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1 Sequential Bargaining

A classic economic question is how people will bargain over a pie of a certain
size. Ome approach, associated with Nash (1950), is to specify a set of
axioms that a “reasonable” or “fair” division should satisfy, and identify the
division with these properties. For example, if two identical agents need to
divide a pie of size one, one might argue that a reasonable division would
be (1/2,1/2).

The other approach, associated with Nash’s 1951 paper, is to write down
an explicit game involving offers and counter-offers and look for the equi-
librium. Even a few minutes’ reflection suggests this will be difficult. Bar-
gaining can involve bluffing and posturing, and there is no certainty that
an agreement will be reached. The Nash demand game demonstrates that
a sensible bargaining protocol might have many equilibria. A remarkable
paper by Rubinstein (1982), however, showed that there was a fairly rea-
sonable dynamic specification of bargaining that yielded a unique subgame
perfect equilibrium. It is this model of sequential bargaining that we now
consider.

1.1 The Model

Imagine two players, one and two, who takes turns making offers about how
to divide a pie of size one. Time runs from ¢t = 0,1,2,.... At time 0, player
one can propose a split (zo, 1 — zo) (with =g € [0, 1]), which player 2 can
accept or reject. If player 2 accepts, the game ends and the pie is consumed.
If player two rejects, the game continues to time ¢ = 1, when she gets to
propose a split (y1,1 — y1). Once player two makes a proposal, player one
can accept or reject, and so on ad infinitumn.

We assume that both players want a larger slice, and also that they both
dislike delay. Thus, if agreement to split the pie (z, 1 —z) is reached at time



t, the payoff for player one is 6,2 and the payoff for player two is &5 (1 — ),
for some 61,62 € (0,1).

1.2 A Finite-Horizon Version

To get a flavor for this sort of sequential-offer bargaining, consider a variant
where there is some finite number of offers N that can be made. This
model was first studied by Stahl (1972). To solve for the subgame perfect
equilibrium, we can use backward induction, starting from the final offer.

For concreteness, assume N = 2. At date 1, player two will be able to
make a final take-it-or-leave-it offer. Given that the game is about to end,
player one will accept any split, so player two can offer y = 0.

What does this imply for date zero? Player two anticipates that if she
rejects player one’s offer, she can get the whole pie in the next period, for
a total payoff of d5. Thus, to get her offer accepted, player one must offer
player two at least 82. It follows that player one will offer a split (1 — 62, 62),
and player two will accept.

Proposition 1 In the N = 2 offer sequential bargaining game, the unique
SPE involves an immediate (1 — 62, 02) split.

1.3 Solving the Rubinstein Model

It is fairly easy to see how a general N-offer bargaining game can be solved by
backward induction to yield a unique SPE. But the infinite-horizon version
is not so obvious. Suppose player one makes an offer at a given date t. Player
two’s decision about whether to accept will depend on her belief about what
she will get if she rejects. This in turn depends on what sort of offer player
one will accept in the next period, and so on. Nevertheless, we will show:

Proposition 2 There is a unique subgame perfect equilibrium in the sequen-
tial bargaining game described as follows. Whenever player one proposes, she
suggests a split (x,1 — ) with x = (1 — b2) / (1 — 6162). Player two accepts
any division giving her at least 1 — x. Whenever player two proposes, she
suggests a split (y,1 —y) with y = 61 (1 — 62) /(1 — 6162). Player one ac-
cepts any division giving her at least y. Thus, bargaining ends immediately
with a split (x,1 — x).

Proof. We first show that the proposed equilibrium is actually an SPE.
By a classic dynamic programming argument, it suffices to check that no
player can make a profitable deviation from her equilibrium strategy in one



single period. (This is known as the one-step deviation principle see e.g.
Fudenberg and Tirole’s book for details.)

Consider a period when player one offers. Player one has no profitable
deviation. She cannot make an acceptable offer that will get her more than
x. And if makes an offer that will be rejected, she will get y = 612 the next
period, or b%fr in present terms, which is worse than x. Player two also has
no profitable deviation. If she accepts, she gets 1 — x. If she rejects, she
will get 1 — y the next period, or in present terms 62 (1 — ) = §2(1 — 612).
It is easy to check that 1 — o = 0o — 01092, A similar argument applies to
periods when player two offers.

We now show that the equilibrium is unique. To do this, let v;,7; denote
the lowest and highest payoffs that player one could conceivably get in any
subgame perfect equilibrium starting at a date where he gets to make an
offer.

