer-
ent here with the word animal. (We say that a pronoun like it is coreferent with a
noun like animal if they both refer to the same thing; we’ll return to coreference in
Chapter 26.)

10.1.2 Causal or backward-looking self-attention

The concept of context can be used in two ways in self-attention. In causal, or
backward looking self-attention, the context is any of the prior words. In general
bidirectional self-attention, the context can include future words. In this chapter
we focus on causal, backward looking self-attention; we’ll introduce bidirectional
self-attention in Chapter 11.

Fig. 10.2 thus illustrates the flow of information in a single causal, or backward
looking, self-attention layer. As with the overall transformer, a self-attention layer
maps input sequences (Xj, ..., X, ) to output sequences of the same length (ay, ..., a,).
When processing each item in the input, the model has access to all of the inputs
up to and including the one under consideration, but no access to information about
inputs beyond the current one. In addition, the computation performed for each item
is independent of all the other computations. The first point ensures that we can use
this approach to create language models and use them for autoregressive generation,
and the second point means that we can easily parallelize both forward inference
and training of such models.
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Information flow in a causal (or masked) self-attention model. In processing
each element of the sequence, the model attends to all the inputs up to, and including, the
current one. Unlike RNNSs, the computations at each time step are independent of all the
other steps and therefore can be performed in parallel.

10.1.3 Self-attention more formally

We’ve given the intuition of self-attention (as a way to compute representations of a
word at a given layer by integrating information from words at the previous layer)
and we’ve defined context as all the prior words in the input. Let’s now introduce
the self-attention computation itself.

The core intuition of attention is the idea of comparing an item of interest to a
collection of other items in a way that reveals their relevance in the current context.
In the case of self-attention for language, the set of comparisons are to other words
(or tokens) within a given sequence. The result of these comparisons is then used to
compute an output sequence for the current input sequence. For example, returning
to Fig. 10.2, the computation of a3 is based on a set of comparisons between the
input x3 and its preceding elements x; and x;, and to x3 itself.

How shall we compare words to other words? Since our representations for
words are vectors, we’ll make use of our old friend the dot product that we used
for computing word similarity in Chapter 6, and also played a role in attention in
Chapter 9. Let’s refer to the result of this comparison between words i and j as a
score (we’ll be updating this equation to add attention to the computation of this
score):

Verson 1:  score(X;,X;) = X;-X;j (10.4)

The result of a dot product is a scalar value ranging from —oo to oo, the larger
the value the more similar the vectors that are being compared. Continuing with our
example, the first step in computing y3 would be to compute three scores: x3 - Xp,
x3 - X and X3 - x3. Then to make effective use of these scores, we’ll normalize them
with a softmax to create a vector of weights, ¢;;, that indicates the proportional
relevance of each input to the input element i that is the current focus of attention.

oj softmax(score(x;,x;)) Vj <i (10.5)
exp(score(x;, X;))

22:1 exp(score(x;,xx))

Vj<i (10.6)

Of course, the softmax weight will likely be highest for the current focus element
i, since vecx; is very similar to itself, resulting in a high dot product. But other
context words may also be similar to i, and the softmax will also assign some weight
to those words.

Given the proportional scores in ¢, we generate an output value a; by summing
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query

key

value

the inputs seen so far, each weighted by its o value.

a, = Z(Xijxj' (10.7)

J<i

The steps embodied in Equations 10.4 through 10.7 represent the core of an
attention-based approach: a set of comparisons to relevant items in some context,
a normalization of those scores to provide a probability distribution, followed by a
weighted sum using this distribution. The output a is the result of this straightfor-
ward computation over the inputs.

This kind of simple attention can be useful, and indeed we saw in Chapter 9
how to use this simple idea of attention for LSTM-based encoder-decoder models
for machine translation. But transformers allow us to create a more sophisticated
way of representing how words can contribute to the representation of longer inputs.
Consider the three different roles that each input embedding plays during the course
of the attention process.

* As the current focus of attention when being compared to all of the other
preceding inputs. We’ll refer to this role as a query.

* In its role as a preceding input being compared to the current focus of atten-
tion. We’ll refer to this role as a key.

* And finally, as a value used to compute the output for the current focus of
attention.

To capture these three different roles, transformers introduce weight matrices
WQ, WK and WV. These weights will be used to project each input vector x; into
a representation of its role as a key, query, or value.

q; = XiWQ; ki = X,'WK; V; = Xl'WV (10.8)

The inputs x and outputs y of transformers, as well as the intermediate vectors after
the various layers like the attention output vector a, all have the same dimensionality
1 xd. We’ll have a dimension dj, for the key and query vectors, and a separate
dimension d, for the value vectors. In the original transformer work (Vaswani et al.,
2017), d was 512, dy, and d, were both 64. The shapes of the transform matrices are
then W2 € R, WK € R, and WY € R,

Given these projections, the score between a current focus of attention, x;, and
an element in the preceding context, X, consists of a dot product between its query
vector g; and the preceding element’s key vectors k. This dot product has the right
shape since both the query and the key are of dimensionality 1 x d;. Let’s update
our previous comparison calculation to reflect this, replacing Eq. 10.4 with Eq. 10.9:

Verson 2: score(x;,x;) = q;-k; (10.9)

The ensuing softmax calculation resulting in ¢; ; remains the same, but the output
calculation for a; is now based on a weighted sum over the value vectors v.

a = > ov; (10.10)
J<i

Again, the softmax weight o;; will likely be highest for the current focus element
i, and so the value for y; will be most influenced by v;. But the model will also pay
attention to other contextual words if they are similar to i, allowing their values to



10.1 ¢ THE TRANSFORMER: A SELF-ATTENTION NETWORK 7

Output of self-attention

6. Sum the weighted
value vectors

5. Weigh each value vector
Qi j
4. Turn into weights via softmax ((j

3. Divide score by d}, o7 dy

0
2. Compare x3’s query with i

the keys for x1, x2, and x3

- - < U
o See @110 | [8><00 | 8 ><I6
,vecto,rs % %

AT R]  Calculating the value of a3, the third element of a sequence using causal (left-
to-right) self-attention.
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also influence the final value of v;. Context words that are not similar to i will have
their values downweighted and won’t contribute to the final value.

