
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2024. All

rights reserved. Draft of August 20, 2024.

CHAPTER

9 The Transformer

“The true art of memory is the art of attention ”
Samuel Johnson, Idler #74, September 1759

In this chapter we introduce the transformer, the standard architecture for build-
ing large language models. Transformer-based large language models have com-
pletely changed the field of speech and language processing. Indeed, every subse-
quent chapter in this textbook will make use of them. We’ll focus for now on left-
to-right (sometimes called causal or autoregressive) language modeling, in which
we are given a sequence of input tokens and predict output tokens one by one by
conditioning on the prior context.

The transformer is a neural network with a specific structure that includes a
mechanism called self-attention or multi-head attention.1 Attention can be thought
of as a way to build contextual representations of a token’s meaning by attending to
and integrating information from surrounding tokens, helping the model learn how
tokens relate to each other over large spans.

Stacked
Transformer

Blocks

So long and thanks for

long and thanks forNext token all

…

…

…

U

Input tokens

x1 x2

Language
Modeling

Head

x3 x4 x5

Input
Encoding E

1+

E
2+

E
3+

E
4+

E
5+

…

… ………

U U U U

…

logits logits logits logits logits

Figure 9.1 The architecture of a (left-to-right) transformer, showing how each input token
get encoded, passed through a set of stacked transformer blocks, and then a language model
head that predicts the next token.

Fig. 9.1 sketches the transformer architecture. A transformer has three major
components. At the center are columns of transformer blocks. Each block is a
multilayer network (a multi-head attention layer, feedforward networks and layer
normalization steps) that maps an input vector xi in column i (corresponding to input

1 Although multi-head attention developed historically from the RNN attention mechanism (Chapter 8),
we’ll define attention from scratch here for readers who haven’t yet read Chapter 8.

2 CHAPTER 9 • THE TRANSFORMER

token i) to an output vector hi. The set of n blocks maps an entire context window
of input vectors (x1, ...,xn) to a window of output vectors (h1, ...,hn) of the same
length. A column might contain from 12 to 96 or more stacked blocks.

The column of blocks is preceded by the input encoding component, which pro-
cesses an input token (like the word thanks) into a contextual vector representation,
using an embedding matrix E and a mechanism for encoding token position. Each
column is followed by a language modeling head, which takes the embedding out-
put by the final transformer block, passes it through an unembedding matrix U and
a softmax over the vocabulary to generate a single token for that column.

Transformer-based language models are complex, and so the details will unfold
over the next 5 chapters. In the next sections we’ll introduce multi-head attention,
the rest of the transformer block, and the input encoding and language modeling
head components. Chapter 10 discusses how language models are pretrained, and
how tokens are generated via sampling. Chapter 11 introduces masked language
modeling and the BERT family of bidirectional transformer encoder models. Chap-
ter 12 shows how to prompt LLMs to perform NLP tasks by giving instructions and
demonstrations, and how to align the model with human preferences. Chapter 13
will introduce machine translation with the encoder-decoder architecture.

9.1 Attention

Recall from Chapter 6 that for word2vec and other static embeddings, the repre-
sentation of a word’s meaning is always the same vector irrespective of the context:
the word chicken, for example, is always represented by the same fixed vector. So
a static vector for the word it might somehow encode that this is a pronoun used
for animals and inanimate entities. But in context it has a much richer meaning.
Consider it in one of these two sentences:

(9.1) The chicken didn’t cross the road because it was too tired.
(9.2) The chicken didn’t cross the road because it was too wide.

In (9.1) it is the chicken (i.e., the reader knows that the chicken was tired), while
in (9.2) it is the road (and the reader knows that the road was wide).2 That is, if
we are to compute the meaning of this sentence, we’ll need the meaning of it to be
associated with the chicken in the first sentence and associated with the road in
the second one, sensitive to the context.

Furthermore, consider reading left to right like a causal language model, pro-
cessing the sentence up to the word it:

(9.3) The chicken didn’t cross the road because it

At this point we don’t yet know which thing it is going to end up referring to! So a
representation of it at this point might have aspects of both chicken and road as
the reader is trying to guess what happens next.

This fact that words have rich linguistic relationships with other words that may
be far away pervades language. Consider two more examples:

(9.4) The keys to the cabinet are on the table.
(9.5) I walked along the pond, and noticed one of the trees along the bank.

2 We say that in the first example it corefers with the chicken, and in the second it corefers with the
road; we’ll return to this in Chapter 23.

9.1 • ATTENTION 3

In (9.4), the phrase The keys is the subject of the sentence, and in English and many
languages, must agree in grammatical number with the verb are; in this case both are
plural. In English we can’t use a singular verb like is with a plural subject like keys
(we’ll discuss agreement more in Chapter 18). In (9.5), we know that bank refers
to the side of a pond or river and not a financial institution because of the context,
including words like pond. (We’ll discuss word senses more in Chapter 11.)

The point of all these examples is that these contextual words that help us com-
pute the meaning of words in context can be quite far away in the sentence or para-
graph. Transformers can build contextual representations of word meaning, contex-
tual embeddings, by integrating the meaning of these helpful contextual words. In acontextual

embeddings
transformer, layer by layer, we build up richer and richer contextualized representa-
tions of the meanings of input tokens. At each layer, we compute the representation
of a token i by combining information about i from the previous layer with infor-
mation about the neighboring tokens to produce a contextualized representation for
each word at each position.

Attention is the mechanism in the transformer that weighs and combines the
representations from appropriate other tokens in the context from layer k−1 to build
the representation for tokens in layer k.