To begin, consider a date where player two makes an offer. Player one
will certainly accept any offer greater than 6177 and reject any offer less
than 61v;. Thus, starting from a period in which she offers, player two can
secure at least 1 — 6171 by proposing a split (6171, 1 — 6171). On the other
hand, she can secure at most 1 — d1v;.

Now, consider a period when player one makes an offer. To get player
two to accept, he must offer her at least 6 (1 — 6171) to get agreement.
Thus:

v < 1—62(1—5151).

At the same time, player two will certainly accept if offered more than
82(1 — 67v4). Thus:

It follows that:

Since U1 > wv; by definition, we know that in any subgame perfect equi-
librium, player one receives vi = (1 — 62) /(1 —6162). Making the same
argument for player two completes the proof. Q.ED.

A few comments on the Rubinstein model of bargaining.

1. It helps to be patient. Note that player one’s payoff, (1 — 82) / (1 — 6162),
is increasing in 67 and decreasing in 62. The reason is that if you are
more patient, you can afford to wait until you have the bargaining
power (i.e. get to make the offer).



2. The first player to make an offer has an advantage. With identical
discount factors ¢, the model predicts a split
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which is better for player one. However, as 6 — 1, this first mover
advantage goes away. The limiting split is (1/2,1/2).

3. There is no delay. Player two accepts player one’s first offer.

4. The details of the model depend a lot on there being no immediate
counter-offers. With immediate counter-offers, it turns out that there
are many many equilibria!

2 Finitely Repeated Games

So far, one might have a somewhat misleading impression about subgame
perfect equilibria, namely that they do such a good job of eliminating unrea-
sonable equilibria that they typically make a unique prediction. However,
in many dynamic games, we still have a very large number of SPE.

2.1 A Simple Example

Consider the following game G-

A B C
A[4,470,0]0,5
B[0,0[1,1]0,0
C[5,0[0,0]3,3

This game has three Nash equilibria, (53, B), (C,C) and (2 B+1C, 2B+1C).
Note that A is strictly dominated by C'.

Suppose that the players play G twice, and observe the first period ac-
tions before choosing their second period actions. Suppose that both players
discount the future by 6. Thus player #’s total payoff is wu; (a1> + bu; (a2>,
where a! = (a{, (15) is the time t action profile.

In this setting, note that repeating any one of the Nash equilibria twice
is an SPE of the two period game. So is playing one of the NE in the first
period and another in the seond. Moreover, by making the choice of which
Nash Equilibrium to play in period two contingent on play in period one,
we can construct SPE where play in the first period does not correspond to
Nash play.



Proposition 3 If 6 > 1/2 then there exists an SPI of the two-period game
in which (A, A) is played in the first period.

Proof. Consider the following strategies.

e Play (A, A) in the first period.

e If first period play is (A, A), play (C,C) in the second period. Other-
wise, play (B, B) in the second period.

To see that this is an SPE, we again look for profitable one-time deviations.
Consider the second period. Following (A, A), playing (C,C) is a NE so
neither player benefits from deviating. Similarly, following something else,
(B, B) is a NE, so there is no gain to deviating.

Now consider the first period. By following the strategy, a player gets:

Payoff to Strategy : 446-3
Best Deviation Payoff : 5+6-1

So long as 26 > 1, there is no gain to deviating. Q.L.D.

2.2 Finitely Repeated Prisoners’ Dilemma

The construction we just used requires that the stage game have at least
two Nash equilibria, with different payoffs. Of course, not every game has
this property. For instance, consider the prisoners’ dilemma:

C D

cl L1 [-12
D[2,=1] 0,0

Proposition 4 In oI'-period repetition of the prisoners’ dilemma, the unique
SPE is for both players to defect in every period.

Proof. We use backward induction. Consider period 7. In this period,
play must be a Nash equilibrium. But the only equilibrium is (D, D). Now
back up to period 1" — 1. In that period, players know that no matter what
happens, they will play (D, D) at date I'. Thus D is strictly dominant at
date T'— 1, and the equilibrium must involve (D, D). Continuing this for
periods T'— 2, T — 3, etc... completes the proof. Q.E.D.



3 Infinitely Repeated Games

We now consider infinitely repeated games. In the general formulation, we
have I players and a stage game G which is repeated in periods t =0, 1,2, ....
If @' is the action profile played at ¢, player i’s payoff for the infinite horizon
game is:

U; ((1,0> + bu; ((1,1) + &%, ((1,2> + .= Zétu,i (a,t) )
t=0

To avoid infinite sums, we assume 6 < 1. Sometimes, it is useful to look at
average payoffs:

(1-19) Zﬁtui (a')

Note that for player ¢, maximizing total payoff is the same as maximizing
average payoff.