There is one final part of the self-attention model. The result of a dot product
can be an arbitrarily large (positive or negative) value. Exponentiating large values
can lead to numerical issues and to an effective loss of gradients during training. To
avoid this, we scale down the result of the dot product, by dividing it by a factor
related to the size of the embeddings. A typical approach is to divide by the square
root of the dimensionality of the query and key vectors (dy), leading us to update
our scoring function one more time, replacing Eq. 10.4 and Eq. 10.9 with Eq. 10.12.
Here’s a final set of equations for computing self-attention for a single self-attention
output vector a; from a single input vector x;, illustrated in Fig. 10.3 for the case of
calculating the value of the third output a3 in a sequence.

qi :XiWQ;ki = XiWK;vi :x,-WV (10.11)
; qi-k;
Final verson: score(x;,x;) = 10.12
(l J) \/a ( )
ojj = softmax(score(x;,x;)) Vj<i  (10.13)
a = ) v, (10.14)
J<i

10.1.4 Parallelizing self-attention using a single matrix X

This description of the self-attention process has been from the perspective of com-
puting a single output at a single time step i. However, since each output, y;, is
computed independently, this entire process can be parallelized, taking advantage of
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efficient matrix multiplication routines by packing the input embeddings of the N
tokens of the input sequence into a single matrix X € R¥*?_ That is, each row of X
is the embedding of one token of the input. Transformers for large language models
can have an input length N = 1024, 2048, or 4096 tokens, so X has between 1K and
4K rows, each of the dimensionality of the embedding d.

We then multiply X by the key, query, and value matrices (all of dimensionality
d x d) to produce matrices Q € RV*? K € R¥*? and V € RV*?  containing all the
key, query, and value vectors:

Q= XWY?; K=XWK; v=xwV (10.15)

Given these matrices we can compute all the requisite query-key comparisons simul-
taneously by multiplying Q and KT in a single matrix multiplication (the product is
of shape N x N; Fig. 10.4 shows a visualization). Taking this one step further, we
can scale these scores, take the softmax, and then multiply the result by V resulting
in a matrix of shape N x d: a vector embedding representation for each token in the
input. We’ve reduced the entire self-attention step for an entire sequence of N tokens
to the following computation:

KT
A = SelfAttention(Q, K,V) = softmax (Q > Y (10.16)
Vg

10.1.5 Masking out the future

The self-attention computation as we’ve described it has a problem: the calculation
in QKT results in a score for each query value to every key value, including those that
follow the query. This is inappropriate in the setting of language modeling: guessing
the next word is pretty simple if you already know it! To fix this, the elements in the
upper-triangular portion of the matrix are zeroed out (set to —oo), thus eliminating
any knowledge of words that follow in the sequence. Fig. 10.4 shows this masked
QKT matrix. (we’ll see in Chapter 11 how to make use of words in the future for
tasks that need it).

q1-k1 —00 —00 | —o0 | —oo

g2+k1|g2:k2| —o0 | —c0 | —o0

N  [g3k1|g3+k2[q3+k3| —c0 | —oo

g4+k1|q4+k2 [qa+k3 |qd-kd| —oco

g5k |g5+k2 |g5+k3| g5+k4 | q5+k5

N

JGENRR] The N x N QKT matrix showing the ¢; - k; values, with the upper-triangle
portion of the comparisons matrix zeroed out (set to —oo, which the softmax will turn to
Zero).

Fig. 10.4 also makes it clear that attention is quadratic in the length of the input,
since at each layer we need to compute dot products between each pair of tokens in
the input. This makes it expensive for the input to a transformer to consist of very
long documents (like entire novels). Nonetheless modern large language models
manage to use quite long contexts of up to 4096 tokens.
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10.2 Multihead Attention

multihead
self-attention
layers

Transformers actually compute a more complex kind of attention than the single
self-attention calculation we’ve seen so far. This is because the different words in a
sentence can relate to each other in many different ways simultaneously. For exam-
ple, distinct syntactic, semantic, and discourse relationships can hold between verbs
and their arguments in a sentence. It would be difficult for a single self-attention
model to learn to capture all of the different kinds of parallel relations among its in-
puts. Transformers address this issue with multihead self-attention layers. These
are sets of self-attention layers, called heads, that reside in parallel layers at the same
depth in a model, each with its own set of parameters. By using these distinct sets of
parameters, each head can learn different aspects of the relationships among inputs
at the same level of abstraction.

To implement this notion, each head, i, in a self-attention layer is provided with
its own set of key, query and value matrices: WX, WlQ and WY These are used
to project the inputs into separate key, value, and query embeddings separately for
each head, with the rest of the self-attention computation remaining unchanged.

In multi-head attention, as with self-attention, the model dimension d is still used
for the input and output, the key and query embeddings have dimensionality dy, and
the value embeddings are of dimensionality d, (again, in the original transformer
paper dy = d, = 64, h =8, and d = 512). Thus for each head i, we have weight
layers W2 € R4, WK € R, and WY € R?% and these get multiplied by
the inputs packed into X to produce Q € RV*%, K € RV*%_ and V € RV*%  The
output of each of the 4 heads is of shape N X d,,, and so the output of the multi-head
layer with /& heads consists of 4 matrices of shape N x d,. To make use of these
matrices in further processing, they are concatenated to produce a single output with
dimensionality N x hd,. Finally, we use yet another linear projection W¢ € Rhdvxd
that reshape it to the original output dimension for each token. Multiplying the
concatenated N x hd, matrix output by WO € R"%*4 yields the self-attention output
A of shape [N x d], suitable to be passed through residual connections and layer
norm.

Q=XWZ; K=XWK;v=xw!/ (017
head; = SelfAttention(Q, K, V) (10.18)
A = MultiHeadAttention(X) = (head; @ head,... ® head,)W°  (10.19)

Fig. 10.5 illustrates this approach with 4 self-attention heads. In general in trans-
formers, the multihead layer is used instead of a self-attention layer.

10.3 Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes three other kinds of layers: (1)
a feedforward layer, (2) residual connections, and (3) normalizing layers (colloqui-
ally called “layer norm”).

Fig. 10.6 illustrates a standard transformer block consisting of a single attention
layer followed by a position-wise feedforward layer with residual connections and
layer normalizations following each.
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Feedforward layer The feedforward layer contains N position-wise networks, one
at each position. Each is a fully-connected 2-layer network, i.e., one hidden layer,
two weight matrices, as introduced in Chapter 7. The weights are the same for each
position, but the parameters are different from layer to layer. Unlike attention, the
feedforward networks are independent for each position and so can be computed in
parallel. It is common to make the dimensionality dgs of the hidden layer of the
feedforward network be larger than the model dimensionality d. (For example in the
original transformer model, d = 512 and dff =2048.)

Residual connections Residual connections are connections that pass informa-
tion from a lower layer to a higher layer without going through the intermediate
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layer. Allowing information from the activation going forward and the gradient go-
ing backwards to skip a layer improves learning and gives higher level layers direct
access to information from lower layers (He et al., 2016). Residual connections in
transformers are implemented simply by adding a layer’s input vector to its out-
put vector before passing it forward. In the transformer block shown in Fig. 10.6,
residual connections are used with both the attention and feedforward sublayers.

