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These notes develop the theory of supermodular games. Supermodular
games are those characterized by “strategic complementarities” – roughly,
this means that when one player takes a higher action, the others want to
do the same. Supermodular games are interesting for several reasons. First,
they encompass many applied models. Second, they have the remarkable
property that many solution concepts yield the same predictions. Finally,
they tend to be analytically appealing – they have nice comparative statics
properties and behave well under various learning rules. Much of the theory
is due to Topkis (1979), Vives (1990) and Milgrom and Roberts (1990).

1 Monotone Comparative Statics

We take a brief detour to review monotone comparative statics, starting
with the property of increasing differences (or supermodularity). For this,
suppose X ⊂ R and T some partially ordered set.

Definition 1 A function f : X × T → R has increasing differences in
(x, t) if for all x0 ≥ x and t0 ≥ t,

f(x0, t0)− f(x, t0) ≥ f(x0, t)− f(x, t).

What does this mean? If f has increasing differences in (x, t), then the
incremental gain to choosing a higher x (i.e. x0 rather than x) is greater
when t is higher. That is, f(x0, t) − f(x, t) is nondecreasing in t. You can
check that increasing differences is symmetric – an equivalent statement is
that if t0 > t, then f(x, t0)− f(x, t) is nondecreasing in x.

Note that f need not be nicely behaved, nor do X and T need to be
intervals. For instance, we could have X = {0, 1} and just a few parameter
values T = {0, 1, 2}. If, however, f is nicely behaved, we can re-write
increasing differences in terms of derivatives.
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Lemma 1 If f is twice continuously differentiable, then then f has increas-
ing differences in (x, t) if and only if t0 ≥ t implies that fx(x, t0) ≥ fx(x, t)
for all x, or alternatively that fxt(x, t) ≥ 0 for all x, t.

A central question in monotone comparative statics is to identify when:

x(t) = argmax
x∈X

f(x, t)

will be non-decreasing (or increasing) in t. The main result we will use is
due to Topkis (1968).

Theorem 1 Let X ⊂ R be compact and T a partially ordered set. Suppose
f : X × T → R has increasing differences in (x, t), and is upper semi-
continuous in x.1 Then (i) for all t, x(t) exists and has a greatest and least
element x(t) and x(t); and (ii) if t0 ≥ t, then x(t0) ≥ x(t) in the sense that
x(t0) ≥ x(t) and x(t0) ≥ x(t).

Proof. (i) Fix t, and pick x1 ≤ x2 ≤ ..., with each xk ∈ x(t), and let
x = limk→∞ xk. Then for all x ∈ X,

f(xk, t) ≥ f(x, t) ⇒ f(x, t) ≥ f(x, t)

by continuity. Thus, x ∈ x(t). It follows that x(t) must have a largest (and
by the same argument, smallest) element.

(ii) Fix t and t0, and let x ∈ x(t) and x0 ∈ x(t0) to be two maximizers.
By the fact that xmaximizes f(x, t),

f(x, t)− f(min(x, x0), t) ≥ 0.

This implies (check the two cases that x ≥ x0 and x ≤ x0) that:

f(max(x, x0), t)− f(x0, t) ≥ 0,

so by supermodularity

f(max(x, x0), t0)− f(x0, t0) ≥ 0.

Thus, max(x, x0) maximizes f(·, t0). Now if we pick x = x(t) and x0 = x(t0),
an immediate implication is that x0 ≥ x. A similar argument applies to the
lowest maximizers. Q.E.D.

Topkis’ Theorem says that if f has increasing differences, then the set
of maximizers x(t) is increasing in t in the sense that both the highest and
lowest maximizers will not decrease if t increases.

1Recall that a function f : X→ R is upper semi-continuous at x0 if for any ε, there
exists a neighborhood U(x0) such that x ∈ U(x0) implies that f(x) < f(x0) + ε. The
function f is upper semi-continuous if it is upper semi-continuous at each x0 ∈ X.
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2 Supermodular Games

We now introduce the notion of a supermodular game, or game with strategic
complementarities.

Definition 2 The game (S1, ..., SI ;u1, .., uI) is a supermodular game if
for all i:

• Si is a compact subset of R;

• ui is upper semi-continuous in si, s−i.

• ui has increasing differences in (si, s−i).

Applying Topkis’ Theorem in this context shows immediately that each
player’s best response function is increasing in the actions of other players.

Corollary 1 Suppose (S, u) is a supermodular game, and let

BRi(s−i) = arg max
si∈Si

ui(si, s−i)

Then

(i) BRi(s−i) has a greatest and least element BRi(s−i), BRi(s−i).

(ii) If s0−i ≥ s−i, then BRi(s
0
−i) ≥ BRi(s−i) and BRi(s

0
−i) ≥ BRi(s−i).