Th
e

ch
ic

ke
n

di
dn

’t

cr
os

s

th
e

ro
ad

be
ca

us
e

it wa
s

to
o

ti
re

d

Th
e

ch
ic

ke
n

di
dn

’t

cr
os

s

th
e

ro
ad

be
ca

us
e

it wa
s

to
o

ti
re

d

Layer k+1

Layer k

self-attention distribution

columns corresponding to input tokens

Figure 9.2 The self-attention weight distribution α that is part of the computation of the
representation for the word it at layer k+1. In computing the representation for it, we attend
differently to the various words at layer l, with darker shades indicating higher self-attention
values. Note that the transformer is attending highly to the columns corresponding to the
tokens chicken and road , a sensible result, since at the point where it occurs, it could plausibly
corefers with the chicken or the road, and hence we’d like the representation for it to draw on
the representation for these earlier words. Figure adapted from Uszkoreit (2017).

Fig. 9.2 shows a schematic example simplified from a transformer (Uszkoreit,
2017). The figure describes the situation when the current token is it and we need
to compute a contextual representation for this token at layer k+1 of the transformer,
drawing on the representations (from layer k) of every prior token. The figure uses
color to represent the attention distribution over the contextual words: the tokens
chicken and road both have a high attention weight, meaning that as we are com-
puting the representation for it, we will draw most heavily on the representation for
chicken and road. This will be useful in building the final representation for it,
since it will end up coreferring with either chicken or road.

Let’s now turn to how this attention distribution is represented and computed.

4 CHAPTER 9 • THE TRANSFORMER

9.1.1 Attention more formally
As we’ve said, the attention computation is a way to compute a vector representation
for a token at a particular layer of a transformer, by selectively attending to and
integrating information from prior tokens at the previous layer. Attention takes an
input representation xi corresponding to the input token at position i, and a context
window of prior inputs x1..xi−1, and produces an output ai.

In causal, left-to-right language models, the context is any of the prior words.
That is, when processing xi, the model has access to xi as well as the representations
of all the prior tokens in the context window (context windows consist of thousands
of tokens) but no tokens after i. (By contrast, in Chapter 11 we’ll generalize attention
so it can also look ahead to future words.)

Fig. 9.3 illustrates this flow of information in an entire causal self-attention layer,
in which this same attention computation happens in parallel at each token position
i. Thus a self-attention layer maps input sequences (x1, ...,xn) to output sequences
of the same length (a1, ...,an).

attentionattentionSelf-Attention
Layer

attentionattentionattention

a1 a2 a3 a4 a5

x3 x4 x5x1 x2

Figure 9.3 Information flow in causal self-attention. When processing each input xi, the
model attends to all the inputs up to, and including xi.

Simplified version of attention At its heart, attention is really just a weighted
sum of context vectors, with a lot of complications added to how the weights are
computed and what gets summed. For pedagogical purposes let’s first describe a
simplified intuition of attention, in which the attention output ai at token position i
is simply the weighted sum of all the representations x j, for all j ≤ i; we’ll use αi j
to mean how much xi should contribute to a j:

Simplified version: ai =
∑
j≤i

αi jx j (9.6)

Each αi j is a scalar used for weighing the value of input x j when summing up
the inputs to compute ai. How shall we compute this α weighting? In attention we
weight each prior embedding proportionally to how similar it is to the current token
i. So the output of attention is a sum of the embeddings of prior tokens weighted
by their similarity with the current token embedding. We compute similarity scores
via dot product, which maps two vectors into a scalar value ranging from −∞ to
∞. The larger the score, the more similar the vectors that are being compared. We’ll
normalize these scores with a softmax to create the vector of weights αi j, j ≤ i.

Simplified Version: score(xi,x j) = xi ·x j (9.7)

αi j = softmax(score(xi,x j)) ∀ j ≤ i (9.8)

Thus in Fig. 9.3 we compute a3 by computing three scores: x3 ·x1, x3 ·x2 and x3 ·x3,
normalizing them by a softmax, and using the resulting probabilities as weights
indicating each of their proportional relevance to the current position i. Of course,

9.1 • ATTENTION 5

the softmax weight will likely be highest for xi, since xi is very similar to itself,
resulting in a high dot product. But other context words may also be similar to i, and
the softmax will also assign some weight to those words. Then we use these weights
as the α values in Eq. 9.6 to compute the weighted sum that is our a3.

The simplified attention in equations 9.6 – 9.8 demonstrates the attention-based
approach to computing ai: compare the xi to prior vectors, normalize those scores
into a probability distribution used to weight the sum of the prior vector. But now
we’re ready to remove the simplifications.

A single attention head using query, key, and value matrices Now that we’ve
seen a simple intuition of attention, let’s introduce the actual attention head, theattention head

version of attention that’s used in transformers. (The word head is often used inhead

transformers to refer to specific structured layers). The attention head allows us to
distinctly represent three different roles that each input embedding plays during the
course of the attention process:

• As the current element being compared to the preceding inputs. We’ll refer to
this role as a query.query

• In its role as a preceding input that is being compared to the current element
to determine a similarity weight. We’ll refer to this role as a key.key

• And finally, as a value of a preceding element that gets weighted and summedvalue

up to compute the output for the current element.

To capture these three different roles, transformers introduce weight matrices
WQ, WK, and WV. These weights will project each input vector xi into a represen-
tation of its role as a key, query, or value:

qi = xiW
Q; ki = xiWK; vi = xiW

V (9.9)

Given these projections, when we are computing the similarity of the current ele-
ment xi with some prior element x j, we’ll use the dot product between the current
element’s query vector qi and the preceding element’s key vector k j. Furthermore,
the result of a dot product can be an arbitrarily large (positive or negative) value, and
exponentiating large values can lead to numerical issues and loss of gradients during
training. To avoid this, we scale the dot product by a factor related to the size of the
embeddings, via diving by the square root of the dimensionality of the query and
key vectors (dk). We thus replace the simplified Eq. 9.7 with Eq. 9.11. The ensuing
softmax calculation resulting in αi j remains the same, but the output calculation for
ai is now based on a weighted sum over the value vectors v (Eq. 9.13).