Layer Norm These summed vectors are then normalized using layer normaliza-
tion (Ba et al., 2016). Layer normalization (usually called layer norm) is one of
many forms of normalization that can be used to improve training performance in
deep neural networks by keeping the values of a hidden layer in a range that facil-
itates gradient-based training. Layer norm is a variation of the standard score, or
z-score, from statistics applied to a single vector in a hidden layer. The input to
layer norm is a single vector, for a particular token position i, and the output is that
vector normalized. Thus layer norm takes as input a single vector of dimensionality
d and produces as output a single vector of dimensionality d. The first step in layer
normalization is to calculate the mean, p, and standard deviation, ¢, over the ele-
ments of the vector to be normalized. Given a hidden layer with dimensionality dj,
these values are calculated as follows.

L= (10.20)

(10.21)

Given these values, the vector components are normalized by subtracting the mean
from each and dividing by the standard deviation. The result of this computation is
a new vector with zero mean and a standard deviation of one.
(x—#)

c

&= (10.22)

Finally, in the standard implementation of layer normalization, two learnable param-
eters, ¥ and 3, representing gain and offset values, are introduced.

LayerNorm = y X+ f (10.23)

Putting it all together The function computed by a transformer block can be ex-
pressed as:
O = LayerNorm(X + SelfAttention(X)) (10.24)
H = LayerNorm(O +FFN(O)) (10.25)
Or we can break it down with one equation for each component computation, using

T (of shape [N x d]) to stand for transformer and superscripts to demarcate each
computation inside the block:

T! = SelfAttention(X) (10.26)
T2 = X+T! (10.27)
T; = LayerNorm(Tz) (10.28)
T4 = FEN(T?) (10.29)
TS = 144713 (10.30)

H = LayerNorm(T?) (10.31)



12 CHAPTER 10 ¢ TRANSFORMERS AND LARGE LANGUAGE MODELS

Crucially, the input and output dimensions of transformer blocks are matched so
they can be stacked. Each token x; at the input to the block has dimensionality d,
and so the input X and output H are both of shape [N x d].

Transformers for large language models stack many of these blocks, from 12
layers (used for the TS or GPT-3-small language models) to 96 layers (used for
GPT-3 large), to even more for more recent models. We’ll come back to this issues
of stacking in a bit.

10.4 The Residual Stream view of the Transformer Block

The previous sections viewed the transformer block as applied to the entire N-token
input X of shape [N x d], producing an output also of shape [N x d].

While packing everything this way is a computationally efficient way to imple-
ment the transformer block, it’s not always the most perspicuous way to understand
what the transformer is doing. It’s often clearer to instead visualize what is hap-
pening to an individual token vector x; in the input as it is processed through each
transformer block. After all, most of the components of the transformer are de-
signed to take a single vector of dimensionality d, corresponding to a single token,
and produce an output vector also of dimensionality d. For example, the feedfor-
ward layer takes a single d-dimensional vector and produces a single d-dimensional
vector. Over the N tokens in a batch, we simply use the identical feedforward layer
weights (W, W, by and b,) for each token i. Similarly, the layer norm function takes
a single d-dimensional vector and produces a normalized d-dimensional version.

hi-1 hi hiv1
Layer Norm
Feedforward
(Layer Norm )
Xi-1 Xj Xis1
I3Tul W The residual stream for token x;, showing how the input to the transformer

block x; is passed up through residual connections, the output of the feedforward and multi-
head attention layers are added in, and processed by layer norm, to produce the output of
this block, h;, which is used as the input to the next layer transformer block. Note that of all
the components, only the MultiHeadAttention component reads information from the other
residual streams in the context.

We can therefore talk about the processing of an individual token through all
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these layers as a stream of d-dimensional representations, called the residual stream
and visualized in Fig. 10.7. The input at the bottom of the stream is an embedding
for a token, which has dimensionality d. That initial embedding is passed up by the
residual connections and the outputs of feedforward and attention layers get added
into it. For each token i, at each block and layer we are passing up an embedding
of shape [1 x d]. The residual layers are constantly copying information up from
earlier embeddings (hence the metaphor of ‘residual stream’), so we can think of the
other components as adding new views of this representation back into this constant
stream. Feedforward networks add in a different view of the earlier embedding.

Here are the equations for the transformer block, now viewed from this embed-
ding stream perspective.

t! = MultiHeadAttention(x;, [x1, - ,xn]) (10.32)
= t+x (10.33)
t? = LayerNorm(t?) (10.34)
t} = FFN(t})) (10.35)
t =t +¢] (10.36)
h; = LayerNorm(t?) (10.37)

Notice that the only component that takes as input information from other tokens
(other residual streams) is multi-head attention, which (as we see from (10.32) looks
at all the neighboring tokens in the context. The output from attention, however,
is then added into to this token’s embedding stream. In fact, Elhage et al. (2021)
show that we can view attention heads as literally moving attention from the resid-
ual stream of a neighboring token into the current stream. The high-dimensional
embedding space at each position thus contains information about the current to-
ken and about neighboring tokens, albeit in different subspaces of the vector space.
Fig. 10.8 shows a visualization of this movement.

Token A Token B
residual stream residual stream

J3TIMIIR]  An attention head can move information from token A’s residual stream into
token B’s residual stream.

Equation (10.32) and following are just just the equation for a single transformer
block, but the residual stream metaphor goes through all the transformer layers,
from the first transformer blocks to the 12th, in a 12-layer transformer. At the earlier
transformer blocks, the residual stream is representing the current token. At the
highest transformer blocks, the residual stream is usual representing the following
token, since at the very end it’s being trained to predict the next token.

Pre-norm vs. post-norm architecture There is an alternative form of the trans-
former architecture that is commonly used because it performs better in many cases.
In this prenorm transformer architecture, the layer norm happens in a slightly dif-
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ferent place: before the attention layer and before the feedforward layer, rather than
afterwards. Fig. 10.9 shows this architecture, with the equations below:

t! = LayerNorm(x;) (10.38)

t? = MultiHeadAttention(t], [t], -~ ,xy]) (10.39)

£ = t2+x (10.40)

t} = LayerNorm(t}) (10.41)

t? = FEN(t})) (10.42)

hy =+t (10.43)
hi1 hi Pise

Feedforward

Xi-1 X X1

IOTICEUR]  The architecture of the prenorm transformer block. Here the nature of the
residual stream, passing up information from the input, is even clearer.