2.1 Examples

1. (Investment Game) Suppose firms 1, ..., I simultaneously make invest-
ments si ∈ {0, 1} and payoffs are:

ui(si, s−i) =

(
π
³PI

j=1 sj

´
− k if si = 1

0 if si = 0

where π is increasing in aggregate investment.

2. (Bertrand Competition) Suppose firms 1, ..., I simultaneously choose
prices, and that

Di(pi, p−i) = ai − bipi +
X
j 6=i

dijpj

where bi, dij ≥ 0. Then Si = R+ and π(pi, p−i) = (pi − ci)Di(pi, p−i)
has

¡
∂2πi

¢
/(∂pi∂pj) = dij ≥ 0. So the game is supermodular.
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3. (Cournot Competition) Cournot duopoly is supermodular if we take

s1 = Firm 1’s quantity

s2 = Negative of Firm 2’s quantity

4. (Diamond Search Model) Consider a simplified version of Diamond’s
(1982) search model (suggested by Milgrom and Roberts, 1990). There
are I agents who exert effort looking for trading partners. Let ei denote
the effort of agent i, and c(ei) the cost of this effort, where c is increas-
ing and continuous. The probability of finding a partner is ei ·

P
j 6=i ej

and the cost is c(ei). Then:

ui(ei, e−i) = ei ·
X
j 6=i

ej − c(ei)

has increasing differences in ei, e−i so the game is supermodular.

2.2 Solving the Bertrand Game

Consider the Bertrand game from above, where firms 1 and 2 choose prices
p1, p2.Suppose they have zero marginal costs, and that Di(pi, pj) = 1−2pi+
pj . Then

Πi(pi, pj) = pi [1− 2pi + pj ] .

Note that
∂Πi
∂pi

(pi, pj) = 1− 4pi + pj

Let’s apply iterated strict dominance to this game.
Set S0i = [0, 1].

• If pi < 1
4 , then

∂Πi
∂pi

> 1 − 414 + pj ≥ 0 ⇒ any pi < 1
4 is strictly

dominated.

• If pi > 1
2 , then

∂Πi
∂pi

< 1 − 412 + pj ≤ 0 ⇒ any pi > 1
2 is strictly

dominated.

So S1i = [
1
4 ,
1
2 ]. Note that this is the interval of best-responses: BRi(pj) ∈

[14 ,
1
2 ].
Let Sk

i = [s
k, sk], where

sk =
1

4
+

sk−1

4
=
1

4
+
1

16
+

sk−2

16
= ... =

1

4
+
1

16
+ ...+

1

4k
+

s0

4k
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sk =
1

4
+

sk−1

4
=
1

4
+
1

16
+

sk−2

16
= ... =

1

4
+
1

16
+ ...+

1

4k
+

sk

4k

So
lim
k→∞

sk = lim
k→∞

sk =
1

3
.

So (13 ,
1
3) is the only Nash equilibrium, and the unique rationalizable

profile.

3 Main Result

We now use the properties of supermodular games to show that the corre-
spondence between rationalizable and Nash strategies in the Bertrand ex-
ample is significantly more general than might appear at first glance.

Theorem 2 Let (S, u) be a supermodular game. Then the set of strategies
surviving iterated strict dominance has greatest and least elements s, s and
s, s are both Nash equilibria.

Corollary 2 This implies the following.

1. Pure strategy NE exist in supermodular games

2. The largest and smallest strategies compatible with ISD, rationalizabil-
ity, correlated equilibrium and Nash equilibrium are the same.

3. If a supermodular game has a unique NE, then it is dominance solvable
(& lots of learning or adjustment rules will converge to it (e.g. best-
response dynamics)).

Proof. As in the example, we iterate the best response mapping. Let S0 =
S, and let s0 = (s01, ..., s

0
I) be the largest element of S. Let s

1
i = BRi(s

0
−i),

and S1i = {si ∈ S0i : si ≤ s1i }. If si /∈ S1i , i.e. si > s1i , then it is dominated
by s1i when s−i ∈ S0−i because (by increasing differences and the fact that s

0
i

is the biggest maximizer)

ui(si, s−i)− ui(s
1
i , s−i) ≤ ui(si, s

0
−i)− ui(s

1
i , s

0
−i) < 0

Note that s1i = BRi(s
0
−i) and s1i ≤ s0i .

Iterating this argument, define

sk+1i = BRi(s
k
−i) and Sk+1

i =
n
si ∈ Si : si ≤ sk+1i

o
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Now, if sk ≤ sk−1, this implies that sk+1i = BRi(s
k
−i) ≥ BRi(s

k−1
−i ) = ski . So

by induction, ski is a decreasing sequence for each i. Define:

si = lim
k→∞

ski

This limit exists and only strategies si ≤ si are undominated.
Similarly, we can start with s0 = (s01, ..., s

0
I) the smallest elements in S

and identify s.
To complete the proof, we need to show that s = (s1, ..., sI) is a Nash

equilibrium. Then for all i, si,

ui(s
k+1
i , sk−i) ≥ ui(si, s

k
−i)

Taking limits as k →∞,

ui(si, s−i) ≥ ui(si, s−i).