Before we go on to consider some examples, it’s worth commenting one
two interpretations of the discount factor.

e Time preference. One interpretation of 6 is that player’s prefer money
today to money tomorrow. That is, if the economy has an interest rate
r, then § = 1/(1 4+ r). If there is a longer gap between stage games,
we would think of § as smaller.

e Uncertain end date. Another interpretation of ¢ is that it corresponds
to the probability that the interaction will continue until the next date.
That is, after each stage game, there is a 1 — & probability that the
game will end. This leads to the same repeated game situation, but
with the advantage that the game will actually end in finite time —
just randomly.

A history in a repeated game is a list Al = (ao, a', ..., af’_l) of what has
previously occurred. Let I be the set of t-period histories. A strategy for
player 4 is a sequence of maps s! : H" — A;. A mixed strategy o; is a
sequence of maps o} : H' — A(4;). A strategy profile is 0 = (071, ..., 0/).

3.1 The Prisoners’ Dilemma

Proposition 5 In the infinitely repeated prisoners’ dilemma, if 6 > 1/2
there is an equilibrium in which (C,C) is played in every period.



Proof. Consider the following symmetric strategies  called “grim trigger”
strategies:

e Play C in the first period and in every following period so long as no
one ever plays .

e Play D if either player has ever played D.

To see that there is no profitable single deviation, suppose that D has
already been played. At this point, player ¢ has two choices:

e Play C for a payoff =1 +68-04+6%-0+4...=—1

e Play D for a payoff 0+6-0+6%-0+ ... =0.

So player ¢should certainly play . On the other hand, suppose D has
not been played. At this point ¢ has two choices:

e Play C for a payoff 1 +8+62+...=1/(1—¥6).

e Play D for a payoff 2+ 6-0+6%-0+ ... = 2.
If 6 > 1/2 it is better to play C so we have an SPE. Q.E.D.

It is tempting to think of this proposition as saying that if people interact
repeatedly then they will cooperate. However, it does not say this. What it
says is that cooperation is one possible SPE outcome. However, there are
many others.

e For any 6, there is a SPE in which players play /) in every period.

e For 6 > 1/2, there is a SPE in which the players play D in the first
period and C'in every following period.

e For6 > 1/ V2, there is a SPE in which the players alternate between
(C,C) and (D, D).

e For 6 > 1/2, there is a SPE in which the players alternate between
(C, D) and (D, ().

A good exercise is to try to construct these SPE.



3.2 The Folk Theorem

Perhaps the most famous result in the theory of repeated games is the folk
theorem. It says that if players are really patient and far-sighted (i.e. if
6 — 1), then not only can repeated interaction allow many SPE outcomes,
but actually SPE can allow virtually any outcome in the sense of average
payoffs.

Let (G be a simultaneous move game with action sets Ai,..., A7, and
mixed strategy sets X1, ..., X1, and payoff functions u, ..., uj.

Definition 6 A payoff vector v = (v1,...,v;) C R is feasible if there ex-
ist actions profiles a',...,a®* € A and non-negative weights AL ...,)\K with
>k N =1 such that for each 1,

v; = )\lui (al) + ...+ )\Kw (aK) .

Definition 7 A payoff vector v is strictly individually rational if for all
2
v; > min max u; (0;,0_;) = v;.
O_€EX_; 0;€%;
We can think v, as the lowest payoff a rational player could ever get in
equilibrium if he anticipates his opponents’ (possibly non-rational) play. We
refer to v, as ¢’s min-max payoff.

Example In the prisoners’ dilemma, the figure below outlines the set of
feasible and individually rational payoffs.




Theorem 8 (Folk Theorem) Suppose that the set of feasible payoffs of G is
I-dimensional. Then for any feasible and strictly individually rational payoff
vector v, there exists & < 1 such that for any 6 > 6 there is o SPE o* of G
such that the average payoff to o* is vy for each player <.

The Folk Theorem says that anything that is feasible and individually
rational is possible.

Sketch of Proof. The proof is pretty involved, but here is the outline:

1. Have players on the equilibrium path play an action profile with payoff
v (or alternate if necessary).

2. If some player deviates, punish hitn by having the other players for
T periods play some o_; against which ¢ can get at most v;.