Here’s a final set of equations for computing self-attention for a single self-
attention output vector ai from a single input vector xi. This version of attention
computes ai by summing the values of the prior elements, each weighted by the
similarity of its key to the query from the current element:

qi = xiW
Q; k j = x jW

K; v j = x jW
V (9.10)

score(xi,x j) =
qi ·k j√

dk
(9.11)

αi j = softmax(score(xi,x j)) ∀ j ≤ i (9.12)

ai =
∑
j≤i

αi jv j (9.13)

We illustrate this in Fig. 9.4 for the case of calculating the value of the third output
a3 in a sequence.

6 CHAPTER 9 • THE TRANSFORMER

6. Sum the weighted
value vectors

4. Turn into 𝛼i,j weights via softmax

a3

1. Generate
key, query, value

vectors

2. Compare x3’s query with
the keys for x1, x2, and x3

Output of self-attention

Wk

Wv

Wq

x1

k

q

v x3

k

q

vx2

k

q

v

× ×

Wk Wk

Wq Wq

WvWv

5. Weigh each value vector

÷
√dk

3. Divide score by √dk
÷

√dk
÷

√dk

𝛼3,1 𝛼3,2 𝛼3,3

Figure 9.4 Calculating the value of a3, the third element of a sequence using causal (left-
to-right) self-attention.

Let’s talk shapes. The input to attention xi and the output from attention ai both
have the same dimensionality 1× d (We often call d the model dimensionality,
and indeed as we’ll discuss in Section 9.2 the output hi of each transformer block,
as well as the intermediate vectors inside the transformer block also have the same
dimensionality 1×d.).

We’ll have a dimension dk for the key and query vectors. The query vector and
the key vector are both dimensionality 1×dk, so we can take their dot product qi ·k j.
We’ll have a separate dimension dv for the value vectors. The transform matrix WQ

has shape [d× dk], WK is [d× dk], and WV is [d× dv]. In the original transformer
work (Vaswani et al., 2017), d was 512, dk and dv were both 64.

Multi-head Attention Equations 9.11-9.13 describe a single attention head. But
actually, transformers use multiple attention heads. The intuition is that each head
might be attending to the context for different purposes: heads might be special-
ized to represent different linguistic relationships between context elements and the
current token, or to look for particular kinds of patterns in the context.

So in multi-head attention we have h separate attention heads that reside inmulti-head
attention

parallel layers at the same depth in a model, each with its own set of parameters that
allows the head to model different aspects of the relationships among inputs. Thus
each head i in a self-attention layer has its own set of key, query and value matrices:
WKi, WQi and WVi. These are used to project the inputs into separate key, value,
and query embeddings for each head.

When using multiple heads the model dimension d is still used for the input
and output, the key and query embeddings have dimensionality dk, and the value
embeddings are of dimensionality dv (again, in the original transformer paper dk =
dv = 64, h = 8, and d = 512). Thus for each head i, we have weight layers WQi of
shape [d×dk], WKi of shape [d×dk], and WVi of shape [d×dv].

Below are the equations for attention augmented with multiple heads; Fig. 9.5

9.2 • TRANSFORMER BLOCKS 7

shows an intuition.

qc
i = xiW

Qc; kc
j = x jW

Kc; vc
j = x jW

Vc; ∀ c 1≤ c≤ h (9.14)

scorec(xi,x j) =
qc

i ·kc
j√

dk
(9.15)

α
c
i j = softmax(scorec(xi,x j)) ∀ j ≤ i (9.16)

headc
i =

∑
j≤i

α
c
i jv

c
j (9.17)

ai = (head1⊕head2...⊕headh)WO (9.18)

MultiHeadAttention(xi, [x1, · · · ,xN]) = ai (9.19)

The output of each of the h heads is of shape 1× dv, and so the output of the
multi-head layer with h heads consists of h vectors of shape 1×dv. These are con-
catenated to produce a single output with dimensionality 1× hdv. Then we use yet
another linear projection WO ∈ Rhdv×d to reshape it, resulting in the multi-head
attention vector ai with the correct output shape [1xd] at each input i.

ai
xi-1 xixi-2xi-3

WK
1

Head 1
WV

1 WQ
1

…

…

WK
2

Head 2
WV

2 WQ
2 WK

8

Head 8
WV

8 WQ
8

ai
WO [hdv x d]

[1 x dv]

[1 x d]

[1 x d]

[1 x hdv]

Project down to d

Concatenate Outputs

Each head
attends differently

to context

…

[1 x dv]

Figure 9.5 The multi-head attention computation for input xi, producing output ai. A multi-head attention
layer has h heads, each with its own key, query and value weight matrices. The outputs from each of the heads
are concatenated and then projected down to d, thus producing an output of the same size as the input.

9.2 Transformer Blocks

The self-attention calculation lies at the core of what’s called a transformer block,
which, in addition to the self-attention layer, includes three other kinds of layers: (1)
a feedforward layer, (2) residual connections, and (3) normalizing layers (colloqui-
ally called “layer norm”).

Fig. 9.6 illustrates a transformer block, sketching a common way of thinking
about the block that is called the residual stream (Elhage et al., 2021). In the resid-residual stream

ual stream viewpoint, we consider the processing of an individual token i through
the transformer block as a single stream of d-dimensional representations for token
position i. This residual stream starts with the original input vector, and the various

8 CHAPTER 9 • THE TRANSFORMER

Layer Norm

xi

+

hi-1

Layer Norm

MultiHead
Attention

Feedforward

xi-1 xi+1

hi hi+1

+
……

Residual
Stream

Figure 9.6 The architecture of a transformer block showing the residual stream. This
figure shows the prenorm version of the architecture, in which the layer norms happen before
the attention and feedforward layers rather than after.

components read their input from the residual stream and add their output back into
the stream.