The prenorm transformer has one extra requirement: at the very end of the last
(highest) transformer block, there is a single extra layer norm that is run on the last h;
of each token stream (just below the language model head layer that we will define
below).

10.5 The input: embeddings for token and position

embedding

Let’s talk about where the input X comes from. Given a sequence of N tokens (N is
the context length in tokens), the matrix X of shape [N x d| has an embedding for
each word in the context. The transformer does this by separately computing two
embeddings: an input token embedding, and an input positional embedding.

A token embedding, introduced in Chapter 7 and Chapter 9, is a vector of di-
mension d that will be our initial representation for the input token. (As we pass
vectors up through the transformer layers in the residual stream, this embedding
representation will change and grow, incorporating context and playing a different
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role depending on the kind of language model we are building.) The set of initial
embeddings are stored in the embedding matrix E, which has a row for each of the
|V| tokens in the vocabulary. Thus each each word is a row vector of d dimensions,
and E has shape [|V]| x d].

Given an input token string like Thanks for all the we first convert the tokens
into vocabulary indices (these were created when we first tokenized the input using
BPE or SentencePiece). So the representation of thanks for all the might be w =
[5,4000, 10532,2224]. Next we use indexing to select the corresponding rows from
E, (row 5, row 4000, row 10532, row 2224).

Another way to think about selecting token embeddings from the embedding
matrix is to represent tokens as one-hot vectors of shape [1 x |V|], i.e., with one
dimension for each word in the vocabulary. Recall that in a one-hot vector all the
elements are 0 except one, the element whose dimension is the word’s index in the
vocabulary, which has value 1. So if the word “thanks” has index 5 in the vocabulary,
x5 =1,and x; =0 Vi # 5, as shown here:

[00000100...0000]
1234567 ... ... |V|

Multiplying by a one-hot vector that has only one non-zero element x; = 1 simply
selects out the relevant row vector for word i, resulting in the embedding for word i,
as depicted in Fig. 10.10.

d
5 Y 5 d
| Loodbooooal X E = 17

VI

JPTINCHUINN] Selecting the embedding vector for word Vs by multiplying the embedding
matrix E with a one-hot vector with a 1 in index 5.

We can extend this idea to represent the entire token sequence as a matrix of one-
hot vectors, one for each of the N positions in the transformer’s context window, as
shown in Fig. 10.11.

VI d

00001000000
0000000...001[0]
[1[000000...0000 X E -

N

N [00o0dibo._ 0000

V]

IRTICHIINBY  Selecting the embedding matrix for the input sequence of token ids W by
multiplying a one-hot matrix corresponding to W by the embedding matrix E.

These token embeddings are not position-dependent. To represent the position
of each token in the sequence, we combine these token embeddings with positional
embeddings specific to each position in an input sequence.

Where do we get these positional embeddings? The simplest method, called
absolute position, is to start with randomly initialized embeddings corresponding
to each possible input position up to some maximum length. For example, just as
we have an embedding for the word fish, we’ll have an embedding for the position 3.
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As with word embeddings, these positional embeddings are learned along with other
parameters during training. We can store them in a matrix Epos of shape [1timesN].

To produce an input embedding that captures positional information, we just add
the word embedding for each input to its corresponding positional embedding. The
individual token and position embeddings are both of size [1 X d], so their sum is also
[1 x d], This new embedding serves as the input for further processing. Fig. 10.12
shows the idea.

Transformer Block

X=C it
comostc § g g

(word + position) e

e B, ‘k ‘k “

Embeddings

Janet will back the bill

1auer
||IM
»oeq

IPTICHIIAP] A simple way to model position: add an embedding of the absolute position
to the token embedding to produce a new embedding of the same dimenionality.

The final representation of the input, the matrix X, is an [N x d] matrix in which
each row i is the representation of the ith token in the input, computed by adding
E[id(i)]—the embedding of the id of the token that occurred at position i—, to P[],
the positional embedding of position i.

A potential problem with the simple absolute position embedding approach is
that there will be plenty of training examples for the initial positions in our inputs
and correspondingly fewer at the outer length limits. These latter embeddings may
be poorly trained and may not generalize well during testing. An alternative ap-
proach to absolute positional embeddings is to choose a static function that maps
integer inputs to real-valued vectors in a way that captures the inherent relation-
ships among the positions. That is, it captures the fact that position 4 in an input is
more closely related to position 5 than it is to position 17. A combination of sine
and cosine functions with differing frequencies was used in the original transformer
work. Even more complex positional embedding methods exist, such as ones that
represent relative position instead of absolute position, often implemented in the
attention mechanism at each layer rather than being added once at the initial input.

10.6 The Language Modeling Head

language
modeling head

head

The last component of the transformer we must introduce is the language modeling
head. When we apply pretrained transformer models to various tasks, we use the
term head to mean the additional neural circuitry we add on top of the basic trans-
former architecture to enable that task. The language modeling head is the circuitry
we need to do language modeling.
Recall that language models, from the simple n-gram models of Chapter 3 through

the feedforward and RNN language models of Chapter 7 and Chapter 9, are word
predictors. Given a context of words, they assign a probability to each possible next
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word. For example, if the preceding context is “Thanks for all the” and we want to
know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. The n-gram
language models of Chapter 3 compute the probability of a word given counts of
its occurrence with the n — 1 prior words. The context is thus of size n — 1. For
transformer language models, the context is the size of the transformer’s context
window, which can be quite large: up to 2048 or even 4096 tokens for large models.

The job of the language modeling head is to take the the output of the final
transformer layer from the last token N and use it to predict the upcoming word at
position N + 1. Fig. 10.13 shows how to accomplish this task, taking the output of
the last token at the last layer (the d-dimensional output embedding of shape [1 x d])
and producing a probability distribution over words (from which we will choose one
to generate).

Layer L

Block

... (VD) Word probabiliies 1V
Language Model Head [ (Lol ) ] Softmax over vocabulary V
L
takes h N and outputs a L Logits 1x|V|
distribution over vocabulary V -
Unembedding

Unembedding layer d x|V

layer = ET

Transformer ‘\

IUTICHUNK] The language modeling head: the circuit at the top of a transformer that maps from the output

embedding for token N from the last transformer layer (hfv) to a probability distribution over words in the

vocabulary V.

logit

weight tying

unembedding

The first module in Fig. 10.13 is a linear layer, whose job is to project from the
output /2%, which represents the output token embedding at position N from the final
block L, (hence of shape [1 x d]) to the logit vector, or score vector, that will have a
single score for each of the |V| possible words in the vocabulary V. The logit vector
u is thus of dimensionality 1 x |V]|.