Q.E.D.

4 Properties of Supermodular Games

A useful propery of supermodular games is that we can use monotonicity
to prove comparative statics results. Our first result shows how changes in
parameters that affect the marginal returns to action shift the equilibria of
a supermodular game.

• A supermodular game (S, u) is indexed by t if each players payoff func-
tion is indexed by t ∈ T, some ordered set, and for all i, ui(si, s−i, t)
has increasing differences in (si, t).

Proposition 1 Suppose (S, u) is a supermodular game indexed by t. The
largest and smallest Nash equilibria are increasing in t.

Proof. Let BR(s, t) : S × T → S be the largest best response function
as defined above for the game with parameter t. Then BRi(s, t) is i’s best
response to s−i given parameter value t and is nondecreasing in s and tby
Topkis’ Theorem. Thus BR(s, t) is nondecreasing. Every Nash equilibrium
satisfies BR(s, t) ≥ s, and moreover s(t) = sup{s : BR(s, t) ≥ s} is the
largest first point of BR(s, t) and hence the largest Nash equilibrium (for-
mally this follows from Tarski’s Fixed Point Theorem). Since BR(s, ·) is

6



nondecreasing, s is nondecreasing. A similar argument proves the result for
the smallest Nash equilibrium. Q.E.D.

Because there is a positive feedback between the strategic choices of
different players in a supermodular game, there are often multiple equilibria.
The second property we consider a welfare theorem that is particularly useful
when considering such games.

• A supermodular game (S, u) has positive spillovers if for all i, ui(si, s−i)
is increasing in s−i.

Proposition 2 Suppose (S, u) is a supermodular game with positive spillovers.
Then the Nash equilibrium are ordered in accordance with Pareto preference.

This result implies that the largest Nash equilibrium is Pareto-preferred
among the set of all Nash equilibria. Nevertheless, it need not be Pareto
optimal among the set of all strategy profiles.

We have now seen that the greatest and least equilibria in a supermod-
ular game are pure strategy nash equilibria and that it is possible to obtain
nice comparative statics results for these equilibria. But what about mixed
strategy equilibria? Echenique and Edlin (2003) show that when a super-
modular game has mixed strategy equilibria, these equilibria are always
“unstable” under a variety of dynamic adjustment processes, thus justifing
a focus on pure strategy equilibria.

Their idea can be seen using Battle of the Sexes as an example.

B F
B 2, 1 0, 0
F 0, 0 1, 2

Recall that Battle of the Sexes has two pure nash equilibria (B,B) and (F,F )
and a mixed equilibrium (23B+

1
3F,

1
3B+

2
3F ). To make this a supermodular

game, we need to define an order on the strategy sets. Let F >i B for both
players. Then ui(si, s−i) has increasing differences in (si, s−i).

In the mixed equilibrium it is crucial that player 1 believes that player
2 is playing exactly 1

3B +
2
3F . If player 1 believes player 2 will play F with

probability 2/3 + ε, even for ε > 0 small, then player 1 will strictly prefer
F . Similarly, if player 2 believes 1 will play F with any probability above
1/3, player 2 will strictly prefer F .

Now, imagine the players play repeatedly, with player 1 initially believing
2 will play F with probability 2/3 + ε and player 2 initially believing 1 will
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play F with probability 1/3 + η. Both will play F . If they then adjust
their beliefs so they put more weight on their opponent’s playing F (I’m
purposely being a little loose about the dynamic adjustment process here),
they will play F again in the next period, and so on until they always play
F and have moved away from mixed strategy beliefs.

This situation is not contrived. The more general point is that so long
as player i adjusts his beliefs toward j playing F when j does play F , and so
long as i’s response to this change is to herself play F more often, then any
move toward (F,F ) (or toward (B,B)) and away from the mixed equilibrium
is self-reinforcing, and many reasonable dynamic processes will move away
from the mixed equilibrium toward a pure equilibrium.2

5 Comments

1. (Extensions) These results extend to games where players have multi-
dimensional strategy spaces. If Si ⊂ Rn, we need two further assump-
tions. First, for all i, Si must be a complete sublattice; second, for all i,
ui must be supermodular in si as well as having increasing differences
in (si, s−i). For precise definitions, see that Monotone Comparative
Statics handout. The results also extend to the case where ui satis-
fies the single crossing property in (si, s−i) as opposed to the stronger
assumption of increasing differences (see Milgrom and Shannon, 1994).

2. (Comparing Fixed Points) Milgrom and Roberts (1994) use similar
arguments to derive comparative statics for models where equilibria
are the solutions to some equation f(x, t) = 0. Roughly, they show
that if f is increasing in t and continuous (in a weak sense) in x, then
the largest fixed point of f(x, t) = 0 is increasing in t. Thus their
results provide analogues of Proposition 1 for another class of models.
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