The input at the bottom of the stream is an embedding for a token, which has
dimensionality d. This initial embedding gets passed up (by residual connections),
and is progressively added to by the other components of the transformer: the at-
tention layer that we have seen, and the feedforward layer that we will introduce.
Before the attention and feedforward layer is a computation called the layer norm.

Thus the initial vector is passed through a layer norm and attention layer, and
the result is added back into the stream, in this case to the original input vector
xi. And then this summed vector is again passed through another layer norm and a
feedforward layer, and the output of those is added back into the residual, and we’ll
use hi to refer to the resulting output of the transformer block for token i. (In earlier
descriptions the residual stream was often described using a different metaphor as
residual connections that add the input of a component to its output, but the residual
stream is a more perspicuous way of visualizing the transformer.)

We’ve already seen the attention layer, so let’s now introduce the feedforward
and layer norm computations in the context of processing a single input xi at token
position i.

Feedforward layer The feedforward layer is a fully-connected 2-layer network,
i.e., one hidden layer, two weight matrices, as introduced in Chapter 7. The weights
are the same for each token position i , but are different from layer to layer. It
is common to make the dimensionality dff of the hidden layer of the feedforward
network be larger than the model dimensionality d. (For example in the original
transformer model, d = 512 and dff = 2048.)

FFN(xi) = ReLU(xiW1 +b1)W2 +b2 (9.20)

Layer Norm At two stages in the transformer block we normalize the vector (Ba
et al., 2016). This process, called layer norm (short for layer normalization), is onelayer norm

9.2 • TRANSFORMER BLOCKS 9

of many forms of normalization that can be used to improve training performance
in deep neural networks by keeping the values of a hidden layer in a range that
facilitates gradient-based training.

Layer norm is a variation of the z-score from statistics, applied to a single vec-
tor in a hidden layer. That is, the term layer norm is a bit confusing; layer norm
is not applied to an entire transformer layer, but just to the embedding vector of a
single token. Thus the input to layer norm is a single vector of dimensionality d
and the output is that vector normalized, again of dimensionality d. The first step in
layer normalization is to calculate the mean, µ , and standard deviation, σ , over the
elements of the vector to be normalized. Given an embedding vector x of dimen-
sionality d, these values are calculated as follows.

µ =
1
d

d∑
i=1

xi (9.21)

σ =

√√√√1
d

d∑
i=1

(xi−µ)2 (9.22)

Given these values, the vector components are normalized by subtracting the mean
from each and dividing by the standard deviation. The result of this computation is
a new vector with zero mean and a standard deviation of one.

x̂=
(x−µ)

σ
(9.23)

Finally, in the standard implementation of layer normalization, two learnable param-
eters, γ and β , representing gain and offset values, are introduced.

LayerNorm(x) = γ
(x−µ)

σ
+β (9.24)

Putting it all together The function computed by a transformer block can be ex-
pressed by breaking it down with one equation for each component computation,
using t (of shape [1× d]) to stand for transformer and superscripts to demarcate
each computation inside the block:

t1i = LayerNorm(xi) (9.25)

t2i = MultiHeadAttention(t1i ,
[
x11, · · · ,x1N

]
) (9.26)

t3i = t2i +xi (9.27)

t4i = LayerNorm(t3i) (9.28)

t5i = FFN(t4i) (9.29)

hi = t5i + t3i (9.30)

Notice that the only component that takes as input information from other tokens
(other residual streams) is multi-head attention, which (as we see from (9.27)) looks
at all the neighboring tokens in the context. The output from attention, however, is
then added into this token’s embedding stream. In fact, Elhage et al. (2021) show that
we can view attention heads as literally moving information from the residual stream
of a neighboring token into the current stream. The high-dimensional embedding
space at each position thus contains information about the current token and about
neighboring tokens, albeit in different subspaces of the vector space. Fig. 9.7 shows
a visualization of this movement.

10 CHAPTER 9 • THE TRANSFORMER

Token A
residual
 stream

Token B
residual
stream

Figure 9.7 An attention head can move information from token A’s residual stream into
token B’s residual stream.

Crucially, the input and output dimensions of transformer blocks are matched so
they can be stacked. Each token vector xi at the input to the block has dimensionality
d, and the output hi also has dimensionality d. Transformers for large language
models stack many of these blocks, from 12 layers (used for the T5 or GPT-3-small
language models) to 96 layers (used for GPT-3 large), to even more for more recent
models. We’ll come back to this issue of stacking in a bit.

Equation (9.27) and following are just the equation for a single transformer
block, but the residual stream metaphor goes through all the transformer layers,
from the first transformer blocks to the 12th, in a 12-layer transformer. At the ear-
lier transformer blocks, the residual stream is representing the current token. At the
highest transformer blocks, the residual stream is usually representing the following
token, since at the very end it’s being trained to predict the next token.

Once we stack many blocks, there is one more requirement: at the very end of
the last (highest) transformer block, there is a single extra layer norm that is run on
the last hi of each token stream (just below the language model head layer that we
will define soon). 3

9.3 Parallelizing computation using a single matrix X

This description of multi-head attention and the rest of the transformer block has
been from the perspective of computing a single output at a single time step i in
a single residual stream. But as we pointed out earlier, the attention computation
performed for each token to compute ai is independent of the computation for each
other token, and that’s also true for all the computation in the transformer block
computing hi from the input xi. That means we can easily parallelize the entire
computation, taking advantage of efficient matrix multiplication routines.