This linear layer can be learned, but more commonly we tie this matrix to (the
transpose of) the embedding matrix E. Recall that in weight tying, we use the
same weights for two different matrices in the model. Thus at the input stage of the
transformer the embedding matrix (of shape [|V| x d]) is used to map from a one-hot
vector over the vocabulary (of shape [1 x |V[]) to an embedding (of shape [1 x d]).
And then in the language model head, ET, the transpose of the embedding matrix (of
shape [d x |V]]) is used to map back from an embedding (shape [1 x d]) to a vector
over the vocabulary (shape [1x|V]]). In the learning process, E will be optimized to
be good at doing both of these mappings. We therefore sometimes call the transpose
ET the unembedding layer because it is performing this reverse mapping.
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A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = h ET (10.44)
y = softmax(u) (10.45)

We can use these probabilities to do things like help assign a probability to a
given text. But the most important usage to generate text, which we do by sampling
a word from these probabilities y. We might sample the highest probability word
(‘greedy’ decoding), or use another of the sampling methods we’ll introduce in Sec-
tion 10.8. In either case, whatever entry y; we choose from the probability vector y,
we generate the word that has that index k.

Sample token to generate W,
at position N+1 N+1
Token probabilities e
Language Model
Head

( nih2 N )
e \
! ( Layer Norm )
Layer L | [ Feedforward ] 1
I
(¢ Layer Norm K
I

|

A ——————————— /'

( nih2 N )
e \
! ( Layer Norm )
Layer2 | [ Feedforward ] 1
I
b ( Layer Norm ]
- [ Multihead Seff-Attention ) -
N ———————————— i

( h1h2 hN )
g TTTTT TS \
: ( Layer Norm ]
Layer 1 : [ Feedforward ] :
I
! Layer Norm ]
I
- (- Multinead Self-Attention _}

X ( x1 x2 xN )

Add token + position embeddings  (_ Ew1]Ew2] ...EwN] )+ (_ P1_ P2 .. PN )
Input tokens w1 w2 ... wWN
3T BUIRE] A final transformer decoder-only model, stacking post-norm transformer
2 y g p

blocks and mapping from a set of input tokens wy to wy to a predicted next word wy 1.

Fig. 10.14 shows the total stacked architecture. Note that the input to the first
transformer block is represented as X, which is the N indexed word embeddings +
position embeddings, E[w] + P), but the input to all the other layers is the output H
from the layer just below the current one).

Now that we see all these transformer layers spread out on the page, we can point
out another useful feature of the unembedding layer: as a tool for interpretability of
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logitlens  the internals of the transformer that we call the logit lens (Nostalgebraist, 2020).
We can take a vector from any layer of the transformer and, pretending that it is
the prefinal embedding, simply multiply it by the unembedding layer to get logits,
and compute a softmax to see the distribution over words that that vector might
be representing. This can be a useful window into the internal representations of
the model. Since the network wasn’t trained to make the internal representations
function in this way, the logit lens doesn’t always work perfectly, but this can still
be a useful trick.

Anyhow, the Fig. 10.14 thus sketches out the entire process of taking a series of
words wy ...wy and using the model to predict the next word wy .

A terminological note before we conclude: You will sometimes see a trans-
former used for this kind of unidirectional causal language model called a decoder-

decoder-only ~ only model. This is because this model constitutes roughly half of the encoder-
decoder model for transformers that we’ll see how to apply to machine translation
in Chapter 13. (Confusingly, the original introduction of the transformer had an
encoder-decoder architecture, and it was only later that the standard paradigm for
causal language model was defined by using only the decoder part of this original
architecture).

In the next sections we’ll introduce what kind of tasks large language models can
be used for, discuss various generation methods for sampling possible next words,
and show how to train a transformer-based large language model. In the follow-
ing chapters we’ll expand on these ideas to introduce fine-tuning, prompting, and
encoder-decoder architectures for transformer-based large language models.

10.7 Large Language Models with Transformers

We’ve now seen most of the components of a transformer for language modeling
(what remains is sampling and training, which we’ll get to in the following sec-
tions). Before we do that, we use this section to talk about why and how we apply
transformer-based large language models to NLP tasks.

All of these tasks are cases of conditional generation, the task of generating text
conditioned on an input piece of text, a prompt. The fact that transformers have such
long contexts (1024 or even 4096 tokens) makes them very powerful for conditional
generation, because they can look back so far into the prompting text.

Consider the simple task of text completion, illustrated in Fig. 10.15. Here a
language model is given a text prefix and is asked to generate a possible completion.
Note that as the generation process proceeds, the model has direct access to the
priming context as well as to all of its own subsequently generated outputs (at least
as much as fits in the large context window).. This ability to incorporate the entirety
of the earlier context and generated outputs at each time step is the key to the power
of large language models built from transformers.

So why should we care about predicting upcoming words? The insight of large
language modeling is that many practical NLP tasks can be cast as word predic-
tion, and that a powerful-enough language model can solve them with a high degree
of accuracy. For example, we can cast sentiment analysis as language modeling by
giving a language model a context like:

The sentiment of the sentence “I like Jackie Chan” is:

and comparing the following conditional probability of the words “positive” and the
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I BUNE]  Autoregressive text completion with transformer-based large language models.

word “negative” to see which is higher:

P(positive|The sentiment of the sentence “I like Jackie Chan” is:)

P(negative|The sentiment of the sentence “I like Jackie Chan” is:)

If the word “positive” is more probable, we say the sentiment of the sentence is
positive, otherwise we say the sentiment is negative.

We can also cast more complex tasks as word prediction. Consider the task
of answering simple questions, a task we return to in Chapter 14. In this task the
system is given some question and must give a textual answer. We can cast the task
of question answering as word prediction by giving a language model a question and
a token like A: suggesting that an answer should come next:

Q: Who wrote the book ‘‘The Origin of Species"? A:

If we ask a language model to compute
P(w|Q: Who wrote the book “The Origin of Species”? A:)

and look at which words w have high probabilities, we might expect to see that
Charles is very likely, and then if we choose Charles and continue and ask

P(w|Q: Who wrote the book “The Origin of Species”? A: Charles)

we might now see that Darwin is the most probable word, and select it.

Conditional generation can even be used to accomplish tasks that must generate
longer responses. Consider the task of text summarization, which is to take a long
text, such as a full-length article, and produce an effective shorter summary of it.
We can cast summarization as language modeling by giving a large language model
a text, and follow the text by a token like t1;dr; this token is short for something
like ‘too long; don’t read” and in recent years people often use this token, especially
in informal work emails, when they are going to give a short summary. We can
then do conditional generation: give the language model this prefix, and then ask

text
summarization
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it to generate the following words, one by one, and take the entire response as a
summary. Fig. 10.16 shows an example of a text and a human-produced summary
from a widely-used summarization corpus consisting of CNN and Daily Mirror news
articles.