3. After the punishment period, reward all players other than ¢ for car-
rying out the punishment. To do this, switch to an action profile that
gives each player j # ¢ some payoff v; > v ;-

Q.E.D.

Note that the Folk Theorem does not call for the players to revert to
the static Nash equilibrium as a punishment. Instead, they do someting
potentially worse — they min-max the deviating player. Of course, in some
games (i.e. the prisoners’ dilemma), the static Nash equilibrium s the min-
max point. But in other games (e.g. Cournot), it is not.

4 Applications of Repeated Games

Repeated game models are perhaps the simplest way to capture the idea of
ongoing interaction between parties. In particular, they allow us to capture
in a fairly simple way the idea that actions taken today will have conse-
quences for tomorrow, and that there is no “last” date from which to unfold
the strategic environment via backward induction. In these notes, we will
give only a small flavor of the many applications of repeated game models.

4.1 Employment and Efficiency Wages

We consider a simple model of employment. There is a firm and a worker.
The firm makes a wage offer w to the worker. The worker then chooses



whether to accept, and if he accepts whether to “Work” or “Shirk”. Thus,
the firms action space is [0, o0), and the worker chooses a € {0, W, S}.

Payoffs are as follows. If the worker is not employed, he gets w > 0. If
he is employed and works, he gets w — ¢ (here ¢is the disutility of effort). If
he is employed and shirks, he gets w. The firm gets nothing if the worker
turns down the offer, v — w if the worker accepts and works, and —w if the
worker accepts and shirks. Assume that v > u + c.

In this environment, it’s efficient for the firm to hire the worker if the
worker will actually work. However, once hired, the worker would like to
slack off. In the one-shot game, if the firm offers a wage w > % the worker
will accept the job and shirk. The worker will reject the offer if w < w.
The firm thus gets —w if the worker accepts and 0 otherwise. So the firm
will offer w < W and there will be no employment. Is there any way for the
parties to strike and efficient deal?

One solution is an incentive contract. Suppose that the worker’s behavior
is contractible in the sense that the firm can pay a contingent wage w(a). If
the firm offers a contract w : A — R given by w(W) =u + ¢ and w(S) =7,
the worket will accept and work. However, this solution requires in essence
that a court could come in and verify whether or not a worker performed
as mandated — and the employment contract would have to specificy the
worker’s responsibilities very carefully.

Another possibility arises if the employment relationship is ongoing.
Suppose the stage game is repeated at dates t =0, 1, ....

Proposition 9 If v > u+c¢/é, there is a subgamne perfect equilibrium in the
firm offers a wage w € [u+ ¢/6,v] and the worker works in every period.

Proof. Consider strategies as follows. In every period, the firm offers a
wage w € [u+ ¢/6,v] and the worker works. If the worker ever deviates by
turning down the offer or shirking, the firm forever makes an offer of w =0
and the worker never accepts (i.e. they repeat the stage game equilibria for
every following period. If the firm ever deviates by offering some other w,
the worker either rejects the offer — if w < @ — or accepts and shirks. From
then on they repeat the stage game equilibrium.

The firm’s best deviation payoff is zero, so it has no incentive to deviate
so long as v > w. Now consider the worker. He has no incentive to reject
the offer so long as w > w+ ¢. He has an incentive to work rather than shirk

if:

+ "o > + *

w—cC — (W —2cC w u

Payoff today if W — Payoff today if S N—_——
Future payoft if employed Future payoft if fired
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Or in other words if w > u + ¢/é. Q.K.D.

The relationship described in the equilibrium is sometimes referred to as
an efficiency wage contract since the worker receives more than his oppor-
tunity cost. That is, since w — ¢ > u, the worker makes a pure rent due to
the incentive problem. However, by paying more, the firm gets more!

4.2 Collusion on Prices

Consider a repeated version of Bertrand competition. The stage game has
N > 2 firms, who each select a price. Customers purchase from the least
expensive firm, dividing equally in the case of ties. Quantity purchased
is given by Q(P), which is continuous and downward-sloping. Firms have
constant marginal cost ¢. Let

m(p) = (p— ) Qp)

and assume that 7 is increasing in p on [¢, p™| — where p"* is the monopoly
price. This game is repeated at each date { = 0,1, 2,.... Firms discount at
0.

Note that the static Nash equilibrium involves each firm pricing at mar-
ginal cost. The question is whether there is a repeated game equilibrium in
which the firms sustain a price above marginal cost.