We do this by packing the input embeddings for the N tokens of the input se-
quence into a single matrix X of size [N× d]. Each row of X is the embedding of
one token of the input. Transformers for large language models commonly have an
input length N = 1K, 2K, or as many as 32K tokens (or more), so X typically has be-
tween 1K and 32K rows, each of the dimensionality of the embedding d (the model

3 Note that we are using the most common current transformer architecture, which is called the prenorm
architecture. The original definition of the transformer in Vaswani et al. (2017) used an alternative archi-
tecture called the postnorm transformer in which the layer norm happens after the attention and FFN
layers; it turns out moving the layer norm beforehand works better, but does require this one extra layer
at the end.

9.3 • PARALLELIZING COMPUTATION USING A SINGLE MATRIX X 11

dimension).

Parallelizing attention Let’s first see this for a single attention head and then turn
to multiple heads, and then add in the rest of the components in the transformer
block. For one head we multiply X by the key, query, and value matrices WQ of
shape [d×dk], WK of shape [d×dk], and WV of shape [d×dv], to produce matrices
Q of shape [N×dk], K ∈ RN×dk , and V ∈ RN×dv , containing all the key, query, and
value vectors:

Q= XWQ; K= XWK; V = XWV (9.31)

Given these matrices we can compute all the requisite query-key comparisons simul-
taneously by multiplying Q and Kᵀ in a single matrix multiplication. The product is
of shape N×N, visualized in Fig. 9.8.

q1•k1

q2•k1 q2•k2

q4•k1 q4•k2 q4•k3 q4•k4

q3•k1 q3•k2 q3•k3

N

N

q1•k2 q1•k3 q1•k4

q2•k3 q2•k4

q3•k4

Figure 9.8 The N×N QKᵀ matrix showing how it computes all qi · k j comparisons in a
single matrix multiple.

Once we have this QKᵀ matrix, we can very efficiently scale these scores, take
the softmax, and then multiply the result by V resulting in a matrix of shape N×d:
a vector embedding representation for each token in the input. We’ve reduced the
entire self-attention step for an entire sequence of N tokens for one head to the
following computation:

A = softmax
(

mask
(
QKᵀ

√
dk

))
V (9.32)

Masking out the future You may have noticed that we introduced a mask function
in Eq. 9.32 above. This is because the self-attention computation as we’ve described
it has a problem: the calculation in QKᵀ results in a score for each query value
to every key value, including those that follow the query. This is inappropriate in
the setting of language modeling: guessing the next word is pretty simple if you
already know it! To fix this, the elements in the upper-triangular portion of the
matrix are zeroed out (set to −∞), thus eliminating any knowledge of words that
follow in the sequence. This is done in practice by adding a mask matrix M in
which Mi j =−∞ ∀ j > i (i.e. for the upper-triangular portion) and Mi j = 0 otherwise.
Fig. 9.9 shows the resulting masked QKᵀ matrix. (we’ll see in Chapter 11 how to
make use of words in the future for tasks that need it).

Fig. 9.10 shows a schematic of all the computations for a single attention head
parallelized in matrix form.

Fig. 9.8 and Fig. 9.9 also make it clear that attention is quadratic in the length
of the input, since at each layer we need to compute dot products between each pair
of tokens in the input. This makes it expensive to compute attention over very long
documents (like entire novels). Nonetheless modern large language models manage
to use quite long contexts of thousands or tens of thousands of tokens.

12 CHAPTER 9 • THE TRANSFORMER

q1•k1

q2•k1 q2•k2

q4•k1 q4•k2 q4•k3 q4•k4

q3•k1 q3•k2 q3•k3

N

N

−∞ −∞

−∞ −∞

−∞

−∞

Figure 9.9 The N×N QKᵀ matrix showing the qi · k j values, with the upper-triangle por-
tion of the comparisons matrix zeroed out (set to −∞, which the softmax will turn to zero).

q1

q2

q3

q4

k1 k2 k3 k4
Q KT

QKT

v1

v2

v3

v4

V

q2•k2

q4•k2 q4•k3 q4•k4

q3•k2 q3•k3

−∞ −∞

−∞ −∞

−∞

−∞q1•k1

q2•k1 q2•k2

q4•k1 q4•k2 q4•k3 q4•k4

q3•k1 q3•k2 q3•k3

q1•k2

q2•k3

q1•k3

q3•k4

q2•k4

q1•k4x =

QKT masked

mask =

q1•k1

q2•k1

q4•k1

q3•k1

q1•k1q1•k1

=x
a1

a2

a3

a4

A

Query
Token 1

Query
Token 2

Query
Token 3

Query
Token 4

Q
Input

Token 1

Input
Token 2

Input
Token 3

Input
Token 4

X

x

WQ

=

Value
Token 1

Value
Token 2

Value
Token 3

Value
Token 4

V

x

WV

=

Input
Token 1

Input
Token 2

Input
Token 3

Input
Token 4

X
Key

Token 1

Key
Token 2

Key
Token 3

Key
Token 4

K

x

WK

=

Input
Token 1

Input
Token 2

Input
Token 3

Input
Token 4

X

N x dk

dk x N

N x N N x N N x dv N x dv

d x dk
d x dk d x dv

N x d N x dk N x d N x dk N x d N x dv

Figure 9.10 Schematic of the attention computation for a single attention head in parallel. The first row shows
the computation of the Q, K, and V matrices. The second row shows the computation of QKT, the masking
(the softmax computation and the normalizing by dimensionality are not shown) and then the weighted sum of
the value vectors to get the final attention vectors.