Original Article
The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff
and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says.
But not if you live in New England or surrounding states. “We will not ship snow to any states
in the northeast!” says Waring’s website, ShipSnow Yo.com. “We’re in the business of expunging
snow!”
His website and social media accounts claim to have filled more than 133 orders for snow — more
than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a
record this winter for the snowiest month in its history. Most residents see the huge piles of snow
choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.
According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-
eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston.
He joked about shipping the stuff to friends and family in warmer states, and an idea was born.
His business slogan: “Our nightmare is your dream!” At first, ShipSnow Yo sold snow packed
into empty 16.9-ounce water bottles for $19.99, but the snow usually melted before it reached its
destination...

Summary

Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.
Examples of articles and summaries from the CNN/Daily Mail corpus (Hermann et al., 2015),
(Nallapati et al., 2016).

If we take this full article and append the token tl;dr, we can use this as
the context to prime the generation process to produce a summary as illustrated
in Fig. 10.17. Again, what makes transformers able to succeed at this task (as
compared, say, to the primitive n-gram language model) is that the ability of self-
attention to incorporate information from the large context windows means that
the model has access to the original article as well as to the newly generated text
throughout the process.

Which words do we generate at each step? One simple way to generate words
is to always generate the most likely word given the context. Generating the most

de%f,ﬁ?ﬁg likely word given the context is called greedy decoding. A greedy algorithm is one
that make a choice that is locally optimal, whether or not it will turn out to have
been the best choice with hindsight. Thus in greedy decoding, at each time step in
generation, the output y; is chosen by computing the probability for each possible
outputs (every word in the vocabulary) and then choosing the highest probability
word (the argmax):

Wy = argmax,,c, P(w|lw,) (10.46)

In practice, however, we don’t use greedy decoding with large language models.
A major problem with greedy decoding is that because the words it chooses are (by
definition) extremely predictable, the resulting text is generic and often quite repeti-
tive. Indeed, greedy decoding is so predictable that it is deterministic; if the context
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IPTCHIIBY) Summarization with large language models using the t1;dr token and context-based autore-
gressive generation.

is identical, and the probabilistic model is the same, greedy decoding will always re-
sult in generating exactly the same string. We’ll see in Chapter 13 that an extension
to greedy decoding called beam search works well in tasks like machine translation,
which are very constrained in that we are always generating a text in one language
conditioned on a very specific text in another language. In most other tasks, how-
ever, people prefer text which has been generated by more sophisticated methods,
called sampling methods, that introduce a bit more diversity into the generations.
We’ll see how to do that in the next few sections.

10.8 Large Language Models: Generation by Sampling

The core of the generation process for large language models is the task of choosing

the single word to generate next based on the context and based on the probabilities

that the model assigns to possible words. This task of choosing a word to generate

decoding  based on the model’s probabilities is called decoding. Decoding from a language

model in a left-to-right manner (or right-to-left for languages like Arabic in which

we read from right to left), and thus repeatedly choosing the next word conditioned

a“t‘é‘;e,?err":fii;ﬁ on our previous choices is called autoregressive generation or causal LM genera-

tion.! (As we’ll see, alternatives like the masked language models of Chapter 11 are
non-causal because they can predict words based on both past and future words).

The most common method for decoding in large language models is sampling.

sampling  Recall from Chapter 3 that sampling from a model’s distribution over words means

to choose random words according to their probability assigned by the model. That

is, we iteratively choose a word to generate according to its probability in context

I Technically an autoregressive model predicts a value at time ¢ based on a linear function of the values
at times  — 1, # — 2, and so on. Although language models are not linear (since they have many layers of
non-linearities), we loosely refer to this generation technique as autoregressive since the word generated
at each time step is conditioned on the word selected by the network from the previous step.
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as defined by the model. Thus we are more likely to generate words that the model
thinks have a high probability in the context and less likely to generate words that
the model thinks have a low probability.

We saw back in Chapter 3 on page ?? how to generate text from a unigram lan-
guage model , by repeatedly randomly sampling words according to their probability
until we either reach a pre-determined length or select the end-of-sentence token. To
generate text from a trained transformer language model we’ll just generalize this
model a bit: at each step we’ll sample words according to their probability condi-
tioned on our previous choices, and we’ll use a transformer language model as the
probability model that tells us this probability.

We can formalize this algorithm for generating a sequence of words W =wy,w», ...

until we hit the end-of-sequence token, using x ~ p(x) to mean ‘choose x by sam-
pling from the distribution p(x):

i1

wi~ p(w)

while w; != EOS
i+-i+1
wi ~ pw; | w<;)

The algorithm above is called random sampling, and it turns out random sam-
pling doesn’t work well enough. The problem is that even though random sampling
is mostly going to generate sensible, high-probable words, there are many odd, low-
probability words in the tail of the distribution, and even though each one is low-
probability, if you add up all the rare words, they constitute a large enough portion
of the distribution that they get chosen often enough to result in generating weird
sentences. For this reason, instead of random sampling, we usually use sampling
methods that avoid generating the very unlikely words.

The sampling methods we introduce below each have parameters that enable
trading off two important factors in generation: quality and diversity. Methods
that emphasize the most probable words tend to produce generations that are rated
by people as more accurate, more coherent, and more factual, but also more boring
and more repetitive. Methods that give a bit more weight to the middle-probability
words tend to be more creative and more diverse, but less factual and more likely to
be incoherent or otherwise low-quality.

10.8.1 Top-k sampling

Top-k sampling is a simple generalization of greedy decoding. Instead of choosing
the single most probable word to generate, we first truncate the distribution to the
top k most likely words, renormalize to produce a legitimate probability distribution,
and then randomly sample from within these k words according to their renormalized
probabilities. More formally:

1. Choose in advance a number of words k

2. For each word in the vocabulary V, use the language model to compute the
likelihood of this word given the context p(w;|w;)

3. Sort the words by their likelihood, and throw away any word that is not one of
the top k most probable words.

4. Renormalize the scores of the k words to be a legitimate probability distribu-
tion.
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top-p sampling

temperature
sampling

5. Randomly sample a word from within these remaining k most-probable words
according to its probability.

When k = 1, top-k sampling is identical to greedy decoding. Setting k to a larger
number than 1 leads us to sometimes select a word which is not necessarily the most
probable, but is still probable enough, and whose choice results in generating more
diverse but still high-enough-quality text.