Proposition 10 Ifé < N/ (N — 1) all SPE involve pricing al marginal cost
in every period. If 6 > N/ (N — 1), there is a SPE in which the firms all
price at p* € [¢,p™] in every period.

Proof. We look for a collusive equilibrium. Note that since the stage
nash equilibrium gives each firm it’s min-max payoff zero, we can focus on
Nash reversion punishments. Suppose the firms try to collude on a price p*.
A firm will prefer not to deviate if and only if:

1 1

Nﬂp*)'ﬂ > 7 (p*).

This is equivalent to

N
o> .
T N-1

Thus patient firms can sustain a collusive price. Q.L.D.

Note that cooperation becomes more difficult with more firms. For N =
2, the critical discount factor is 1/2, but this increases with N. Note also
that the equilibrium condition is independent of w1 thus either monopoly
collusion is possible (p = p"*) or nothing at all.
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4.3 Collusion on Quantities

Consider a repreated version of the Cournot model. The stage game has
N =2 firms, who each select a quantity. The market price is then P(Q) =
1 — . Firms produce with constant marginal cost c.

Let Q™ = (1 — ¢) /2 denote the monopoly quantity, and 7' the monopoly
profit. Let Q¢ = (1 —c¢)/3 denote the Cournot quantities and 7¢ the
Cournot profit for each firm.

Note that since the static Cournot model has a unique equilibrium, we
must focus on the infinitely repeated game to get collusion. We consider
SPE with Nash reversion.

Proposition 11 Firms can collude on the monopoly price as part of a SPE
if the discount factor is sufficiently high.

Proof. Let’s look for an equilibrium in which the firms set quantities ¢
in each period and play static Cournot forever should a firm ever deviate.
Provided no one deviates, each firm expects a payoff

1 1

Collusive Payoff = ——=
ollusive Payo T —627T

e

On the other hand, by deviating a firm can get:

, 5
Deviation Payoff = max (P (¢"" + ¢) —¢) ¢ + 5"
i _

The best deviation is to set ¢; = (3/4 — ¢) /2. For the case of ¢ = 0, there is
no incentive to deviate provided that:

1 lfmi 1 l>i+ 6 ii 1 l dev de1)_|_ 6 c
1-52 ~1-é8764 1-s9 \ 1 T )T "1

That is if 6 > 9/17. Q.ED.
Several comments are in order.

1. First, note that as N increases the monopoly share of each firm be-
comes smaller. However, the static Cournot profits also become smaller.
As an exercise see if you can figure out whether collusion becomes
harder or easier to sustain.
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2. In the Cournot model, the static Nash equilibrium is not the min-max
point. Thus, there are typically “worse” SPE punishments than Nash
reversion. In turn, this means that collusion can be sustained for lower
discount factors than with Nash reversion. Finding the “optimal” col-
lusive agreement for a given discount factor turns out to be a difficult

problem. See Abreu (1986, JET and 1988 EMA) for details.

4.4 Multimarket Contact

A common wisdom in Industrial Organization is that collusion will be easier
to sustain if firms compete simultaneously in many markets. The classic
intuition for this is that opportunism is likely to be met with retaliation in
many markets. This may limit the temptation to compete agressively. We
now explore this idea in a framework pioneered by Bernheim and Whinston
(1990).

Consider two firms that simultaneously compete in two markets.

e Let Gy denote the gain to firm ¢ from deviating in market k for the
current period, for a particular equilibrium.

o Let 7{, denote the discounted payoff from continuation (next period
forward) for firm ¢ in market k, assuming no deviation from the equi-
librium in the current period.

o Let 7Tf i denote the discounted “punishment” payoff from continuation
(next period forward) for firm ¢ in market k, assuming that 7 deviates
from the equilibrium in the current period.

Separate Markets. If the markets are separate, the equilibrium condition
is that for each ¢ and each k,

. - p
There are N x K such constraints.

Linked Markets. Now suppose that a deviation in any market is met by
punishment in all markets. The equilibrium condition is that for each ¢,

Z oy, > Z G + Z omb.
k k k

There are now N constraints.
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We can make the immediate observation that multimarket contact pools
constraints across markets. Clearly, if the separate constraints are satisfied,
the linked constraints will be as well. The interesting question is whether
linking strictly expands the set of collusive outcomes. The answer is typically
yes so long as there is enforcement slack in some market. If there is slack
in one of the individual constraints, with pooling there will be slack in the
aggregate constraint  potentially allowing for a more collusive equilibrium.
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