Parallelizing multi-head attention In multi-head attention, as with self-attention,
the input and output have the model dimension d, the key and query embeddings
have dimensionality dk, and the value embeddings are of dimensionality dv (again,
in the original transformer paper dk = dv = 64, h = 8, and d = 512). Thus for each
head i, we have weight layers WQ

i ∈ Rd×dk , WK
i ∈ Rd×dk , and WV

i ∈ Rd×dv , and
these get multiplied by the inputs packed into X to produce Q ∈RN×dk , K ∈RN×dk ,
and V ∈ RN×dv . The output of each of the h heads is of shape N× dv, and so the
output of the multi-head layer with h heads consists of h matrices of shape N×dv. To
make use of these matrices in further processing, they are concatenated to produce
a single output with dimensionality N × hdv. Finally, we use yet another linear
projection WO ∈ Rhdv×d , that reshape it to the original output dimension for each
token. Multiplying the concatenated N×hdv matrix output by WO ∈ Rhdv×d yields

9.4 • THE INPUT: EMBEDDINGS FOR TOKEN AND POSITION 13

the self-attention output A of shape [N×d].

Qi = XWQi ; Ki = XWKi ; Vi = XWVi (9.33)

headi = SelfAttention(Qi,Ki,Vi) = softmax
(
QiKiᵀ

√
dk

)
Vi (9.34)

MultiHeadAttention(X) = (head1⊕head2...⊕headh)W
O (9.35)

Putting it all together with the parallel input matrix X The function computed
in parallel by an entire layer of N transformer block over the entire N input tokens
can be expressed as:

O = LayerNorm(X+MultiHeadAttention(X)) (9.36)

H = LayerNorm(O+FFN(O)) (9.37)

Or we can break it down with one equation for each component computation, using
T (of shape [N × d]) to stand for transformer and superscripts to demarcate each
computation inside the block:

T1 = MultiHeadAttention(X) (9.38)

T2 = X+T1 (9.39)

T3 = LayerNorm(T2) (9.40)

T4 = FFN(T3) (9.41)

T5 = T4+T3 (9.42)

H = LayerNorm(T5) (9.43)

Here when we use a notation like FFN(T3) we mean that the same FFN is applied
in parallel to each of the N embedding vectors in the window. Similarly, each of the
N tokens is normed in parallel in the LayerNorm. Crucially, the input and output
dimensions of transformer blocks are matched so they can be stacked. Since each
token xi at the input to the block has dimensionality d, that means the input X and
output H are both of shape [N×d].

9.4 The input: embeddings for token and position

Let’s talk about where the input X comes from. Given a sequence of N tokens (N is
the context length in tokens), the matrix X of shape [N× d] has an embedding forembedding

each word in the context. The transformer does this by separately computing two
embeddings: an input token embedding, and an input positional embedding.

A token embedding, introduced in Chapter 7 and Chapter 8, is a vector of di-
mension d that will be our initial representation for the input token. (As we pass
vectors up through the transformer layers in the residual stream, this embedding
representation will change and grow, incorporating context and playing a different
role depending on the kind of language model we are building.) The set of initial
embeddings are stored in the embedding matrix E, which has a row for each of the
|V | tokens in the vocabulary. Thus each word is a row vector of d dimensions, and
E has shape [|V |×d].

Given an input token string like Thanks for all the we first convert the tokens
into vocabulary indices (these were created when we first tokenized the input using

14 CHAPTER 9 • THE TRANSFORMER

BPE or SentencePiece). So the representation of thanks for all the might be w =
[5,4000,10532,2224]. Next we use indexing to select the corresponding rows from
E, (row 5, row 4000, row 10532, row 2224).

Another way to think about selecting token embeddings from the embedding
matrix is to represent tokens as one-hot vectors of shape [1× |V |], i.e., with one
dimension for each word in the vocabulary. Recall that in a one-hot vector all theone-hot vector

elements are 0 except one, the element whose dimension is the word’s index in the
vocabulary, which has value 1. So if the word “thanks” has index 5 in the vocabulary,
x5 = 1, and xi = 0 ∀i 6= 5, as shown here:

[0 0 0 0 1 0 0 ... 0 0 0 0]

1 2 3 4 5 6 7 |V|

Multiplying by a one-hot vector that has only one non-zero element xi = 1 simply
selects out the relevant row vector for word i, resulting in the embedding for word i,
as depicted in Fig. 9.11.

E

|V|

d

1
|V| d

=✕
55

0 0 0 0 1 0 0 … 0 0 0 0 1

Figure 9.11 Selecting the embedding vector for word V5 by multiplying the embedding
matrix E with a one-hot vector with a 1 in index 5.

We can extend this idea to represent the entire token sequence as a matrix of one-
hot vectors, one for each of the N positions in the transformer’s context window, as
shown in Fig. 9.12.

E

|V|

d
d

N

=✕

|V|

N

0 0 0 0 0 0 0 … 0 0 1 0
0 0 0 0 1 0 0 … 0 0 0 0

1 0 0 0 0 0 0 … 0 0 0 0

0 0 0 0 1 0 0 … 0 0 0 0

…

Figure 9.12 Selecting the embedding matrix for the input sequence of token ids W by mul-
tiplying a one-hot matrix corresponding to W by the embedding matrix E.

These token embeddings are not position-dependent. To represent the position
of each token in the sequence, we combine these token embeddings with positional
embeddings specific to each position in an input sequence.positional

embeddings
Where do we get these positional embeddings? The simplest method, called

absolute position, is to start with randomly initialized embeddings correspondingabsolute
position

to each possible input position up to some maximum length. For example, just as
we have an embedding for the word fish, we’ll have an embedding for the position 3.
As with word embeddings, these positional embeddings are learned along with other
parameters during training. We can store them in a matrix Epos of shape [1×N].

To produce an input embedding that captures positional information, we just
add the word embedding for each input to its corresponding positional embedding.
The individual token and position embeddings are both of size [1×d], so their sum is

9.5 • THE LANGUAGE MODELING HEAD 15

X = Composite
Embeddings

(word + position)

Transformer Block

Janet
1

w
ill

2

back
3

Janet will back the bill
the

4

bill

5

+ + + + +

Position
Embeddings

Word
Embeddings

Figure 9.13 A simple way to model position: add an embedding of the absolute position to
the token embedding to produce a new embedding of the same dimensionality.

also [1×d], This new embedding serves as the input for further processing. Fig. 9.13
shows the idea.