10.8.2 Nucleus or top-p sampling

One problem with top-k sampling is that k is fixed, but the shape of the the probabil-
ity distribution over words differs in different contexts. If we set k = 10, sometimes
the top 10 words will be very likely and include most of the probability mass, but
other times the probability distribution will be flatter and the top 10 words will only
include a small part of the probability mass.

An alternative, called top-p sampling or nucleus sampling (Holtzman et al.,
2020), is to keep not the top k words, but the top p percent of the probability mass.
The goal is the same; to truncate the distribution to remove the very unlikely words.
But by measuring probability rather than the number of words, the hope is that the
measure will be more robust in very different contexts, dynamically increasing and
decreasing the pool of word candidates.

Given a distribution P(w,|w_;), the top-p vocabulary V(?) is the smallest set of
words such that

> P(wlw) > p. (10.47)

weVv ()

10.8.3 Temperature sampling

In temperature sampling, we don’t truncate the distribution, but instead reshape
it. The intuition for temperature sampling comes from thermodynamics, where a
system at a high temperature is very flexible and can explore many possible states,
while a system at a lower temperature is likely to explore a subset of lower energy
(better) states. In low-temperature sampling, we smoothly increase the probability
of the most probable words and decrease the probability of the rare words.

We implement this intuition by simply dividing the logit by a temperature param-
eter T before we normalize it by passing it through the softmax. In low-temperature
sampling, T € (0, 1]. Thus instead of computing the probability distribution over the
vocabulary directly from the logit as in the following (repeated from (10.45):

y = softmax(u) (10.48)
we instead first divide the logits by 7, computing the probability vector y as
y = softmax(u/7) (10.49)

Why does this work? When 7 is close to 1 the distribution doesn’t change much.
But the lower 7 is, the larger the scores being passed to the softmax (dividing by a
smaller fraction T < 1 results in making each score larger). Recall that one of the
useful properties of a softmax is that it tends to push high values toward 1 and low
values toward 0. Thus when larger numbers are passed to a softmax the result is
a distribution with increased probabilities of the most high-probability words and
decreased probabilities of the low probability words, making the distribution more
greedy. As T approaches 0 the probability of the most likely word approaches 1.
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Note, by the way, that there can be other situations where we may want to do
something quite different and flatten the word probability distribution instead of
making it greedy. Temperature sampling can help with this situation too, in this case
high-temperature sampling, in which case we use 7 > 1.

10.9 Large Language Models: Training Transformers

self-supervision

teacher forcing

How do we teach a transformer to be a language model? What is the algorithm and
what data do we train on?

10.9.1 Self-supervised training algorithm

To train a transformer as a language model, we use the same self-supervision (or
self-training) algorithm we saw in Section ??: we take a corpus of text as training
material and at each time step ¢ ask the model to predict the next word. We call
such a model self-supervised because we don’t have to add any special gold labels
to the data; the natural sequence of words is its own supervision! We simply train the
model to minimize the error in predicting the true next word in the training sequence,
using cross-entropy as the loss function.

Recall that the cross-entropy loss measures the difference between a predicted
probability distribution and the correct distribution.

Leg = — Y yi[w]log§i[w] (10.50)
wevV

In the case of language modeling, the correct distribution y; comes from knowing the
next word. This is represented as a one-hot vector corresponding to the vocabulary
where the entry for the actual next word is 1, and all the other entries are 0. Thus,
the cross-entropy loss for language modeling is determined by the probability the
model assigns to the correct next word. So at time ¢ the CE loss in (10.50) can be
simplified as the negative log probability the model assigns to the next word in the
training sequence.

LCE(ytaYt) = *10g9z[Wz+1] (10.51)

Thus at each word position ¢ of the input, the model takes as input the correct se-
quence of tokens wy,, and uses them to compute a probability distribution over
possible next words so as to compute the model’s loss for the next token w; 1. Then
we move to the next word, we ignore what the model predicted for the next word
and instead use the correct sequence of tokens wy.41 to estimate the probability of
token wy 5. This idea that we always give the model the correct history sequence to
predict the next word (rather than feeding the model its best case from the previous
time step) is called teacher forcing.

Fig. 10.18 illustrates the general training approach. At each step, given all the
preceding words, the final transformer layer produces an output distribution over
the entire vocabulary. During training, the probability assigned to the correct word
is used to calculate the cross-entropy loss for each item in the sequence. As with
RNNS, the loss for a training sequence is the average cross-entropy loss over the
entire sequence. The weights in the network are adjusted to minimize the average
CE loss over the training sequence via gradient descent.
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Figure 10.18

common crawl

Training a transformer as a language model.

Note the key difference between this figure and the earlier RNN-based version
shown in Fig. ??. There the calculation of the outputs and the losses at each step was
inherently serial given the recurrence in the calculation of the hidden states. With
transformers, each training item can be processed in parallel since the output for
each element in the sequence is computed separately.

Large models are generally trained by filling the full context window (for ex-
ample 2048 or 4096 tokens for GPT3 or GPT4) with text. If documents are shorter
than this, multiple documents are packed into the window with a special end-of-text
token between them. The batch size for gradient descent is usually quite large (the
largest GPT-3 model uses a batch size of 3.2 million tokens).

10.9.2 Training corpora for large language models

Large language models are mainly trained on text scraped from the web, augmented
by more carefully curated data. Because these training corpora are so large, they are
likely to contain many natural examples that can be helpful for NLP tasks, such as
question and answer pairs (for example from FAQ lists), translations of sentences
between various languages, documents together with their summaries, and so on.

Web text is usually taken from corpora of automatically-crawled web pages like
the common crawl, a series of snapshots of the entire web produced by the non-
profit Common Crawl (https://commoncrawl.org/) that each have billions of
webpages. Various cleanups of common crawl data exist, such as the Colossal Clean
Crawled Corpus (C4; Raffel et al. 2020), a corpus of 156 billion tokens of English
that is filtered in various ways (deduplicated, removing non-natural language like
code, sentences with offensive words from a blocklist). What is in this data? An
analysis suggests that in large part it’s patent text documents, Wikipedia, and news
sites (Dodge et al., 2021). Wikipedia plays a role in lots of language model training,
as do corpora of books. The GPT3 models, for example, are trained mostly on the
web (429 billion tokens), some text from books (67 billion tokens) and Wikipedia
(3 billion tokens).
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10.9.3 Scaling laws

The performance of large language models has shown to be mainly determined by
3 factors: model size (the number of parameters not counting embeddings), dataset
size (the amount of training data), and the amount of computer used for training.
That is, we can improve a model by adding parameters (adding more layers or having
wider contexts or both), by training on more data, or by training for more iterations.
The relationships between these factors and performance are known as scaling
scalinglaws  laws. Roughly speaking, the performance of a large language model (the loss) scales
as a power-law with each of these three properties of model training.