The final representation of the input, the matrix X, is an [N×d] matrix in which
each row i is the representation of the ith token in the input, computed by adding
E[id(i)]—the embedding of the id of the token that occurred at position i—, to P[i],
the positional embedding of position i.

A potential problem with the simple absolute position embedding approach is
that there will be plenty of training examples for the initial positions in our inputs
and correspondingly fewer at the outer length limits. These latter embeddings may
be poorly trained and may not generalize well during testing. An alternative ap-
proach to absolute positional embeddings is to choose a static function that maps
integer inputs to real-valued vectors in a way that captures the inherent relation-
ships among the positions. That is, it captures the fact that position 4 in an input is
more closely related to position 5 than it is to position 17. A combination of sine
and cosine functions with differing frequencies was used in the original transformer
work. Even more complex positional embedding methods exist, such as ones that
represent relative position instead of absolute position, often implemented in the
attention mechanism at each layer rather than being added once at the initial input.

9.5 The Language Modeling Head

The last component of the transformer we must introduce is the language modeling
head. Here we are using the word head to mean the additional neural circuitry welanguage

modeling head
head add on top of the basic transformer architecture when we apply pretrained trans-

former models to various tasks. The language modeling head is the circuitry we
need to do language modeling.

Recall that language models, from the simple n-gram models of Chapter 3 through
the feedforward and RNN language models of Chapter 7 and Chapter 8, are word
predictors. Given a context of words, they assign a probability to each possible next
word. For example, if the preceding context is “Thanks for all the” and we want to
know how likely the next word is “fish” we would compute:

P(fish|Thanks for all the)

Language models give us the ability to assign such a conditional probability to every
possible next word, giving us a distribution over the entire vocabulary. The n-gram

16 CHAPTER 9 • THE TRANSFORMER

language models of Chapter 3 compute the probability of a word given counts of
its occurrence with the n− 1 prior words. The context is thus of size n− 1. For
transformer language models, the context is the size of the transformer’s context
window, which can be quite large: 2K, 4K, even 32K tokens for very large models.

The job of the language modeling head is to take the output of the final trans-
former layer from the last token N and use it to predict the upcoming word at posi-
tion N+1. Fig. 9.14 shows how to accomplish this task, taking the output of the last
token at the last layer (the d-dimensional output embedding of shape [1× d]) and
producing a probability distribution over words (from which we will choose one to
generate).

Layer L
Transformer

Block

Softmax over vocabulary V

Unembedding layer

…

1 x |V|

Logits

Word probabilities

1 x |V|

hL
1

w1 w2 wN

hL
2 hL

N

d x |V|

1 x d

 Unembedding layer
U = ET

y1 y2 y|V|…

u1 u2 u|V|…
Language Model Head

takes hL
N and outputs a

distribution over vocabulary V

Figure 9.14 The language modeling head: the circuit at the top of a transformer that maps from the output
embedding for token N from the last transformer layer (hL

N) to a probability distribution over words in the
vocabulary V .

The first module in Fig. 9.14 is a linear layer, whose job is to project from the
output hL

N , which represents the output token embedding at position N from the final
block L, (hence of shape [1×d]) to the logit vector, or score vector, that will have alogit

single score for each of the |V | possible words in the vocabulary V . The logit vector
u is thus of dimensionality 1×|V |.

This linear layer can be learned, but more commonly we tie this matrix to (the
transpose of) the embedding matrix E. Recall that in weight tying, we use theweight tying

same weights for two different matrices in the model. Thus at the input stage of the
transformer the embedding matrix (of shape [|V |×d]) is used to map from a one-hot
vector over the vocabulary (of shape [1×|V |]) to an embedding (of shape [1× d]).
And then in the language model head, ET, the transpose of the embedding matrix (of
shape [d×|V |]) is used to map back from an embedding (shape [1×d]) to a vector
over the vocabulary (shape [1×|V |]). In the learning process, E will be optimized to
be good at doing both of these mappings. We therefore sometimes call the transpose
ET the unembedding layer because it is performing this reverse mapping.unembedding

A softmax layer turns the logits u into the probabilities y over the vocabulary.

u = hLN ET (9.44)

y = softmax(u) (9.45)

We can use these probabilities to do things like help assign a probability to a
given text. But the most important usage to generate text, which we do by sampling

9.5 • THE LANGUAGE MODELING HEAD 17

a word from these probabilities y. We might sample the highest probability word
(‘greedy’ decoding), or use another of the sampling methods we’ll introduce in Sec-
tion ??. In either case, whatever entry yk we choose from the probability vector y,
we generate the word that has that index k.

wi

Sample token to
generate at position i+1

feedforward
layer norm
attention

layer norm

U

Input token

Language
Modeling

Head

Input
Encoding E

i+

…

logits

feedforward
layer norm
attention

layer norm

Layer 1

Layer 2

h1
i = x2

i

x1
i

h2
i = x3

i

feedforward
layer norm
attention

layer norm

hL
i

hL-1
i = xL

i

y1 y2 y|V|…Token probabilities

u1 u2 u|V|…

softmax

wi+1

Layer L

Figure 9.15 A transformer language model (decoder-only), stacking transformer blocks
and mapping from an input token wi to to a predicted next token wi+1.

Fig. 9.15 shows the total stacked architecture for one token i. Note that the input
to each transformer layer xi is the same as the output from the preceding layer h−i .

Now that we see all these transformer layers spread out on the page, we can point
out another useful feature of the unembedding layer: as a tool for interpretability of
the internals of the transformer that we call the logit lens (Nostalgebraist, 2020).logit lens

We can take a vector from any layer of the transformer and, pretending that it is
the prefinal embedding, simply multiply it by the unembedding layer to get logits,
and compute a softmax to see the distribution over words that that vector might
be representing. This can be a useful window into the internal representations of
the model. Since the network wasn’t trained to make the internal representations
function in this way, the logit lens doesn’t always work perfectly, but this can still
be a useful trick.

A terminological note before we conclude: You will sometimes see a trans-
former used for this kind of unidirectional causal language model called a decoder-
only model. This is because this model constitutes roughly half of the encoder-decoder-only

model

18 CHAPTER 9 • THE TRANSFORMER

decoder model for transformers that we’ll see how to apply to machine translation
in Chapter 13. (Confusingly, the original introduction of the transformer had an
encoder-decoder architecture, and it was only later that the standard paradigm for
causal language model was defined by using only the decoder part of this original
architecture).

9.6 Summary

This chapter has introduced the transformer and its components for the task of lan-
guage modeling. We’ll continue the task of language modeling including issues like
training and sampling in the next chapter.

Here’s a summary of the main points that we covered:

• Transformers are non-recurrent networks based on multi-head attention, a
kind of self-attention. A multi-head attention computation takes an input
vector xi and maps it to an output ai by adding in vectors from prior tokens,
weighted by how relevant they are for the processing of the current word.

• A transformer block consists of a residual stream in which the input from
the prior layer is passed up to the next layer, with the output of different com-
ponents added to it. These components include a multi-head attention layer
followed by a feedforward layer, each preceded by layer normalizations.
Transformer blocks are stacked to make deeper and more powerful networks.

• The input to a transformer is a computing by adding an embedding (computed
with an embedding matrix) to a positional encoding that represents the se-
quential position of the token in the window.

• Language models can be built out of stacks of transformer blocks, with a
language model head at the top, which applies an unembedding matrix to
the output H of the top layer to generate the logits, which are then passed
through a softmax to generate word probabilities.

• Transformer-based language models have a wide context window (as wide
as 32768 tokens for very large models) allowing them to draw on enormous
amounts of context to predict upcoming words.

Bibliographical and Historical Notes
The transformer (Vaswani et al., 2017) was developed drawing on two lines of prior
research: self-attention and memory networks.

Encoder-decoder attention, the idea of using a soft weighting over the encodings
of input words to inform a generative decoder (see Chapter 13) was developed by
Graves (2013) in the context of handwriting generation, and Bahdanau et al. (2015)
for MT. This idea was extended to self-attention by dropping the need for separate
encoding and decoding sequences and instead seeing attention as a way of weighting
the tokens in collecting information passed from lower layers to higher layers (Ling
et al., 2015; Cheng et al., 2016; Liu et al., 2016).

Other aspects of the transformer, including the terminology of key, query, and
value, came from memory networks, a mechanism for adding an external read-

BIBLIOGRAPHICAL AND HISTORICAL NOTES 19

write memory to networks, by using an embedding of a query to match keys rep-
resenting content in an associative memory (Sukhbaatar et al., 2015; Weston et al.,
2015; Graves et al., 2014).

MORE HISTORY TBD IN NEXT DRAFT.

20 Chapter 9 • The Transformer

Ba, J. L., J. R. Kiros, and G. E. Hinton. 2016. Layer normal-
ization. NeurIPS workshop.

Bahdanau, D., K. H. Cho, and Y. Bengio. 2015. Neural ma-
chine translation by jointly learning to align and translate.
ICLR 2015.

Cheng, J., L. Dong, and M. Lapata. 2016. Long short-term
memory-networks for machine reading. EMNLP.

Elhage, N., N. Nanda, C. Olsson, T. Henighan, N. Joseph,
B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. Das-
Sarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Her-
nandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse,
D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCan-
dlish, and C. Olah. 2021. A mathematical framework for
transformer circuits. White paper.

Graves, A. 2013. Generating sequences with recurrent neural
networks. ArXiv.

Graves, A., G. Wayne, and I. Danihelka. 2014. Neural Tur-
ing machines. ArXiv.

Ling, W., C. Dyer, A. W. Black, I. Trancoso, R. Fermandez,
S. Amir, L. Marujo, and T. Luı́s. 2015. Finding function
in form: Compositional character models for open vocab-
ulary word representation. EMNLP.

Liu, Y., C. Sun, L. Lin, and X. Wang. 2016. Learning natural
language inference using bidirectional LSTM model and
inner-attention. ArXiv.

Nostalgebraist. 2020. Interpreting gpt: the logit lens. White
paper.

Sukhbaatar, S., A. Szlam, J. Weston, and R. Fergus. 2015.
End-to-end memory networks. NeurIPS.

Uszkoreit, J. 2017. Transformer: A novel neural network ar-
chitecture for language understanding. Google Research
blog post, Thursday August 31, 2017.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. 2017. Atten-
tion is all you need. NeurIPS.

Weston, J., S. Chopra, and A. Bordes. 2015. Memory net-
works. ICLR 2015.

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://doi.org/10.18653/v1/D16-1053
https://doi.org/10.18653/v1/D16-1053
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1308.0850
https://arxiv.org/pdf/1410.5401.pdf
https://arxiv.org/pdf/1410.5401.pdf
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://doi.org/10.18653/v1/D15-1176
https://arxiv.org/pdf/1605.09090.pdf
https://arxiv.org/pdf/1605.09090.pdf
https://arxiv.org/pdf/1605.09090.pdf
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://blog.research.google/2017/08/transformer-novel-neural-network.html
https://blog.research.google/2017/08/transformer-novel-neural-network.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/1410.3916.pdf
https://arxiv.org/pdf/1410.3916.pdf

	The Transformer
	Attention
	Attention more formally

	Transformer Blocks
	Parallelizing computation using a single matrix X
	The input: embeddings for token and position
	The Language Modeling Head
	Summary
	Bibliographical and Historical Notes