For example, Kaplan et al. (2020) found the following three relationships for
loss L as a function of the number of non-embedding parameters N, the dataset size
D, and the compute budget C, for models training with limited parameters, dataset,
or compute budget, if in each case the other two properties are held constant:

oN

L(N) = (IIVV) (10.52)
D\ %

L(D) = (Dc) (10.53)
oc

L(C) = <CC) (10.54)

The number of (non-embedding) parameters N can be roughly computed as fol-
lows (ignoring biases, and with d as the input and output dimensionality of the
model, dyyy as the self-attention layer size, and d the size of the feedforward layer):

N

Q

2d nlayer(z daen + dff)
12 njayer d* (10.55)
(assuming dogn = dir/4 =d)

Q

Thus GPT-3, with n = 96 layers and dimensionality d = 12288, has 12 x 96 x
122882 = 175 billion parameters.

The values of N, D, C., o, Op, and ¢ depend on the exact transformer
architecture, tokenization, and vocabulary size, so rather than all the precise values,
scaling laws focus on the relationship with loss.?

Scaling laws can be useful in deciding how to train a model to a particular per-
formance, for example by looking at early in the training curve, or performance with
smaller amounts of data, to predict what the loss would be if we were to add more
data or increase model size. Other aspects of scaling laws can also tell us how much
data we need to add when scaling up a model.

10.10 Potential Harms from Language Models

Large pretrained neural language models exhibit many of the potential harms dis-
cussed in Chapter 4 and Chapter 6. Many of these harms become realized when
pretrained language models are used for any downstream task, particularly those

2 For the initial experiment in Kaplan et al. (2020) the precise values were ay = 0.076, N, = 8.8 x 1013
(parameters), atp = 0.095, D, = 5.4 x 103 (tokens), ac = 0.050, C. = 3.1 x 108 (petaflop-days).
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hallucination

toxic language

10.11

involving text generation, whether question answering, machine translation, or in
assistive technologies like writing aids or web search query completion, or predic-
tive typing for email (Olteanu et al., 2020).

For example, language models are prone to saying things that are false, a prob-
lem called hallucination. Language models are trained to generate text that is pre-
dictable and coherent, but the training algorithms we have seen so far don’t have any
way to enforce that the text that is generated is correct or true. This causes enormous
problems for any application where the facts matter!

A second source of harm is that language models can generate toxic language.
Gehman et al. (2020) show that even completely non-toxic prompts can lead large
language models to output hate speech and abuse their users. Language models also
generate stereotypes (Cheng et al., 2023) and negative attitudes (Brown et al., 2020;
Sheng et al., 2019) about many demographic groups.

One source of biases is the training data. Gehman et al. (2020) shows that large
language model training datasets include toxic text scraped from banned sites. There
are other biases than toxicity: the training data is disproportionately generated by
authors from the US and from developed countries. Such biased population samples
likely skew the resulting generation toward the perspectives or topics of this group
alone. Furthermore, language models can amplify demographic and other biases in
training data, just as we saw for embedding models in Chapter 6.

Language models can also be used by malicious actors for generating text for
misinformation, phishing, or other socially harmful activities (Brown et al., 2020).
McGuffie and Newhouse (2020) show how large language models generate text that
emulates online extremists, with the risk of amplifying extremist movements and
their attempt to radicalize and recruit.

Language models also present privacy issues since they can leak information
about their training data. It is thus possible for an adversary to extract training-data
text from a language model such as an individual person’s name, phone number,
and address (Henderson et al. 2017, Carlini et al. 2021). This is a problem if large
language models are trained on private datasets such as electronic health records.

Related to privacy is the issue of copyright. Large language models are trained
on text that is copyrighted. In some countries, like the United States, the fair use
doctrine allows copyrighted content to be used to build language models, but possi-
bly not if they are used to generate text that competes with the market for the text
they are trained on.

Finding ways to mitigate all these harms is an important current research area in
NLP. At the very least, carefully analyzing the data used to pretrain large language
models is important as a way of understanding issues of toxicity, bias, privacy, and
fair use, making it extremely important that language models include datasheets
(page ??) or model cards (page ??) giving full replicable information on the cor-
pora used to train them. Open-source models can specify their exact training data.
Requirements that models are transparent in such ways is also in the process of being
incorporated into the regulations of various national governments.

Summary

This chapter has introduced the transformer, and how it can be applied to build large
language models. Here’s a summary of the main points that we covered:
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* Transformers are non-recurrent networks based on self-attention. A self-
attention layer maps input sequences to output sequences of the same length,
using attention heads that model how the surrounding words are relevant for
the processing of the current word.

* A transformer block consists of a single attention layer followed by a feed-
forward layer with residual connections and layer normalizations following
each. Transformer blocks can be stacked to make deeper and more powerful
networks.

» Language models can be built out of stacks of transformer blocks, with a linear
and softmax max layer at the top.

* Transformer-based language models have a wide context window (as wide as
4096 tokens for current models) allowing them to draw on enormous amounts
of context to predict upcoming words.

e Many NLP tasks—such as question answering, summarization, sentiment,
and machine translation—can be cast as tasks of word prediction and hence
addressed with Large language models.

* The choice of which word to generate in large language models is generally
done by using a sampling algorithm.

* Because of their ability to be used in so many ways, language models also
have the potential to cause harms. Some harms include hallucinations, bias,
stereotypes, misinformation and propaganda, and violations of privacy and
copyright.

Bibliographical and Historical Notes

The transformer (Vaswani et al., 2017) was developed drawing on two lines of prior
research: self-attention and memory networks. Encoder-decoder attention, the
idea of using a soft weighting over the encodings of input words to inform a gen-
erative decoder (see Chapter 13) was developed by Graves (2013) in the context of
handwriting generation, and Bahdanau et al. (2015) for MT. This idea was extended
to self-attention by dropping the need for separate encoding and decoding sequences
and instead seeing attention as a way of weighting the tokens in collecting informa-
tion passed from lower layers to higher layers (Ling et al., 2015; Cheng et al., 2016;
Liu et al., 2016). Other aspects of the transformer, including the terminology of key,
query, and value, came from memory networks, a mechanism for adding an ex-
ternal read-write memory to networks, by using an embedding of a query to match
keys representing content in an associative memory (Sukhbaatar et al., 2015; Weston
et al., 2015; Graves et al., 2014).
MORE HISTORY TBD IN NEXT DRAFT.
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